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H3B. ΑκβΛ. HayK CCCP Math. USSR Izvestiya
Cep. MaTeM. TOM 54(1990), >fe 6 Vol. 37(1991), No. 3

ETALE TOPOLOGIES OF SCHEMES
OVER FIELDS OF FINITE TYPE OVER Q

UDC 512.76+512.664.4

V. A. VOEVODSKII

ABSTRACT. The author proves a conjecture of Grothendieck concerning the possibility
of recovering a normal scheme over a field of finite type over Q from its etale site.

Introduction

This work is devoted to proving a conjecture of Grothendieck which he made in
a letter to Gerd Faltings (1983) and in an unpublished paper entitled "Esquisse d'un
programme" (1984). Roughly speaking, he claims that in the case of normal schemes
of finite type over finitely generated fields of characteristic zero, all of the information
about a scheme is contained in its etale topology.

With some modifications, our proof seems to apply to schemes over finitely gen-
erated fields of characteristic ρ > 0 which have transcendence degree > 1, but the
proof does not go through for finite fields.

I would like to thank G B. Shabat for directing my attention to the remarkable
paper "Esquisse d'un programme," and I would like to thank the participants in
I. R. Shafarevich's seminar for their interest in my work.

§1. The etale site of a scheme

In this section we give the basic definitions which will be needed later, and we
prove some elementary properties of the etale topology of a scheme.

The basic notion I shall be working with is that of a site. A completely elementary
exposition of the concepts connected with sites can be found in [1] (see also [2] and
[3])·

DEFINITION 1.1. A site is a category with fibered products in which families { £/ —»
U} of morphisms have been distinguished, each family having the same target object;
these families are called coverings. Here the following conditions must be fulfilled:

1) Any isomorphism is a covering.
2) The coverings are invariant under base change.
3) If {Ui, —> U} is a covering and if {V^ —* £/} is a covering for each /', then

{ V^ —> U} is a covering.
The objects of the underlying category of a site Τ are called the open sets of Τ.
DEFINITION 1.2. Let X and Υ be two sites. A morphism (or continuous map)

φ: X —> Υ is a functor <p~l from the underlying category of Υ to the underlying
category of X which preserves fibered products and takes coverings to coverings.
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512 V. A. VOEVODSKII

A 2-morphism from a continuous map φ: X —• Υ to a continuous map ψ: X —• Υ
is a morphism of functors φ~ι —> ̂ ~' .

The sites, the moφhisms of sites and the 2-morphisms of sites obviously form a
2-category, which we denote GTop.

Let X be a scheme. We let Χέχ denote the etale site of X. The open set of
Χέχ are the etale schemes which are separated and of finite type over X, and the
morphisms are the morphisms of schemes over X . A family {£/. —* U} is a covering
if the images of the Ui cover U. A morphism of schemes φ: X —> Υ determines a
morphism φέχ: Χέχ —> Υέχ according to the rule

This construction obviously gives a functor et from the category of schemes to the
2-category of sites.

If Γ is a site and U is open in Τ, then one can define the the site υέχ which is
the "restriction" of Γ to U. The open sets of ϋέχ are the morphisms V —> U in
Τ, the morphisms of U€x are the commutative triangles

V -> V'
\ /

u
and a family {Vt. —> F} is a covering in t/gt if and only if it is a covering in Τ.

The rule F —> (F χ C/ -> [/) determines a continuous map U€x —> Γ. If
9>: t/j —» U2 is a moφhism in Τ, then one can analogously define a continuous
map ?>a: {υχ)έχ —> (C 2 ) i t . Given a scheme X, we let T(X) denote the underlying
topological space.

PROPOSITION 1.1. Let X and Υ be schemes, and let φ: Xtx —> Y6x be a morphism
of etale sites. There exist a unique continuous map Τ (φ): Τ(Χ) —> T(Y) such that,
if U c T{Y) is an open set, then

(1.1)

{On the right U with the induced scheme structure is regarded as an open set Υέχ.)

PROOF. We shall only give the construction of the map Τ (φ). The verification
that (1.1) holds, and that Τ (φ) is unique, is a simple exercise in general topology.
The basic role in constructing Τ (φ) is played by the following well-known fact: for
any scheme X , the map Λ: —» {χ} gives a one-to-one correspondence between points
and irreducible closed subsets of T(X).

