
Drawing Curves Over Number Fields 

G.B. SHABAT and V.A. VOEVODSKY 

"Lucky we know the Forest so 
weil, or we might get lost"­
said Rabbit, and he gave the 
careless laugh you give when 
you know the Forest so weil 
that you can't get lost. 

A.A. Milne, 

The world of Winnie-the-Pooh. 

Introduction 

0.0. This paper develops some of the ideas outlined by Alexander 
Grothendieck in bis unpublished Esquisse d'un programme [0] in 1984. 

We draw our curves by means of what Grothendieck called "dessins 
d'enfant" on the topological Riemann surfaces. In the sequel weshall call 
them simply "dessins." By definition, a desssin D on a compact oriented 
connected surface X is a pair 

D = (K(D), [t]), 

where 

K(D) is a connected 1-complex ; 
[t] is an isotopical class of inclusions': K(D) .._X. 

We denote by Ko(D) the set of vertices of K(D). 
It is supposed that 

(a) the complement of t(K(D)) in Xis a disjoint union of open ceUs ; 

(b) the comp]ement of Ko(D) in K(D) is a disjoint union of open segments. 

The main construction we work with is based on the theorem of Gen­
nady Belyi [1). To a pair D = (K, [t]) it assigns a smooth algebraic curve 
together with some non-constant rational function on it over some nurober 
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field. Throughout the paper we denote this curve by Xv and this function 
by ßv. We called them the Belyi pair associated to the dessin D. 

According to [0], the realization ofthe possibility of such an assignment 
was one of the most striking events in Grothendieck's mathematical life. 
The only one he could compare it with was the following: " ... vers l'age 
de douze ans, j'etais interne au camp de concentration de Riecros (pres de 
Mende). C'est Ia que j'ai appris, par une detenue, Maria, qui me donnait 
des le<$ons particulieres benevoles, Ia definition du cercle. Celle-ci m'avait 
impressionne par sa simplicite et son evidence, alors que Ia propriete de 
"rotondite parfaite" du cercle m'apparaissait auparavant comme une realite 
mysterieuse au dela des mots" . 

The correspondence between the curves over number fields and dessins 
indeed seems to be very fundamental; in the end of this introduction we 
outline this construction in both directions. 

We are interested in the constructive aspects of this correspondence. 
In the spirit of D. Mumford's monograph [2] we consider 5 ways of defining 
complex algebraic curves : 

(1) Writing an equation. 

(2) Defining generators of the uniformizing fuchsian groups. 

(3) Specifying a point in the moduli space. 

( 4) Introducing a metric. 

{5) Defining jacobian. 
Our general approach is: given D, can we say anything about Xv and ßv? 

Overview Of The Main Results 

0.1. We use the following terminology. Let D be a dessin on a 
surface X. When I<(D) has no loops and each edge of I<(D) lies in the 
closure of exactly 2 components of X\K(D), we call 

(a) a valency of a vertex V E I<o(D) the number of edges from K(D)\ 
Ko(D), whose closures contain V. 

(b) a valency of a component W of X\I<(D) the number of edges from 
K(D)\Ko(D) that lie in the closure of W. 

For the general dessins, see 1.4 below. 
For a dessin Don a surface X we call its 0-valency the least common 

multiple of the valencies of all the vertices from K0 (D) and its 2-valency the 
least common multiple of the valencies of all the components of X\K(D). 
Sometimes we denote them v0(D) and v2(D), respectively. 

Call the dessin D trigonal if the valencies of all the components of 
X\I<(D) are 3. The trigonal dessins with some regularity assumptions 
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define the triangulations of X. 
We call the dessin D on X balanced if all the valencies of the vertices 

of Ko(D) are equal (to vo(D)) and all the valencies of all the components 
of X\K(D) are equal (to v2(D)). 

Similar objects were explored in the classical topology from the com­
binatorial point of view (see e.g., [3), [15]). We do not pretend any termin­
ological compatibility with this line of research because the technique we 
use is completely different. (Threlfall, e.g., called our balanced dessins the 
"regelmässig Zellsystem"). 

0.1.1. Equations. Here we have no general theory and only give 
a number of examples. We also consider the opposite question: can we 
actually draw a given curve? The answer is yes for some famous ones: 
Fermat curves, Klein quartic, and some modular curves are among them. 

The completeness of our results decrease rapidly with growing genus; 
we are able to give some complete lists ( of non-trivial experimental mate­
rial) for genus 0, but for genera exceeding 3 we are able to give only some 
general remarks. 

