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Abstract

This is the third paper in a series started in [?]. In it we construct a C-system
CC(C, p) starting from a category C together with a morphism p : Ũ → U , a choice of
pull-back squares based on p for all morphisms to U and a choice of a final object of
C. Such a quadruple is called a universe category. We then define universe category
functors and construct homomorphisms of C-systems CC(C, p) defined by universe
category functors. As a corollary of this construction and its properties we show that
the C-systems corresponding to different choices of pull-backs and final objects are
constructively isomorphic.

1 Introduction

The concept of a C-system in its present form was introduced in [?]. The type of the
C-systems is constructively equivalent to the type of contextual categories defined by Cart-
mell in [?] and [?] but the definition of a C-system is slightly different from the Cartmell’s
foundational definition.

In [?] we constructed for any pair (R,LM) where R is a monad on Sets and LM a left R-
module with values in Sets a C-system CC(R,LM). In the particular case of pairs (R,LM)
corresponding to signatures as in [?, p.228] or to nominal signatures the regular sub-quotients
of CC(R,LM) are the C-systems corresponding to dependent type theories of the Martin-Lof
genus.

In this paper we describe another construction that generates C-systems. This time the
input data is a quadruple that consists of a category C, a morphism p : Ũ → U in this
category, a choice of pull-back squares based on p for all morphisms to U and a choice of a
final object in C. Such a quadruple is called a universe category. For any universe category
we construct a C-system that we denote by CC(C, p).
We then define the notion of a universe category functor and construct homomorphisms of
C-systems of the form CC(C, p) corresponding to universe category functors. For universe
category functors satisfying certain conditions these homomorphisms are isomorphisms. In
particular, any equivalence F : C → C ′ together with an isomorphism F (p) ∼= p′ (in the
category of morphsims) defines a universe category functor whose associated homomorphism
of C-systems is an isomorphism.
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To the best of our knowledge it is the only known construction of a C-system from a category
level data that transforms equivalences into isomorphisms. Because of this fact we find it
important to present both the construction of the C-system and the construction of the
homomorphisms defined by universe functors in detail.

To avoid the abuse of language inherent in the use of the Theorem-Proof style of pre-
senting mathematics when dealing with constructions we use the pair of names Problem-
Construction for the specification of the goal of a construction and the description of the
particular solution.

In the case of a Theorem-Proof pair one usually refers (by name or number) to the statement
when using both the statement and the proof. This is acceptable in the case of theorems
because the future use of their proofs is such that only the fact that there is a proof but not
the particulars of the proof matter.

In the case of a Problem-Construction pair the content of the construction often matters in
the future use. Because of this we often have to refer to the construction and not to the
problem and we assign in this paper numbers both to Problems and to the Constructions.

Following the approach used in [?] we write the composition of morphisms in categories in
the diagrammatic order, i.e., for f : X → Y and g : Y → Z their composition is written
as f ◦ g. This makes it much easier to translate between diagrams and equations involving
morphisms.

The methods of this paper are fully constructive.

We use the word “category” to refer to that which in the univalent formalization may be
replaced by the concept of a precategory (see [?]). However, due to the invariance of our
constructions under equivalences all of them should factor through the Rezk completion. This
invariance also makes the use of the word “category” consistent with the practice suggested
in the introduction to [?].

This paper is based almost entirely on the material of [?]. I am grateful to The Centre for
Quantum Mathematics and Computation (QMAC) and the Mathematical Institute of the
University of Oxford for their hospitality during my work on the previous version of the
paper and to the Department of Computer Science and Engineering of the University of
Gothenburg and Chalmers University of Technology for its the hospitality during my work
on the present version.

2 The canonical presheaf of C-systems on a split type category

Let us recall the following definition (cf. [?], [?, Def. 2.2.1]).

Definition 2.1 [2015.07.09.def1] A type (pre)category is a collection of data of the form

1. A (pre)category C,

2. For each X ∈ C a collection of objects Ty(X),
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3. For each X ∈ C a map Ty(X)→ C/X that we will denote as

T 7→ (pX,T : cX(T )→ X)

We will often write c(T ) instead of cX(T ).

4. For each f : X ′ → X in C a map f ∗ : Ty(X) → Ty(X ′) and for each T ∈ Ty(X) a
morphism Q(f, T ) : c(f ∗(T ))→ c(T ) such that the square

[2015.07.09.eq7]

c(f ∗(T ))
Q(f,T )−−−−→ c(T )

pX′,f∗(T )

y ypX,T

X ′
f ′−−−→ X

(1)

is a pull-back square.

