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Abstract

This paper was written as a part of [8] and is intended primarily to provide the
definitions and results concerning motives over simplicial schemes, which are
used in the proof of the Bloch-Kato conjecture.
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1. Introduction

For the purpose of this paper a scheme means a possibly infinite disjoint union of
separated noetherian schemes of finite dimension. A smooth scheme over a scheme



2 V. VOEVODSKY

S is a disjoint union of smooth separated schemes of finite type over S . A smooth
simplicial scheme X over S is a simplicial scheme such that all terms of X are
smooth schemes over S and all morphisms are over S .

If X is a smooth simplicial scheme over a field k then the complex of presheaves
with transfers defined by the simplicial presheaf with transfers Ztr.X / gives an
object M.X / in the triangulated category of motives DM eff

! .k/ over k. The
motivic cohomology of this object is called the motivic cohomology of X and we
denote its cohomology groups by

Hp;q.X ;A/ WDHomDM .M.X /;A.q/Œp!/
where A is an abelian group of coefficients.

The main goal of this paper is to define for any smooth simplicial scheme X
over a perfect field k, a tensor triangulated category DM eff

! .X / such that

Hp;q.X ;A/DHomDM eff .X /.Z;A.p/Œq!/: (1.1)

For completeness we make our construction of DM eff
! .X / for the case of a

general simplicial scheme and in particular we provide a definition of “motivic
cohomology” of simplicial schemes based on (1.1). If the terms of X are not regular,
there are examples which show that the motivic cohomology defined by (1.1) does
not satisfy the suspension isomorphism with respect to the T -suspension (which
implies that they do not satisfy the projective bundle formula and do not have the
Gysin long exact sequence). Therefore in the general case we have to distinguish
the “effective” motivic cohomology groups given by (1.1) and the stable motivic
cohomology groups given by

Hp;q
stable.X ;A/ WD lim

n
HomDM eff .X /.Z.n/;A.nC q/Œp!/: (1.2)

The stable motivic cohomology groups should also have a description as morphisms
between Tate objects in the properly defined T -stable version of DM and should
have many good properties including the long exact sequence for blow-ups, which
the unstable groups in the non-regular case do not have.

If the terms of X are regular schemes of equal characteristic then the can-
cellation theorem over perfect fields implies that this problem does not arise and
the stable groups are same as the effective ones (see Corollary 5.5). Since in
applications to the Bloch-Kato conjecture we need only the case of smooth schemes
over a perfect field, we shall not consider stable motivic cohomology in this paper.

Note also that while we use schemes which are smooth over a base as the
basic building blocks of motives over a base, one can also consider all (separated)
schemes instead, as done in [7] and [4]. As far as the constructions of this paper are
concerned, this make no difference except that the resulting motivic category gets
bigger.
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2. Presheaves with transfers

Let X be a simplicial scheme with terms Xi , i ! 0. For a morphism " W Œj !! Œi ! in
# we let X! denote the corresponding morphism Xi ! Xj . Denote by Sm=X the
category defined as follows:

1. An object of Sm=X is a pair of the form .Y;i/ where i is a non-negative
integer and Y ! Xi is a smooth scheme over Xi .

2. A morphism from .Y;i/ to .Z;j / is a pair .u;"/ where " W Œj ! ! Œi ! is a
morphism in# and u W Y !Z is a morphism of schemes such that the square

Y
u""""! Z

??y
??y

Xi
X!""""! Xj

(2.1)

commutes.

A presheaf of sets on Sm=X is a contravariant functor from Sm=X to sets. Each
presheaf F on Sm=X defines in the obvious way a famlily of presheaves Fi on
Sm=Xi together with natural transformations F! W X "! .Fj /! Fi for all morphisms
" W Œj !! Œi ! in #.

One can easily see that this construction provides a bijection between presheaves
on Sm=X and families .Fi ;F!/ such that FId D Id and the obvious compatibility
condition holds for composable pairs of morphisms in #. Under this bijection the
presheaf h.Y;i/ represented by .Y;i/ has as its j -th component the presheaf

.h.Y;i//j D
a

!

hY#!Xj

where " runs through the morphisms Œi !! Œj ! in #.
Our first goal is to develop an analog of this picture where the presheaves

of sets are replaced with presheaves with transfers. Let us recall first the basic
notions for presheaves with transfers over usual schemes. For a scheme X denote
by SmCor.X/ the category whose objects are smooth schemes over X and whose
morphisms are finite correspondences over X (in the case of a non-smooth X see
[7] for a detailed definition of finite correspondences and their compositions). Note
that we allow schemes which are infinite disjoint unions of smooth schemes of finite
type to be objects of SmCor.X/. In particular our SmCor.X/ has infinite direct
sums. A presheaf with transfers on Sm=X is an additive contravariant functor
from SmCor.X/ to abelian groups which takes infinite direct sums to products.
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Presheaves with transfers form an abelian category PST .X/. The forgetful functor
from presheaves with transfers to presheaves of sets has a left adjoint which we
denote by Ztr."/. If Y is a smooth scheme over X and hY is the presheaf of
sets represented by Y then Ztr.hY / coincides with the presheaf with transfers
represented by Y on SmCor.X/ and we denote this object by Ztr.Y /. It will be
convenient for us to identify SmCor.X/ with its image in PST .X/ and to denote
the object of SmCor.X/ corresponding to a smooth scheme Y over X by Ztr.Y /.

A morphism of schemes f W Y !X defines the pull-back functor

Ztr.U / 7! Ztr.U #X Y /

from SmCor.X/ to SmCor.Y / and therefore a pair of adjoint functors f";f "

between the corresponding categories of presheaves with transfers. Since f"
commutes with the forgetful functor, we conclude by adjunction that for a presheaf
of sets F over X one has

Ztr.f ".F //D f ".Ztr.F //: (2.2)

It is not necessarily true that pull-back functors on presheaves of sets and on
presheaves with transfers commute with the forgetful functor.

Definition 2.1 Let X be a simplicial scheme. A presheaf with transfers on X is the
following collection of data:

1. For each i ! 0, a presheaf with transfers Fi on Sm=Xi .

2. For each morphism " W Œj !! Œi ! in the simplicial category #, a morphism of
presheaves with transfers

F! W X "! .Fj /! Fi :

These data should satisfy the condition that Fid D Id and for a composable pair of
morphisms " W Œj !! Œi !,  W Œk!! Œj ! in #, the obvious diagram of morphisms of
presheaves commutes.

We let PST .X / denote the category of presheaves with transfers on X . This is
an abelian category with kernels and cokernels computed termwise.

Example 2.2 LetX be a scheme and X a simplicial scheme such that Xi DX for all
i and all the structure morphisms are identities. Then a presheaf with transfers over
X is the same as a cosimplicial object in the category of presheaves with transfers
over X .
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Let F D .Fi ;F!/ be a presheaf of sets on Sm=X . In view of (2.2), the collection
of presheaves with transfers Ztr.Fi / has the natural structure of a presheaf with
transfers on Sm=X , which we denote by Ztr.F /. One observes easily that F 7!
Ztr.F / is left adjoint to the corresponding forgetful functor. If .Y;i/ is an object of
Sm=X and h.Y;i/ is the corresponding representable presheaf of sets, we let Ztr.Y;i/
denote the presheaf with transfers Ztr.h.Y;i//. For any presheaf with transfers F ,
we have

Hom.Ztr.Y;i/;F /D Fi .Y /: (2.3)

By construction, the i-th component of Ztr.Z;j / is

Ztr..h.Z;j //i /D Ztr.
a

!

hZ#!Xi /D˚!Ztr.Z #! Xi / (2.4)

where " runs through all morphisms Œj !! Œi ! in #. Together with (2.3) this shows
that

Hom.Ztr.Y;i/;Ztr.Z;j //D˚!HomSmCor.Xi /.Y;Z #! Xi /:

Denote by SmCor.X / the full subcategory in PST .X / generated by direct
sums of objects of the form Ztr.Yi /. The following lemma is an immediate corollary
of (2.3).

Lemma 2.3 The category PST .X / is naturally equivalent to the category of
additive contravariant functors from SmCor.X / to the category of abelian groups,
which commute with ˚.

