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1 Introduction

In this paper we prove that a correspondence from a smooth projective variety over

a field to itself, which is algebraically equivalent to zero, is nilpotent in the ring of

correspondences modulo rational equivalence (with rational coefficients). We also show

that a little more general result holds, namely, that for any algebraic cycle Z on a smooth

projective X which is algebraically equivalent to zero, there exists an N > 0 such that the

cycle Z⊗N on XN is zero in the corresponding Chow group of XN with rational coefficients.

In the first section,we recall the definition and some elementary properties of the

additive category of Chow motives over a field. In the second section, we prove our nilpo-

tence theorems for cycles algebraically equivalent to zero. Finally, in the third section,

we formulate a very strong nilpotence conjecture for algebraic cycles and explain how it

is related to some other known conjectures. We did not try to give very accurate proofs in

this last section, since almost all the statements there are conditional anyway, and the

only reason to include this section at all was to illustrate the importance of nilpotence

results for the theory of algebraic cycles.

Everywhere in this paper, except for the first section, we consider the Q-linear

situation, i.e., we completely ignore all torsion and cotorsion effects.

2 Chow motives

Let k be a field. Denote by SmProj /k the category of smooth projective varieties over k.

(We do not require objects of this category to be connected.) For any X in SmProj /k and
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any n ≥ 0, denote by An(X) the Chow group of cycles of dimension n on X modulo rational

equivalence. For a pair of objects X, Y, we set

A(X, Y) = ⊕Xi
Adim(Xi)(Xi × Y)

where Xi are the connected components of X. The classical construction of composition

of correspondences gives us pairings

A(X, Y) ⊗A(Y, Z) → A(X,Z)

such that the usual associativity property holds. We can define now the category of Chow

correspondences CorChow(k) over k as the additive category such that

(1) Ob(CorChow(k)) = Ob(SmProj /k),

(2) HomCorChow(k)(X, Y) = A(X, Y),

and the composition is given by composition of correspondences. Note that there is an

obvious functor SmProj /k → CorChow(k),which is the identity on objects, and which takes

a morphism to its graph. For any commutative ring R, we can further define an R-linear

category CorChow(k, R) by setting

HomCorChow(k,R)(X, Y) = A(X, Y) ⊗ R.

Definition 2.1. The category of effective Chow motives Choweff(k, R) over k with coeffi-

cients in R is the pseudoabelian envelope1 of the category CorChow(k, R). For an object X

in SmProj /k, we denote the corresponding object of Choweff(k, R) by [X].

One can easily see that there is a natural tensor structure on Choweff(k, R) such

that [X⊗Y] = [X]×[Y]. We denote the unit object of this tensor structure (i.e., [Spec(k)]) by R

or R{0}. Consider the morphism [P1] → R, which corresponds to the canonical morphism

P1 → Spec(k). It splits by any point on P1, and therefore its kernel is a well-defined object

of Coreff(k, R). This object is called the Tate object, and we denote it by R{1}. (Note that

since the canonical functor from varieties to Choweff(k, R) is covariant, we indeed get in

this way the Tate object as opposed to the Lefschetz object R{−1}, which one gets by

considering contravariant theories.) We set further

R{n} = (R{1})⊗n,

and for any object X of our category,

X{n} = X⊗ R{n}.

1A pseudoabelian envelope of an additive category A is an additive category obtained from A by formal en-
largement of its class of objects so as to include kernels of all projectors.
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Remark. Suppose that there exists an abelian category MMk of mixed motives over

k (with coefficients in R). Then the category Choweff(k, R) of effective Chow motives is

equivalent to the full subcategory in the derived category D(MMk) of MMk generated by

objects which correspond to smooth projective varieties over k (cf. [7]). The embedding

Choweff(k, R) → D(MMk) takes our Tate object R{n} to the object R(n)[2n], i.e., to the Tate

motive of weight n placed in (homological) degree 2n, which explains why we use the

notation R{n} instead of the standard R(n).

Lemma 2.2. For any objects X, Y in Coreff(k, R), the homomorphism

∗ ⊗ IdR{1} : Hom(X, Y) → Hom(X{1}, Y{1})
is an isomorphism.

Proof. It follows easily from the fact that An(X× P1) = An(X) ⊕An−1(X).

Finally we define the category Chow(k, R) of Chow motives over k with coefficients

in R as the category obtained from Choweff(k, R) by formal inverting of R{1}. Lemma 2.2

implies that the obvious functor

Choweff(k, R) → Chow(k, R)

is a full embedding.