A type category is called split if the following conditions hold:

1. for all X and T ∈ Ty(X) one has Id∗X(T ) = T ,

2. for all f ′ : X ′′ → X ′, f : X ′ → X and T ∈ Ty(X) one has (f ′)∗(f ∗(T )) = (f ′ ◦ f)∗(T ),

3. for all X and T ∈ Ty(X) one has Q(IdX , T ) = Idc(T ),

4. for all f ′ : X ′′ → X ′, f : X ′ → X and T ∈ Ty(X) one has

(f ′)∗(f ∗(T )) = (f ′ ◦ f)∗(T )

and
Q(f ′, f ∗(T )) ◦Q(f, T ) = Q(f ′ ◦ f, T )

5. (*) for all X, Ty(X) is a set.

Note that the last condition is relevant only in the foundations where not all collections of
objects are sets.

If C is a type (pre)category we will denote by the same letter its underlying category.

Remark 2.2 [2015.07.09.rem2] For any type category C and X ∈ C define a family
Fm(X) with the base Ty(X) and the fiber over each T ∈ Ty(T ) being the set of sec-
tions of pX,T , i.e., the morphisms s : X → cX(T ) such that s ◦ pX,T = IdX . If C is split them
Fm is a contravariant functor from C to the category of families of sets and the collection
of data formed by C, Fm and the comprehension structure is a category with families as
defined by Dybjer (see [?]). If one considers type categories and categories with families as
essentially algebraic structures then this construction forms a part of a constructive equiv-
alence from the category of split type categories to the category of CwF’s. In the univalent
foundations this construction forms a part of a constructive equivalence from the type of
split type categories to the type of CwF’s, see [?].
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Let C be a type category and X ∈ C. Define by induction on n pairs (Obn(X), intn,X) where
Obn(X) are collections of objects and intn,X : Obn(X)→ Ob(C) are functions, as follows:

1. Ob0(X) = unit where unit is the distinguished set with only one point tt and int0,X
maps the whole of Ob0(X) to X.

2. Obn+1(X) = qA∈ObnTy(intn,X(A)) and intn+1,X(A, T ) = cint(A)(T ).

In what follows we will write intX or even int instead of intn,X since both n and X can
usually be inferred.

Define for each n the function ftn+1 : Obn+1(X)→ Obn(X) by the formula ftn+1(A, T ) = A
and define ft0 as the identity function of Ob0.

For each B = (ft(B), T ) ∈ Obn+1(X) define pB : int(B) → int(ft(B)) as pint(ft(B)),T . For
B ∈ Ob0 define pB as Idint(B).

For each A ∈ Obm(X), B = (ft(B), T ) ∈ Obn+1(X) and f : int(A) → int(ft(B)) define
f ∗(B) ∈ Obm+1(X) as

f ∗(B) = (A, f ∗(T ))

Assume now that C is split. For each A ∈ Obm(X), B = (ft(B), T ) ∈ Obn+1(X) and
f : int(A)→ int(ft(B)) define q(f,B) : int(f ∗(B))→ int(B) as

q(f,B) = Q(f, T )

Problem 2.3 [2014.09.18.prob1] Let C be a split type category as above and X ∈ C. To
define a C-system CCC(X).

Construction 2.4 [2014.09.18.constr1]We set

Ob(CCC(X)) = qn≥0Obn(X)

whereObn(X) are the sets introduced above. For Γ = (n,A) and Γ′ = (n′, A′) inOb(CCC(X))
we define

HomCCC(X)(Γ,Γ
′) = HomC(intn,X(A), intn′,X(A′))

The identity morphisms and the composition of morphisms are defined as in C. The proofs
of the axioms of a category are straightforward. The function ft : Ob(CC) → Ob(CC) is
defined as the sum of functions ftn defined above. The canonical morphisms p(n,A) are defined
as pA where pA where defined above. Similarly one defines the morphisms q(f, (n+ 1, B)) as
the morphisms q(f,B).

The conditions (1)-(4) that define split type categories show that the structure so defined
satisfied the axioms of a C0-system as defined in [?, Definition 2.1].
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The canonical squares of CCC(X) are of the form

[2015.07.09.eq3]

int(f ∗(B))
q(f,B)−−−→ int(B)

pf∗(B)

y ypB
int(A)

f−−−→ int(ft(B))

(2)

Unfolding the definitions we see that these are particular cases of squares of the form (1).
In particular they are pull-back squares in C.
Let intX be the sum of the functions intn,X . Together with the identity maps on the sets
of morphisms between two objects it defines a full embedding of the category underlying
CCC(X) to C/X. Since the squares (2) are pull-back squares in C they are also pull-back
squares in C/X and, being pull-back squares in the image of a full embedding, are also pull-
back squares in the source of the embedding, i.e., in CCC(X). In view of [?, Proposition 2.4]
this implies that the C0-system CCC(X) has a unique structure of a C-system.