0.1.2. Uniformization. Let p = vo(D), q = v2(D). Consider 
the subgroup fp,q of PSL2(R) consisting of those transformations of the 
Poincare upper half-plane 1i = {z E Cjlm(z) > 0} that respect the tessela­
tion obtained by the reflections of the regular p-gon with the angles 21r f q 
(see Coxeter [3]). We show that there exists a subgroup r of finite index 
in fp,q such that the quotient ?i/f is isomorphic to XD. We describe this 
f explicitly by the combinatorics of D. For the balanced dessins D this 
construction describes the universal covering of XD. 

0.1.3. Moduli. Here we consider only the trigonal dessins D and 
use the results from R.C. Penner's preprint [4], where one finds several 
constructions equivalent to ours (without reference to the Grothendieck 
program). 

Penner introduced the extended Teichmuller spaces T9 ,n, consisting of 
marked Riemann surfaces together with the horocycles about each punc­
ture. Using dessins, Penner coordinates T9 ,n 's, essentially by considering 
the metric on X\Ko(D) of constant curvature -1 and by assigning to it 
some functions of the lengths of parts of edges of K(D) lying between the 
horocycles. By this construction T9 ,n turns out to be homeomorphic to 
R~0-6+3n. We deduce from Penner's results, that under this coordinatisa­
tion XD corresponds to (/2, ... , /2). 
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Penner builds the cell decomposition 

Tg,n = ucD 
dessins 

Don curves 

of genus g 

with n vertices 

where the trigonal dessins D correspond to the open cells. For n = 1 it 
gives the cell decomposition ofthe space T9 ,1 itself. We deduce from Penner 
that in some sense XD E CD. 

0.1.4. Metric. Herewe consider only triangulations of XD. Instead 
of riemannian metrics we work with "piecewise-euclidean" ones; they also 
allow us to define a complex structure on XD· We show that XD corres­
ponds to the equilateral metrics. 

0.1.5. Jacobians. Here we also work only with such dessins D that 
triangulate X. We define "approximate" jacobians JD(X), about which we 
think, that their Iimit, when D becomes finer, is the usual jacobian J(X). 

0.2. In the rest of the introduction we explain the essence of the 
assignment of Belyi pairs to dessins. In both directions we use : 

Theorem (1] (Belyi). A complex non-singular complete complex curve 
can be defined over some number field if and only if there exists a mero­
morphic function on it with only three crzlical values. 

0.2.1. From dessins to curves. We are supposed to be given a dessin 
D on a surface X. Choose a point in each 2-cell, connect the points of the 
neighbouring 2-cells by an edge of a different type, and connect all these 
points with the vertices of the original graph inside the 2-cells when it is 
possible. 
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N ow we have three types of vertices and three types of edges. Since 
we are going to map the whole picture onto P1(C), we mark them : 

0 over "0", 
over "oo", 

* over "1"; 

we find the edges 
over (0, 1), 
over (l,oo), 

over (oo, 0). 

Note that the whole surface has become divided into triangles, each with 
vertices of all three types. The orientability of the surface results in the 
possibility of painting it in two colours in such a way that if we move around 
the blaek and the white triangles counter-clockwise, the order of vertices is 
"0"-"1"- "oo" and "0"- "oo"- "1", respectively. 

Now Iook at the "butterflies"-the pairs of the adjacent triangles of 
different colours and think of the surface as the union of the butterflies. 

If all the butterflies put their wings together to become 8 2-like and 
are identified, we get the desired map 

ßv : Xv----P1(C), 

ramified only over {0, l,oo}. 
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After we restore the unique algebraic structure of Xv (by the Riemann 
existence theorem) in which ßn is rational, we use the easier part of Belyi 
("if" in the above formulation) theorem to conclude that Xv and ßn are 
defined over Q. The Belyi pair (Xn,ßn) thus obtained depends only on 
the original dessin D. 

The Belyi function ßv obtained through this construction has all the 
ramifications over "1" or order 2. Weshall call such Belyi functions clean. 

The image of K(D) in X can be reconstructed as the ßv-preimage of 
the segment [1, oo]. 

0.2.2. From curves to dessins. In this direction we outline the 
proof of the more striking half of the Belyi theorem ( "only if' in the above 
formulation), closely following [1]. Suppose we are given a curve X over 
some number field L ; take a non-constant element I of the function field 
L(X) and consider it as a ramified covering 

its ramification pointsbelang to P 1(Q). 
We are going to transform I to the desired covering by a sequence of 

replacements of I by P o I, where P is a polynomial with rational coef­
ficients, considered as a map P1(C)-P1(C). After such replacements, 
infinity will always go to infinity; denote for F : X(C)-P1(C) by WF 
the set of finite critical values of F. 