Given a point χ e T{X), we set

Τ(φ){χ) = ( generic point T(Y) \J U

(of course, one must check that the set on the right is irreducible). If X and Υ are
sites and φ: X —> Υ is a continuous map, then for every open set U in Υ the rule

(V ^ U) ^ {φ~\ν) ^ q>-\U))

determines a continuous map φυ: <p~l(U)et —* Uix, the "restriction" of φ to φ (U).
This along with Proposition 1.1 shows that a continuous map φ of etale sites of
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schemes determines a compatible system of continuous maps of topological spaces
T(<p~x(U))^T(U) for all open U in Yey

In what follows we shall be primarily interested in the relative case, i.e., the 2-
category of sites over a certain base. The definition here is not completely trivial:

DEFINITION 1.3. Let Γ be a site. The 2-category of sites over Τ is the 2-category
GTop / Τ of the following form:

(a) The objects of GTop/Τ are the morphisms (X —* T) in GTop.
(b) The morphisms from px: X -+ Τ to pY: Υ —> Τ are pairs φ = (φ~ι, α) ,

where φ~ is a functor from the underlying category of Y to the underlying category
of X corresponding to a morphism X —* Τ in GTop, and a: p~ —> φ" ο p~l is
an isomorphism of functors;

(c) A 2-morphism (φ^λ, α,) -> (φ^χ, α2) is a morphism of functors φ^χ -+ φ^1

such that the following diagram commutes:

If X —> S is a scheme over S, then in the obvious way one associates to it the
etale site over S€t:

This correspondence extends to a functor from the category Ssch/S of schemes over
S to the 2-category GTop /Su of sites over Set.

If φ 6 Mor s(X, 7) and p 6 t = (9)"1, a), then α is determined as follows. For
V an open set in Sit we have

P~\V) = (VxX^X), φ~1 op~\v) = ((V χΥ)χφΧ^ Χ).

The isomorphism av: VxX —• (Vχ Υ) χ X is ((ρτν χ(φορτχ))χρτχ). From now

on we will be working over a field Κ, which we assume to be perfect. Given schemes
X and Υ over Κ, we let Mor / f(X i t, 76t) denote the category MorG T o p ,(S K) χ

(**..r«)·
A morphism 9> e MorA.(Xa, 7 a ) is said to be admissible if Τ (φ) takes closed

points of T(X) to closed points of T(Y). We let Mor^.(Za, Yit) denote the set of
isomorphism classes of admissible morphisms.

REMARK 1.1. This is a good definition of admissible morphisms only in the case
of schemes over a field. In general, it seems that one needs to require that Τ (φ)
satisfy the conditions in Lemma 1.2.13 of [4].

PROPOSITION 1.2. Let X and Υ be schemes over K, and let Υ be of finite type.
For any extension Ε of Κ (which one can assume is an algebraic field extension) one
has a functor

E: Μοτκ(Χέι, ΥΆ) -, Mor £ ((X £ ) a , (ΥΥΕ)έι)

where ΧΕ = Χ χκ Spec Ε (and similarly for YE). This functor is natural relative
to morphisms of Xix and Υέί and the following diagram is commutative for any



514 V. A. VOEVODSKIl

φ€Μοτκ(Χέχ,Υέί):

We,

I (1.2)

PROOF. Again we shall only give the construction, and only in the case when Ε
is finite over Κ. The general case reduces to this one, since the assumption that Υ
is of finite type means that

LCE,[L :K]<oo

in the appropriate category-theoretic sense.
Let φ = (φ~χ, a) e Μοτκ(Χέι, Υέχ). We define φΕ = (φΕ

χ, αΕ) as follows:
(a) Let V be the open set in (SpecA')6t corresponding to Spec £ —» Spec Κ. Then

(Χ

Ε)έι=Ρχ1(ν)έι and (YE)H=p;\V)6l. We set φ'1 = α~Χ ο φγ

χ .

(b) Given an open set U in Spec is, we must construct an isomorphism ( a £ ) [ / :

Ρχ1(ϋ) -> <pE

xpyl(U). It suffices to note that

j |

ρχ ({/) = px (UxKSpecE),
χ

<pE Py (U) = φ~ Py (U xK SpecE) χ ανΧΕ.