The following proposition summarizes some elementary properties of the cate-

gory Chow(k, R). All of them follow easily from our definitions and standard facts about

algebraic cycles modulo rational equivalence (see [6]).

Proposition 2.3. For any field k and any commutative ring R one has:

(1) Chow(k, R) is a rigid tensor additive category. More precisely, the following

statements hold:

(a) For any two objects X, Y, there is an internal Hom-object Hom(X, Y) such that,

for any Z, there is a canonical isomorphism

Hom(Z,Hom(X, Y)) = Hom(Z⊗ X, Y).

(b) Denote the object Hom(X, R{0}) by X∗. Then one has

Hom(X, Y) = X∗ ⊗ Y

(X⊗ Y)∗ = X∗ ⊗ Y∗

(X∗)∗ = X.

(2) For any smooth projective equidimensional variety X of dimension n over k,

one has a canonical isomorphism in Chow(k, R) of the form [X]∗ = [X]{−n}.
(3) For any smooth projective variety X over k and any n ∈ Z, one has a canonical

isomorphism

An(X) ⊗ R = HomChow(R{n}, [X]).
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(For n < 0, it means that the right-hand-side group is zero.)

(4) For any smooth projective variety X over k and a vector bundle E over X,

denote by P(E) the projectivization of E. If E is of pure dimension n, there is a canonical

isomorphism

[P(E)] = ⊕n−1
i=0 [X]{i}.

(5) LetX be a smooth projective variety over k and letZ ⊂ X be a smooth subvariety

in X of pure codimension c. Denote by XZ the blow-up of Z in X. Then there is a canonical

isomorphism

[XZ] = [X] ⊕ (⊕c−2
i=0 [Z]{i}).

(6) The objects R{i} are mutually orthogonal; i.e., one has

Hom(R{i}, R{ j}) =
{

0 for i �= j

R for i = j.

The following fact, which will be used in the next section, is also a simple refor-

mulation of well-known properties of Chow groups.

Proposition 2.4. Let X be a smooth projective variety, and let G be a finite group which

acts on X. Further, let R be a commutative ring such that the order of G is invertible in R.

Then there is an object [X]/G in Chow(k, R) such that, for any object Y in Chow(k, R), one

has

Hom([X]/G, Y) = Hom([X], Y)G.

If the categorical quotient X/G exists in the category of schemes over k, one has canonical

isomorphisms

Hom(R{n}, [X]/G) = An(X/G) ⊗ R.

If, in addition, X/G is smooth and projective, one has a canonical isomorphism

[X]/G = [X/G].

Definition 2.5. A morphism f : X → Y in a tensor additive category is called smash

nilpotent if there exists an N ≥ 0 such that the morphism

f⊗N : X⊗N → Y⊗N

equals zero.
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Remark. Note that a tensor functor from an additive tensor category to the category of

K-vector spaces for a field K takes any smash nilpotent morphism to zero. In particular,

any smash nilpotent morphism in a category with a fiber functor is zero.

We will show, in the next section, that if f : Q{n} → [X] is a morphism in the

category of Chow motives over k with rational coefficients such that the corresponding

cycle of dimension n on X is algebraically equivalent to zero, then f is smash nilpotent.

We will use the following two trivial lemmas.

Lemma 2.6. For any tensor additive category, the subset of smash nilpotent morphisms

X → Y is a subgroup in Hom(X, Y).

Lemma 2.7. Let A be a rigid tensor additive category with the unit object 1, and let

f : X → X be an endomorphism such that the adjoint morphism 1 → X∗ ⊗ X is smash

nilpotent. Then f is nilpotent in the ring End(X).

3 Nilpotence theorems for cycles algebraically equivalent to zero

Proposition 3.1. Let Z = ∑
nizi be a cycle of degree zero on a smooth projective curve

X over k. Then the cycle Z⊗N on XN is rationally equivalent to zero for N > 2g− 1.

Proof. Consider the morphism

φZ : Q → [X]

in the category of Chow motives, which corresponds to the cycle Z. We have to show that

the morphism

φ⊗N
Z : Q → [XN]

is zero for N > 2g− 1. By Proposition 2.4, we have a decomposition

[XN] = [SNX]⊕?

where SNX is the symmetric product of X. Since φ⊗N
Z is invariant under the action of the

symmetric group, we have

pr1(φ⊗N
Z ) = φ⊗N

Z .
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(Here pr1 is the projector which corresponds to the direct summand [SNX].) It is sufficient

therefore to show that

SN(φZ) : Q → [SNX]

is zero.