Lemma 2.3 implies in particular that we can apply in the context of PST .X /
the usual construction of the canonical left resolution of a functor by direct sums
of representable functors. It provides us with a functor Lres from PST .X / to
complexes over SmCor.X / together with a familiy of natural quasi-isomorphisms

Lres.F /! F:

We let
D.X / WDD!.PST .X //

denote the derived category of complexes bounded from above over PST .X /. In
view of Lemma 2.3, it can be identified with the homotopy category of complexes
bounded from above over SmCor.X / by means of the functor

K 7! Tot.Lres.K// (2.5)

which we also denote by Lres.
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For a morphism of simplicial schemes f$ W X ! Y , the direct and inverse image
functors f "i ;fi;" define in the obvious way functors

f "$ W PST .Y/! PST .X /

f$;" W PST .X /! PST .Y/

and the adjunction morphisms Id ! fi;"f "i , f "i f";i ! Id define morphisms

Id ! f$;"f "$

f$;"f "$ ! Id

which automatically satisfy the adjunction axioms and therefore make f$;" into a
right adjoint to f "$ .

The functor f "$ takes Ztr.Z;i/ to Ztr.Z #Yi Xi ;i/ and commutes with direct
sums. Therefore it restricts to a functor

f !1$ W SmCor.Y/! SmCor.X /:

Using the equivalence of Lemma 2.3, we can now recover the functors f "$ and f";$
as the direct and inverse image functors defined by f !1$ .

The functors f$;" are clearly exact and therefore define functors on the
corresponding derived categories. The functors f "$ for non-smooth f are in general
only right exact but not left exact. To define the corresponding left adjoints one sets

Lf "$ .K/D f "$ .Lres.K//

where Lres is defined on complexes by (2.5). The corresponding functor on the
derived categories, which we continue to denote by Lf "$ , is then a left adjoint to
f$;".

A group of functors relates the presheaves with transfers over X with the
presheaves with transfers over the terms of X . For any i ! 0, let

ri W SmCor.Xi /! SmCor.X /

be the functor which takes a smooth scheme Y over Xi to Ztr.Y;i/. This functor
defines in the usual way a pair of adjoints

ri;# W PST .Xi /! PST .X /

and
r"i W PST .X /! PST .Xi /
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where r"i is the right adjoint and ri;# the left adjoint. Equation (2.3) implies that for
a presheaf with transfers F on X , r"i .F / is the i-th component of F . To compute
ri;#, note that

ri;#.Ztr.Y //D Ztr.Y;i/ (2.6)

and ri;# is right exact. Therefore for a presheaf with transfers F over Xi , one has

ri;#.F /D h0.ri;#.Lres.F /// (2.7)

where Lres is the canonical left resolution by representable presheaves with
transfers and the right hand side of (2.7) is defined by (2.6).

The functors r"i are exact and therefore define functors between the correspond-
ing derived categories which we again denote by r"i . We do not know if the functors
ri;# are exact, but in any event one can define the left derived functor

Lri;# WD ri;# ıLres:

This functor respects quasi-isomorphisms and the corresponding functor between
the derived categories, which we continue to denote by Lri;#, is the left adjoint to
r"i .

Lemma 2.4 The family of functors

r"i WD.X /!D.Xi /

is conservative i.e. if r"i .K/Š 0 for all i then K Š 0.
Proof: Let K be an object such that r"i .K/Š 0 for all i . Then by adjunction

Hom.Ztr.Y;i/;KŒn!/DHom.Lri;#.Ztr.Y //;KŒn!/D

DHom.Ztr.Y /;r"i .K/Œn!/D 0:
Since objects of the form Ztr.Y;i/ generate D.X /, we conclude that K Š 0.

Consider the composition

r"i rj;# W PST .Xj /! PST .Xi /:

By (2.4) it takes Ztr.Y / to ˚!Ztr.Y #! Xi / where " runs through the morphisms
Œj !! Œi ! in #. Therefore we have

r"i Lrj;# D˚!LX "! (2.8)

and passing to h0."/ we get
r"i rj;# D˚!X "! :
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Remark 2.5 The functors ri behave as if the terms Xi formed a covering of the
simplicial scheme X where the r"i were the inverse image functors for this covering
and the ri;# were the functors which in the case of an open covering ji W Ui ! X

would be denoted by .ji /Š.
The functors r"i commute in the obvious sense with the functors f " for

morphisms f W X ! Y of simplicial schemes.
Let now X be a simplicial scheme over a scheme S . We have a functor

c" W PST .S/! PST .X /

which sends a presheaf with transfers F over S to the collection

c".F /D ..Xi ! S/".F //i%0

with the obvious structure morphisms. This functor is clearly right exact and
using the representable resolution Lres over S we may define a functor Lc" from
complexes over PST .S/ to complexes over PST .X /. Then Lc" respects quasi-
isomorphisms and therefore defines a triangulated functor

Lc" WD.S/!D.X /:

The functors c" are compatible with the pull-back functors f " such that for f W
X ! Y , we have a natural isomorphism

c" D f "c"

and for the functors on the derived categories, we have natural isomorphisms

Lc" D Lf "Lc":

They are also compatible with the functors r"i such that one has

r"i c
" D p"i

and
r"i Lc

" D Lp"i
where pi is the morphism Xi ! S .

If X is a smooth simplicial scheme over S then the functor c" has a left adjoint
c# which takes Ztr.Y;i/ to the presheaf with transfers Ztr.Y=S/ on SmCor.S/. In
particular in this case c" is exact. The functor c# being a left adjoint is right exact
and we use representable resolutions to define the left derived functor

Lc# WD c# ıLres:
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The functor Lc# respects quasi-isomorphisms and the corresponding functor on the
derived categories is a left adjoint to c" D Lc".

Functors c# are compatible with the functors ri;# such that one has

ri;#c# D pi;#

where pi is the smooth morphism Xi ! S , and on the level of the derived categories
one has

Lri;#Lc# D Lpi;#:

3. Tensor structure

Recall that for a scheme X one uses the fiber product of smooth schemes over
X and the corresponding external product of finite correspondences to define the
tensor structure on SmCor.X/ (see e.g. [7]). One then defines a tensor structure
on PST .X/ setting

F ˝G WD h0.Lres.F /˝Lres.G//

where the tensor product on the right is defined by the tensor product on SmCor.X/.
If f WX 0!X is a morphism of schemes then there are natural isomorphisms

f ".F ˝G/D f ".F /˝f ".G/ (3.1)

which are compatible on representable presheaves with transfers with the isomor-
phisms

.Y #X X 0/#X 0 .Z #X X 0/D .Y #X Z/#X X 0:
Let now X be a simplicial scheme. For presheaves with transfers F , G over X the
collection of presheaves with transfers Fi ˝Gi over Xi has the natural structure of
a presheaf with transfers over X defined by the isomorphisms (3.1). This structure
is natural in F and G and one can easily see that the pairing

.F;G/ 7! F ˝G

extends to a tensor structure on presheaves with transfers over X . The unit of
this tensor structure is the constant presheaf with transfers Z which has as its
components the constant presheaves with transfers over Xi . The following lemma
is straightforward.

Lemma 3.1 Let F , G be presheaves of sets over X . Then there is a natural
isomorphism

Ztr.F #G/D Ztr.F /˝Ztr.G/:
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A major difference between the categories of presheaves with transfers over a
scheme and over a simplicial scheme lies in the fact that the tensor structure on
PST .X / does not come from a tensor structure on SmCor.X /. In particular, for
a general X , Z is not representable and the tensor product of two representable
presheaves with transfers is not representable.

Let us say that a presheaf with transfers F is admissible, if its components
Fi are direct sums of representable presheaves with transfers over Xi . The
class of admissible presheaves contains Z and is closed under tensor products.
The following straightforward lemma implies that any representable presheaf
with transfers is admissible and in particular that Lres provides a resolution by
admissible presheaves.

Lemma 3.2 A presheaf with transfers of the form Ztr.Y;i/ is admissible.
Proof: Follows immediately from (2.4).

Lemma 3.3 Let K;K 0;L be complexes of admissible presheaves with transfers and
K!K 0 be a quasi-isomorphism. Then K˝L!K 0˝L is a quasi-isomorphism.
Proof: The analog of this proposition for presheaves with transfers over each Xi
holds since free presheaves with transfers are projective objects in PST .Xi /. Since
both quasi-isomorphisms and tensor products in PST .X / are defined term-wise,
the proposition follows.

In view of Lemmas 3.2 and 3.3 the functor

K
L
˝ L WD Lres.K/˝Lres.L/

respects quasi-isomorphisms in K and L and therefore defines a functor on the

derived categories, which we also denote by
L
˝.