By the first step of the construction, we reduce the situation to the 
case WF C Q. We proceed by induction on #(WF\Q). At each inductive 
step we take for P a generator of the annihilator in Q[T] of W F. It is clear 
that #WPoF = #WF- 1. So we suppose WF C Q and proceed to the 
second step. 

Replacing I by Al+ B with suitable A, B we can assume {0, 1, oo} C 
WF. Proceed by the induction in #(WF\{0, 1, oo}). Assuming that there 
exists r E W F \ { 0, 1, oo} with 0 < r < 1 ( which can again be achieved by a 
change of I to Al+ B, denote r = m7.n with natural n, m. Now use 

and check that P(O) = P(l) = 0, P(r) = 1 and that if P1(z) = 0, then 
z E {0, l,r}; so replacing I by Pol reduces #(WF\{0, l,oo}) by 1, which 
completes the inductive argument. 

Wehave obtained the Belyi function I; to get a clean one put 

ß = 41(1- !). 
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The desired dessinD is defined by setting K(D) = ß- 1([1,oo]) with 
Ko(D) = ß-1(0). 

0.3. The style of our exposition is far from the standards of modern 
mathematics; we hope that this flaw is partially compensated for by the 
explicitness of the results. Besides, we do not prove some of our assertions. 
This is not only the result of space and time constraints, but rather of the 
feeling that the proper language for the mathematics of the Grothendieck 
Program has not yet been found. 

The main reasons to publish our results in the present state is our 
eagerness to invite our colleagues into the world of the divine beauty and 
simplicity we have been living in since we have been guided by the Esquisse 
[OJ. We emphasize that in the present text we use only a very small part 
of the ideas one can find in the epoch-making paper. 

We are indebted to Yu. I. Manin for the useful discussions and to A.A. 
Migdal and his colleagues for their interest. We are grateful to I. Gabitov, 
without whose assistance the preparation of the present text would have 
been impossible. 

Part 1. Generalities 

Let D be a dessin on a surface X. We choose a representative of the 
isotopical dass of the inclusions K(D) Ä X and in what follows consider 
K(D) as a subset of X; all our constructions are independent of this choice. 

1.1.1 The fiag set F(D) is, by one of the definitions, a set of triples 
(U, E, V) such that U is a component of X\K(D), E a component of 
K(D)\I<o(D), V a vertice from Ko(D) and 

(i) E lies in the closure of U; 

(ii) V lies in the closure of E. 

This definition is suitable only for the fine enough dessins; later, we will 
give a universal definition. 

1.1.2. Consider a "cartographicaf' group 

It acts on the flags in the following way : 
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( the operator u 9 changes the q­
dimensional element of the ftag 
in the only possible way as not 
to affect the other elements). 

Because of the connectedness of X, the ftag space F(D) is C2-homogeneous. 
In analogy with the linear case, we call a (non-oriented) Bore/ subgroup 

of the ftag F E F( D) the stationary group of this action: 

B D ,F = { c E C2lc · F = F} 

1.1.3. The onentabality of X (in the spirit of the lntroduction) 
results in the possibility of defining the map 

o: F(D)-{±1} 

satisfying 

o(u9 · F):::: -o(F) for all FE F(D),q E {0, 1,2}. 

We consider the set of positively oriented flags 

The oriented cartographical group Ci is the one that respects all the sets 

f+(D) C F(D). 

lt is the subgroup of index 2 of C2 generated by the words in Uo, U1, U2 of 
even length. We take the generators 

satisfying 

Po =u2u1 

Pl =uou2 

P2 =u1uo 

P2P1P0 = 1 
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Since all the Borel subgroups corresponding to one dessin are conju­
gate, in cases where we need only the conjugacy dass of Bv,F, we shall 
omit the reference to F. 

The dessin is called a Galois one if the group Bv is normal in ct. 
We call an automorphism of the dessin a compatible triple consisting 

of a permutation Ko(D)-Ko(D) and isotopical classes of homeomor­
phisms K(D)--+K(D), X-X. 

lt is clear, that in the case of a Galois dessin D with Bore] subgroup B 
the factor ct / B acts on D, transitively on the vertices, on the edges and on 
the components of X\K(D). Therefore, the Galois dessins are balanced. 

The converse is wrong: the dessin 

rn 
with identified opposite sides gives an example of a balanced non-Galois 
dessin on the torus. 

All the automorphisms of the dessin D on a surface X are realizahle 
as conformal automorphisms of X. 

