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Abstract 

Kapranov, M. and V. Voevodsky, Braided monoidal2-categories and Manin-Schechtman higher 
braid groups, Journal of Pure and Applied Algebra 92 (1994) 241-267. 

We study a certain coherence problem for braided monoidal 2-categories. For ordinary braided 
monoidal categories such a problem is well known to lead to braid groups: If we denote by T(n) the 
pure braid group on n strands then this group acts naturally on each product A1 q ... @ A,. It turns 
out that in the 2-categorical case we have to consider the so-called higher braid group T(2, n) 
introduced by Manin and Schechtman. The main result is that T(2, n) naturally acts by 2- 
automorphisms on the canonical l-morphism Al@ ... @ A, -t A.@ ... @ A1 for any objects 
A1 ,..., A.. 

Introduction 

The notion of a braided monoidal category, introduced in [6, lo] serves as an 
algebraic framework for the theory of the Yang-Baxter equation. For any n objects 

Ai,. . . , A, of such a category the structure data define the action on the product 

A,Q ..a C3 A, of pure braid group T(n). 
In [12] we have introduced the notion of a braided monoidal2-category and shown 

how such structures are related to the Zamolodchikov tetrahedra equation-a 2- 
dimensional generalization of the Yang-Baxter equation, see [20,21]. An important 
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role in the formalism of [12] is played by special polytopes called resultohedra which 
were introduced in [7]. These polytopes generalize the two commutative triangles in 
the axioms of usual braiding, see [6, lo]. 

In the present paper we show that the coherence questions for braided monoidal 
2-categories lead naturally to the so-called higher braid groups T(2, n) introduced by 
Manin and Schechtman in [14]. The group T(2, n) is defined as the fundamental 
group of the space of configurations of n affine complex lines in the complex plane Cz 
which are in general position and have fixed distinct (real) slopes. This configuration 
can be obtained from the affine space @” by deleting (Cj) hyperplanes Hijk correspond- 
ing to configurations (L,, . . . , L,) such that Li n Lj A Lk # 8. 

Note that the usual pure braid group T(n) is the fundamental group of the 
configuration space of il distinct points on a complex line [4]. In [14] Manin and 
Schechtman introduced groups T(k, n) for any k -c n by considering configurations of 
n hyperplanes in Ck. The group T(n) is in this notation T( 1, n). In the present paper we 
do not use higher braid groups for k > 2. 

Our main result, Theorem 4.1, is as follows. Take n objects A 1, . . . , A, of a braided 
monoidal2-category &‘. Let y be any reduced decomposition of the maximal permu- 
tation(n,n-l,..., 1) of n symbols into a product of elementary transpositions. The 
braiding 1-morphisms define a l-morphism R,:AI@ ... @ A, + A,@ ... @ Al. We 
prove that the structure 2-morphisms of the braiding define an action of the group 
T(2, n) on each l-morphism R, by 2-isomorphisms. 

The construction of the T(2, n)-action is of some interest so we describe it here. The 
braid relations for the structure morphisms in a braided monoidal l-category are 
usually described by means of the Yang-Baxter hexagon whose vertices are all 
permuted products of three objects, see [6, lo]. The commutativity of this hexagon is 
not among the axioms of a braiding. These axioms include some (more fundamental) 
triangles instead. To prove the commutativity of the hexagon, one decomposes it into 
two braiding triangles and a square of naturality (cf. Section 2.2). This argument goes 
back (in a slightly different context) at least to Stasheff [19]. An important fact is that 
there are two ways of decomposing a hexagon and hence two ways to prove its 
commutativity. In the 2-categorical context any of the two decompositions gives rise 
to a 2-morphism between the composite 1-morphisms corresponding to paths con- 
stituting the boundary of the hexagon. This apparent ambiguity plays a crucial role in 
our construction. Namely, we associate to the two 2-morphisms arising in this way 
two paths in the complex configuration space encircling the hyperplane Hijk in the 
complex domain from two sides. Here i,j, k are the numbers of some objects among 
Al,. . . ,A,. 

In fact, we construct the action not of the group T(2, n) but of the fundamental 
groupoid of the configuration space with respect to a natural choice of base points. To 
different base points there correspond different 1-morphisms from A10 ... 0 A, to 

A,@ a.. Q Al. 

The description of the above fundamental groupoid by generators and relations can 
be extracted from the work of Salvetti [17] on the topology of complements of 
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configurations of complex hyperplanes with real equations. In particular, the gener- 
ators and relations in the groupoid are local: each generator is situated near a wall 
(chamber of codimension 1) of a natural stratification of the real part R” of @” and 
each relation near a chamber of codimension 2. This locality is in fact the main 
advantage of groupoids over groups, see e.g. [S]. 

The description of the group T(2, n) itself by generators and relations is more 
complicated. Such a description (for general T(k, n)) was obtained by Lawrence [13]. 
Still earlier, in 1977, Aomoto [l] has obtained a description by generators and 
relations of the fundamental group of the full configuration space of n hyperplanes in 
@Pk in general position. We do not use these descriptions in the present paper. 

The outline of the paper is as follows. In Section 1 we recall the definition of a braided 
monoidal2-category from [12]. In Section 2 we construct the Yang-Baxter hexagons in 
any such category and prove that the corresponding 2-morphisms satisfy certain 
relations (Zamolodchikov equations). These equations are stated as the commutativity 
of some 3-dimensional diagrams whose shape is the permutohedron-a certain convex 
polytope in R3 with 24 vertices corresponding to all permutations of four letters. Two of 
these relations (each involving only the hexagons of the same type) were already 
established in [12]. Section 3 is devoted to higher braid groups and corresponding 
groupoids. We give the description of these groupoids by (local) generators and 
relations. In Section 4 we formulate and prove our main result. 