To see that this functor is a part of a good tensor triangulated structure onD.X /,
we may use the following equivalent definition. Let A be the additive category of
admissible presheaves with transfers over X and H!.A/ the homotopy category
of complexes bounded from above over A. The tensor product of presheaves
with transfers makes A into a tensor additive category and we may consider the
corresponding structure of the tensor triangulated category on H!.A/. Observe
now that the natural functor

H!.A/!D.X /

is the localization with respect to the class of quasi-isomorphisms and that the tensor

product
L
˝ on D.X / is the localization of the tensor product on H!.A/. Since

a tensor trinagulated structure localizes well we conclude that D.X / is a tensor

trinagulated category with respect to
L
˝. To formulate this statement more precisely
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we will use the axioms connecting tensor and triangulated structures, which were
introduced in [2]. Since we often work with categories which do not have internal
Hom-objects we will write (TC2a) for that part of the axiom (TC2) of [2, Def. 4.1, p.
47], which refers to the tensor product, and (TC2b) for that part of the axiom which
refers to the internal Hom-objects. As we show in the appendix, axiom (TC2b)
follows from the axioms (TC1), (TC2a) and (TC3) whenever the internal Hom-
objects exist.

Proposition 3.4 The category D.X / is symmetric monoidal with respect to the
tensor product introduced above and this symmetric monoidal structure satisfies
axioms (TC1), (TC2a) and (TC3) with respect to the standard triangulated structure.

The interaction between the tensor structure and the standard functors intro-
duced above are given by the following lemmas.

Lemma 3.5 For a morphism of simplicial schemes f W X ! Y one has canonical
isomorphisms in PST .X / of the form

f ".F ˝G/D f ".F /˝f ".G/ (3.2)

and canonical isomorphisms in D.X / of the form

Lf ".K
L
˝ L/D Lf ".K/

L
˝ Lf ".L/: (3.3)

Proof: The first statement follows immediately from (3.1). The second follows
from the first and the fact that f " takes admissible objects to admissible objects.

Lemma 3.6 For a simplicial scheme X one has canonical isomorphisms in
PST .Xi / of the form

r"i .F ˝G/D r"i .F /˝ r"i .G/
and canonical isomorphisms in D.Xi / of the form

Lr"i .K
L
˝ L/D Lr"i .K/

L
˝ Lr"i .L/:

Lemma 3.7 For a simplicial scheme X over a scheme S one has canonical
isomorphisms in PST .X / of the form

c".F ˝G/D c".F /˝ c".G/

and canonical isomorphisms in D.X / of the form

Lc".K
L
˝ L/D Lc".K/

L
˝ Lc".L/:
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Proof: The first statement follows immediately from (3.1). The second from the
first and the fact that f " takes representable presheaves with transfers over S to
admissible presheaves with transfers over X .

Lemma 3.8 For a simplicial scheme X over a scheme S such that all Xi are smooth
over S , one has canonical isomorphisms in PST .X / of the form

c#.F ˝ c".G//D c#.F /˝G

and canonical isomorphisms in D.X / of the form

Lc#.F
L
˝ Lc".G//D Lc#.F /

L
˝G:

Proof: Since (3.2) holds and c# is the left adjoint to c" there is a natural map

c#.F ˝ c".G//! c#.F /˝G:

Since all the functors here are right exact and every presheaf with transfers is the
colimit of a diagram of representable presheaves with transfers, it is sufficient to
check that this map is an isomorphism for representable F and G. This follows
immediately from the isomorphisms

Ztr.Y;i/˝ c".Ztr.Z//D Ztr.Y #S Z;i/ (3.4)

and
c#.Ztr.Y;i//D Ztr.Y=S/:

The isomorphism (3.4) implies also that for a representable G and a representable
F , F ˝ c".G/ is representable. Therefore the first statement of the lemma implies
the second.

To compute Lc# on the constant sheaf, we need the following result.

Lemma 3.9 Consider the simplicial object LZ$ in SmCor.X / with terms

LZi D Ztr.Xi ;i/

and the obvious structure morphisms. Let LZ" be the corresponding complex. Then
there is a natural quasi-isomorphism

LZ"! Z:
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Proof: We have to show that for any .Y;j / the simplicial abelian group LZ$.Y;j /
is a resolution for the abelian group

Z.Y /DH 0.Y;Z/:

Indeed one verifies easily that

LZ$.Y;j /D Z.#j /˝Z.Y /

and since #j is contractible, the projection #j ! pt defines a natural quasi-
isomorphism LZ$.Y;j /! Z.Y /.

If X is such that all its terms are disjoint unions of smooth schemes over S then
we may consider the complex Ztr.X /" defined by the simplicial object represented
by X in the derived categories of presheaves with transfers over S . Note that

Ztr.X /D c#.LZ$/

and therefore Lemmas 3.8 and 3.9 imply the following formula.

Proposition 3.10 For a complex of presheaves with transfers K over S one has

Lc#Lc
".K/Š Ztr.X /"

L
˝K:

Remark 3.11 It is easy to see that the functors Lf " can be computed using
more general admissible resolutions instead of the representable resolutions. But
we cannot use admissible resolutions to compute Lc#, since for the (admissible)
constant presheaf with transfers

ZD Lc".Z/

we have by 3.10:

c#.Z/D h0.Lc#.Z//D h0.Ztr.X /"/¤ Ztr.X"/D Lc#.Z/:

Remark 3.12 It would be interesting to find a nice explicit description of the
complex Ztr.Xi ;i/ ˝ Ztr.Xj ;j / or, equivalently, a nice simplicial resolution of
h.Xi ;i/ #h.Xj ;j / by representable presheaves (of sets).

4. Relative motives

For a scheme X , let W el.X/ be the class of complexes over PST .X/ defined as
follows:
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1. For any pull-back square
W """"! V
??y

??yp

U
j""""! Y

(4.1)

in Sm=X such that p is etale, j an open embedding and p!1.Y nU /! Y nU
is an isomorphism, the corresponding Mayer-Vietoris complex

Ztr.W /! Ztr.U /˚Ztr.V /! Ztr.Y /

is in W el.X/:

2. For any Y in Sm=X , the complex Ztr.Y #A1/! Ztr.Y / is in W el.X/.

Let further W.X/ be the smallest class in D.X/ which contains W el.X/ and is
closed under triangles, direct sums and direct summands. One says that a morphism
in D.X/ is an A1-equivalence, if its cone lies in W.X/ and defines the triangulated
category DM eff

! .X/ of (effective, connective) motives over X as the localization
of D.X/ with respect to A1-equivalences.

For a simplicial X , consider

W el
i .X / WD ri;#.W el.Xi //

as classes of complexes in PST .X /. LetW.X / be the smallest class inD.X /which
contains allW el

i .X / and is closed under triangles, direct sums and direct summands.

Definition 4.1 A morphism u in D.X / is called an A1-equivalence, if its cone lies
in W.X /.
Definition 4.2 Let X be a simplicial scheme. The triangulated categoryDM eff

! .X /
of (effective, connective) motives over X is the localization of D.X / with respect
to A1-equivalences.

Lemma 4.3 1. For any morphism f of simplicial schemes the functor Lf "

takes A1-equivalences to A1-equivalences,

2. for any simplicial scheme the functors r"i take A1-equivalences to A1-
equivalences,

3. for any simplicial scheme the functors Lri;# take A1-equivalences to A1-
equivalences,

4. for any simplicial scheme over S the functor Lc" takes A1-equivalences to
A1-equivalences,
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5. for any smooth simplicial scheme over S the functor Lc# takes A1-equi-
valences to A1-equivalences.

Proof: It follows immediately from the definitions that the functors Lf " and Lc#

and ri;# take A1-equivalences to A1-equivalences.
The functor r"i takes A1-equivalences to A1-equivalences by (2.8).
To see that Lc" takes A1-equivalences to A1-equivalences consider a complex

L over S which consists of representable presheaves with transfers. Let further
Li be the pull-back of L to Xi which we consider as a complex of representable
presheaves with transfers over X . One has

Lc".L/D Z˝Lc".L/D LZ"˝Lc".L/

where LZ" is the complex of Lemma 3.9. By (3.4) we conclude that Lc".L/
is quasi-isomorphic to the total complex of a bicomplex with terms of the form
ri;#.Li /. Since for L 2 W el.S/ we have Li 2 W el.Xi / for all i , this implies that
Lc" takes W.S/ to W.X /.

We keep the notations Lf ", r"i , Lri;#, Lc" and Lc# for the functors between
the categories DM eff which are defined by Lf ", Lc" and Lc# respectively. Note
(cf. [1, Prop. 2.6.2]) that these functors have the same adjunction properties as the
original functors.