Since we are working with rational coefficients,we may assume that the base field

k is algebraically closed. Let x : Spec(k) → X be a point of X. It defines a decomposition

in Chow(k,Q) of the form [X] = ˜[X] ⊕ Q. Since Z is a cycle of degree zero, the morphism φZ

can be factored through ˜[X]. We have, further,

[SNX] = SN[X] =
N∑

i=0

Si ˜[X].

With respect to this decomposition, the morphism SN(φZ) factors through SN ˜[X]. It is

sufficient to show now that

Hom(Q, SN ˜[X]) = 0.

The left-hand-side group is the same asA0(SNX)/A0(SN−1X),where the morphismA0(SN−1X) →
A0(SNX) corresponds to the embedding

SN−1X → SNX

given by x. Consider the commutative diagram

SN−1X −→ SNX

↓ ↙
Jac(X).

Then, for N > 2g− 1, both SN−1X and SX are projective bundles over the Jacobian

Jac(X), and therefore the vertical arrows give isomorphisms on the Chow groups of zero

cycles. This proves the proposition.

Corollary 3.2. Let X be a smooth projective variety over a field k, and let Z be a cycle of

dimension d on X which is algebraically equivalent to zero. Then there exists an N > 0

such that the cycle Z⊗N equals zero in Ad(XN) ⊗ Q.

Proof. We may assume that k is algebraically closed. By the definition of algebraic

equivalence, there exists a sequence of cycles Z1, . . . ,Zk on X such that the following

conditions hold:

(1) Z1 = Z.

(2) Zk = 0.
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(3) For any i = 1, . . . , k− 1, there is a smooth projective curve Ci, a pair of points

xi, yi on C, and a cycle Yi on X× C such that

Yi ∩ (X× {xi}) = Zi

Yi ∩ (X× {yi}) = Zi+1.

Rewriting Z in the form

Z =
k−1∑

i=1

(Zi − Zi+1),

we may assume by Lemma 2.6 that k = 1.

Consider the morphism φZ : Q{d} → [X] in the category of Chow motives which

corresponds to Z. Then we have a factorization of the form

Q{d} φ−→ [X]

f ↘ ↗ g

[C]{d}

where f is the tensor product of the morphism Q → [C] defined by the cycle x1 − y1 with

the identity morphism of Q{d}, and g is defined by the cycle Y1. Our statement follows

now from Proposition 3.1, since the morphism φ⊗N
Z which corresponds to the cycle Z⊗N

on XN can be factored through f⊗N.

Corollary 3.3. Let X be a smooth projective variety of dimension n, and let Z be a cycle

of dimension n on X×X which is algebraically equivalent to zero. Then Z is nilpotent in

the ring of End([X]) of correspondences from X to X modulo rational equivalence.

Proof. This follows from Corollary 3.2 and Lemma 2.7.

Corollary 3.4. LetXbe a smooth projective variety over a field k, and let Z be a correspon-

dence from X to itself which is algebraically equivalent to the identity correspondence.

Then Z induces automorphisms on the Chow groups An(X) of cycles on X modulo rational

equivalence.

4 The nilpotence conjecture and theories of motivic type

Consider again the category Chow(K,Q) of Chow motives over a field k with rational

coefficients. This category is far from being abelian. It was Grothendieck’s idea to obtain

an abelian (and in fact abelian and semisimple) category out of it in the following way.
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By duality, we have

Hom(X, Y) = Hom(Q, X∗ ⊗ Y)

Hom(Y, X) = Hom(Q, Y∗ ⊗ X) = Hom(X∗ ⊗ Y,Q).

Since Hom(Q,Q) = Q, it gives us a pairing

(−,−) : Hom(X, Y) ⊗ Hom(Y, X) → Q.

We say that a morphism f : X → Y is numerically equivalent to zero if, for any g : Y → X,

one has (f, g) = 0. Denote by Homnum(X, Y) the quotient group of Hom(X, Y) with respect

to the subgroup of morphisms numerically equivalent to zero. One can verify easily that

there is a rigid tensor additive category with the same class of objects as Chow(k,Q) and

morphisms given by the groups Homnum(−,−). Its pseudoabelian envelope is called the

category of Grothendieck motives over k with coefficients in Q. We denote this category

by GM(k,Q). The following result is due to U. Jannsen [5].

Theorem 4.1. For any field k, the category GM(k,Q) is a semisimple abelian category.

The following nilpotence conjecture relates the category of Chow motives and

the category of Grothendieck motives in a different way.

Conjecture 4.2. Let k be a field. A morphism f : X → Y in Chow(k,Q) is numerically

equivalent to zero if and only if it is smash nilpotent.

