Notes to the paper "Combinatorial structure of type dependency" by Richard Garner.

by Vladimir Voevodsky, started Jan. 18, 2015

On Definition 2.

Let F_W be the functor $X \mapsto \coprod_{w \in W} \coprod_{n \in \mathbb{N}} X^n$. Then for a set V, the set W^* defined in Definition 2 (relative to the set of names of variables V) is the value of the free monad M generated by the functor $X \mapsto (F_W X) \amalg V$ on the , or equivalently, the value of the free monad generated by F_W on V.

A missing Lemma 2'

Let Λ be a collection of judgements over an alphabet W and $D \subset \{w, p, s\}$ be a decent subset. Then there exists the smallest collection of judgements $\Lambda^{*,D}$ over the same alphabet such that:

- 1. $\Lambda^{*,D}$ is deductively closed relative to D,
- 2. for any judgement $J \in \Lambda$, one has $J \in \Lambda^{*,D}$ if for all $J' \in \partial(J)$ one has $J' \in \Lambda^{*,D}$.

Proof: There exists a collection of judgements that satisfies the conditions 1,2 of the lemma. Indeed, the collection of all judgements over W satisfies these two conditions.

The intersection of a family of subsets each of which satisfy the condition 1 again satisfies the condition 1 - the intersection of a family of subsets deductively closed relative to any D is deductively closed relative to the same D.

The intersection of a family of subsets each of which satisfy the condition 1 again satisfies the condition 1 the implication is easy to check.

Missing Definition 2"

Let Λ be a collection of judgements over an alphabet. The smallest collection $\Lambda^{*,D}$ defined by Lemma 2' is called the collection of derived judgements of Λ relative to D.

Missing example:

1. Suppose that Λ does not contain elements of the form $\vdash T type$. Then $\Lambda^{*,D}$ is empty for any D.

Indeed, judgements of this form are the only ones with the empty $\partial(J)$ and if all $\partial(J)$ for $J \in \Lambda$ are non-empty then the empty collection satisfies the conditions 1,2 of lemma 2'.

Missing Lemma 2"'

Let W, D and Λ be as above and suppose that $\Lambda \subset \Lambda^{*,D}$ then $\Lambda^{*,D}$ is the smallest collection that is deductively closed relative to D and contains $\Lambda \cup \partial(\Lambda)$.

Proof: If $\Lambda \subset \Lambda^{*,D}$ then $\Lambda^{*,D}$ is also the smallest class that satisfies the conditions of 1,2 of Lemma 2' together with the condition that the class contains Λ . This triple of conditions is equivalent to the triple of conditions that the class is D-closed, contains Λ and contains $\partial(J)$ for each $J \in \Lambda$.