1. Braided monoidal 2-categories 

1 .l. 2-categories 

By a 2-category we mean a strict (globular) 2-category in the sense of [S, 181. Such 
a category posesses objects (0-morphisms), 1-morphisms and 2-morphisms which are 
visualized as points, arrows and 2-cells: 

” 

A 
. A-6 A 

So 1-morphisms act between objects (we write u: A + B) and 2-morphisms act 
between 1-morphisms with the same beginning and end (we write a:u * u’). The 
1-morphisms can be associatively composed; the 2-morphisms can be composed in two 
ways: horizontally and vertically. We denote the horizontal composition by *o and the 
vertical composition by *1. In particular, for any two objects A,B of a 2-category & we 
have an ordinary category Horn& (A, B) whose objects are 1-morphisms in d from A to 
B and whose morphisms are 2-morphisms in d between these 1-morphisms. 

For examples of 2-categories we refer the reader to [12, 181. Note, for instance, that 
any strict monoidal category in the usual sense [6, lo] can be regarded as a 2-category 
with one object. This was first remarked by Benabou [a]. 
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We freely use the language of pasting (2-dimensional composition) in 2-categories. 
For formal treatment of pasting, see [9,16]. This language permits us to speak about 
commutative polytopes in 2-categories in a similar way as one speaks of commutative 
polygons in usual categories. 

1.2. Monoidal2-categories 

A (semi-strict) monoidal structure Cl23 on a 2-category d is a collection of the 
following data: 

(1) An object 1. 

(o @I l ) For any pair of objects, A,B E & an object A@& denoted also AB. 

(o @I + ) For any object A E S? and a l-morphism u: B + B’ a l-morphism 
A@: A@B + A@B’. 

(-+ 00) For any l-morphism u:A-+A’ and any object B a l-morphism 
u@B:A@B + A’@B. 

(o @ x) For any object A E d and any 2-morphism /?:v * U’ a 2-morphism 

A@/l: A& * AQv’. 

( i’ @ l ) For any 2-morphism CI: u * a’ and any object B E d a 2-morphism 
+ 
a@B:@B * u’@B. 

_------___ 

Fig. 1. 
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( + 0 + ) For any two 1-morphisms u:A + A’ and u:B + B’ a 2-isomorphism 

These data should satisfy the following conditions: 

(1) For any object A E d the correspondences X H AOX and Xc, X@A define 
(strict) 2-functors SZJ + d. 

(2) For any i-morphism X, i = 0,1,2 one has X81 = 10X = X. 

(3) If A,B are objects of JS’ and y is an i-morphism, i = 0,1,2, then 

AO(BOy) = (AOWy, AO(yOB) = (AOYWA yO(AOB) = (YWNW. 

(4) ( + @ 1) For any l-morphism u : A + A’ and any 2-morphism b: u =S 7 where 

qu’: B + B’, the cylinder in Fig. l(a) is commutative. 

(5) ( 7 @ -+) For any 2-morphism C(:U =S u’ where u,u’: A + A’ and any 

1-Morphism v:B + B’, the cylinder in Fig. l(b) is commutative. 
(6)(~~~~)Foranyl-morphismsu:A~A’andu:B~B’,u’:B’-iB”the2- 

morphism @,, vIV coincides with the pasting of the following diagram: 

A@B- A@B’- A QB” 

(7) (- +@+) For any 1-morphisms u:A-rA’, u’:A’+A”and u:B+B’the 2- 
morphism a.,,, 0 coincides with the pasting of the following diagram: 

AQB -A’@ B -A”@ B 

(8) (o @ + @ + ) For any object A and any 1-morphisms u: B + B’, w : C + C’ we 

have @A~~,~ = A 0 O,,,; 
(9) ( + @I l @ --f ) For any l-morphism u : A + A’, any object B and any l-mor- 

phisms w:C + C’ we have &,@B,w = @u,B@,,,; 
(10) ( + @ + @ l ) For any 1-morphisms u : A + A’, u: B + B’ and any object C we 

have Ou,v~~=(O.,.)OC. 

This ends the definition of a semistrict 2-monoidal category. We shall sometimes 
use the notation Al, . . . , A, for the product A,@ ... @I A, of n objects. 
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Lemma 1.1. For any three 1-morphisms u: A + A’, v: B + B’, w: C + C’ the cube 

is commutative. 

Proof. Obvious. 0 

1.3. Braided monoidal2-categories 

Let d be a semistrict monoidal 2-category. A braiding in ST is a collection of the 
following data (cf. [ 12)): 

(o Q l ) 1-morphisms (not necessarily isomorphisms or equivalences) RA,B: A $3 B + 
B @ A given for any pair A,B of objects of d. 