Lemma 4.4 The family of functors

r"i WDM eff
! .X /!DM eff

! .Xi /

is conservative i.e. if r"i .K/Š 0 for all i then K Š 0.
Proof: Same as in Lemma 2.4.

Proposition 4.5 The tensor product
L
˝ respects A1-equivalences.

Proof: It is enough to show that for K 2 ri;#.W el.Xi // and any L, the object

K
L
˝ L is zero inDM eff

! .X /. By Lemma 4.4 it is sufficient to show that r"j .K/Š 0
for all j . This follows immediately from Lemma 3.6 and (2.8).

By Proposition 4.5, the tensor structure on D.X / defines a tensor structure
on DM eff

! .X /. Since any distinguished triangle in DM eff
! .X / is, by definition,

isomorphic to the image of a distinguished triangle inD.X /, Proposition 3.4 implies
immediately the following result.

Proposition 4.6 The axioms (TC1)-(TC3) of [2] hold for DM eff
! .X /.

Proposition 4.7 The category DM eff
! .X / is Karoubian, i.e. projectors in this

category have kernels and images.
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Proof: For any K in DM eff
! .X / the countable direct sum ˚1iD1K exists in

DM eff
! .X / for obvious reasons. This implies the statement of the proposition in

view of the following easy generalization of [3, Prop.1.6.8 p.65].

Lemma 4.8 Let D be a triangulated category such that for any object K in D the
countable direct sum ˚1iD1K exists. Then D is Karoubian.
Proof: Same as the proof of [3, Prop.1.6.8 p.65].

5. Relative Tate motives

For any S we may define the elementary Tate objects Z.p/Œq! in DM eff
! .S/ in

the same way they were defined in [9, p.192] for S D Spec.k/. For X over S
we define the Tate objects Z.p/Œq! in DM eff

! .X / as Lc".Z.p/Œq!/. Note that this
definition does not depend on S - one may always consider X as a simplicial scheme
over Spec.Z/ and lift the Tate objects from Spec.Z/. We denote by DT.X / (resp.
DT .X /) the thick (resp. localizing) subcategory in DM eff

! .X / generated by Tate
objects, i.e. the smallest subcategory which is closed under shifts, triangles, direct
summands (resp. and direct sums) and contains Z.i/ for all i ! 0. We will call
these categories the category of (effective) Tate objects over X and the category of
effective Tate objects of finite type over X , respectively. When X is clear from the
context, we will write DT and DT instead of DT.X / and DT .X /, respectively,
and since we never work with non-effective objects in this paper we will often omit
the word "effective" .

Both subcategoriesDT.X / andDT .X / are clearly closed under tensor product
and Proposition 4.6 implies that they are tensor triangulated categories satisfying
May’s axiom TC3.

Remark 5.1 The categoryDT.X / does not coincide in general with the triangulated
subcategory generated in DM eff

! .X / by Tate objects. Consider for example the
case when X D X1 q X2 and both X1 and X2 are non-empty. Then the constant
presheaf with transfers Z is a direct sum of Z1 and Z2 where Zi is the constant
presheaf with transfers on Xi . One can easily show that the Zi ’s are not in the
triangulated subcategory generated by Tate objects.

However, one can show that the problem demonstrated by this example is
the only possible one - if H 0.X ;Z/ is Z then the triangulated subcategory in
DM eff

! .X / generated by Tate objects is closed under directs summands and
therefore coincides with DT.X /.

For M in DM eff
! , we denote as usual by H";".M/ the groups

Hp;q.M/D
!
Hom.Z;M."q/Œ"p!/ for q % 0
Hom.Z.q/Œp!;M/ for q ! 0
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and by H";".M/ the groups

Hp;q.M/D
!
Hom.M;Z.q/Œp!/ for q ! 0
0 for q < 0:

Lemma 5.2 Let f WM !M 0 be a morphism in DT which defines isomorphisms
on the groups Hp;q."/ for q ! 0. Then f is an isomorphism.

Proof: For a given f , the class of all N such that the maps

Hom.N Œp!;M/!Hom.N Œp!;M 0/

are isomorphisms for all p is a thick subcategory of DT . Our condition means that
it contains all Z.q/. Therefore it coincides with the whole of DT and we conclude
that f is an isomorphism by the Yoneda Lemma.

Let X be a smooth simplicial scheme over S . For such a X we define M.X / as
the object inDM eff

! .S/ given by the complex Ztr.X / associated with the simplicial
object X in SmCor.S/. Note that this definition is compatible with the definition
of motives of smooth simplicial schemes given in [6].

Proposition 5.3 For X as above, there are natural isomorphisms

HomDM.X /.Z.q0/Œp0!;Z.q/Œp!/DHomDM.S/.M.X /.q0/Œp0!;Z.q/Œp!//:

Proof: We have by adjunction

HomDM.X /.Z.p0/Œq0!;Z.q/Œp!/DHomDM.X /.c"Z.q0/Œp0!;c"Z.q/Œp!//D

DHomDM.S/.Lc#c
"Z.q0/Œp0!;Z.q/Œp!/

and Proposition 3.10 implies that for any M in DM eff
! .S/, one has

Lc#c
".M/DM.X /˝M:

Corollary 5.4 For X as above and any i > 0, one has

HomDM.X /.Z;ZŒ"i !/D 0:

Combining Proposition 5.3 with the Cancellation Theorem [7] we get the
following result.



18 V. VOEVODSKY

Corollary 5.5 Let now X be a smooth simplicial scheme over a perfect field k.
Then one has

HomDM.X /.Z.q0/Œp0!;Z.q/Œp!/D

D
!

0 for q < q0

HomDM.X /.Z;Z.q" q0/Œp"p0!/ for q ! q0:
Remark 5.6 Using the fact that a regular scheme of equal characteristic is the
inverse limit of a system of smooth schemes over a perfect field, it is easy to
generalize Corollary 5.5 to smooth simplicial schemes over regular schemes of
equal characteristic. We expect this hold for all regular simplicial schemes but not
for general (simplicial) schemes.

From now on we assume that S D Spec.k/ where k is a perfect field and X is
a smooth simplicial scheme over S .

Lemma 5.7 For any X , Y in DT.X / there exists an internal Hom-object .Z;e/
from X to Y .
Proof: Consider first the case whenX D Z.i/ and Y D Z.j /. Corollary 5.5 implies
immediately that .0;0/ is an internal Hom-object from Z.i/ to Z.j / for j < i . The
same corollary shows that .Z.j " i/;e/, where e is the isomorphism Z.j " i/˝
Z.i/! Z.j /, is an internal Hom-object from Z.i/ to Z.j / for j ! i . The fact that
.Z;e/ exists for arbitrary X and Y follows now from Theorem 8.3 and the obvious
argument for direct summands.

From now on we choose a specification of internal Hom-objects in DT.X / (see
Appendix) such that for i ! j one has Hom.Z.j /;Z.i//D Z.i " j /.

Let DT%n (resp. DT<n) be the thick subcategory in DT.X / generated by Tate
objects Z.i/ for i ! n (resp. i < n). The subcategories DT%n form a decreasing
filtration

&&& 'DT%1 'DT%0 DDT.X /
and we have

\nDT%n D 0:
Similarly the subcategories DT<n form an increasing filtration

0DDT<0 'DT<1 ' &&& 'DT.X /

and we have
[nDT<n DDT.X /:

We call these filtrations the slice filtrations onDT since they are similar to the slice
filtration on the motivic stable homotopy category. Since we consider here only Tate
motives the slice filtration coincides (up to numbering) with the weight filtration, but
for more general motives they are different.
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Lemma 5.8 Let M be such that H";i .M/D 0 for all i ! n. Then M lies in DT<n.
Proof: Set

‰.M/DHom.Hom.M;Z.n" 1//;Z.n" 1//:

The adjoint to the morphism

ev ı $ WM ˝Hom.M;Z.n" 1//! Z.n" 1/;

where $ is the permutation of multiples, is a morphism

 WM !‰.M/

which is natural in M . Using Proposition 8.5 and Corollary 5.5 one verifies
immediately that ‰.M/ lies in DT<n for M D Z.q/Œp!, q ! 0 and therefore, by
Proposition 8.5, ‰.M/ lies in DT<n for all M . It remains to check that for M
satisfying the condition of the lemma,  is an isomorphism. Consider the maps

H";i .M/!H";i .‰.M//:

For i < n and M D Z.q/Œp!, these maps are isomorphisms by Corollary 5.5.
Together with Proposition 8.5 and the five lemma, we conclude that they are
isomorphisms for i < n and all M . On the other hand H";i .‰.M// D 0 for i ! n
and any M and therefore under the conditions of the lemma,  is an isomorphism
by Lemma 5.2.