\We set (aE)v = aVxU χ (pr: Ρχ\υ) —> ΧΕ). The commutativity of (1.2) is
obvious. It is also simple to verify that this construction is unique for given X. and

PROPOSITION 1.3. Suppose that X and Υ are schemes over an algebraically closed
field Κ, Υ is of finite type, and φ = (φ~ , α) € MorA-(Xa, Y€t) is an admissible mor-
phism. Then for any open U in Υ and any closed point χ ζ. Τ(Χ), the map Τ{φν)

maps the fiber of φ~χ {U) over χ bijectively onto the fiber of U over Τ(φέχ)(χ).

PROOF, (a) Surjectivity. We let y denote Τ(φ)(χ). Let ζ be a point in T(U)
over y, and suppose that it does not lie in the image of Τ{φυ). Let Uz denote
the open subset of U obtained by removing all of the points in the fiber over y
except for z. Then Τ(φ~1(ΙΙΖ)) has no points over χ. But Uz is a covering
in some neighborhood of y; consequently, φ~ (Uz) must be a covering in some

neighborhood of T(tp)~l(y). We have obtained a contradiction.
(b) Injectivity. Again let ζ be a point of T(U) over y. We pass to Uz just as in

the proof of surjectivity. We consider pr t : Uz χ Uz —> Uz. Since Κ is algebraically
closed, Υ is of finite type, and ζ is closed, it follows that there is a unique point
(z, z) in the fiber of this projection over ζ . Thus, the diagonal is a covering in some
neighborhood of pr~'(z). The same must be the case for the diagonal <p~l(Uz) ->
φ~\υζ) χ φ~\ϋζ) and the projection pr,: <p~\Uz) χ <p~\Uz) -> φ~\ϋζ). This
implies that there is a unique point in the fiber over χ in <p~x(\Jz). Π

REMARK 1.2. From the proof it is clear that surjectivity holds for any field Κ and
point χ.
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§2. The topological meaning of points

Let X be a scheme over Κ. If Ε is an extension of Κ, then an JS'-point of X
is a morphism which completes the diagram

Spec/? >X

\ /
Spec A:

In topological language this means that the point corresponds to a local section of
the natural projection Χέχ —> (SpecA")a. The basic task in this section is to prove
the converse, i.e., that any local section which is an admissible morphism is induced
by some point of X.

It seems that one has a more general fact.

CONJECTURE. Let S be a normal Noetherian scheme, let X -^ S be a morphism
of finite type, and let U be etale over S. Then any section ρέι: Χέχ —> S6l over U
which is admissible {see Remark 1.1) is induced by some morphism of schemes.

PROPOSITION 2.1. Let Κ be an algebraically closed field, and let X be a scheme
of finite type over Κ. Then the natural map

is injective.

PROOF. The injectivity of the map is obvious, since over an algebraically closed

field a Appoint is determined by its image in T(X). To prove surjectivity we first

note that in our case the existence of the isomorphism <p~ —» φ2 for (φ^ , α,) ,

(φ2 , a2) e Μοτκ(Χέι, Y6t) implies the existence of an isomorphism (^j"1, Qj) —>

(φ^1, a2). In fact, let ξ: φ~[ —> φ2

ι be such an isomorphism, and let V be open
in (Spec K)6t. Consider the diagram

We must show that this diagram commutes. Here V is an etale scheme over Spec A",
i.e., it consists simply of several copies of Spec A". We may suppose that there are
η > 2 copies. The automorphism

αΙΧ

νο(ξ*ρ~χ)οαχν: V ^ V

commutes with the action of the group AutiF/SpecA") (since a{ ,. a2, and ξ are
functorial isomorphisms), and so it is the identity.

Now let (<p~l, a) e MorA.((SpecA")a, Χέχ) be an admissible morphism. We must
prove that there exists an element in Mor^SpecA", X), which induces φ . Obvi-
ously, for such an element we can only take the point corresponding to \m{T{q>)).
That this point really induces φ follows from Proposition 1.3. π

PROPOSITION 2.2. Let X be a scheme of finite type over Κ. Then the map

Mor^(SpecA", Χ) —> MorA-((SpecA') i t, Χέχ)

is bijective.
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PROOF. We let a denote this map. We shall construct a~l. Let

<peMorK((SvecK)et,X.t)

be an admissible morphism. Using Proposition 1.2, we construct

φ-g e Mor^((Spec Κ xK Spec~Κ)Ά, ~Xet).

