Bloch-Kato Conjecture

Vladimir Voevodsky

Started February 08, 2010

Homology: Let \(f : A \to B, \ g : B \to C \) be homomorphisms of abelian groups such that for all \(a \in A \) one has \(g(f(a)) = 0 \). Define \(H(f, g) \) as the abelian group with generators \([b]\) for each \(b \in B \) such that \(g(b) = 0 \) and relations \([b_1] + [b_2] = [b_1 + b_2] \) and \([b] + [f(a)] = [b]\).

Group cohomology: Let \(G \) be a group. We write the operation in \(G \) as \((g_1, g_2) \mapsto g_1 g_2 \) and the unit of \(G \) as \(e \). A module over \(G \) is an abelian group \(M \) together with a map \(m s : G \times M \to M \) such that for all \(g_1, g_2, g \in G \) and \(m, m_1, m_2 \in M \) one has \(m s(g_1 g_2, m) = m s(g_1, m s(g_2, m)) \), \(m s(e, m) = m \), \(m s(g, m_1 + m_2) = m s(g, m_1) + m s(g, m_2) \) and \(m s(g, 0) = 0 \).

For a \(G \)-module \(M \) and a natural number \(n \) define \(C^n(G, M) \) as the set of maps \(G^n \to M \) where \(G^0 = pt \) and \(G^{n+1} = G^n \times G \). This set has a structure of a abelian group given by \((\phi + \psi)(x) = \phi(x) + \psi(x)\).

Define for each natural number \(n \geq 0 \) a map \(d^n : C^n(G, M) \to C^{n+1}(G, M) \) inductively as follows.

First define maps \(d^n_0 : C^n(G, M) \to C^{n+1}(G, M) \) for \(i = 0, \ldots, n + 1 \):

- \(d^n_0 \) is given by \(d^n_0(\phi)(g_1, \ldots, g_{n+1}) = m s(g_1, \phi(g_2, \ldots, g_{n+1})) \),
- for \(i = 1, \ldots, n \), \(d^n_i \) is given by \(d^n_i(\phi)(g_1, \ldots, g_{n+1}) = \phi(g_1, \ldots, g_i g_{i+1}, \ldots, g_{n+1}) \),
- \(d^n_{n+1} \) is given by \(d^n_{n+1}(\phi)(g_1, \ldots, g_{n+1}) = \phi(g_1, \ldots, g_n) \).

Now set for \(g = (g_1, \ldots, g_{n+1}) \):

\[
d^n(\phi)(g) = d^n_0(\phi)(g) + \sum_{i=1}^{n} (-1)^i d^n_i(\phi)(g) + (-1)^{n+1} d^n_{n+1}(\phi)(g).
\]

Lemma 1 For any \(G, M, n \) and \(\phi \in C^n(G, M) \) one has \(d^{n+1}(d^n(\phi)) = 0 \).

Because of this lemma the construction of \(H(d^n, d^{n+1}) \) is applicable and one defines:

\[
H^0(G, M) = H(0, d^0)
\]

\[
H^{n+1}(G, M) = H(d^n, d^{n+1})
\]

where \(0 \) is the unique homomorphism \(0 \to C^0(G, M) \).

Tensor products: Let \(A, B \) be abelian groups. We write the operations in \(A \) and \(B \) as + and units as 0.

The tensor product \(A \otimes B \) is the abelian group given by generators \(a \otimes b \) where \(a \in A \) and \(b \in B \) and relations \((a + a') \otimes b = a \otimes b + a' \otimes b \), \(a \otimes (b + b') = a \otimes b + a \otimes b' \) and \(0 \otimes b = a \otimes 0 = 0 \).

Given two modules \(M \) and \(N \) over \(G \) the tensor product \(M \otimes N \) of the underlying abelian groups has a module structure given by \(m s(g, a \otimes b) = m s(g, a) \otimes m s(g, b) \).