Lemma 5.9 For any M in DT and any n, there exists a distinguished triangle of
the form

…%nM !M !…<nM !…%nMŒ1! (5.1)

such that …%nM lies in DT%n and …<nM lies in DT<n.
Proof: Set

…%n.M/DHom.Z.n/;M/.n/

and define …<nM by the distinguished triangle

…%nM !M !…<nM !…%nMŒ1!

where the first arrow is e D evZ.n/;M . Clearly, …%nM lies in DT%n. It remains
to check that …<nM lies in DT<n. By Lemma 5.8 it is sufficient to check that
H";i .…<nM/ D 0 for all i ! n, i.e. that e defines an isomorphism on H";i ."/ for
i ! n. In view of Proposition 8.5 and the Five Lemma it is sufficient to verify it for
M D Z.q/Œp!, in which case it follows from Corollary 5.5.
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Remark 5.10 Note that the proof of Lemma 5.8 shows that in the distinguished
triangle of Lemma 5.9, one may choose M !…<nM to be

 WM !Hom.Hom.M;Z.n" 1//;Z.n" 1//:

Lemma 5.11 Let f WM1!M2 be a morphism in DT and let

…%nM1!M1!…<nM1!…%nM1Œ1!

…%nM2!M2!…<nM2!…%nM2Œ1!

be distinguished triangles satisfying the conditions of Lemma 5.9. Then there exists
a unique morphism of triangles of the form

…%nM1 """"! M1 """"! …<nM1 """"! …%nM1Œ1!??y f

??y h

??y
??y

…%nM2 """"! M2 """"! …<nM2 """"! …%nM2Œ1!:

(5.2)

Proof: Uniqueness follows from the fact that

Hom.…%nM1Œ(!;…<nM2/D 0:

The same fact implies that

Hom.M1;…<nM2/DHom.…<nM1;…<nM2/

and therefore there exists a morphism h which makes the middle square of (5.2)
commutative. Extending this square to a morphism of distinguished triangles, we
get the existence part of the lemma.

Lemma 5.12 For anyM and any triangle of the form (5.1) satisfying the conditions
of Lemma 5.9, one has:

1. For any N in DT<n one has

Hom.…<nM;N/DHom.M;N/

Hom.…%nM;N/D 0:

2. For any N in DT%n one has

Hom.N;…%nM/DHom.N;M/

Hom.N;…<nM/D 0:
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Remark 5.13 The major difference between the slice filtrations in the triangulated
category of motives and in the motivic stable homotopy category is that in the later
case, Lemma 5.12 does not hold. For N in SH%n and M in SH<n one may have
Hom.N;M/ ¤ 0. The Hopf map S1t ! S0 is an example of a morphism of this
kind.

Lemma 5.11 implies that the triangles of the form (5.1) are functorial in M .
Choosing one such triangle for each M and each n, we get functors:

…%n WDT !DT%n

…<n WDT !DT<n:

Lemma 5.12 shows that …%n is a right adjoint to the corresponding inclusion and
…<n is a left adjoint to the corresponding inclusion. We can also describe these
functors in terms of the internal Hom-functors

…%n.M/DHom.Z.n/;M/.n/

…<n.M/DHom.Hom.M;Z.n" 1//;Z.n" 1//:
By Proposition 8.5 we conclude that …%n and …<n are triangulated functors.

Applying Lemma 5.12 for N D…%.nC1/M and N D…<.n!1/ we get canonical
morphisms

…%.nC1/M !…%nM

…<n!…<.n!1/M:

We extend these morphisms to distinguished triangles

…%.nC1/M !…%nM ! sn.M/!…%.nC1/MŒ1! (5.3)

s0n!1.M/!…<n!…<.n!1/M ! s0n!1.M/Œ1!: (5.4)

One observes easily that s0n.M/Š sn.M/ and that this object lies inDTn DDT%n\
DT<nC1. Therefore, Lemma 5.11 is applicable to triangles (5.3) and (5.4) and we
conclude that these triangles are functorial in M . Choosing one such triangle for
each M and each n, we obtain functors

sn WDT !DTn: (5.5)

Since sn D…<nC1…%n, these functors are triangulated. We set

s" D˚n%0sn WDT !˚n%0DTn: (5.6)

Note that (5.6) makes sense, since for any M one has sn.M/D 0 for all but finitely
many n. The functors (5.5), (5.6) are called the slice functors over X .

Lemma 5.14 The functor s" is conservative, i.e. if s".M/D 0 then M D 0.
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Proof: Follows easily by induction.

Lemma 5.15 Define a tensor product on ˚nDTn by the formula

.Mi /i%0˝ .Mj /j%0 D .˚iCjDnMi ˝Mj /n%0:

Then for any N;M there is a natural isomorphism

s".N ˝M/D s".N /˝ s".M/:

Proof: For any M and N , the morphisms …%iM !M and …%jN ! N define a
morphism

siCj .…%iM ˝…%jN/! siCj .M ˝N/: (5.7)

On the other hand the the projections …%iM ! si .M/ and …%jN ! sj .N / define
a morphism

siCj .…%iM ˝…%jN/! siCj .si .M/˝ sj .N //D si .M/˝ sj .N /: (5.8)

One can easily see that (5.8) is an isomorphism. The inverse to (5.8) together with
(5.7) defines a natural morphism

˚iCjDnsi .M/˝ sj .N /! sn.M ˝N/:

One verifies easily that it is an isomorphism for M D Z.q/Œp!, N D Z.q0/Œp0!,
which implies by the Five Lemma that it is an isomorphism for all M and N .

Lemma 5.16 The functors …%n, …<n and s" commute with the pull-back functors
Lf " for arbitrary morphisms of smooth simplicial schemes f W X ! Y .
Proof: This follows immediately from the fact that the functor Lf " takesDT%n to
DT%n and DT<n to DT<n.

Lemma 5.17 Let X , Y , P1, P2 be such that for some n and m, one has

X 2DT&n P1 2DT%n

Y 2DT&m P2 2DT%m:

Then
.Hom.X;P1/˝Hom.Y;P2/;evX;P1 ˝ evY;P2/

is an internal Hom-object from X ˝Y to P1˝P2.
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Proof: We need to verify that for any M the homomorphism

Hom.M;X 0˝Y 0/!Hom.M ˝X ˝Y;P1˝P2/

defined by evX;P1˝evY;P2 is a bijection. Using Proposition 8.5 and the Five Lemma
we can reduce the problem to the case when M;X;Y;P1 and P2 are all motives of
the form Z.q/Œp! with the appropriate restrictions of q. In this case the statement
follows from Corollary 5.5.

Lemma 5.18 Let n! 0 be an integer and

M0
a!M1

b!M2 (5.9)

a sequence of morphisms in DT such that the following conditions hold:

1. M0 is in DT%n and si .a/ is an isomorphism for i ! n,

2. M2 is in DT<n and si .b/ is an isomorphism for i < n.

Then there exists a unique morphism M2!M0Œ1! such that the sequence

M0
a!M1

b!M2!M0Œ1!

is a distinguished triangle. This distinguished triangle is then isomorphic to the
triangle

…%n.M1/!M1!…<n.M1/!…%n.M1/Œ1!:

Proof: Note first that Hom.M0;M2/ D 0 and therefore b ı a D 0. Extending
a to a distinguished triangle we get a factorization of b through a morphism
" W cone.a/ ! M2. Our conditions imply that s"."/ is an isomorphism and we
conclude by Lemma 5.14 that " is an isomorphism and hence (5.9) extends to
a distinguished triangle. The proof of the two other statements of the lemma is
straightforward.

Since the functor X 7!X.n/ from DT0 to DTn is an equivalence (by Corollary
5.5), we may consider s" as a functor with values in ˚nDT0. To describe the
category DT0 consider the projection

D.X /!DM eff
! .X / (5.10)

from the derived category of presheaves with transfers over X to DM . Let us
say that a presheaf with transfers .Fi / on X is locally constant if for every i

the presheaf with transfers Fi on Sm=Xi is locally constant. Locally constant
presheaves with transfers clearly form an abelian subcategory LC in the abelian
category of presheaves with transfers.
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Remark 5.19 Let X 7! CC.X/ be the functor which commutes with coproducts
and takes a connected scheme to the point. Applying CC to a simplicial scheme X
we get a simplicial set CC.X /. If CC.X / is a connected simplicial set then LC.X /
is equivalent to the category of modules over %1.CC.X //.