Note that this conjecture is formulated in purely algebrogeometrical terms. In

particular, it does not refer to any specific (co-)homology theories on algebraic varieties.

On the other hand, it would clearly imply the Grothendieck standard conjecture, which

says that numerical equivalence on cycles coincides with homological equivalence [4].

Another conjecture which would follow from Conjecture 4.2 is the Bloch con-

jecture on zero cycles on surfaces with pg = 0 (see [1]), which says that, for a smooth

projective surface X over an algebraically closed field k such that H2(X) is generated by

classes of divisors, the Albanese kernel A0(X) → Alb(X)(k) is zero. In fact, it is not hard to

show that under our assumptions on X, there exists a correspondence Z from X to itself

such that the following two conditions hold:

(1) Z is numerically equivalent to the identity correspondence.

(2) Z acts trivially on the Albanese kernel ker(A0(X) → Alb(X)(k)).
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If Conjecture 4.2 were true, it would imply that Z acts on Chow groups by auto-

morphisms and in particular that the Albanese kernel is zero.

The results of Section 3 show that, to prove the nilpotence conjecture, it is suf-

ficient to show that, for a cycle Z on a smooth projective variety X which is numerically

equivalent to zero, there exists an N such that Z⊗N is algebraically equivalent to zero

on XN.

It makes sense to believe that the nilpotence conjecture is true, because it would

follow from the existence of a theory of mixed motives. To make this statement a little

more precise, we need the following definition.

Let k be a field. We fix an algebraic closure k̄ of k and denote, for any scheme X

over k by X̄, the scheme X×Spec(k) Spec(k̄).

A theory of motivic type (with rational coefficients) over k is the following collec-

tion of data:

(1) a Tannakian category C over Q (see [3]);

(2) a contravariant functor M: Sch /k → Db(C) from the category of schemes of

finite type over k to the derived category of bounded complexes over C;

(3) for any prime l not equal to the characteristic of k, an exact tensor functor

Fl : C → Ql − Vect

from C to the category of Ql-vector spaces together with natural isomor-

phisms of Ql-vector spaces

ψX : Hi
ét(X̄,Ql) → Hi(M(X)) ⊗ Ql

given for all schemes X of finite type over k;

(4) for any scheme of finite type X and a closed covering X = X1 ∪X2, a morphism

M(X1 ∩ X2) → M(X)[1],

which is compatible by means of isomorphisms ψX with the correspond-

ing standard homomorphisms on étale cohomology;

(5) for any two schemes of finite type over k, an isomorphism

M(X× Y) → M(X) ⊗M(Y)

compatible in the obvious sense with Kunneth isomorphisms in étale co-

homology.

It can be shown that any theory of motivic type can be extended to a tensor

triangulated functor from the triangulated category of mixed motives DMgm(k) to Db(C).

(See [7] for a construction of DMgm(k).) For any theory of motivic type over k, denote by

Q(−1)(M,C) the object H2(M(P1
k)) of C. Let, further, Q(n)(M,C) = (Q(1)(M,C))⊗n. Then, for any

theory of motivic type, there are characteristic classes

ci j : Ki(X) → HomDb(C)(Q(− j)[i− 2 j],M(X)).
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In particular, for an equidimensional smooth projective variety X of dimension

d, we get a cycle map

Ai(X) = Ad−i(X) → HomDb(C)(Q(−i)[−2i],M(X)).

Definition 4.3. A theory of motivic type (M,C) over k is called a theory of mixed motives

over k if, for any smooth variety X over k, the Chern characters

chi : Ki(X) → HomDb(C)(⊕i+dim(X)
j=0 Q(− j)[i− 2 j],M(X))

associated with the corresponding characteristic classes are isomorphisms.

Remark. Note that, in particular, for a theory of mixed motives (M,C), we have

Ai(X) ⊗ Q = HomDb(C)(Q(−i)[−2i],M(X)).

At the present moment, it is quite unclear whether a theory of mixed motives over

any field exists or not. What can be proven is that, if such a theory exists, then it is unique

up to a canonical equivalence. Moreover, the corresponding category Db(C) is equivalent

in this case to the triangulated category of mixed motives DMgm(k)⊗Q constructed in [7].

On the other hand, even if the theory of mixed motives does not exist, existence

of theories of motivic type with certain properties would imply many of the “standard

conjectures” on algebraic cycles. Let us consider the following two examples—the sec-

ond of them shows, in particular, that the existence of mixed motives would imply the

nilpotence conjecture.