For a natural number \(n \) define inductively \(M^{\otimes n} \) setting \(M^{\otimes 0} = Z \) where \(Z \) is considered with the trivial action of \(G \) and \(M^{\otimes (n+1)} = M^{\otimes n} \otimes M \).
Cup product in group cohomology: Let G be a group and M, N be two G-modules. For any two natural numbers n, m define a map

$$sm_{n,m} : C^n(G, M) \times C^m(G, N) \to C^{n+m}(G, M \otimes N)$$

setting

$$sm_{n,m}(\phi, \psi)(g_1, \ldots, g_{n+m}) = (-1)^{n+m}(\phi(g_1, \ldots, g_n) \otimes ms(g_1 \ldots g_n, \psi(g_{n+1}, \ldots, g_{n+m})))$$

Lemma 2 The map $sm_{n,m}$ respects the relations defining \otimes and therefore defines a homomorphism of abelian groups

$$\sim_{n,m} : C^n(G, M) \otimes C^m(G, N) \to C^{n+m}(G, M \otimes N)$$

Lemma 3 For any $a \in C^n(G, M)$, $a' \in C^m(G, N)$ one has

$$d^{n+m}(a \sim_{n,m} a') = d^n(a) \sim_{n+1,m} a' + (-1)^n a \sim_{n,m+1} d^m(a')$$

Lemma 4 For any $a \in C^n(G, M)$, $a' \in C^m(G, N)$ such that $d^n(a) = 0$ and $d^m(a') = 0$ one has $d^{n+m}(a \otimes a') = 0$.

Lemma 5 For any $b \in C^n(G, M)$, $a' \in C^m(G, N)$ such that $d^m(a') = 0$ one has

$$d^n(b) \sim_{n+1,m} a' = d^{n+m}(b \sim_{n,m} a')$$

Lemma 6 For any $a \in C^n(G, M)$ such that $d^n(a) = 0$ and $b' \in C^m(G, N)$ one has

$$a \sim_{n,m+1} d^m(b') = (-1)^n d^{n+m}(a \sim_{n,m} b')$$

From these lemmas one deduces easily that the homomorphism $\sim_{n,m}$ defines a homomorphism

$$H^n(G, M) \otimes H^m(G, N) \to H^{n+m}(G, M \otimes N)$$

which we denote by the same symbol $\sim_{n,m}$.

Fields: A field k is a commutative, associative ring with a unit 1_k such that for any $a \in k$ satisfying $a \neq 0$ there exists $b \in k$ such that $ab = 1_k$.

The set of non-zero elements of a field is an abelian group with respect to multiplication and we denote it by k^*.

If $n \in \mathbb{N}$ is a natural number such that $n \cdot 1_k \neq 0$ then n is said to be invertible in k.

For a natural number n we denote by $\mu_n(k)$ the subset of k^* which consists of elements a such that $a^n = 1_k$. This is easily seen to be a subgroup of k^* and in particular an abelian group.

A field is called algebraically closed if for any non-constant polynomial $f(x) \in k[x]$ over k there exists $a \in k$ such that $f(a) = 0$.
Bloch-Kato Conjecture

Let \bar{k} be an algebraically closed field. Let k be a subfield of \bar{k} such that \bar{k} is algebraic over k i.e. such that every element of \bar{k} is a root of non-constant polynomial with coefficients in k. Let q be a natural number which is invertible in k.

Let $Gal(\bar{k}/k)$ be the group of automorphisms of \bar{k} which act trivially on k. This group acts in particular on $\mu_q(\bar{k})$ in such a way that $\mu_q(\bar{k})$ becomes a $Gal(\bar{k}/k)$-module.

For each natural number $n \geq 1$ define the homomorphism of abelian groups

$$bk_n : H^1(Gal(\bar{k}/k), \mu_q(\bar{k}))^{\otimes n} \to H^n(Gal(\bar{k}/k), (\mu_q(\bar{k}))^{\otimes n})$$

inductively by the rule $bk_1(x) = x$ and $bk_{n+1}(x_n \otimes x) = bk_n(x_n) \cdot x_{n,1}$.

Theorem 7 (“Bloch-Kato Conjecture”) For any \bar{k}, k, q as above and any natural number $n \geq 1$, the map bk_n is surjective.