Remark 2.5 The image of intX on objects consists of those objects over X for which the
morphism to X can be represented as a composition of morphisms of the form pX,T . Note
that intX need not be an injection on the sets of objects. For example, if C is type category
whose underlying category is the one point category with Ob(C) = unit and Ty is the one
point presheaf with Ty(unit) = unit then ObC(unit) will be isomorphic to the set of natural
numbers.

Remark 2.6 [2015.07.09.rem3] Recall that for a C-system CC we let Obn(CC) denote the
subset in Ob(CC) that consists of objects of length n. Note that Obn(CCC(X)) 6= Obn(X).
Indeed, the elements of the first set are pairs of the form (n,A) where A is an element of the
second set. This difference is the reason for some extra notation that we have to use below.

For n ≥ m let ftmn,X : Obn(X)→ Obn−m(X) be the composition ftn ◦ . . . ◦ ftn−m+1. We will
usually write these functions simply as ftm. For A ∈ Obn(X) and A′ ∈ Obn−m(X) such that
A′ = ftm(A) we will write

p(A,A′) : int(A)→ int(A′)

for the composition of m canonical projections pA ◦ . . . ◦ pftm−1(A). When A ∈ Obn(X) and
A′ ∈ Obn−m(X) are such that ftm(A) = A′ we will say that A is over A′. The morphisms
p(A,A′) are defined for all pairs A, A′ such that A is over A′. In particular, any A is over
tt ∈ unit = Ob0(X) so that the morphism

p(A, tt) : int(A)→ X

is defined.

Let us now construct an extension of the function X 7→ CCC(X) from C to the type of
C-systems to a presheaf of C-systems on C.
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For f : X ′ → X in C define by induction on n pairs (f#,n, Qn(f,−)) where f#,n are functions
f#,n : Obn(X)→ Obn(X ′) and Qn(f,−) are families of morphisms of the form

Qn(f, A) : intX′(f
#,n(A))→ intX(A)

given for all A ∈ Obn(X):

1. f#,0 is the only map from unit to unit and Q0(f, tt) = f ,

2. for A = (ft(A), T ) ∈ Obn+1(X) we set

f#,n+1(ft(A), T ) = (f#,n(ft(A)), Qn(f, ft(A))∗(T ))

and
Qn+1(f, (ft(A), T )) = Q(Qn(f, ft(A)), T )

In what follows we will omit the index n and write Q(f, A) instead of Qn(f, A) and f#(A)
instead of f#,n(A).

Note that by construction, for any A ∈ Obn+1(X) we have a square

intX′(f
#(A))

Q(f,A)−−−−→ intX(A)

p
f#(A)

y ypA
intX′(ft(f

#(A)))
Q(f,ft(A))−−−−−−→ int(ft(A))

which is of the form (1) but not necessarily of the form (2).

Lemma 2.7 [2015.07.09.l9] The functions f#,n commute with the functions ft i.e. for
A ∈ Obn(X) one has

ft(f#,n(A)) = f#,n(ft(A))

Proof: It is immediate from the construction.

Lemma 2.8 [2015.07.09.l8] Let A ∈ Obn(X), A′ ∈ Obn−m(X) be such that A is over A′.
Let f : X ′ → X be a morphism. Then f#(A) is over f#(A′) and the square

[2015.07.09.eq8]

intX′(f
#(A))

Q(f,A)−−−−→ intX(A)

p(f#(A),f#(A′))

y yp(A,A′)
intX(f#(A′))

Q(f,A′)−−−−→ intX(A′)

(3)

is a pull-back square.
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Proof: The proof is by induction on m using the fact that the square (3) is the vertical
composition of m squares of the form (1) and that such squares are pull-back squares.