1.1.4. The positively oriented flags are in canonical one-to-one 
correspondence with the oriented edges of K(D). We use the following 
convention: 

~-·-····-····-·-·---~ \____/ 

Under this convention the oriented cartographical group acts on the ori­
ented edges in the following way: 
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y 
\_/ 

In this way the definition of the action of the oriented cartographical group 
on the oriented flags is naturally extended to all the dessins, with no reg­
ularity assumptions. In the degenerate cases this action may Iook, for 
instance, like this: 

Po 

y y 
The orders of F E f+ ( D) with respect to Po, P2 are related with the general 
valencies (see 0.1) as follows: 

#{(po}}F =vo(O-component of F) 
#{(p2}}F =v2(2-component of F). 

In particular, if vo(D) = p, v2(D) = q, then for any FE F+(D) 

(f?a,p~) C Bn,F 

1.1.5. For a dessin Don a surface X the dual dessin D* is defined 
as follows. The set ofvertices Ko(D*) is in canonical one-to-one correspon­
dence with the component.s of X\]((D), and the set. of edges of D-with 
that of D. The pair of dual dessins Iooks like 
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1.1.6. It is very important [0] that the correspondence between 
the dessins and the Belyi pairs defines the action of the Galois group Gal 
(Q/Q) on the dessins. In particular, the 

FJELD OF DEFINITION OF A DESSIN 
makes sense. 

Part 2. Results 

2.1. Equations. We start with some of the most simple dessins 
and try to determine which Belyi pairs over what number fields they de­
fine. Grothendieck (0] doubts that the problern can be solved by a uniform 
method. We can confirm from our experience that if such a method exists, 
it is quite involved. 

We adopt the following drawing conventions: 

(a) for genus 0 we put the dessins in the euclidian plane; if we have a 
vertex at infinity, we put arrow marks on the edges going there; 

(b) for genus 1 we draw everything in the period parallelogram; 

( c) for genus 2 and lligher we realize the surfaces as polygons with identi­
fied boundary edges and draw our dessins on these polygons; the pairs 
of identified edges are directed controversially (which means that one 
edge goes clockwise while another one goes counterclockwise). 

2.1.0. Genus 0. Since the curves of genus 0 have no moduli, the 
only thing to calculate is the Belyi function, which in this case is just a 
rational map P 1(C)----+P1(C) with three critical values. It is defined 
up to composition with PSL2(C)-transformations from the left and from 
the right. The proper choice of the representat.ives seems to be connected 
with delicate arithmetical questions which we do not discuss here; in the 
examples below we try to choose th~>m in t.he shortest form. As a result, 
the critical values of the Belyi functions vary. 
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We consider first the siruplest case : suppose that X\K(D) is con­
nected. Then I<( D) is just a tree inside an oriented 2-sphere 5 2 , and we 
shall draw it in the plane (where the orientation is essential!). 

Using our right to choose the PSL2(C)-representatives as we like, we 
normalize the Belyi maps in such a way that the "centre" of the only 2-cell 
lies at oo and goes to oo and the intersections of K(D) and J\(D*) will go 
to 0. Then the Belyi map is represented by a polynomial, all the zeroes of 
which are double; therefore it is a square of a polynomial, which we denote 
hv or simply h. We are going to present a number of h for some simple 
dessins D. 

We present three infinite series of tree-like dessins for which h can be 
specified: 

I. 

2. 

3. 

h(z) = zn 

h(z) is the n-th Chebyshev poly­
nomial: cos( nt) = h( cos t) 

3 

h(z) = zm(l- z)n 
( up to multiplicat.ion by constant the 
Belyi function from the introduction) 

To cover all the trees with the number of edges not exceeding 6, we should 
add eight individual dessins ( three of them equivalent. under the Gal (Q/Q)­
action). 

1. h(z) = (z + 1)3 (3z2 - 9z + 8) 
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2. h(z) = z3 (9z2 - 15z + 40) 

3. h(z) = z4(36z2 + 36z + 25) 

4. h(z) = z3 (6z2 + 96z + 25) 

> I . 
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Note that all these dessins, as weil as the infinite series above, are defined 
over the rationals Q. 

The remaining three dessins are defined over three cubic fields, per­
mutable by the Gal (Q/Q). They lie in the field of decomposition of the 
polynomial 

25t3 - 12t2 - 24t -16 = 25(t- a)(t- a+)(t- a_) 

(we agree that a ER, Im (a+) > 0, Im (a-) < 0). 
The dessin 

is defined over Q(a), 

• • • I • • 
over Q(a+), 

••-....,. • ...,.._ • .,_ _ _.! ..... _ • .,__... over Q(a_ ). 

For each b E { a, a±} we have 

hvc(z) = z3 (z + 1)2(z + b). 