We have the commutative diagram

(SpecK xKSpec~K)6t-
I

(Specif),, φ-

We set a~ (φ) = (the morphism corresponding to φ-^ ο Δέι by Proposition 2.2),
where Δ: Specif —> Specif xK SpecF is the diagonal. Obviously, a o a~x = 1. It
remains to verify that a is injective, i.e., if χ, χ : Specif —* X are geometric points
of X and xix = xtt, then χ = χ . Let L be a Galois extension of if which contains

the residue field Imx = Imx . Using the same construction as above for a~l, we
can lift χ and x' to points of XL, where the two liftings coincide as continuous
maps. The residue field of their image is L, and they are morphisms over L. Hence,
they coincide. D

COROLLARY 2.1. Let X and Υ be schemes of finite type over Κ, with X reduced.
Then the map

Μοτκ(Χ,Υ)^Μοτ°κ(Χέί,Υέι) (2.1)

is injective.

Let φ e MoTK(X6t, Υέί). We say that φ is realized by a morphism of schemes if
its isomorphism class lies in the image of the map (2.1).

PROPOSITION 2.3. Let X and Υ be schemes of finite type over Κ, with X reduced.
In order for an admissible morphism φ — (φ~ι, a) e Μοτκ(ΧέιΥέι) to be realized by
a morphism of schemes it is sufficient that, for any U which is open in Yet, there exist

a morphism <pv eMorK(<p~ (£/), U) which coincides with φυ on φ" (U)(K).

PROOF. We shall show that φ = φγ induces φ . Consider the diagram

97\U)

It is commutative, since it is commutative on geometric points and X is reduced.
Thus, there exist a morphism αυ: φ~ι(ϋ) —> φ~ι{ϋ), which completes the diagram.

We have obviously obtained a morphism α: φ~ι —> φ~ι . We show that it is an
isomorphism. We lift our diagram to a diagram over Κ . Clearly, φυ = (φν)^ and

φ = φ-g on the geometric points of q>~l(U) and X, respectively. From Proposition
1.3 we immediately conclude that av is an isomorphism. Consequently, so is αυ .
It remains to check that a is an isomorphism in GTop/(Specif)^ , and not only in
GTop. It is easy to see that this amounts to commutativity of the diagram
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Since all of the rows are isomorphisms over X, it is sufficient to verify that the
following diagram commutes:

Spec 2s

The composition of the lower arrows is simply the natural projection XE —> Specis.
Hence, we must show that φγ O Q £ is a morphism over 'SpecE. But this is the case

for the continuous map (φγ )6 t ο ( α £ ) έ ι (see the proof of Proposition 1.2), and hence

also for φγ ° αΕ .

PROPOSITION 2.4. Let X and Υ be schemes of finite type over K, with X reduced.
For an admissible φ e MorK(Xtx, Y€t), if there exist a morphism φΕ: ΧΕ —> YE which
coincides with φΕ on XE{K), then there exists φ: X —• Υ which coincides with φ
on X{K) (E is an extension of K).

PROOF. This follows from the fact that XE —> X is a strict epimorphism in the
category of schemes over Κ for any scheme of finite type X and any extension Ε .

PROPOSITION 2.5. Let X be a scheme of finite type over the field Κ, and let Ε be
an extension of Κ. Then the natural map

X{E) = Mor^(Spec£, X) - ^ ^ i x

is bijective.

PROOF. We already know injectivity. Suppose that φ £MorK((SpecE)it, Χέί) is
an admissible morphism. We consider its lifting (by Proposition 1.2):

Z) % T

(Specif 1 >XH

Since Spec Ε χκ Spec AT is a union of several copies of Spec Κ, φ-^ can be realized
by a morphism on geometric points. Hence, by Proposition 2.4, the same is true
for φ. It is obvious that this construction enables us to realize all of the <pv on
geometric points. It then follows, by Proposition 2.3, that φ can be realized by a
morphism of schemes. D

We shall later need one more construction, which gives a topological (or rather,
a homotopic) interpretation of the points. That is, for any geometrically connected
scheme X of finite type over Κ and any point χ e X{K) we shall construct a map

X(K) lim Hl(T
E,

where Γ £ denotes the Galois group Gal(E/E) for any field Ε. It will be shown
that these maps are natural relative to morphisms of etale sites of schemes. (For the
definition of the fundamental group of a scheme see, for example, [5].)