Let Ai ∈ Obmi
(X), i = 1, 2, a : int(A1) → int(A2) a morphism over X and f : X ′ → X a

morphism in C. By Lemma 2.8 the squares

[2015.07.09.eq11]

int(f#(Ai))
Q(f,Ai)−−−−→ int(Ai)

p(f#(Ai),tt)

y yp(Ai,tt)

X ′
f−−−→ X

(4)

are pull-back squares. Therefore, there exists a unique morphism f#(a) : int(f#(A1)) →
int(f#(A2)) over X ′ such that

[2015.07.10.eq4]f#(a) ◦Q(f, A2) = Q(f, A1) ◦ a (5)

Lemma 2.9 [2015.07.09.l10] Let f : X ′ → X be a morphism. Then one has:

1. for A ∈ Obn(X) one has f#(Idint(A)) = Idint(f#(A)),

2. for Ai ∈ Obmi
(X), i = 1, 2, 3, a : int(A1) → int(A2) and a′ : int(A2) → int(A3) one

has f#(a ◦ a′) = f#(a) ◦ f#(a′).

Proof: This is an easy exercise using the fact that the squares (4) are pull-back squares.

Lemma 2.10 [2015.07.09.l11] Let f : X ′ → X be a morphism and A ∈ Obn(X). Then
f#(pA) = pf#(A).

Proof: If n = 0 then pA = IdX and the result follows from Lemma 2.9. Let A = (ft(A), T ) ∈
Obn+1(X).

By definition f#(pA) is the unique morphism int(f#(A)) → int(f#(ft(A))) over X ′ and
such that

f ∗(pA) ◦Q(f, ft(A)) = Q(f, A) ◦ pA
The morphism pf#(A) is of the form int(f#(A))→ int(ft(f#(A))) and it is a morphism over
X ′. We have ft(f#(A)) = f#(ft(A)) by Lemma 2.7. It remains to verify that

pf#(A) ◦Q(f, ft(A)) = Q(f, A) ◦ pA
This is a particular case of the commutativity of (3).

Lemma 2.11 [2015.07.09.l12] Let f : X ′ → X be a morphism in C, A ∈ Obm(X), B =
(ft(B), T ) ∈ Obn+1(X) and a : int(A)→ int(ft(B)) a morphism. Then one has

[2015.07.09.eq12]f#(a∗(B)) = (f#(a))∗(f#(B)) (6)

and
[2015.07.09.eq13]f#(q(a,B)) = q(f#(a), f#(B)) (7)
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Proof: For the proof it will be convenient to consider the square

[2015.07.10.eq2]

int(f#(A))
Q(f,A)−−−−→ int(A)

f#(a)

y ya
int(f#(ft(B)))

Q(f,ft(B))−−−−−−→ int(ft(B))

(8)

which commutes because of the defining relation (5) of morphisms f#(−).

Recall from the construction that for any (C, T ) ∈ Obi+1(X) we have

f#(C, T ) = (f#(C), Q(f, C)∗(T ))

Q(f, (C, T )) = Q(Q(f, C), T )

Let B = (ft(B), T ). For the proof of (6) we now have

f#(a∗(ft(B), T )) = f#(A, a∗(T )) = (f#(A), (Q(f, A) ◦ a)∗(T ))

and
f#(a)∗(f#(ft(B), T )) = f#(a)∗(f#(ft(B)), Q(f, ft(B))∗(T )) =

(f#(A), (f#(a) ◦Q(f, ft(B)))∗(T ))

and the right hand sides are equal because of the commutativity of (8).

To prove (7) recall that f#(q(a,B)) is the unique morphism from int(f#(a∗(B))) to int(f#(B))
over X ′ such that

f#(q(a,B)) ◦Q(f,B) = Q(f, a∗(B)) ◦ q(a,B)

The morphism q(f#(a), f#(B)) is a morphism from int(f#(a)∗(f#(B))) to int(f#(B)) and
since we have shown that (6) holds we conclude that it has the same domain and codomain
as f#(q(a,B)). Also q(f#(a), f#(B)) is a morphism over X ′. It remains to show that

q(f#(a), f#(B)) ◦Q(f,B) = Q(f, a∗(B)) ◦ q(a,B)

We have

q(f#(a), f#(B)) ◦Q(f,B) = q(f#(a), f#(ft(B), T )) ◦Q(f, (ft(B), T )) =

q(f#(a), (f#(ft(B)), Q(f, ft(B))∗(T ))) ◦Q(f, (ft(B), T )) =

Q(f#(a), Q(f, ft(B))∗(T )) ◦Q(Q(f, ft(B)), T ) = Q(f#(a) ◦Q(f, ft(B)), T )

On the other hand

Q(f, a∗(B)) ◦ q(a,B) = Q(f, a∗(ft(B), T )) ◦ q(a, (ft(B), T )) = Q(f, (A, a∗(T ))) ◦Q(a, T ) =

Q(Q(f, A), a∗(T )) ◦Q(a, T ) = Q(Q(f, A) ◦ a, T )

and the right hand sides are equal because of the commutativity of (8). This completes the
proof of Lemma 2.11.
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Problem 2.12 [2015.07.10.prob1] Let C be a split type category as above. Let f : X ′ → X
be a morphism. To construct a homomorphism of C-systems

f# : CCC(X)→ CCC(X
′)

Construction 2.13 We define f#
Ob as the sum of functions f#,n constructed above. For

Γ = (n,A) and Γ′ = (n′, A′) in Ob(CCC(X)) and a : int(A) → int(A′) over X we define
f#
Mor(a) as f#(a) constructed above.