( + @ l ) For any l-morphism u: A -+ A’ and any object B, a 2-isomorphism 

2-isomorphism 

((.O.).) For any A,, AZ, B, a 2-isomorphism 

BOAlOAz 

(o @ (o @ l )) For any objects A, B1, Bz, a 2-isomorphism 
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These data should satisfy the following conditions: 

((o@o@e)@o) For any objects Al, AZ, A3, B the following tetrahedron is 

commutative: 

((0 ~$3 l ) @ (o @ l )) For any objects Al, AZ, B1, B2 the 

commutative: 

following polytope is 

R (A, ,A, 

(o @ ( l @ l @ l )) For any objects A, B1, B2, B3 the following tetrahedron is com- 
mutative: 

((o@o)@ +) ForanytwoobjectsA,, A2 and a l-morphism v: B + B’ the following 

triangular prism is commutative: 
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( + 8 ( l @ l )) For any l-morphism u: A --t A’ and two objects B1, B2 the following 
diagram is commutative: 

((a @ 4) @ l ) For any object A, a l-morphism u:B + B’ and an object C the 
diagram 

((3 @o)@o), (o@(o@ -+)), (o@(+ go))) Similarly to the above, left to the 

reader. 
( + @ 3) For any two 1-morphisms u: A + A’, v : B + B’ the following cube is com- 

mutative: 

B’A 

( l @ z) For any object A and any 2-morphism 
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the following cylinder is commutative: 

( x @I l ) A similar cylinder for a 2-morphism 

and an object B. 

( + + @ l ) For any composable pair A % A’ 5 A” of 1-morphisms and an object 

B the following diagram is commutative: 

(0 @ + +) Similar. 

2. Permutohedral diagrams 

2.1. The permutohedron 

We want to consider a convex polytope whose vertices correspond to permutations 
of n letters, n 2 2. 

By definition, the (n - l)-dimensional permutohedron P. (see [3, 151) is the convex 
hull of n! points (a(l), . . . , a(n)) E KY, where g runs over all the permutations of 
(1,. . . ,n}. 



250 M. Kapranov, V. Voevodsky 

It is clear from this definition that P, lies in the hyperplane 

((x1,. . .,X,)EIW”ICXi=n(n-l)/2} 

and its dimension equals (n - 1). 
Let S, be the symmetric group of all permutations of (1,. . . , n}. To define 

a permutation c E S, it suffices to specify a sequence (a(l), . . . , a(n)). We shall write 
0 = (a(l), . . . ) a(n)). For example, (312) is the permutation of (1,2,3} sending 1 to 3, 
2 to 1 and 3 to 2. 

For any CJ E S, let 0-l denote the inverse permutation. We shall denote by [a] the 
point (C’(l), . . . , a-l (n)) E P,. The advantage of this notation will be seen from the 

examples. 
The 2-dimensional permutohedron P3 is the hexagon 

/[1231\ 
~2131 cl323 

I I 
~2311 ~3121 

\[321]/ 

and the permutohedron P4 will be drawn in Section 2.3. 
We can notice that two vertices of P, are connected by an edge if and only if the 

corresponding permutations are obtained from each other by interchanging two 
numbers in consecutive positions. This fact is true for any permutohedron P,, and 
follows from the description of all the faces of P, given in [3, 151. 

2.2. Two Yang-Baxter hexagons 

Let A, B, C be three objects of a braided monoidal 2-category 
2-morphisms 

S a+,~,c, SA,B,C:(C 0 R ~,B)*o(RA,cOB)*O(AORB,C) 

--*%c 0 4 *o(B 0 RA,c) *o(&,B 0 0 

by the following pasting diagrams: 

R(AIC,B) R (AlB,C) 

d. Define the 
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These diagrams are 2-categorical analogs of the two ways of proof of the 
Yang-Baxter relations in a braided monoidal l-category. They have been first 
considered by Stasheff [19]. 

2.3. Eight Zamolodchikov equations 

Let A, B, C, D be objects of a braided monoidal 2-category. Consider a pasting 
diagram of the form given in Fig. 2 where S means either S + or S --the 2-morphisms 
defined in Section 2.2. We claim that there are eight choices of signs + and - for the 
Ss which make the diagram commutative. 

The boundary of the permutohedron consists of two “halves”: the front one and the 
back one. The commutativity means that the 2-morphisms given by the pasting of the 
front half equals the 2-morphism given by the pasting of the back half. 

Each of the two halves contains four hexagons. Let us number the hexagons on 
each half in the order in which they are taken in the evaluation of pasting. So the front 
hexagons will be denoted HI,. . . , H4 and the back ones Hi,. . . , Hk, where HI is 
the right bottom hexagon, H2 the right top one, H3 the left top one, H4 the left bottom 

ABCD 

>BD BDAC 

--. .- i/,AcB 

-DCBA 

Fig. 2. 
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one. The hexagon Hf is diametrally opposite to H5_i. The commutativity of the 
permutohedron can be symbolically expressed by the equation 

H4H3H2H1 = H:HjH;H;. 

In this equality we suppress, therefore, the notations for square-shaped 2-morphisms 
and for 1-morphisms. 

Theorem 2.1. In the above symbolic notation we have the following eight equalities 
between 2-morphisms S + and S - : 

W) s+s+s+s+ =s+s+s+s+, 

cm s-s+s+s+ =s+s+s+s-, 

(23) s-s-s+s+ =s+s+s-s-, 

(24) s-s-s-s+ =s+s-s-s-, 

(Z5) s-s-s-s- =s-s-s-s-, 

@6) s+s-s-s- =s-s-s-s+, 

(27) s+s+s-s- =s-s-s+s+, 

(28) s+s+s+s- = s-s+s+s+, 

Here the factors on the left-hand sides of any equality relate to the front part of the 
diagram and those on the right-hand side to the back part of the diagram. 

For example, (23) means that if we put the 2-morphisms of the type S- into the 
hexagons Hq, H3, H;,H; and the 2-morphisms of the type S+ into the other four 
hexagons then we get a commutative permutohedron. 

