A note on the $(\infty, 1)$-categories in the UF

Started January, 2017

1 Thoughts on ($\infty, 1$)-categories, January 21, 2017

1. the type M of $(\infty, 1)$-categories,
2. a function $O b: M \rightarrow U U$ that we use as a coercion,
3. for any $X: M, x 1, x 2: X, \operatorname{Mor}(x 1, x 2): U U$, units $1_{x}: \operatorname{Mor}(x, x)$, compositions $\operatorname{Mor}(x 1, x 2) \rightarrow \operatorname{Mor}(x 2, x 3) \rightarrow \operatorname{Mor}(x 1, x 3)$,
4. a function $G r: U U \rightarrow M$ of h-level 1,
5. $O b(G r(T))=T$,
6. the function idtomor : paths $T t 1 t 2 \rightarrow \operatorname{Mor}_{G r(T)}(t 1, t 2)$ defined by 1_{t} is an equivalence,
7. $M 0: M$ - the $(\infty, 1)$-category of types,
8. $O b(M 0)=U U$,
9. for $T 1, T 2: U U, \operatorname{Mor}_{M 0}(T 1, T 2)=(T 1 \rightarrow T 2)$, 1-units are the identity functions and 1-composition is the usual composition,

Do we have a solution to the problem of constructing such a collection of data?
The first attempt, to take $M=U U$ does not work because of the very last condition.
The second attempt is to take M to be the type of precategory_data. That is an element of M is a type $O b(C)$, the types of morphisms, the identities and the compositions. The function $G r$ is easy to define. The element $M 0$ is defined as given in the conditions. This seems to satisfy all requirements. Therefore, more requirements are needed.

Let us add the $(\infty, 1)$-category of $(\infty, 1)$-categories.

1. $M 1: M$ - the $(\infty, 1)$-category of $(\infty, 1)$-categories,
2. $O b(M 1)=M$,
3. for $C 1, C 2: M$, functor_coherence : functor_data $C 1 C 2 \rightarrow U U$,
4. for $C 1, C 2: M, \operatorname{Mor}_{M 1}(C 1, C 2)=$ total2 functor_coherence,
5. for C : M, id_functor_coherence : functor_coherence id_functor_data,
6. for $C 1, C 2, C 3$, functor_comp_coherence : forall $(F 1:$ functor $C 1 C 2)(F 2:$ functor $C 2 C 3)$, functor
7. for $C 1, C 2, C 3, F 1$: functor $C 1 C 2, F 2$: functor $C 2 C 3$, functor_comp $F 1 F 2=$ totla 2 (functor_comp_coherence F1F2).

This is still possible to solve with $M=$ precategory_data. Let us add representable functors.

1. for any $C: M, X: O b(C)$ an element $Y o(X): M o r_{M 1}(C, M 0)$,
2. for any C the function $Y o: O b(C) \rightarrow \operatorname{Mor}_{M 1}(C, M 0)$ is of h-level 1 .

The last condition probably does not hold for $M=$ precategory_data.

1. cat $1: M$ - the $(\infty, 1)$-category of 1-categories,
2. $\operatorname{Supp}(\text { cat } 1)_{0}=$ Precategories,
3. $\operatorname{Supp}(\text { cat } 1)_{1}(X, Y)=$ Functors $X Y$,
4. $\operatorname{Supp}(\text { cat } 1)_{2}(F, G)=$ FunctorMorphismsFG,
5. $\operatorname{dim}(\operatorname{Supp}(\operatorname{cat} 1))=2$,
6. $M 1: M$ - the $(\infty, 1)$-category of $(\infty, 1)$-categories,
7. $\operatorname{Supp}(M 1)_{0}=M$,