The fact that f# commute with the length function is obvious. The fact that it commutes
with the ft function follows from Lemma 2.7. That f#

Ob and f#
Mor form a functor follows

from Lemma 2.9. That f#
Mor satisfies the p-morphism condition follows from Lemma 2.10.

That it satisfies the q-morphism condition follows from Lemma 2.11. This shows that f#
Ob

and f#
Mor satisfy the first five conditions of Definition ?? and therefore by Lemma ?? they

form a homomorphism of C-systems.

Lemma 2.14 [2015.07.10.l1] Let C be as above. Let g : X ′′ → X ′ and f : X ′ → X be two
morphisms. Then for A ∈ Obn(X) one has

g#(f#(A)) = (g ◦ f)#(A)

and
Q(g, f#(A)) ◦Q(f, A) = Q(g ◦ f, A)

Proof: The proof is by induction on n. For n = 0 the statement is obvious. Let A =
(ft(A), T ) ∈ Obn+1(X). Then one has

g#(f#(ft(A), T )) = g#(f#(ft(A)), Q(f, ft(A))∗(T )) =

(g#(f#(ft(A))), Q(g, f#(A))∗(Q(f, ft(A))∗(T ))) = ((g ◦ f)#(ft(A)), Q((g ◦ f, A)∗(T ))) =

(g ◦ f)#(ft(A), T )

where the third equality is by inductive assumption.

Lemma 2.15 [2015.07.10.l1] Let C be as above. Let g : X ′′ → X ′ and f : X ′ → X be two
morphisms. Let Ai ∈ Obni

(X), i = 1, 2 and let a : int(A1) → int(A2) be a morphism over
X. Then one has

g#(f#(a)) = (g ◦ f)#(a)

Proof:

???
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3 Universe categories and categories with families

Definition 3.1 [2009.11.1.def1] Let C be a category. A universe structure on a morphism

p : Ũ → U in C is a mapping that assigns to any morphism f : X → U in C a pull-back
square

(X; f)
Q(f)−−−→ Ũ

pX,f

y yp
X

f−−−→ U

A universe in C is a morphism p together with a universe structure on it.

In what follows we will write (X; f1, . . . , fn) for (. . . ((X; f1); f2) . . . ; fn).

Example 3.2 [2015.04.06.ex1] Let G be a group. Consider the category BG with one
object pt whose monoid of endomorphisms is G. Recall that any commutative square where
all four arrows are isomorphisms is a pull-back square. Let p : pt→ pt be the unit object of
G. Then a universe structure on p can be defined by specifying, for every g : pt→ pt, of the
horizontal morphism Q(g) in the corresponding canonical square. There are no restrictions
on the choice of Q(g) since for any such choice one can take the vertical morphism to
be Q(g)g−1 obtaining a pull-back square. Therefore, the set of universe structures on p
is GG. The automorphisms of BG are given by Aut(G) (with two automorphisms being
isomorphic as functors if they differ by an inner automorphisms of G). Therefore, there are
(GG)/Aut(G) isomorphism classes of categories with universes with the underlying category
BG and the underlying universe morphism being Id : pt → pt. Note that in this case
all auto-equivalences of the category are automorphisms and so simply saying that we will
consider universes up to an equivalence of the underlying category does not change the
answer. To have, as is suggested by category-theoretic intuition, no more than one universe
structure on a morphism one needs to consider categories with universes up to equivalences
of categories with universes and then one has the obligation to prove that the constructions
that are supposed to produce objects such as C-systems map equivalences of categories with
universes to isomorphisms. In the case of the main construction of this paper it is achieved
in Lemma 4.4 and with respect to universe category functors of a somewhat wider class than
the class of universe category equivalences.