Proof. To prove the commutativity of the permutohedral diagram corresponding to 
any given equation, we shall decompose the permutohedron into smaller polytopes 
whose commutativity will be implied by the axioms of braided monoidal 2-category. 

In [12] we have constructed, for any codimension-1 face r of the permutohedron 
P, a polyhedral decomposition D(T) of P, whose polyhedra of maximal dimension 
correspond to nonempty subfaces (of all dimensions) of r. The decompositions of the 
hexagon exhibited in Section 2.2 are examples of this construction. In general, for 
opposite faces r, r’ the corresponding decompositions coincide. 

For the 3-dimensional permutohedron there are two kinds of faces: squares and 
hexagons. The corresponding decompositions are shown in Figs. 3 and 4. 

Taking r to be the bottom (or top) square we get a decomposition into 9 polytopes 
corresponding to subfaces of this square. To vertices of the square there correspond 
polytopes appearing in the axiom (( l @ l ) @ ( l @ l )) in Section 1.3. The com- 
mutativity of these polytopes follows from this axiom. To edges of the square there 
correspond triangular prisms whose commutativity follows from the naturality of the 
tensor product with respect to l- and 2-morphisms (axioms 4 and 5 of Section 1.2). 
To the single 2-face of the square there corresponds the cubical diagram whose 
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Fig. 3. 

\a ‘\ 

I’------- - 

Fig. 4. 

commutativity follows from the axiom ( + @ +) of Section 1.3. This decomposition 
induces the decomposition of each hexagon and thus assigns to the hexagon a 2- 
morphism S + or S -. By reading them from the diagram we deduce the validity of the 
equation (23). 
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The equation (26) is obtained by a similar decomposition associated to any of the 
two squares on the sides of the permutohedron. 

Taking r to be the hexagon H1, we get a decomposition into: 
- 6 tetrahedra (corresponding to vertices of Hi) which occur in the axiom 

(( 0 @ 0 @ 0) @ 0) of Section 1.3; 
- 6 triangular prisms (corresponding to edges of H,) whose commutativity follows 

from naturality of 0; 
_ one hexagonal prism (corresponding to the only 2-face of H,). We are free to 

decompose both hexagons of this prism in a way corresponding either to S + or to 
S- and the resulting diagram will be commutative. 
This gives two equations, (24) and (Z5): 

s-s-s-s’=s*s-s-s- 

Other equations from (Zl)-(28) are obtained in the similar way, using the other 
hexagonal faces of the permutohedron. 0 

3. Higher braid groups 

3.1. Modular conjigurations and higher braid groups 

The (pure) braid group T(n) (see [4]) is the fundamental group of the space 

G = {(Xi,. . .,X,EC’Ixi#XjfOri#j}, 

which is the complement of the configuration of hyperplanes (xi = xj} in C”. We are 
going to describe the generalization of the groups T(n) due to Manin and Schechtman 

c141. 
Let 1i,. . . , 1, be n distinct lines in C2 containing the point 0. Let J(x, y) = 0 be 

linear equations of li. Consider the coordinate space C”. For any triple 
1 I j < k < m I n we define the three affine lines fi(x, y) = cj, fk(x, y) = ck, 
fm(x, y) = C, have a common point. Iffj(X, y) = ajx + bjy then Hjkm is given by the 
linear equation 

aj bj cj 

WI,* * . 3 c,)=det ak 

i 1 

bk ck = 0 

a, b, c, 

on (cl,. . . , c,). 
The union of the hyperplanes Hijk is called the modular conjguration for (II, . . . , 1,) 

and denoted by /1(/i,. . . , 1,). Clearly the topology of the complement 

C)“_/l(li,. . . ,I,) does not depend on the choice of lines li provided the lines are 
distinct. The fundamental group 7rl (A (11, . . . , 1,)) is called the higher braid group and 

denoted T(2, n). 
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In [14], Manin and Schechtman have defined a series of groups T(k, n) for any 
k < n by using modular configurations for n hyperplanes in the k-dimensional space 
(instead of C ‘). The group T(1, n) is the pure braid group T(n). In the present paper we 
will not need the higher braid groups for k > 2. 

3.2. Higher braid groupoids (coarse version) 

In the definition of the higher braid group 572, n) the choice of lines Ii, . . . ,1, c C 2 

was inessential. We want to choose them in a special way. Namely, we take I, to be 
real and more precisely to be defined by the real equation mx - y = 0. So the lines 
become ordered by their slopes. The hyperplanes Hklm c @” forming the modular 
configuration will also have real equations. Denote the complement C” - U Hklm by 
C,“, and its real part R” - U Hklm by WA. 

Connected components of F!:, are open unbounded convex polyhedra. Let us take 
one point xK inside each component K. Now define the coarse higher braid groupoid 
FZ(2, n) to be the fundamental groupoid of C:, with respect to the system of base 
points xx E R,“*. 

3.3. Higher braid groupoid (Jine version) 

If p = (x, y) is a point of R2, we shall write x = x(p), y = y(p) thus regarding x and 
y as coordinate functions on R2. 

Let (L,, . . . , L,) be a configuration of (real) lines in R2. We shall say that this 
configuration is super-generic if, first of all, no three lines of Lk intersect and no two are 
parallel (i.e. they are in general position) and, second, all the (5) numbers y(Lk n L,) 
are distinct. 

We shall consider lines L k given by the equations y = kx - ck where 

(c1,. . . , c,) E R”. The ordinate y(L, n L,) is, under this assumption, a linear function 

of@,, . * * , C”), 

mck - kc,,, 
Y(Lk n Lrn)= k _m . 