Now we turn our attention to the Galois dessins. They constitute two 
farnilies: corresponding to the plane polygons and to the Platonic solids. 
As for the plane n-gons, in one of the normalizations they are described by 
the rational function 

Zn+ (1/z)n 

To discuss the platonic solids, introduce the notation 

Xv = Xv\f<o(D) 

and denote by Yn the affine modular curve 1i/f(n), where r(n) is a prin­
cipal congruence subgroup of PSL2(l) (t.he kerne} of the natural homo­
morphism PSL2(l--+PSL2(ljnl)). We claim that the platonic solids 
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with the triangle 2-cells correspond to the modular curves in the following 
way: 

-for tetrahedral D = 

-for octahedral D = 

-for icosahedral D = Xv = Ys. 

For all of them, the Belyi map corresponds to the canonical projection 

The curve Y2 did not enter this list because the corresponding 

D= 

is not a platonic solid. But this dessin is a remarkable one: the correspond­
ing rational function in one of the normalizat.ions is 

27(z3 -z+l) 
4z2(z- 1) ' 

which is exactly the expression for the }-invariant of the elliptic curve 

y2 = x(x- l)(x- 2). 
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Left composition of this function with any canonically normalized Belyi 
function corresponds to the barycentric subdivision of the corresponding 
dessin. 

2.1.1. Genus 1. On the curves of genus 1 there exist balanced 
dessins of valencies vo = v2 = 4, Vo = 6, v2 = 3 and Vo = 3, v2 = 6. 

The corresponding curves are isogenic to the elliptic curve 

in the first case and to the curve 

in the second and in the third cases. 
The Galois dessins represent exactly these curves. (See [3) for the 

proofs of the classification results.) In the period parallelogram these 
dessins Iook like 

The problern of determining the J -invariant of the curves drawn by a dessin 
on the torus seems tobe rather hard. For instance, consider the dessin on 
the torus which in the fundamental parallelogram Iooks like 

The corresponding curve is defined over Q( Vf). The ( Vf .....,. -Vf)­
conjugated dessin Iooks like 
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The J-invariants are - 1i 27 (8 =F 3v'7)2(2 ± v'7)6 (10 ± 3v'7)3 . This 
caleulation answers the question of A. A. Migdal, 1986. 

Sometimes the curve can be determined by the additional symmetries 
of the dessin. For instance, for 

D= 

X D is determined by the equation 

with Belyi function -27z4/(z2 -4)3 because ofthe symmetry of 4th order. 

2.1.2. Genus 2. We are able to give some results only for Galois 
dessins. They are listed in [3]; there are 10 of them, but we choose only 
one from each pair of the dual ones. 

1. 

01 

, , 
• 

BELYI PAIR DESSIN 

I 

2. 

3. 



216 

4. 

5. 

6. 
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·pj· 
laJ4 

I I 

y2 =:c6- 1 

ß =(1 + z6)2 /4z6 

y2 = :c5- :c 

- 3 4z2(1 + z4)4 
ß -31 [27(1 + z4)2- 8z4]3 

y2 =:c5- :c 

ß = 4z4 /( 1 + z4)2 

2.1.3. Genus 3. Here we discuss only three curves. The Klein 
quartic is defined in the homogeneaus coordinates by the equation 

ZoX~ + XtZ~ + X2Xg = Ü 

Its full automorphism group has 168 elements; the quotient by this group 
is isomorphic to P1(C), and the natural projection defines a clean Belyi 
map. 

We do not attempt to draw the corresponding dessin and refer the 
reader to Klein's paper [5], where one finds a very beautiful triangular tes­
selation of the fundamental domain of the Klein quartic on the universal 
covering (this was the figure from which the uniformization started). Af­
ter suitable identifications, we get some triangular dessin D on a curve of 
genus 3. 

Thus the Klein quartic itself has been drawn; indeed, the automor­
phism group of D and consequently of the curve X has 168 elements, and 
Klein quartic is the only curve of genus 3 with this (highest possible) num­
ber of automorphisms [6]. 

Here is the dessin for the Fermat quartic 

z4 + y4 = 1: 
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with the Belyi function ß = (z4 + 1)2/(4z4). 

Here is the dessin for the Picard curve [7] y3 = z4 - 1 

2 

with the Belyi function of the sameform ß = (z4 + 1)2 /( 4z4). 