For f : X → U as in Definition 3.1 and a : Y → X, b : Y → Ũ such that a ◦ F = b ◦ p let
a ∗ b be the unique morphism Y → (X;F ) such that

(a ∗ b) ◦ pX,F = a

(a ∗ b) ◦Q(F ) = b

Definition 3.3 [2015.03.21.def2] A universe category is a triple (C, p, pt) where C is a

category, p : Ũ → U is a morphism in C with a universe structure on it and pt is a final
object in C.
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4 Functoriality of CC(C, p).

Definition 4.1 [2015.03.21.def1] Let (C, p, pt) and (C ′, p′, pt′) be universe categories. A

functor of universe categories from (C, p, pt) to (C ′, p′, pt′) is a triple (Φ, φ, φ̃) where Φ : C →
C ′ is a functor and φ : Φ(U)→ U ′, φ̃ : Φ(Ũ)→ Ũ ′ are morphisms such that:

1. Φ takes the canonical pull-back squares based on p to pull-back squares,

2. Φ takes pt to a final object of C ′,

3. the square

Φ(Ũ)
φ̃−−−→ Ũ ′

Φ(p)

y yp′
Φ(U)

φ−−−→ U ′

is a pull-back square.

Let
(Φ, φ, φ̃) : (C, p, pt)→ (C ′, p′, pt′)

be a functor of universes categories. Let Obn = Obn(C, p) and Ob′n = Obn(C ′, p′). Let int
and int′ be the corresponding functions to C and C ′.
Denote by ψ the isomorphism ψ : pt′ → Φ(pt). Define, by induction on n, pairs (Hn, ψn)
where Hn : Obn → Ob′n and ψn is a family of isomorphisms of the form

ψn(A) : int′(Hn(A))→ Φ(int(A))

given for all A ∈ Obn. We set:

1. for n = 0, H0 is the unique map from a one point set to a one point set and ψ0(A) = ψ,

2. Hn+1(A,F ) = (Hn(A), ψn(A) ◦ Φ(F ) ◦ φ) and

ψn+1(A,F ) : (int(Hn(A));ψn(A) ◦ Φ(F ) ◦ φ)→ Φ(int(A,F ))

is the unique morphism such that the diagram

[2009.10.26.eq2]

int′(Hn+1(A,F ))
ψn+1(A,F )−−−−−−→ Φ(int(A,F ))

Φ(Q(F ))−−−−→ Φ(Ũ)
φ̃−−−→ Ũ ′

pHn+1(A,F )

y yΦ(p(A,F ))

yΦ(p)

yp′
int′(Hn(A))

ψn(A)−−−→ Φ(int(A))
Φ(F )−−−→ Φ(U)

φ−−−→ U ′

(9)

commutes and
ψn+1(A,F ) ◦ Φ(Q(F )) ◦ φ̃ = Q(ψn(A) ◦ Φ(F ) ◦ φ)

11



Note that the existence and uniqueness of ψn+1(A,F ) follows from the fact that the right
hand side squares of (9) are pull-back squares as a corollary of the definition of a universe
category functor and the fact that the canonical square for the morphism ψn(A) ◦ Φ(F ) ◦ φ
commutes.

Moreover since the outer square of (9) is a pull-back square, the left-most square commutes
and the two right hand side squares are pull-back squares we conclude that the left hand
side square is a pull-back square. In combination with the inductive assumption that ψn(A)
is an isomorphism this implies that ψn+1(A,F ) is an isomorphism.

Problem 4.2 [2014.09.18.prob2] Let

(Φ, φ, φ̃) : (C, p, pt)→ (C ′, p′, pt′)

be a functor of universes categories. To define a homomorphism of C-systems H = H(Φ, φ, φ̃)
from CC(C, p) to CC(C ′, p′).

Construction 4.3 [2014.09.18.constr2]We define HOb as the sum of the functions Hn

that were constructed above. To define HMor on morphisms we use the fact that morphisms
ψ(A) are isomorphisms and for

f ∈ HomCC((n,A), (n′, A′)) = HomC(int(A), int(A′))

we set
[2009.10.26.eq6]HMor(f) = ψ(A) ◦ Φ(f) ◦ ψ(A′)−1 (10)

To show that (HOb, HMoRr) is a homomorphism of C-systems it is sufficient, In view of
Lemma ??, to verify the first five conditions of Definition ??.

It is clear that HOb respects the length function and the ft maps.

The fact that this construction gives a functor i.e. satisfies the unity and composition axioms
is straightforward.

The fact that it takes the canonical projections to canonical projections is equivalent to the
commutativity of the left hand side square in (9).