For the rest of this section X will denote a geometrically connected scheme of
finite type over Κ .
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PROPOSITION 2.6. The sequence ofmorphisms of schemes ! - » ! - » SpecK in-
duces an exact sequence of fundamental groups

\->πχ(Χ,χ)^πι{Χ,χ)^τκ^\. (2.2)

For the proof, see [5].

PROPOSITION 2.7. Suppose that X and Υ are geometrically connected, and φ e
ΜθΓΑ-(Χέι, Υέι) is an admissible morphism. Then one has a morphism of exact se-
quences

1

\

PROOF. It suffices to prove that, given a connected X, χ e X{K), and an ad-
missible φ ε Μοτκ(Χέχ, YH), one can define a homomorphism q>t: π,(Χ,χ) —>
7Tj(y, ?>(x)), and this correspondence is functorial.

By assumption, φ takes geometric points of X to geometric points of Υ; hence,
it is sufficient to prove that if U —> Υ is an etale covering, so is φ~ (U) —> X.
This follows from the following criterion [5]: an etale morphism U -> Υ is an etale
covering if and only if its fibers over all of the closed geometric points contains the
same number of elements. D

Now let χ € X{K) • This point determines a section xt: Γ^ —> π,(ΛΓ, χ) of the
sequence (2.2) (here χ is the geometric point corresponding to x ) .

If y € X{E), then this point gives a section of (2.2) over FE c TK, TE —>
πχ{Χ ,y). If we choose an isomorphism π,(Χ, χ) = πχ(Χ, y), we obtain a section

Γ £ —> π,(Χ, χ ) , and hence a cocycle in Cl(TE, π{(Χ, χ ) ) . (The action of Γ .̂ on
π, (Χ, χ ) , and hence also the action of Γ £ , are determined by the sequence (2.2) and
the section x t . ) It is easy to see that the nonuniqueness in the choice of isomorphism
does not affect the cohomology class of this cocycle. We have thereby obtained a map

These maps are clearly compatible with one another for different Ε, and they give
a map

ix: X(K) - lim H\YE,K10C, X)).

Ε

PROPOSITION 2.8. Suppose that X and U are geometrically connected schemes of
finite type over Κ, χ € Χ (Κ), and φ e MorK(Xet, Y6t) is an admissible morphism.
Then the following diagram commutes:

X(K) Ζ >Y(K)
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where the bottom map is induced by the homomorphism lpt.

PROOF. This is a direct consequence of the construction and Proposition 2.5. D
There are several interesting questions concerning the map ι. In many cases one

can prove that it is injective—for example, in the case of an arbitrary subvariety of
an abelian variety over a field of finite type Q. It seems to be that a more intriguing
question is the image of this map. The image will be computed below in one special
case. In the general case I think it is reasonable to conjecture that the image is
everywhere dense in the projective limit topology

[H\TK, πχ(Χ)) = lim H\TK, πχ(Χ)ΙΗ),

where [n{(X) : H] < oo for schemes X of type Κ(π, 1) over Q.

§3. The main theorem

In this section Κ denotes a field of finite type over Q.

THEOREM 3.1. Let X and Υ be schemes of finite type over K, where X is reduced
and nonsingular in codimension 1. Then the map

is bijective.

COROLLARY 3.1. Let X and Υ be normal schemes of finite type over K. If there
exists a homeomorphism Χέχ —• Ytt over (SpecK)it, then X = Υ.

REMARK 3.1. If one does not impose any restrictions on the singularity of X,
then the theorem is false. For example, the normalization of the cubic curve with
cusp

is a homeomorphism, but the inverse homeomorphism is obviously not realized by
a morphism.

On the other hand, it will be clear fromjhe proof that the theorem remains true for
a scheme X with the property that Pic(X) does not contain subgroups isomorphic
to Ga ; for example, it is true for stable curves.

The plan of proof is as follows. In the first step we show that it suffices to consider
affine, geometrically connected X with a nonempty set X{K) of ΑΓ-rational points,
and to prove that, for any admissible φ in Mor^A^, (A^ - {0})έ(), there exists a

morphism I - » A [ - {0} which coincides with φ on X(K). We then construct
maps of

Μο4(Χ έ ι , (A^ - {0})έι) and <?*(X) = lim <f*(X)/0*(X)n

to Hl(X, Z(l)) = lim HX(X, μη), and we show that it suffices for the image of

X^AJj. - {0})έι to line in the image of d?*(X). Finally, we show that the
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absence of infinitely divisible elements in Pic(X)r* for affine schemes nonsingular
in codimension 1 implies that the map <f*(X) —> Hl{X, Z(l)) r * is surjective for
such schemes.