Let DLC be full the subcategory in D.X / which consists of complexes of
presheaves with transfers with locally constant cohomology presheaves. Note that
DLC is a thick subcategory. Let further DT 00 be the thick subcategory in DLC
generated by the constant sheaf Z. Note that the category DLC is Karoubian and
therefore the same holds for DT 00.

Proposition 5.20 The projection (5.10) defines an equivalence between DT 00 and
DT0.
Proof: Let us show first that the restriction of (5.10) to DT 00 is a full embedding.
In order to do this, we have to show that objects of DT 00 are orthogonal to objects
of ri .W el.Xi //. In order to do this, it is enough to show that for a smooth scheme
X the constant presheaf with transfers is orthogonal to complexes lying in W el.X/,
i.e. that for any such presheaf F and such a complex K one has

HomD.K;F /D 0:

This follows immediately from the fact that for a smooth X and constant F , one has

H i
N is.X;F /D 0 for i> 0

and
F.X #A1/D F.X/:

To finish the proof of the proposition, it remains to check that the image ofDT 00 lies
in DT and that any object of DT0 is isomorphic to the image of an object in DT 00.
The first statement is obvious from definitions. To see the second one, observe that
since our functor is a full embedding and the source is Karoubian, its image is a
thick subcategory. Since it contains Z it coincides with DT0.

Remark 5.21 The category DLC has a t-structure whose heart is the category
LC.X / of locally constant presheaves with transfers. It is equivalent to the derived
category of LC.X / if and only if CC.X / is a K.%;1/.

Remark 5.22 The condition that the terms of X are disjoint unions of smooth
schemes over a field is important for Proposition 5.20. More precisely what is
required is that the terms of X are disjoint unions of geometrically unibranch
(e.g.normal) schemes. If this condition does not hold the Nisnevich cohomology
of the terms with the coefficients in constant sheaves may be non-zero.
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6. Embedded simplicial schemes

In this section we consider a special case of the general theory developed above.

Definition 6.1 A smooth simplicial scheme X over k is called embedded (over k)
if the morphisms

M.X #X /!M.X /
defined by the projections are isomorphisms.

In the following lemma we consider X as a simplicial presheaf on Sm=S and
denote by %0.X / the Nisnevich sheaf associated with the presheaf U 7! %0.X .U //.
We also write pt for the final object in the category of sheaves, which is represented
by S .

Lemma 6.2 Let X be a smooth simplicial scheme over S such that X ! %0.X / is a
local equivalence in the Nisnevich topology, as a morphism of simplicial presheaves,
and the morphism %0.X /! pt is a monomorphism. Then X is embedded.
Proof: Our conditions imply that pr W X # X ! X is a local equivalence.
Therefore, M.pr/ is an isomorphism.

Example 6.3 Let X be a smooth scheme over S and LC.X/ the Cech simplicial
scheme of X (see [6, Sec.9]). Then LC.X/ is embedded. The sheaf %0.X/ takes a
smooth connected scheme U to pt , if for any point p of U there exists a morphism

Spec.Oh
U;p/!X;

and to ; otherwise.

Example 6.4 For any subpresheaf F of the constant sheaf pt , the standard
simplicial resolution G.F / of F is an embedded simplicial scheme. We will show
below that for any embedded X , there exists F ' pt such that M.X /ŠM.G.F //.
See Lemma 6.19.

Lemma 6.5 Let X be an embedded simplicial scheme over S and

a W c"Lc#c
"! c"

the natural transformation defined by the adjunction. Then a is an isomorphism.
Proof: By the definition of adjoint functors, the obvious map b W c"! c"Lc#c

" is
a section of a. Hence, it is sufficient to show that

b ı a W c"Lc#c
"! c"Lc#c

"

is the identity. This map is adjoint to the map

p1 W Lc#c
"Lc#c

"! Lc#c
"
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which collapses the second copy of the composition Lc#c
" to the identity. On the

other hand the identity on c"Lc#c
" is adjoint in the same way to the map

p2 W Lc#c
"Lc#c

"! Lc#c
"

which collapses the first copy of the composition Lc#c
" to the identity. It remains

to show that p1 D p2. By Proposition 3.10 we have

Lc#c
".N /DN ˝M.X /

and one can easily see that p1 and p2 can be identified with the morphisms

N ˝M.X /˝M.X /!N ˝M.X /

defined by the two projections

M.X /˝M.X /DM.X #X /!M.X /:

These two projections are isomorphisms by our assumption on X and since the
diagonal is their common section we conclude that they are equal.

For any X , let DMX denote the localizing subcategory in DM eff
! .X /, which

is generated by objects of the form c".M/ for M in DM eff
! .S/. Note that DMX

contains the category DT.X / of Tate motives over X .

Lemma 6.6 If X is embedded then Lc# defines a full embedding

Lc# WDMX !DM eff
! .S/:

Proof: It is sufficient to verify that for M1;M2 2DM eff
! .S/, one has

HomDM.X /.c
"M1;c

"M2/DHomDM.S/.Lc#c
"M1;Lc#c

"M2/

which immediately follows by adjunction from Lemma 6.5.

Lemma 6.7 If X is embedded and M;N are objects of DMX then the canonical
morphism

Lc#.M ˝N/! Lc#.M/˝Lc#.N / (6.1)

is an isomorphism.
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Proof: Note first that a natural morphism of the form (6.1) is defined by adjunction,
since c" commutes with the tensor products. Since both sides of (6.1) are
triangulated functors in each of the arguments, the class ofM and N such that (6.1)
is an isomorphism is a localizing subcategory. It remains to check that it contains
pairs of the form c"M.X/, c"M.Y / where X , Y are smooth schemes over S . With
respect to isomorphisms

Lc#c
".M.X//DM.X/˝M.X /

Lc#c
".M.Y //DM.Y /˝M.X /

Lc#c
".M.X/˝M.Y //DM.X/˝M.Y /˝M.X /

and the morphism (6.1) coincides with the morphism

M.X/˝M.Y /˝M.X /!M.X/˝M.X /˝M.Y /˝M.X /

defined by the diagonal of X . This morphism is an isomorphism, since X is
embedded.

Lemma 6.7 shows that the restriction of Lc# to DMX is almost a tensor functor.
Note that it is not really a tensor functor since

Lc#.Z/DM.X /¤ Z:

We also have to distinguish the internal Hom-objects in DMX and DM eff
! .S/. See

Example 6.23 below.
From now on we assume that X is embedded over S . We use Lemma 6.6

to identify DMX with a full subcategory in DM eff
! .S/. With respect to this

identification the functor c" takes M to M ˝M.X /.
Lemma 6.8 The subcategory DMX coincides with the subcategory of objects M
such that the morphism

M ˝M.X /!M (6.2)

is an isomorphism.
Proof: Let D be the subcategory of M such that (6.2) is an isomorphism. As was
mentioned above the functor c" takes a motive M toM ˝M.X /, soD is contained
in DMX . Since D is a localizing subcategory and DMX is generated by motives of
the form M.X/˝M.X /, the opposite inclusion follows from the fact that for any
X the morphism

M.X/˝M.X /˝M.X /!M.X/˝M.X /

is an isomorphism.
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Remark 6.9 Lemma 6.8 show that DMX is an ideal in DM eff
! .S/, i.e. for any K

and any M in DMX the tensor product K˝M is in DMX .

Lemma 6.10 For M in DMX and N 2DM eff
! .S/, the natural map

Hom.M;N ˝M.X //!Hom.M;N/ (6.3)

is an isomorphism.
Proof: Consider the map

Hom.M;N/!Hom.M;N ˝M.X //

which takes f to .f ˝ IdM.X // ı "!1 where " is the morphism of the form (6.2).
One can easily see that this map is both the right and the left inverse to (6.3).

Lemma 6.10 has the following straightforward corollary.

Lemma 6.11 Let M;N be objects of DMX , P an object of DM eff
! .S/ and

e WM ˝N ! P

a morphism such that .N;e/ is an internal Hom-object from M to P in DM eff
! .S/.

Define
eX WM ˝N ! P ˝M.X /

as the morphism corresponding to e, by Lemma 6.10. Then .N;eX / is an internal
Hom-object from M to P ˝M.X / in DMX .