It remains to show that it satisfies the q-morphisms condition. Consider a canonical square
of the form (??). Its image is a square of the form

[2009.10.26.eq4]

(G′1, . . . , G
′
n, G

′
n+1)

H(q(f))−−−−→ (F ′1, . . . , F
′
m+1)

H(pG)

y yH(pF )

(G′1, . . . , G
′
n)

H(f)−−−→ (F ′1, . . . , F
′
m)

(11)

We already know that the vertical arrows are canonical projections. We have to show that
G′n+1 = int(H(f)) ◦ F ′m+1 and

[2009.10.26.eq8]H(q(f)) ◦Q(F ′m+1) = Q(H(f) ◦ F ′m+1) (12)

12



By (??) we have
G′n+1 = ψ(G1,...,Gn) ◦ Φ(Fm+1f) ◦ φ
F ′m+1 = ψ(F1,...,Fm) ◦ Φ(Fm+1) ◦ φ

and by (10)
H(f) = ψ(G1,...,Gn) ◦ Φ(f) ◦ ψ−1

(F1,...,Fm)

H(q(f)) = ψ(G1,...,Gn,Fm+1f) ◦ Φ(q(f)) ◦ ψ−1
(F1,...,Fm+1)

Therefore the relation G′n+1 = H(f)◦F ′m+1 follows immediately and the relation (12) follows
by application of (??).

Lemma 4.4 [2014.09.18.l1] Let (Φ, φ, φ̃) be as in Problem 4.2 and let H be the correspond-

ing solution of Construction 4.3. Then if Φ is a full embedding and φ and φ̃ are isomorphisms
then H is an isomorphism of C-systems.

Proof: Straightforward.

Lemma 4.4 implies in particular that considered up to a canonical isomorphism CC(C, p)
depends only on the equivalence class of the pair (C, p) i.e. that our construction maps the
type of pairs (C, p) to the type of C-systems.

Let us describe now a construction which shows that any C-system is isomorphic to a C-
system of the form CC(C, p).

Problem 4.5 [2014.09.18.prob3] Let CC be a C-system. Construct a universe category
(C, p) and an isomorphism CC ∼= CC(C, p).

Construction 4.6 [2014.09.18.constr3]Denote by PreShv(CC) the category of contravari-
ant functors from the category underlying CC to Sets.

Let Ty be the functor which takes an object Γ ∈ CC to the set

Ty(Γ) = {Γ′ ∈ CC | ft(Γ′) = Γ}

and a morphism f : ∆ → Γ to the map Γ′ 7→ f ∗Γ′. It is a functor due to the composition
and unity axioms for f ∗. Let Tm be the functor which takes an object Γ to the set

Tm(Γ) = {s ∈ C̃C | ft ∂(s) = Γ}

and a morphism f : ∆ → Γ to the map s 7→ f ∗(s) where f ∗(s) (or f ∗(s, 1) in the notation
of [?]) is the pull-back of the section s along f . Let further p : Tm→ Ty be the morphism
which takes s to ∂(s). It is well defined as a morphisms of families of sets and forms a
morphism of presheaves since ∂(f ∗(s)) = f ∗(∂(s)).

Let us construct an isomorphism CC ∼= CC(PreShv(CC), p).

In what follows we identify objects of CC with the corresponding representable presheaves
and, for a presheaf F and an object Γ, we identify morphisms Γ→ F in PreShv(CC) with
F (Γ). Recall that for X ∈ CC such that l(X) > 0 we let δ(X) : X → p∗X(X) denote the
section of pp∗X(X) given by the diagonal.
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Lemma 4.7 [2009.12.28.l1] Let Γ′ ∈ Ob(CC) and let Γ = ft(Γ′). Then the square

[2009.12.28.eq2]

Γ′
δ(Γ′)−−−→ Tm

pΓ′

y yp
Γ

Γ′−−−→ Ty

(13)

is a pull-back square.

Proof: We have to show that for any ∆ ∈ CC the obvious map

Hom(∆,Γ′)→ Hom(∆,Γ)×Ty(∆) Tm(∆)

is a bijection. Let f1, f2 : ∆ → Γ′ be two morphisms such that their images under (13)
coincide i.e. such that f1 ◦ pΓ′ = f2 ◦ pΓ′ and f ∗1 (δ(Γ′)) = f ∗2 (δ(Γ)′). These two conditions
are equivalent to saying, in the notation of [?], that ft(f1) = ft(f2) and sf1 = sf2 . This
implies that f1 = f2. Let f : ∆ → Γ be a morphism and s ∈ Tm(∆) a section such that
ft(∂(s)) = f ∗(Γ′). Then the composition s ◦ q(f,Γ′) is a morphism f ′ : ∆ → Γ′ such that
f ′ ◦ pΓ′ = f . We also have

(f ′)∗(δ(Γ′)) = s∗(q(f,Γ′)∗(δ(Γ′))) = s

which proves that (13) is surjective.