2.1.4. Higher Genera. We propose two infinite families of curves 
for which something can be clone. 

One is the family of the generalized Fermat curves 

It is easy to check that the functions .;z:m and yn are the Belyi ones. Taking 
n = 2, we get a drawable curve of any given genus. The other series is the 
family of modular curves X 0 (n) (the factors 'H./f0 (n), where fo(n) is the 
preimage of the upper triangular mat.rices under the canonical projection 
PSL2(l)--+PSL2(ljnl)). The dessins on t.hese curves are t.he projec­
tions of the P SL2{Z)-orbits of the arc from exp (21r i/3) to exp ( 1r i/3) 
on the boundary of the modular figure. For the discussion of an explicit 
description of modular curves see [8], [9]. 

2.2 Uniformization 

Let D be an arbitrary dessin on a surface X. Let p = v0(D), q = v2(D). 
We canonically associate to D a conjugacy dass of discrete subgroups 
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and then show that 
XD :::= 1l/fD 

2.2.0. Construction. The reference for the material below is (3]. 
Consider in the Poincare upper half-plane 1{ the regular q-gon IIp,q 

with angles 21rjp. The half-plane is tesselated by its reflections through its 
sides. 

Consider the group fp,q C PSL2(R) that respects this tesselation. It 
is generated by two elliptic elements 

ß = the rotation of IIp,q about the centre of 

angle 21rjq. 
1 = the rotation of 1{ about one of the vertices 

of ITp,q of angle 21r / p. 

lt is geometrically obvious that these elements sat.isfy the relations 

ßq =lp = 1, 

(ß1)2 =1 

(the transformation ß1 being a symmetry around the cent.re of the side of 
IIp,q ). 

These relations allow us to define the homomorphism 

1lp,q: Ct---+fp,q C PSL2(R) 

Po 1-l ----+• I 

P2l • ß 

Fix some FE F(D). The desired group is 

fD,F = 1lp,q(BD,F) 

Its conjugacy class is independent of a.ll the choices involved. Denote it by 
rD. 

2.2.1. Theorem. 

Sketch of the proof. If we conect the centre of II",9 by geodesics 
with all the vertices and all the centres of the sides and then paint ( as Klein 
did in [5]) these triangles in black and white this way 
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we realize that for every subgroup f C fp,q offinite index these triangles are 
in one-to-one correspondence with the flags of the dessin on 1l/f obtained 
by the projection of the above infinite dessin on 1l. The orientation of the 
flags corresponds to the colour of the triangles. 

It remains to realize that this dessin is isomorphic to the original one 
and that the natural projection 

is the same as the one defined by this dessin by our construction (see 
Introduction). 

2.2.2. Theorem. I/ D is balanced, then the natural m.ap 

1l 1l/fv 

ts isomorphic to the unit•ersal covering of X . 
Indeed, for generat D the ramification index of the map 1l-1l/f 

equals pfvo(V) over V E Ko(D) and qjv2(S) over the "centre" of the 
component S of X\f\(D). 

Therefore, this map is unramified for the balanced D. 

In this way we can effectively describe the universal coverings of all 
the curves that were drawn by the balanced dessins in the previous section. 
For the Klein quartic it was clone by Klein [5). 

2.2.3. Now we turn to the universal coverings of t.he curves Xv 
with trigonal D. 

Proposition. The group Ci with the additional relation p~ = 1 zs 
isomorphic to PSL2(l). 
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Using (3], deftne this isomorphzsm by the assignment 

P2l I ( -~ ~) 
Pt! I ( -~ ~) 
Pol I (~ ~) 

Theorem. For trigonal dessins D the curve Xv is isomorphic to 
1{/f, where r C PSL2(Z) corresponds to the Bore/ subgroup Bv under the 
above isomorphism. 

2.3 Moduli 

2.3.0. The results of this part are based on Penner's paper [4]. Now 
we work with the above curve Xv. 

Introduce the notation [D] = #(Ko(D)). The curves Xv after a suit­
able marking turn into the points of the Teichmuller space Tg,n (see, e.g., 
[16]). We always assume 2g- 2 + [D] > 0 and interpret the points of Tg,n 
as metrics with constant curvature -1 on Xv. 

Westart with a review of Penner's approach to the Teichmuller spaces 
Tg,n with n > 0. Pennerintroduces the augmented Teichmuller spaces T9 ,n, 
whose points correspond to the points of the usual Teichmuller space T to­
gether with the horocycles about each puncture (a closed curve, orthogonal 
to all the geodesics, going to the cusp). 

Denote for any dessinD = (!<, [t]) by I<t(D) the set of (nonoriented!) 
edges of I<, i.e., the set of the connected components of K(D)\I<o(D). 

Alsodenote by K2(D) the set of connected components of X\I<(D). 
In this section we consider only trigonal dessins D. In what follows, 

n = [D]. 

Lemma. dimnf9,n = #Kt(D) = 6g- 6 + 3[D]. 