Let R,“,, c K, be the space of those (Cl,. . . 9 c,) for which the configuration of 

L,. * . , L, is super-generic. Clearly, the space Wt,, is the complement in R” to 
a configuration of hyperplanes which contains the modular configuration formed by 
hyperplanes Hklm defined in Section 3.1 and also the hyperplanes W,,,,,,, defined by 
the condition y(Lk n L,) = y(L, n L4). The hyperplanes Hklm will be called essential 
since they are deleted and the hyperplanes Wk,m,p,q will be called dummy since they are 
not deleted and are only used to define new base points. 

We denote this new configuration of hyperplanes by B or E(I1,. . . , Z,), where 1, is 
the line y = mx. 

Each connected component of Wt, becomes subdivided into several connected 
components of lR’,, which also are convex polyhedra. 
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Let us take one point y, inside each component E of &I,“,,. We define thefine higher 
braid groupoid FS(2, n) to be the fundamental groupoid of the space C:, with respect 
to the system of base points y,. Thus S%?(2, n) and S.9(2, n) are fundamental 
groupoids of the same space and differ only in the choice of the set of base points. 
More precisely, S9(2, n) differs from PZ(2, n) only by putting several base points 
inside each component of IX, instead of one. In particular, the group of automor- 
phisms of any object of any of these groupoids is the higher braid group T(2, n). 

We are paying considerable attention to this version of braid groupoid since it is 
this version which allows us to give a nice formulation of Theorem 4.1. 

3.4. Generators and relations in fundamental groupoids 

The space C’, whose fundamental group (or groupoid) we are interested in, is the 
complement in C” of a configuration of hyperplanes with real equations. Such spaces 
were studied by Salvetti Cl73 who constructed a combinatorial model for their 
homotopy types. This gives a description of the fundamental groupoid by generators 
and relations. Let us recall Salvetti’s construction. 

LetH=(H,,. . . , H,) be a configuration of real hyperplanes in R” given by affine 
equation & = 0. Let Hc be the complexification of H, i.e. the configuration of 
hyperplanes Hi, @ c C” given by the same equations 4i. We are interested in the 
fundamental groupoid of @” - HC with respect to the natural system of base points: 
one point xK inside each connected component of R” - H. 

Define chambers of H to be equivalence classes of points in R” by the following 
equivalence relation: x x y if the set of Hi containing x is the same as the set of 
Hi containing y. Thus chambers are convex polyhedra forming a cellular decomposi- 
tion of R” which we call the chamber complex. 

Let now A4 be a chamber of codimension 1 (a wall) and Hi the hyperplane from H in 
which A4 is open. The chamber A4 lies in the boundary of two n-dimensional 
chambers, say, K and K’. Let hKK, be the path in R” which joins base points xK and 
xK, and intersects only the wall M. This path does not lie in C” - Hc (since it intersects 
M) and we define a new path gKK’ by perturbing h KK, near the intersection point 
hKKP n M in order to go around Hi, @ in the complex domain. More precisely, suppose 
thatfi is negative in K and positive and K’. Then gKK’ goes around H,i, @ in such a way 
that Im(fi) (the imaginary part) remains nonnegative (see Fig. 5.). 

HI 
K’ 

C Imf i>/O 

‘i(CJKK’) 
XK 

Fig. 5. 
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Note that the definition of gKK, does not depend on the choice of sign offi. On the 
other hand, gKPK does not coincide with g KK, and always goes around the same 
hyperplane from the other side so that g KK, g K,K is a loop encircling this hyperplane. 
The paths gKK, will be the generators in our description of the fundamental groupoid. 
Thus each chamber of codimension 1 gives rise to two generators. 

Relations among the generators will correspond to chambers of codimension 2. It is 
convenient to consider the dual complex d of the chamber complex. By definition, 
i-dimensional cells of C? are in bijection with (n - i)-dimensional chambers; in particu- 
lar, chambers of dimension n correspond to vertices of e: 

If A4 is a chamber of H we shall denote by XM the corresponding cell of 6. This is in 
accord with the notation xK for the chosen base point inside a maximal chamber K. It 
is convenient to change the labelling of the generators gKK, constructed above. 
Namely, we shall think that the generators correspond to pairs consisting of a l-cell of 
C? and one of its two vertices. More precisely, if (Y, y) is such a pair, y = xK and the 
other end of Y is xKs then we shall define the generator g( Y, y) to be gKK’. 

Let now X be a 2-dimensional cell of d i.e. X = XM for some chamber M of 
codimension 2. If M is contained in p hyperplanes from H then X is a 2p-gon. 
Let x = xK be one of the 2p vertices of X. To the pair (X, x) we associate a relation 
R(X, x) among generators g( Y, y) as follows. Let x’ be the vertex in the 2p-gon 
X opposite to x. Then we have two paths (Y,, . . . , Y,) and (Y;, . . . , Y;) on the 
boundary of X from x to x’. We denote by yi the vertex of the segment Yi closest to 
x in the sense of minimal length of an edge path (the notion of a closest vertex makes 
sense in a polygon with an even number of vertices, which is the case). Similarly 
let yf be the vertex of Yi closest to x. We define the relation R(X, x) to have the 
form: 

g(Y,,y,)g(Y,-l,Y,-1). . .9(Yl,Yl) 

= g(YA, y;,g(Y;-l,y;-l). * * g(Yi, Yi)* 

Summarizing, we have the following structure data: 
(i) Objects correspond to vertices x of 6. 

(ii) Generators correspond to pairs (Y, y) where Y is a l-cell of e and y is one of 
two vertices of Y. 