PROPOSITION 3.1. Let X and Υ be schemes of finite type over K, with X reduced.
In order for the map

to be surjective {and hence bijective) it is sufficient that, given any affine, geometrically
connected scheme U which is etale over X and has nonempty U(E) for some finite
Ε over Κ, and given an admissible φ e Mor£.((f/£)a, (A .̂ - {0})έι, there exists a
morphism φ: UE -> A^ - {0} which coincides with φ on UE(K).

PROOF. By Proposition 2.3, it suffices to prove that, for any admissible φ and

etale U over Υ, the map ψυ: (φ~\υ))έι -> ϋέχ can be realized by a morphism of

schemes on <p~l(U)(K). Both sides of the problem are clearly local, and we may
suppose that we are considering maps φ: Vtx^> Y&, where V and Υ are affine, and
V is geometrically connected and affine over X. Proposition 2.4 enables one to pass
to finite Ε over Κ for which V(E)^0. Let VE = Spec A and YE = Spec B.

We construct a map φ*: Β -*• A. If (ξ: ΥΕ -> A^) € Β , then let VQ be open

in T(VE), with Vo = T{VE) -{ξ ο Τ{φΕ))~ι, and let F, be open in T(VE), with
V\ = T(VE^ ~ (£ ° Τ(<ΡΕ))~1 • T h e n Vo u V\ = VE ' a n d > b y o u r assumption, ξ ο φΕ

is realized by moφhisms of schemes on V0(K) and V{(K), where these moφhisms

obviously coincide on Vo Π V{. Thus, there exists a morphism ψ.: Κ£-»Α which

coincides with ξ ο φΕ on VE{K).
We set φ*{ξ) = ψξ. It is trivial to check that this is a homomorphism. Let

<pE:VE^YE be the corresponding morphism of schemes. It is again easy to verify
that this morphism coincides with φΕ on VE{K).

We introduce the notation

where μη is the sheaf of «th roots of 1 in (?*, and the limit is taken over the
projective system (/y f m n n ) , fmnn: μΜη ->/ιη is raising to the mXh. power.

If Κ is an algebraically closed field (of course, char AT = 0), then μη is a constant
sheaf:

μη{ϋ) = {the set vT in K}.

In this case we have a canonical isomorphism

Mn(U) = π,(Α^ - {0} , 1)/π,(Α^ - {0}, 1)" ,

and hence
1 ( X , x ) , 7 t 1 ( A 1 - { 0 } , 1)) (3.1)

for geometrically connected X.
From now on X will denote an affine, geometrically connected scheme of finite

type over Κ, which is reduced and for which X(K) is nonempty.
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The identification (3.1) obviously enables us to construct a map

(where we use the fact, from §2.7, that π1 is natural).

Γ^ acts on the group on the right (for example, using the identification (3.1)),

and clearly Im χ1ορ c Hl (X, Z( 1 )) r * . _

We now consider the Kummer sequence for X

(see, for example, [5]). Passing to the limit over η , we obtain

0*(X) ± H\X, Z(l)) - f (Pic(T)) -> 1, ( *

where the term on the right is the Tate module of Pic(X).

PROPOSITION 3.2. The diagram

\
<9*(X) H\X,Z{\))

commutes.

PROOF. This can be verified directly by comparing the maps χη and the identifi-
cation (3.1.). D

PROPOSITION 3.3. Let x e X{K). Then each class ξ € //'(Χ, Z(l)) r * determines
a map

φξ: Χ(Κ) -f lim lim E*/{E*)n. (3.2)
EDK η

/: Z-> lim lim E*/{E*f

is the natural map, then for any φ e &*OV(X) far which φ(χ) = 1 one has

ί(φ(γ) = φ Q7), y e X(K). (3.3)

PROOF. By (3.1), the class ξ corresponds to a homomorphism πχ{Χ,~x) —<•

7ΐι{Α.γ - {0} , 1) which is compatible with the action of Γ .̂ on these groups (since