To construct the required isomorphism we now choose a universe structure on p such that
the pull-back squares associated with morphisms from representable objects are squares (13).
The isomorphism is now obvious.

Example 4.8 We can use Construction 2.4 to produce a C-system from a pre-category
C with a final object pt and fiber products. This example was inspired by a question
from an anonymous referee of [?]. Here we have to use the word “pre-category” since this
construction, unlike all other constructions of this paper, is not invariant under equivalences.

Given a pre-category C with a final object and fiber products consider the category PreShv(C)
of presheaves of sets on C. Let U be the presheaf that takes X to the set of all pairs of
morphisms (f, g) such that f : X → Y and g : Z → Y . The functoriality is defined by com-

positing f . Similarly let Ũ be the presheaf that takes X to the set of all pairs of morphisms
(f ′, g) such that f ′ : X → Z, g : Z → Y and functoriality is again through composition of

f ′. There is a morphism p : Ũ → U that takes (f ′, g) to (f ′ ◦ g, g). A square

X ′
(f ′,g′)−−−→ Ũ

u

y yp
X

(f,g)−−−→ U
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commutes if g′ = g and u ◦ f = f ′ ◦ g′. It is a pull-back square if the square

X ′
f ′−−−→ Z

u

y yg
X

f−−−→ Y

is a pull-back square. In particular, if C has pull-backs then the C-system CC(PreShv(C), p)
is well defined.

Note that this construction is not invariant under equivalences in C. If C is replaced by an
equivalent but not an isomorphic category the morphism p will be replaced by a morphism
that is not isomorphic to it.

On the other hand the change in the choice of pull-backs without a change in C will lead to
the change of the C-system by a constructively isomorphic one,

Example 4.9 [2015.06.15.ex1] An important example of a C-system of the form CC(C, p)
is “the” C-system Fam of families of sets considered in [?] and [?]. The definition of Fam
in [?][p.238] as well as the preceding it discussion in [?]p.232 is somewhat incomplete in
that the notion of “a set” and moreover the notion of “a family of sets” are taken as being
uniquely determined by some previous agreement that is never explicitly referred to.

To define Fam as a C-system of the form CC(C, p) we need two “universes” (e.g. Grothendieck
universes) U and U1 in our set theory such that U1 is an element of U . One then defines the
category Sets(U) of small sets as the category whose set of objects is U and such that for
X, Y ∈ U the set of morphisms from X to Y in Sets(U) is the set of functions from X to
Y in the ambient set theory. This category will contain U1 as an object and also, because
of the closure conditions that U satisfies, it will contain as an object the set Ũ1 of pairs
(X, x) where X ∈ U1 and x ∈ X. Since morphisms in Sets are the same as functions in the

ambient set theory we also get pU1 : Ũ1 → U1 that takes (X, x) to X. Using the standard
construction of pull-backs in sets we obtain a universe structure on p. Now we can define:

Fam = Fam(U,U1) := CC(Sets(U), pU1)

The explicit definition given in [?] avoids the use of the second universe (universe U in our
notations) by constructing the same category “by hand”. In our approach we have to use
U but the resulting category does not depend on U . Indeed, if our set theory assumes two
universes U and U ′ such that both contain U1 as an element then one can show that

[2015.06.15.eq1]CC(Sets(U), pU1) = CC(Sets(U ′), pU1) (14)

where equality of categories means in particular that their sets of objects are equal as sets.
Because of this one can denote this category as Fam(U1).

Definition 4.10 [2009.12.27.def1] Let CC be a C-system. A universe model of CC is a
pair of a universe category (C, p) and a C-system homomorphism CC → CC(C, p).
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Conjecture [2009.12.27.prop1] Let C be a category, CC be a C-system and M : CC → C
a functor such that M(ptCC) is a final object of C and M maps distinguished squares of CC

to pull-back squares of C. Then there exists a universe pM : ŨM → UM in PreShv(C) and a
C-system homomorphism M ′ : CC → CC(PreShv(C), pM) such that the square

CC
M−−−→ CyM ′ y

CC(PreShv(C), pM)
int−−−→ PreShv(C)

where the right hand side vertical arrow is the Yoneda embedding, commutes up to a functor
isomorphism.
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