(iii) Relations correspond to pairs (X, x) where X is a 2-41 of 6 and x is one of its 
vertices. 
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3.5. Generators and relations in coarse higher braid groupoids 

The coarse higher braid groupoid Sw(2, n) is a particular case of the groupoids 
considered in Section 3.4, when the configuration in question is the modular config- 
uration n = /1(1i, . . . , l,), the line 1, being given by y = mx. Thus generators of 
PZ(2, n) are paths gKK, for all pairs of adjacent components (codimension 0 cham- 
bers) of UC,. The relations come from codimension-2 chambers of the configuration A. 
By definition of the modular configuration, there can be only two types of behavior of 
the configuration /1 near a chamber M of codimension 2: 

(I) The chamber M lies on four hyperplanes from n namely on Hijk, Hij,, Hikl, 
Hjkl for some i < j < k < 1. 

(II) The chamber M lies on just two hyperplanes from /1 namely H, and 
H,, where (i, j, k} n {p, q, r} contains no more than one element. 

Thus the relations in PZ(2, n) will have the form of commutative octagons and 
commutative squares. 

3.6. Generators and relations in fine higher braid groupoids 

The fine higher braid groupoid Y-9(2, n) differs from PZ(2, n) only by putting 
several base points inside each component of [WL instead of one. It is, therefore, easy to 
compare these two groupoids using the modular configuration /1 and the bigger 
configuration E (see Section 3.3). We have only to take into account the presence of 
dummy hyperplanes W,, ,, P,4. 

The description of generators is as follows. 

Gl For every two adjacent components E,E’ of EC,, lying in the same component 
K of EC, there is one (“dummy”) generator hEET : yE + yE, which coincides with 
hi,;. It corresponds to the path joining y, and y,, which lies entirely inside K. 

G2 For every two adjacent components E,E’ of IX’,, lying in two different compo- 
nents K,K’ of [w,“, there are two generators gEE, and gErE which go around the 
hyperplane of the modular configuration separating E from E’ and K from K’. 

Instead of pairs of adjacent components of IF8 :,, we can as well speak about walls 
(chambers of codimension 1) separating such pairs of components. Any wall corres- 
ponding to Gl consists of line configurations (L,, . . . , L,) such that y(L, n L,) = 
y(L, n L4) for some k, m, p, q. Any wall corresponding to G2 consists of (L, , . . . , L,) 

such that L, n L, n L, # $ for some p, q, r. These situation are depicted below: 

Gl G2 

Relations between generators exhibited in Gl and G2 correspond to codimension-2 
chambers of the configuration E. Any chamber is defined by prescribing intersections 
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of Ll,. . . , L, and relative positions of heights of intersection points. Let us list all 
possible types of chambers and write down the corresponding relations. 

Rl. Suppose that our codimension-2 chamber (denote it by N) has the type 

This means that three pairs of lines have intersections at the same height. 
Such a chamber N lies in three hyperplanes of the configuration E, all of them 

dummy. So there are 6 chambers of codimension 0 adjacent to N: 

El 

E6 E2 x E5 E3 

E4 

Denote them El, . . . , Es (in a cyclic order). Then we have only one relation between 

dummy generators: 

R2. Suppose that the chamber N has the type 

__*_._____)f _________ 

_______________-#--X 

This means that there are two pairs of lines, say (L,, Lb), (L,, Ld) and (La,, Lb,), 

(L,,, Lde) such that 

y(& n Lb’) = y(L,, n L#). 

Such a chamber N lies in two hyperplanes, both of them dummy. Hence it is 
adjacent to 4 chambers of codimension 0. Denoting these chambers E,, . . . , &: 

we get one relation 
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R3. The chamber N has the type 

This means that two pairs of lines have intersections at the same height and there is 
another triple of lines which has a non-empty intersection. (note that one to two or 
three lines from the said triple may actually belong to the first group of four lines). 
Such a chamber lies in two hyperplanes from E, one dummy and one essential: 

El 

E2 
4 

% 
E3 

There are 4 chambers of codimension 0 adjacent to N. Denoting them El, . . . , E4 we 
get two relations: 

h EzEsgElEz = Kmha ~4, hmag&, = SE& -’ h El.54 * 

R4. The chamber N has the type 

--___p+_______-*___ 

This means that a triple of lines has a non-empty intersection at the same height as the 
intersection point of some other pair of lines. 

Such a chamber N lies in one essential hyperplanes and 3 dummy hyperplanes and 
is thus adjacent to 8 chambers of codimension 0 which we number as follows: 

We get two relations: 

gEs.E~hE,EshEsE,hE,Es = h h h EaEs EXEI E2EagE1Ez) 

-1 
gEs,EG h h h E,Es EsE, E,Es = 
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R5. The chamber N has the type 

This means that there are two triples of lines having each a nonempty intersection. 
Such a chamber N lies in two hyperplanes of 8, both essential and is adjacent to 

4 chambers of codimension 0, which we denote E,, . . . , E,: 

El 

E4 X E2 

E3 

By Salvetti’s recipe we get four relations. To write them down it is convenient to use 
periodic notation for Ei by agreeing that Ei+d = Ei-4 = Ei, for i = 1, . . . ,4. In this 
notations the relations have the form: 

R6. The chamber N has the type 

This means that some four lines intersect in one point. Such a chamber lies in 
4 hyperplanes of 8, all of them essential and hence it is adjacent to 8 chambers of 
codimension 0. Denoting these chambers cyclically by El, . . . , EB and extending the 
notation with period 8 (similarly to R5) we get the eight relations: 