ξ e Hl(X, Z)( l)) r *). The homomorphism determines a map

The group on the right is lim K*/{K*)n . If we take the composite with the map

ιχ:Χ{Κ)^Η\Υκ,πγ(Χ,χ)),

we obtain φξ K: X{K) -* lim K*/{K*)n . Finally, passing to the limit over finite
extensions of AT, we obtain φ.. Relation (3.3) follows because the maps ix are
natural (Proposition 2.8). Π
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PROPOSITION 3.4. //ξ e H](X, Z(l)) r * lies in the image of 0* (X) and Ιπιφξ c

Iirw, then { e Im<?·(*).

PROOF. We let &*{X) denote the subgroup of <9*(X) consisting of maps which
take the value 1 at χ. Obviously, I m ^ * = lm(f* in Hl(X, Z(l)). The group
&*{X) is a finitely generated free abelian group. Let fx, ... , fn be its generators.
Then <f*(X) can be identified with the free profinite abelian group generated by
/ , , . . . , / „ . The "pairing" (f*(X) χ X{K) -* Κ* extends to a "pairing"

tft(X) χ X(K) -> lim lim E*/(E*)n.

Thus, we must prove that, if φ = ff1 • • • fn", ε; e Z, has the property that φ(χ) e
i(K) for all χ e X(K), then £,. e Z . (The fact that here we have φ 6 \m&*{X),
and not only <?*(X), follows from the Γ^-invariance of its cohomology class.)

We need the following elementary fact.

LEMMA 3.1. Let ε e Ζ. If ηε e Ζ for some η € Ζ, η Φ0, then ε e Z.

The proof is obvious. G
Let Ε be a finite extension of Κ, and let κ: Ε* —» Ζ be a valuation. The

valuation extends to a homomorphism k: lim E*/(£*)" —> Ζ . We may assume that
£ is sufficiently large. Let x,, ... , xn € X(E). We consider the system of equations

In trying to solve this system for the ε ;, we obtain

where Δ = det(/c(/J(x.))), and pi is some polynomial. By assumption, the right side
and Δ are in Ζ; hence, using the lemma, we see that, if Δ Φ Ο, then ε. e Ζ. It
remains to show that κ , Ε, and xl, ... , xn can be chosen in such a way that Δ Φ Ο.
We use induction on η . If η = 1, then Δ = k(fx (x,)). Since /, ̂  const, it follows
that /j is open as a map. Consequently, there exists xl such that K(/J(X,)) ^ 0.
This completes the case η = 1.

Suppose that our claim is proved for η - 1 . We consider the matrix

'*(/,(*,))···*(/„(*,))•

,))•··*(-/>„)).

We expand Δ in minors:
Δ = y~]±K (./]•(;

where Λ/. is the determinant of the matrix obtained by removing the top row and
the z'th column. By the induction assumption, there exist x2, ... , xn e X{E) such
that Mi φ 0 for some ζ. Consider the function

/
/-±M, r±M

= /i ' " • / „ "·

Since the ft are "linearly independent" in /f*{X) and Mt Φ 0, it follows that
f Φ const. Hence, there exists a point Xj such that K{fl{xi)) Φ 0; then Δ ̂  0.

PROOF OF THE THEOREM. By Proposition 3.1, it suffices to prove that, given a
scheme X which satisfies all of our conditions and is nonsingular in codimension 1,
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for every φ e (f*o (X) there exists φ which coincides with φ on X(K). We may
obviously assume that φ(χ) = 1 (χ € Χ (Κ)). Then by Propositions 3.3 and 3.4 it is
sufficient that we have Xtop(<p) £lrax (note that i: K* -> lim lim E*/(E*)n is in-
jective in the present situation). The theorem now follows from the next proposition
and the exact sequence (*). G

PROPOSITION 3.5. Let X be an affine reduced scheme which is nonsingular in codi-
mension 1. Then

f(Pic(X)fK = 0. (3.4)

PROOF. Since f(Pic(X)) = lim Pic (X), where Pic (X) is the group of points
«—— η η

of order η on Pic(X), it follows that (3.4) says simply that there are no infinitely
divisible elements in Pic(X) K . But under our assumptions this group is finitely
generated (by the Mordell-Weil theorem and an obvious argument about passing
from a projective scheme to an affine scheme). D
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