Proof. For the Euler characteristic we have 

#Ko(D)- #Kt(D) + #I<2(D) = 2- 2g, 

and the nurober of "1, 2-flags" in the pair (X, K ( D)) equals 



DRAWING CURVES OVER NUMBER FIELDS 221 

From these two equalities we have 

2 
#Kt(D) = #Ko(D) + #I<2(D) + 2g- 2 = #Ko(D) + a#Kt(D) + 2g- 2, 

and 

#Kt(D) = 3([D] + 2g- 2) = [D] + 2(3g- 3 + [D]) 

= [D] + dimRT9 ,n = dimRT9,n 

So it is natural to try to coordinatize Tg,n by the functions on the set 
of edges K(D). On the part of T9 ,n, on which the horocycles aresosmall 
that they do not intersect, there exists a natural function: think of every 
edge from K(D) as an (infinite) line from puncture to puncture in X(D), 
deform it to the geodesie and take the lengths of the part between the 
horocycles. It turns out that the analytic continuation of this construction 
gives the global coordinatization of T9 ,n! 

To establish it, Penner uses the Minkowski space M3 with the coordi­
nates x = ( xo, Xt, x2) and with the metric 

ds 2 = -dx~ + dx~ + dx~ 
induced from the scalar product ( , } of signature (- + + ). It follows 
from the local isomorphity of SL (R) and SO (1, 2) and some easy Lie 
group considerations, that the Poincare upper half-plane is isometric to a 
connected component of the hyperboloid 

(x,x} = -1, 

and the space of horocycles on it to the future light cone 

(x,x} = 0, x > 0. 

Denote by l the Poincare length of the above part of geodesic; Iet the inter­
sections of this geodesie with the horocycles be represented hy the Minkow­
ski space points u, v. Then (see Lemma 2.1 from [4]) 

-(u, v} = 2exp (l), 

and this formula allows the length coordinatization to be continued to the 
whole Tg,n· 

Denote the length map thus described by 

P T.- -----+R6g-6+3n en: g,n >0 
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Theorem 3.1 from [4] says, that this map is a real-analytic homeomorphism. 
N ow we can state our results. 

2.3.1. Theorem. There exzsts a set of horocycles on Xv, endowed 
with the metric of the constant curvature, such that the above map Pen 
sends the corresponding point ofT9 ,n to 

The proof follows from Penner's proposition 6.5 from [4], which states that 
the point 

is uniformizable by a subgroup of PSL2(l), and from our Theorem 2.3 
from the previous section. 

2.3.2. Next, we describe Penner's universal cell decomposition of 
the space Tg,n. Its point.s are interpreted as the conjugacy classes of the 
fuchsian groups r c S0+(2, 1) tagether with the f-invariant set Bon the 
light cone (the only point of B on each light ray corresponds to the choice 
of the horcycle ). To such a pair !f, B) the convex hull of the discrete set 
r · B is associated. The cells of T9 ,n 's correspond to the pairs (f, B) with 
the fixed combinatorics of the boundary of this convex hull. Projecting the 
edges of this boundary to the hyperboloid {x, x} = -1, we get a f-invariant 
tesselation ofit. Dividing then by f, we get the dessins (with fixed number 
n = [D] of vertices) that parametrize the cells of the decomposition we are 
describing. 

From now on, we suppose [D] = 1; then the above construct.ion defines 
a decomposition of t.he Teichmuller space T9 ,1 itself. Since this decomposi­
tion is invariant under the Teichmuller modular group, it induces a finite 
cell decomposition ofthe moduli space Mg,l· Foradessin D, denote by Cv 
the cell corresponding to it. The cells Cv of maximal dimension correspond 
to the trigonal dessins D. 

2.3.3. Theorem. For [D] = 1 the pornt of M9 ,1 corresponding to Xv 
lzes inside Cv. 

The proof follows from Penner's reasoning on the non-emptiness of Cv 
(Corollary 6.3 of[4]), combined with Proposition 6.5. 

2.3.4. Without proof we state one more result concerning the posi­
tion of the curves Xv with the Galois D's in the moduli spaces. Since they 
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have many automorphisms, they correspond to some strong singularities of 
the moduli spaces. 

Theorem. The curve X over Q can be realized as Xv with a Galois 
dessin D if and only if it is a projectaon of an isolated fixed point of some 
finite subgroup of the Teichmuller modular group. 

2.4 Metries 

In this section, we consider only piecewise-euclidean metrics-the ones 
that are formed by putting together compatible flat polygons; the resulting 
metric is flat away from the isolated points where the vertices meet and 
where the discrete curvature occurs ( as a difference of 211' and the sum of 
the flat angles). 