Definition 6.12 An object M in DMX is called restricted, if for any N in
DM eff

! .S/ the natural map

Hom.N;M/!Hom.N ˝M.X /;M/ (6.4)

is an isomorphism.
For our next result, we need to recall the motivic duality theorem. For a smooth

variety X over a field k and a smooth subvariety Z of X of pure codimension
d , the Gysin distinguished triangle defines the motivic cohomology class of Z in
X of the form M.X/ ! Z.d/Œ2d !. In particular for X of pure dimension d , the
diagonal gives a morphism M.X/˝M.X/! Z.d/Œ2d ! which we denote by #".
The following motivic duality theorem is proved in [5, Th. 4.3.2, p.234].

Theorem 6.13 For a smooth projective variety X of pure dimension d over a
perfect field k, the pair .M.X/;#"/ is the internal Hom-object from M.X/ to
Z.d/Œ2d ! (see Appendix).

Lemma 6.14 Let S D Spec.k/ where k is a perfect field and let X be a smooth
projective variety such that M.X/ lies in DMX . Then M.X/ is restricted.
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Proof: We may clearly assume that X has pure dimension d for some d ! 0.
Theorem 6.13 implies that for M DM.X/, the morphism (6.4) is isomorphic to the
morphism

Hom.N ˝M.X/;Z.d/Œ2d !/!Hom.N ˝M.X /˝M.X/;Z.d/Œ2d !/

which is an isomorphism by Lemma 6.8 and our assumption that M.X/ lies in
DMX .

Example 6.15 The unit object ZX D M.X / of DMX is usually not restricted.
Consider for example the case when X D LC.Spec.E// where E is a Galois
extension of k with Galois group G. Then

Hom.ZŒi !;M.X //DHi .G;Z/

and this group may be non-zero for i > 0. If M.X / were restricted, this group
would be equal to

Hom.M.X /Œi !;M.X //DHom.M.X /Œi !;Z/DH!i;0.X ;Z/

which is zero for i > 0.

Lemma 6.16 Let M;N be objects of DMX , P an object of DM eff
! .S/ and

eX WM ˝N ! P ˝M.X /

a morphism such that .N;eX / is an internal Hom-object from M to P ˝M.X / in
DMX . Assume further that N is restricted. Then one has:

1. .N;eX / is an internal Hom-object from M to P ˝M.X / in DM eff
! .S/,

2. if e is the composition

M ˝N ! P ˝M.X /! P

then .N;e/ is an internal Hom-object from M to P in DM eff
! .S/.

Proof: To prove the first statement, we have to show that the map

Hom.K;N /!Hom.K˝M;P ˝M.X // (6.5)

is a bijection for anyK inDM eff
! .S/. Since N is restricted andM is inDMX , this

map is isomorphic to the map

Hom.K˝M.X /;N /!Hom.K˝M ˝M.X /;P ˝M.X //
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which is a bijection since N is an internal Hom-object in DMX .
To prove the second part, we have to show that the composition of (6.5) with the

map

Hom.K˝M;P ˝M.X //!Hom.K˝M;P / (6.6)

is a bijection. This follows from the first part and the fact that (6.6) is a bijection by
Lemma 6.10.

Lemma 6.17 Let X be a smooth scheme over S . Then M.X/ lies in DMX if
and only if the canonical morphism u W M.X/! Z factors through the canonical
morphism v WM.X /! Z.

Proof: If M.X/ is in DMX then (6.2) is an isomorphism, which immediately
implies that u factors through v. On the other hand if u D v ı w where w is a
morphism M.X/!M.X / then

.Id ˝w/ ı# WM.X/!M.X/˝M.X/!M.X/˝M.X /

is a section of the projection (6.2). Therefore, M.X/ is a direct summand of an
object of DMX and since DMX is closed under direct summands, we conclude that
M.X/ is in DMX .

Example 6.18 If X D LC.X/ and Y is any smooth scheme such that

Hom.Y;X/¤ ;

then Lemma 6.17 shows that M.Y / lies in DMX . In particular M.X/ lies in DMX .
More generally, for any X over a perfect field one can deduce from Lemma 6.17
that M.Y / lies in DMX if and only if for any point y of Y there exists a morphism
Spec.Oh

Y;y/! Ztr.X0/ such that the composition

Spec.Oh
Y;y/! Ztr.X0/! Z

equals 1.

For an embedded X , let
LX D LC.X0/

where X0 is the zero term of X .

Lemma 6.19 There is an isomorphism M.X /!M. LX /.
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Proof: Let us show that both projections

M.X /˝M. LX /!M.X /

and
M.X /˝M. LX /!M. LX /

are isomorphisms. Since both X and LX are embedded, it is sufficient by Lemma 6.8
to show that one has

M.X / 2DM LX
and

M. LX / 2DMX :

The terms of X are smooth schemes Xi and for each i we have

Hom.Xi ;X0/¤ ;:

We conclude by Example 6.18 that M.Xi / are in DM LX and therefore M.X / is in
DM LX . To see the second inclusion, it is sufficient to show thatM.X0/ is inDM.X /.
This follows from Lemma 6.17, since the morphism X0 ! S factors through the
morphism X ! S in the obvious way.

Remark 6.20 Let S D Spec.k/ where k is a field. Recall from [6] that for X such
that X.k/ ¤ ; the projection LC.X/ ! Spec.k/ is a local equivalence. Since a
non-empty smooth scheme over a field always has a point over a finite separable
extension of this field, we conclude from Lemma 6.19 that for any embedded X
such thatM.X /¤ 0 there exists a finite separable field extension E=k such that the
pull-back of M.X /! Z to E is an isomorphism.

Lemma 6.21 Let X be an embedded simplicial scheme and X a smooth scheme
over S . Assume that the following conditions hold:

1. M.X/ 2DMX ,

2. for any Y such that M.Y / 2DMX , there exists a Nisnevich covering U !X

of X and a morphism M.U /!M.Y / such that the square

M.U / """"! M.Y /
??y

??y

Z Id""""! Z
commutes.

Then M. LC.X//ŠM.X /.
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Proof: We need to verify that the projections

M.X # LC.X//!M.X /

and
M.X # LC.X//!M. LC.X//

are isomorphisms. The second one is an isomorphism by Lemma 6.8, sinceM.X/ 2
DMX and thereforeM. LC.X// 2DMX . To check that the first projection defines an
isomorphism, it is sufficient by the same lemma to verify that M.X / is in DM LC.X/.
In view of Lemma 6.19 it is sufficient to check that M.X0/ is inDM LC.X/. Since X0
is a disjoint union of smooth varieties of finite type Y such that M.Y / is in DMX ,
it remains to check that for such Y one has

M.Y / 2DM LC.X/: (6.7)

One can easily see (cf. [6]) that for a Nisnevich covering U ! Y the corresponding
map LC.U /! LC.Y / is a local equivalence. Hence we may assume that U D Y , i.e.
that there is a morphism M.Y /!M.X/ over Z. Then the morphism M.Y /! Z
factors throught M. LC.X// and we conclude by Lemma 6.17 that (6.7) holds.

Remark 6.22 One can show that (at least over a perfect field) the conditions of
Lemma 6.21 are in fact equivalent to the condition that M. LC.X//ŠM.X /.
Example 6.23 In the notation of Example 6.15, consider the pair .M.X /;e/ where
e is the canonical morphism

M.X /˝M.X /!M.X /:

Since M.X / is the unit of DMX , this pair is an internal Hom-object from M.X /
to itself in DMX . However it is not an internal Hom-object from M.X / to itself in
DM eff

! .k/, since if it were we would have

Hom.M;M.X //DHom.M ˝M.X /;M.X //
for all M in DM eff

! .k/ and we know that this equality does not hold for M D Z.

Example 6.24 Since for the terms Xi of X we have

M.Xi / 2DMX ;

the motive M.X / lies in the localizing subcategory generated by motives of Xi .
If all Xi are smooth projective varieties, this implies by Lemma 6.14 that M.X /
lies in the localizing subcategory generated by restricted motives. Together with the
previous example this shows that the category of restricted motives is not localizing.
Indeed, one can easily see that it is closed under triangles and direct summands but
not necessarily under infinite direct sums.
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7. Coefficients

All the results of Sections 2-6 can be immediately reformulated in the R-linear
context where R is any commutative ring with unit. Note that the notion of
embedded simplicial scheme depends on the choice of coefficients.

If we consider motives with coefficients in R where R is of characteristic zero
then the pull-back with respect to a finite separable field is a conservative functor
(i.e. it reflects isomorphisms). Therefore Remark 6.20 implies that for S D Spec.k/
and motives with coefficients in a ring R of characteristic zero, one has

M.X /ŠR

for any non-empty embedded simplicial scheme X . This means that in the case of
motives over a field, the theory of Section 6 is interesting only if we consider torsion
phenomena.