Proposition 4.4. Suppose that for a field k there is a theory of motivic type (M,C) such

that the cycle maps

Ai(X) → HomDb(C)(Q(−i)[−2i],M(X))

are surjective. Then Grothendieck’s Standard Conjecture B holds for varieties over k

(see [4]).

Proof. Note that by general properties of rigid tensor categories [3], the functors Fl are

faithful. In particular, a morphism f in Db(C) is an isomorphism if and only if Fl(f) is an

isomorphism for some l.

We will need the following lemma.

Lemma 4.5. Let (M,C) be a theory of motivic type. Then, for any smooth projective

variety X over k, a hyperplane section H of X defines an isomorphism in Db(C) of the form

M(X) = ⊕2n
i=0H

i(M(X))[−i].
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Proof. By induction on d = dim(X), we may assume that this decomposition is already

constructed for M(H). Then, by the hyperplane section theorem, we get a decomposition

M(X) = ⊕d−1
i=0 H

i(M(X))[−i] ⊕N⊕2d
i=d+1 H

i(M(X))[−i].
It is sufficient now to decompose N. By duality arguments, it is sufficient to construct a

morphism N(−1)[−2] → N which induces an isomorphism

Hd−1(N)(1) → Hd+1(N).

This morphism can be obtained from the morphism M(X)(−1)[−2] → M(X), which cor-

responds to the multiplication by the class of H. The fact that it induces the required

isomorphism follows from the Deligne theorem [2].

To finish the proof of the proposition, note that Lemma 4.5 implies, in particular,

that the cycle map

Ai(X) → HomC(Q(−i), H2i(M(X)))

is surjective. Applying again Deligne’s theorem, we see that the morphisms Hn− j(M(X)) →
Hn+ j(M(X)), given by multiplication by the jth power of the class of a hyperplane section

H, are isomorphisms. Together with the fact that the cycle map in the above form is

surjective, it implies that the inverse isomorphisms on cohomology groups take classes

of algebraic cycles to classes of algebraic cycles, i.e., that the Standard Conjecture B

holds for X.

Remark. Using the theorem of Jannsen, one can show that the opposite to Proposi-

tion 4.4 is true, i.e., that if we know that homological equivalence coincides with numer-

ical equivalence, then one can construct a theory of motivic type with surjective cycle

maps.

Proposition 4.6. Suppose that for a field k there is a theory of motivic type (M,C) such

that the cycle maps

Ai(X) → HomDb(C)(Q(−i)[−2i],M(X))

are surjective, and their kernels consist of smash nilpotent elements. Then the nilpotence

conjecture holds for varieties over k.

Proof. This follows immediately from Proposition 4.4 and the following simple lemma.

Lemma 4.7. Let C be a Tannakian category over a field E of characteristic zero, let X

and Y be objects of the derived category of bounded complexes over C, and let f : X → Y

be a morphism in the derived category. Then it is smash nilpotent (i.e., f⊗N = 0 for some

N) if and only if it is zero on cohomology objects of X and Y.
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Proof. SinceC is a Tannakian category, there exists a field extension E′ of E and an exact

tensor functor

F : C → E′ − Vect,

which is faithful. Thus any smash-nilpotent morphism is zero on cohomology by obvious

reasons. Suppose that f : X → Y is zero on cohomology objects. Using duality, we may

assume that X = 1 is the unit object of C. Our condition on f implies further that we

may assume that Hi(Y) = 0 for i < 1 (here Hi(−) = H−i(−)). Then there is a surjection

p : V → 1 such that f ◦ p = 0, and therefore f can be factored through the first extension

f0 : 1 → ker(p)[1] given by V . It is sufficient to show that f0 is smash nilpotent. One can

easily see that, for any n ≥ 0, the morphism

f⊗n0 : 1 → ker(p)⊗n[n]

can be factored through the external product Λn(ker(p)). Thus, for n > dim(F(ker(p))), we

have f⊗n0 = 0. The lemma is proven.

Remark. Proposition 4.6 shows that, to prove the nilpotence conjecture, it would be

sufficient to construct a theory of motivic type (M,C) such that, for any smooth projective

variety over k, one of the following conditions holds:

(1) HomDb(C)(M(X),Q(−n)[−2n]) = An(X) ⊗ Q;

(2) HomDb(C)(M(X),Q(−n)[−2n]) = Bn(X) ⊗ Q where Bn(X) is the group of cycles of

dimension n on X modulo algebraic equivalence.

In particular, it shows that, at least for some purposes, it would be enough to

construct a “theory of mixed motives modulo algebraic equivalence.” We will discuss

how such a theory should look in another paper.
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