4. Main Theorem 

4.1. Coherence problem for 2-braidings 

Let ZJ? be a braided monoidal2category and Al, . . . , A, be objects of d. We can 
construct a diagram P(A1,. . . , A,) in the 2-category &’ whose vertices are the n! 

permuted products A, = AOcl) 8 * * . @ A,,,,, r_~ E S, (so even when two products 
coincide for some reason, we still consider them as distinct vertices of the diagram). 
For any two cr,r such that G,Z with respect to the weak Bruhat order and the vertices 
[g],[r] of the permutohedron P, are joined by an edge e, we have a l-morphism 
U,: A, + A, in & induced by the braiding. We associate this morphism to the edge e. 
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2-faces of the permutohedron P, are of two types: squares and hexagons. Any 
square corresponds to interchanges of two independent pairs of objects, say Ai, Aj and 
&AI such that the object of each pair are adjacent. More precisely, vertices of such 
a square have the form 

XAiAj YAkAl XAjAi YAk,AlZ, 

XAiAj YAlAkZ, XAjAi YAlAkZ, 

where i < j, k < I and X, Y, Z are permuted products of some of As. We fill such 
a square with the 2-morphism 

OX~R,~,,,,Y~R,,.,,~Z. (4.1) 

Note that this 2-morphism coincides with the 2-morphism @XBR,,,,,,Y8R,,,,,Bz by 
the axiom ( +O l 0 -) of a monoidal 2-category. 

Any hexagon of P, corresponds to all permutations of a triple of adjacent objects. 
More precisely, vertices of such a hexagon have the form 

XAiAjA, Y, XAjAiAk Y, . . . , XA,AjAi Y, i <j < k, (4.2) 

where X and Y are above. Such a hexagon can be filled in two ways, namely by 
2-morphisms X @ Si ,Aj,Ak @ Y, where S * were defined in Section 2.2. 

Let us now glue to the l-skeleton of the permutohedron two hexagons in place of 
each hexagonal face of P, and one square in place of each square-shaped 2-face. All 0-, 
l- and 2-faces of the obtained CW-complex are now filled by 0-, l- and 2-morphisms 
of d. This is, by definition, the diagram P(A1, . . . , A,). It is a natural question to 
analyze “how commutative” this diagram is. It turns out that the answer involves 
higher braid groups. 

Consider the l-category Horn, (A,@ ... 0 A,,, A,,@ ... @A,). Any monotone 
edge path y in the permutohedron P, from [l, 2,. . . , n] to [n, n - 1,. . . , l] defines 
an object R, of this l-category-the composition of braiding 1-morphisms correspond- 
ing to edges of y. If y and y’ differ by a modification on a square (resp. hexagon), we 
have a 2-morphism (resp. two 2-morphisms) R, + R,, . So we get a system (groupoid) 
of 2-morphisms between various R, generated by these elementary 2-morphisms and 
their inverses. In particular, for any given y we get a group of 2-automorphisms of Ry. 
These groups are isomorphic (non-canonically) for different y, since any two edge 
paths can be connected by a chain of modifications. 

4.2. Main theorem 

Theorem 4.1. Let A 1, . . . , A,, by any objects of a braided monoidal 2-category ~4. The 
2-morphisms in the permutohedral diagram P(A,, . . . , A,,) define a jiunctor ji+om the 
fine higher braid groupoid FF(2, n) to the l-category Hom,(A,Q ... @A,, 

A,@ ‘.. ($3 A,). In particular, we get an action of the higher braid group T(2, n) on any 
object of this category of the form R,, y being a monotone edge path in the permutohedron. 
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analogous statement for a braided monoidal l-category is that we have an 
of the usual pure braid group T(n) = T( 1, n) on any product A1 8 ... 0 A,. 
proof of this theorem will occupy the rest of this section. To construct the 

functor we need some combinatorial preliminaries. 

4.3. Line conjigurations in IF’ and edge paths in the permutohedron 

The correspondence recalled below is a particular case of a more general construc- 
tion in [14]. 

Let L1,. . . , L, be a configuration of lines in lR2 such that L, is given by the 
equation y = mx - c,, c, E IF& Suppose that this configuration of lines is super- 
generic, i.e. the vector (cl, . . . , c,) lies in IR:,,. Let us interest the lines Li by 
a horizontal line y = t with varying t. Let xi(t) be the point of intersection of {y = t> 

with Li. For t @ 0 we have xl(t) <. . . < x,,(t) and for t % 0 we have 
x1(t) > * * * > x,,(t). By varying t from - cc to + cc we get a sequence of permuta- 
tions of (1,. . . , n} given by the orders of x,(7”). It is immediate to see that this 
sequence will be a monotone edge path in the permutohedron P,, which we denote by 

Y(L1, f * . , L,), see Fig. 6. 
Clearly, the edge path y(L1,. . . , L,) depends only on the component of the space 

R:,, where the vector (cr, . . . , c,) lies. We shall, for any component E of W:,, denote 
the corresponding path by y(E). 

Let us call two monotone edge paths y, 6 in P, going from [l . . . n] to [n . . . l] 
square-equivalent if the following condition holds: 

There exists a sequence yl, . . . , yr of monotone edge paths such that y1 = y, yI = 6 
and each yi+ 1 is obtained from yi by replacing two consecutive edges forming half of 
the boundary of the same face. 