The piecewise-euclidean metrics define complex structures as weil as 
the riemannian ones; any complex structure on a Riemann surface can be 
obtained in this way. A nice proof of this fact can be obtained using Strebe! 
differentials; for a modern exposition of this theory see Douady-Hubbard 
[11] (though they do not formulate explicitly the result we need). 

2.4.0. We are going to work only with the piecewise-euclidean 
metrics, in which all the polygons are the equilateral triangles; we call 
them the equilateral metrics. 

The equilateral metrics have no continuous moduli and depend only 
on the combinatorics of the triangles; so the trigonal dessins D appear. 

Denote the corresponding curves Yv. 
They define the countable set of points in the moduli spaces. 

2.4.1. Theorem. For any trigonal dessm D the curve Yv is isomor­
phic to Xv. 

2.4.2. Theorem. The set of curves Yv for all the dessins D on the 
surfaces of genus g "as" exactly the set Mg(Q) of curves over all the number 
fields. 

For the proof, see our paper [lOJ. 

2.4.3. This result can be interpreted in terms of string physics (see, 
for instance, [12]; in fact, we were influenced by the authors of this paper ). 
It shows that integration over all the metrics on Riemann surfaces using 
the lattice-like method of approximation of Riemann metrics uncovers the 
arithmetical nature of the subject. 
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In the spirit of fashionable ideas of modern theoret.ical physics, it is 
natural to suggest that the non-archimedian components would also be 
taken into account in this approach. For the discussion of these ideas see 
Manin (13]. 

We suppose, that the dessins on the Riemann surfaces may turn to 
be quite fundamental in quantum physics, being the natural analogues of 
Feynman graphs in the pre-string theories. 

2.5 Jacobians 

In this section we work with the trigonal dessins D on the Riemann 
surfaces of positive genus g. 

2.5.0. The dessin D defines on X the structure of a cell complex, 
which will be used in the realisation of the cohomology classes. Denote by 
0 the structure sheaf, n the sheaf of germs of holomorphic ditferentials on 
the curve Xv. 

Using the diagram 

where the horizontal exact sequence comes from the exact sheaf sequence 

d o------+C------+0 __ __;_ __ ...,. n-----.'o, 

we realize the jacobian J(X) as the double coset space 

2.5.1. The steps of our construction are: 
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(i) Construct a piecewise-linear analogue of the abelian differentials on X 
and as a result obtain a g-dimensional space 

LD C H1(XD,C), 

where the RHS is interpreted as the space of the cell cohomologies of 
XD. 

(ii) Iterate the refinements 

and use the canonical isomorphisms of XD and Xav, which results in the 
canonical isomorphism 

H 1(Xv,C) = H 1(Xav,C). 

Under this isomorphism the spaces La"D form a sequence of the g-dimen­
sional subspaces of H 1(Xv,C), whose Iimit is (we hope)* the I-image of 
the space of abelian differentials in H 1 (X D, C). 

2.5.2. The space Lv is constructed in the following way: Denote 
by C1(D) the space of the cell cochains of Xv with complex coefficients. 
To a 1-cochain on D we associate the 1-cochain on Das it is shown below: 

' ,, _.I' 
;' 

;' ... • 
" 

I' 

"" 
' ' ,, 

Thus we get an operator 

*D : C1(D)--+C1(D*) 

which, we suppose, is the proper analogue of the harmonic Hodge operator 
(see also [14]). It enjoys the following properties: 

(a) 

* (Added in proof). It is really so. The demonstration will be published 
in a forthcoming paper. 

' 
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(b) 
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lf 1t1(D) = Z1(D) n (*i)1(Z1(D*))) 

(Z1 denoting the cocycles), then the projection 

is an isomorphism. 
Thus we have obtained the diagram of isomorphisms 

which defines the Operators on H 1(Xv,C) for which we use the notations 
t.v and t.v• ; they also satisfy 

Denote by A the cup-product on H 1(Xv, C). 
For x,y from H 1(Xv,C), define 

(x, y) = *v(x) A y, 

Proposition. ( , ) zs symmetnc and positurely defined. Denote by 
{fala = 1, ... , 2g} the set of ezgenvalues ofts.v and {La} the corresponding 
eigenspaces. 

Proposition. 
( a) Va ,f.0 ~ R. 
(b) For any f. E { f 0 } also -f. E { fa}; the corresponding eigenspaces are 

equidimensional. 

Set Lv = EBimL,.<oLa. It follows from the last proposition that 
dim (Lv) = g. Thus the approximate Jacobians can be defined as 
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