8. Appendix: Internal Hom-objects

Recall that for two objects X;S in a tensor category, an internal Hom-object from
X to S is a pair .X 0;e/ where X 0 is an object and e WX 0˝X ! S a morphism such
that for any Q the map

Hom.Q;X 0/!Hom.Q˝X;S/ (8.1)

given by f 7! e ı .f ˝ IdX / is a bijection.
If .X 0;eX / is an internal Hom-object from X to S and .Y 0;eY / an internal Hom-

object from Y to S and if we have a morphism f WX ! Y then the composition

Y 0˝X ! Y 0˝Y eY! S

is the image under (8.1) of a unque morphism Y 0 ! X 0 which we denote by
DS;eX ;eY f or simply Df , if S , eX and eY are clear from the context. One verifies
easily that D.gf /DDfDg, if all the required morphisms are defined. The same is
true with respect to the functoriality of internal Hom-objects in S .

The internal Hom-objects are unique up to a canonical isomorphism in the
following sense.

Lemma 8.1 Let .X 0;e0/, .X 00;e00/ be internal Hom-objects from X to S . Then there
is a unique isomorphism " WX 0!X 00 such that e0 D e00 ı ."˝ IdX /.

If .Y 0;eY / is an internal Hom-object from Y to S and f W Y ! X a morphism
then

.D0f WX 0! Y 0/D .X 0 !!X 00
D00f! Y 0/
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where D0 is the dual with respect to e0 and eY and D00 the dual with respect to e00

and eY . A similar property holds for morphisms X ! Y and for morphisms in S .
A specification of internal Hom-objects for a tensor category C is a choice of

one internal Hom-object for each pair .X;S/ such that there exists an internal Hom-
object from X to S . We will always assume below that a specification of internal
Hom-objects is fixed. The distinguished internal Hom-object from X to S with
respect to this specification will be denoted by .Hom.X;S/;evX;S /.

The construction of DSf described above shows that for each S ,

X 7!Hom.X;S/ (8.2)

is a contravariant functor from the full subcategory of C consisting of X such that
Hom.X;S/ exists to C. Lemma 8.1 shows that different choices of specifications of
internal Hom-objects lead to isomorphic functors of the form (8.2). The same holds
for functoriality in S .

Consider now the case of a tensor triangulated category C which satisfies the
obvious axioms (TC1), (TC2a) connecting the tensor and the triangulated structure.
We want to investigate how internal Hom-objects behave with respect to the shift
functor and distinguished triangles.

Let X , S be a pair of objects of C and .X 0;e W X 0˝X ! S/ an internal Hom-
object from X to S . Consider the pair .X 0Œ"1!;X 0Œ"1!˝ XŒ1! ! S/ where the
morphism is the composition

X 0Œ"1!˝XŒ1!!X 0Œ"1!Œ1!˝X !X 0˝X ! S: (8.3)

One verifies easily that this pair is an internal Hom-object from XŒ1! to S . Similar
behavior exists with respect to shifts of S . Together with Lemma 8.1, this shows that
for a given specification of internal Hom-objects there are canonical isomorphisms

Hom.XŒ1!;S/!Hom.X;S/Œ"1! (8.4)

Hom.X;SŒ1!/!Hom.X;S/Œ1!: (8.5)

Remark 8.2 There is another possibility for the pairing (8.3), which one gets by
moving Œ"1! to X instead of Œ1! to X 0. It differs from (8.3) by sign and also makes
X 0Œ"1! into an internal Hom-object from XŒ1! to S . The isomorphisms (8.4), (8.5)
constructed using different pairings (8.3) will differ by sign.

If h W Z ! XŒ1! is a morphism and Hom.Z;S/ and Hom.X;S/ exist then the
composition of Dh with (8.4) gives a morphism Hom.X;S/Œ"1! ! Hom.Z;S/

which we will also denote by Dh. This does not lead to any problems since it
is always possible to choose a specification of internal Hom-object such that the
morphisms (8.4) and (8.5) are identities.
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Theorem 8.3 Let
X

f! Y
g!Z

h!XŒ1! (8.6)

be a distinguished triangle in a tensor triangulated category satisfying axioms
(TC1), (TC2a) and (TC3) of [2, p.47-49] and such thatHom.X;S/ andHom.Z;S/
exist. Then for any distinguished triangle of the form

Hom.Z;S/
g 0! Y 0

f 0!Hom.X;S/
DhŒ1#! Hom.Z;S/Œ1!

there exists a morphism eY W Y 0 ˝ Y ! S such that .Y 0;eY / is an internal Hom-
object from Y to S and one has g0 DDg, f 0 DDf .
Proof: To simplify notation, set

X 0 DHom.X;S/ eX D evX;S

Z0 DHom.Z;S/ eZ D evZ;S :
We want to find eY such that for any Q, the map

Hom.Q;Y 0/!Hom.Q˝Y;S/ (8.7)

given by f 7! eY ı .f ˝ IdY / is a bijection and the induced maps Dg and Df
coincide with g0 and f 0, respectively. Consider the diagram

Hom.Q;Z0/ """"! Hom.Q;Y 0/ """"! Hom.Q;X 0/
??y

??y

Hom.Q˝Z;S/ """"! Hom.Q˝Y;S/ """"! Hom.Q˝X;S/:

(8.8)

If we can find eY such that the corresponding map (8.7) subdivides this diagram
into two commutative squares then this map will be a bijection by the Five Lemma.
In addition setting Q D Z0 and using the commutativity of the left square on IdZ0 ,
we will get g0 D Dg and setting Q D Y 0 and using the commutativity of the right
square on IdY 0 , we will get f 0 DDf . It suffices therefore to find eY which for any
Q splits (8.8) into two commutative squares.

A simple diagram chase shows that the commutativity of the left square is
equivalent to the commutativity of the square

Z0˝Y """"! Y 0˝Y
??y

??yeY

Z0˝Z eZ""""! S
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and the commutativity of the right square to the commutativity of the square

Y 0˝X """"! Y 0˝Y
??y

??yeY

X 0˝X eX""""! S:

Together, we may express our condition as the commutativity of the square

.Y 0˝X/˚ .Z0˝Y / """"! Y 0˝Y
??y

??yeY

.X 0˝X/˚ .Z0˝Z/ eXCeZ"""""! S:

Applying Axiom TC3’ ([2]) to our triangles, we see that there is an object W which
fits into a commutative diagram

.Y 0˝X/˚ .Z0˝Y / """"! Y 0˝Y
??y

??yk2

.X 0˝X/˚ .Z0˝Z/ k3Ck1""""! W:

It remains to show that eX C eZ factors through k3 C k1. By [2, Lemma 4.9] the
lower side of this square extends to an exact triangle of the form

.X 0˝Z/Œ"1!! .X 0˝X/˚ .Z0˝Z/ k3Ck1! W !X 0˝Z:

Therefore it is sufficient to show that the diagram

.X 0˝Z/Œ"1! """"! X 0˝X ‘
??y

??yeX

Z0˝Z eZ""""! S

anticommutes. A diagram of this form can be defined for any morphism of the form
X ! ZŒ1! and its anticommutativity follows easily from the elementary axioms.

Remark 8.4 Applying Theorem 8.3 to the category opposite to C, one concludes that
a similar result holds for distinguished triangles with respect to the second argument
of Hom.
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Theorem 8.3 together with the preceeding discussion of internal Hom-objects
and the shift functor, implies in particular that for a given S (resp. given X)
the subcategory C.!;S/ (resp. C.X;!/), consisting of all X (resp. all S) such that
Hom.X;S/ exists, is a triangulated subcategory.

Proposition 8.5 The functors

Hom.";S/ W C.!;S/! C

Hom.X;"/ W C.X;!/! C

considered together with the canonical isomorphisms (8.4), (8.5) are triangulated
functors.
Proof: It clearly suffices to prove the part of the proposition related toHom.";S/,
i.e. to show that this functor takes distinguished triangles to distinguished triangles.
Consider a distinguished triangle of the form (8.6) and the resulting triangle

Hom.Z;S/
Dg! Hom.Y;S/

Df! Hom.X;S/
DhŒ1#! Hom.Z;S/Œ1!: (8.9)

In view of Theorem 8.3, there exists an internal Hom-object . QY 0; QeY / from Y to
S such that the triangle formed by QDg, QDf and DhŒ1! is distinguished. By
Lemma 8.1, there is an isomorphism QY 0 ! Hom.Y;S/ which extends to an
isomorphism of triangles. We conclude that (8.9) is isomorphic to a distinguished
triangle and therefore is distinguished.
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