It was remarked in [14] that if E,E’ are two components of R:,, belonging to the 
same component of R:, then the edge paths y(E), y(E) are square-equivalent. This can 

Fig. 6. 
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be seen by moving (cl, . . . , c,) E R” inside a component K of W:, is such a way that at 
every moment of time no more than two of (z) ordinates y(Lj n L,) coincide. The 
passage through a position when y(Lj n L,) = y(L, n L4) gives an elementary modi- 
fication of the path using the boundary of a square. 

Let us call the set of all square-equivalence classes of monotone edge paths in P, from 
[l . . . n]to[n.. . l] the higher Bruhat order and denote it by B(2, n). (This definition is 
one of the characterizations of B(2, n) from [14]; the name “order” comes from the fact 
that B(2, n) is equipped with a natural partial order relation generalizing the weak 
Bruhat order on the symmetric group.) The above reasoning gives a map of sets 

%(K*) + B(2, n). 

This map is injective but in general not surjective: as shown in [l l] every element in 
B(2, n) comes from a so-called pseudo-line arrangement (oriented matroid) and there 
are (rather old) examples of arrangements of pseudo-lines which cannot be 
straightened. 

This means, in particular, that not every monotone edge path in the permutohedron 
from [l . . . n] to [n . . . l] comes from a component of R:,,. 

4.4.’ The construction of the functor 

LetA,,. . . , A, be objects of a braided monoidal %-category d. We shall construct 
a functor 

F:F97(2, n) + Horn,@,@ ... @I A,, A,@ ... 0 A,) 

whose existence is claimed in Theorem 4.1. 
On objects we define P to be the correspondence between connected components of 

R:,, and monotone edge paths in the permutohedron recalled in Section 4.3. 
By definition, objects of FzF (2, n) are marked points of R:,, , one in each connected 

component of this space. Let (L, , . . . , L,) by any such point and let y(Lr, . . . , L,) be 
the corresponding edge path in the permutohedron (see Section 4.3). We define 

J’(&, . . . , L,) to be the l-morphism 

R YWl...,L”). ‘Al.. .&-PA,.. . Al, 

i.e. the composition of braiding 1-morphisms corresponding to edges of the path 

Y&P. . . , L,). This defines F on objects of FP(2, n). 
On generators of 1-morphisms we define F as follows. 
(1) Let E,E’ be two adjacent components of R:,, lying in the same component of 

K of R:,. Let y(E),y(E’) be the corresponding edge paths in P,. These paths coincide 
everywhere except a segment of length 2 which on one of the paths reads 

[...ij...kl...]+[...ji... kE...]+[...ji...lk...] 

and on the other path 

[.. .ij. ..kZ...]+[.. .ij... lk...]+[...ji... lk...] 
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If the second variant holds for y(E) then we define the l-morphism F(h,,,) (the value 
of F on the generator IZEE,) to correspond to the 2-morphism in d given by (4.1). If the 
first variant holds for y(E) then we define F(hEES) to correspond to the inverse of the 
2-morphism (4.1). 

(2) Let E,E’ be two adjacent components of WE,, lying in different components of 

R:,. The edge paths y(E), y(E’) in the permutohedron differ by a modification on 
a hexagon 

/ 

[. . .jik.. .] -[...jki...] 

\ 
[. . . ijk . . .] [...kji...] (4.3) 

\ c . . . ikj.. .]- [...kji...] / 

for some i < j < k. The corresponding objects in the permutohedral diagram 

P(A1,. . . , A,) (see Section 4.1) have the form given in (4.2), i.e. XAi A, A, Y and similar 
products for all the permutations of Ai, Aj, Ak. Suppose now that y goes along the 
upper part of the hexagon (4.3). In this case define the l-morphism F(gEES) (the value 
of F on the generator gEE, going around the hyperplane H, in the complex domain, 
see Section 3.4) to correspond to the 2-morphism X@Sz,A,,Ak@ Yin &. If y(E) goes 
along the lower part of the above hexagon, we define F(gEE,) to correspond to the 
2-morphism X@si,,,,,,,@ Y. 

To finish the proof of Theorem 4.1 it suffices to prove that F preserves the relations 
Rl-R6 in the groupoid 99(2, n) exhibited in Section 3.5. 

Rl. The hexagonal diagram in Hom,(A,@ ... @ A,, A,,@ See @I A,) whose com- 

mutativity we have to prove, corresponds to a cubical diagram in d which is a part 
of the permutohedral diagram P(A1,. . . , A,). More precisely, six paths 

?@1), * * * , y(E6) in P, lie on a subdiagram of the form: 

for some cubical 3-face Q of P,. So our relation expresses just the commutativity of the 
cube Q. This commutativity follows from Lemma 1.1. 

R2. The four paths y(Ei) lie on a subdiagram in P(A,, . . . , A,,) of the form 

and our relation follows from the 2-dimensional associativity in &. 
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R3. Follows similarly to R2 by consideration of subdiagrams of the 101 III 

_Q_..... _Q_ 

(the square may precede or follow the hexagon.) 

R4. The paths y(Ei), i = l,, . . . ,8, lie on a subdiagram of the form 

for some hexagonal prism ZZ in the permutohedron. The two relations correspond to 
the fillings of the two hexagons of I7 by Sf or S-. So it suffices to prove the 
commutativity of the prism with respect to each of the fillings. This follows from the 
axioms 

(z@+) and (-0X) 

R5. Follows similarly to R2 and R3 by consideration of subdiagrams of the form 

++J---+ 

(there are 4 choices of fillings). 

R6. These eight relations are exactly the eight Zamolodchikov equations proven in 
Section 2.3. 

Theorem 4.1 is proven. 
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