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Abstract

This paper continues the series of papers that develop a new approach to syntax
and semantics of dependent type theories. Here we study the interpretation of the
rules of the identity types in the intensional Martin-Lof type theories on the C-systems
that arise from universe categories. In the first part of the paper we develop construc-
tions that produce interpretations of these rules from certain structures on universe
categories while in the second we study the functoriality of these constructions with
respect to functors of universe categories. The results of the first part of the paper play
a crucial role in the construction of the univalent model of type theory in simplicial
sets.
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1 Introduction

The concept of a C-system in its present form was introduced in [16]. The type of the
C-systems is constructively equivalent to the type of contextual categories defined by Cart-
mell in [3] and [2] but the definition of a C-system is slightly different from the Cartmell’s
foundational definition.

In the past decade or more, it has been a tradition in the study of type theories to consider,
as the main mathematical object associated with a type theory, not a C-system by a category
with families (see [4]). As was observed recently all of the constructions of [13], [15] and of
the present paper (but not of [16] or [14]!) can be either used directly or reformulated in a
very straightforward way to provide very similar results for categories with families. This
modification will be discussed in a separate paper or papers.

In this introductory explanation we will distinguish between the syntactic and semantic C-
systems. By a syntactic C-system we will mean a C-system that is a regular sub-quotient of a
C-system of the form CC(R,LM) where R is a monad on sets and LM is a left module over
R, see [14] and [16]. In particular, the C-systems of all of the various versions of dependent
type theory of Martin-Lof “genus” are syntactic type systems in the sense of this definition.

By a semantic C-system we will mean a C-system whose underlying category is a full sub-
category in a category of “mathematical” nature such as the category of sets or the category
of sheaves of sets.

Usually one knows some good properties (i.e. consistency) of a given semantic C-system and
tries to prove similar good properties of a syntactic C-system by constructing a functor from
the syntactic one to the semantic one.

To construct such a functor one tries to show that the syntactic C-system is an initial
one among C-systems equipped with some collection of additional operations and then to
construct operations of the required form on the semantic one. A pioneering example of this
approach can be found in [8].

In this paper we investigate the set of three interconnected operations on C-systems that, in
the case of the syntactic C-systems, corresponds to the set of inference rules that is known
as the rules for identity types in intensional Martin-Lof type theories (first published in [6])4.
Since the key ingredient of this structure is known in type theory as the J-eliminator we call
it the J-structure.

We do not use the “sequent” notation that is so widespread in the literature on type theory
for general C-systems restricting its use only to examples where we assume the C-system to
be a syntactic one.

The reason for this restriction is that translating the sequent-like notations into the algebraic
notation of C-systems or categories with families requires considerable mastery of various
conventions connected to the use of dependently typed systems. An example of such a trans-

4There is also a simpler set of rules corresponding to the identity types in the extensional Martin-Lof
type theory (first published in [7]). Cartmell, in his notion of a strong M-L structure [2, p.3.36], considers
the set of rules for the extensional theory.
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lation is the description of an object IdxT (T ) corresponding to the sequent-like expression
(Γ, x : T, y : T, e : IdT T x y ; ) in Construction 2.1.4.

Some of the difficulties that arise here can already be seen on the translation of the sequent-
like expression (Γ, x : T, y : T ; ). Here the same letter T is used to refer to objects of two
different types - the first T refers to an element on Ob1(Γ) and the second T refers to an
element in Ob1(T ). It is “understood” that the second T is the image of the first T under
the map p∗T : Ob1(Γ) → Ob1(T ) but this understanding is a part of a tradition and is not
reflected in any mathematical statement that one can refer to.

For the syntactic C-systems we are allowed to use the sequent notation for the following
reason. First, since CC in this case is a sub-quotient of CC(R,LM) our notation only needs
to provide a reference to elements of sets associated with CC(R,LM) itself. There, the first
T refers to an element of LM({1, . . . , l}) where l is the length of Γ and LM(X) is the set of
type expressions in the raw syntax with free variables from a set X and the second T refers
to an element of LM({1, . . . , l + 1}) that is the image of the first T under the map

LM({1, . . . , l})→ LM({1, . . . , l + 1})

defined by the inclusion {1, . . . , l} ⊂ {1, . . . , l+ 1}. In this case the map does not depend on
T . We should distinguish between IdT as a structure on the C-system and the correspond-
ing syntactic construction (because they have different types). If we denote the syntactic
“identity types” by IdT s T t1 t2 then for the sequence

Γ, x : T, y : T, e : IdT s T x y;

to define an element of Ob(CC(LM,R)), the expression IdT s T x y must refer to an element
of LM({1, . . . , l + 2}) and its form shows that we assume that there is an operation

IdT s : LM ×R×R→ R

(a natural transformation of functors that is a linear morphism of left R-modules) and
IdT s T x y is the “named variables” notation for IdT s1,...,l+2(T, l + 1, l + 2).

We do not continue this explanation of how to construct J-structures on syntactic C-systems.
This will be done in a separate paper. Let us remark however that constructing J-structures
on syntactic C-systems is relatively easy and that the difficult questions about J-structures
on such C-systems are the ones related to the initially properties of the resulting objects.

While constructing J-structures on the syntactic C-systems relatively straightforward, con-
structing non-degenerate5 J-structures on semantic C-systems or categories with families
proved to be very difficult.

The first instance of such a construction, due to Martin Hofmann and Thomas Streicher,
appeared in [5]. It was done in the language of categories with families and the underlying
category there was the category of groupoids.

The construction of Hofmann and Streicher was substantially extended and generalized in
the Ph.D. thesis of Michael Warren [17],[18] and his subsequent papers such as [19].

5See Remark 2.1.8.
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Further important advances were achieved in the work of Richard Garner and Benno van
den Berg [10].

Two main results of the first part of this paper provide a new approach to the construction
of J-structures on semantic C-systems, an approach that can be used to construct the J-
structure on the C-system of the univalent model.

Construction 2.2.10 provides a simple way of extending a J1-structure on a universe p in a
category C to a full J-structure.

Construction 2.4.15 provides a method of constructing a J-structure on the C-system CC(C, p)
from a J-structure on p.

Combined together they provide a method of constructing a J-structure on CC(C, p) from a
J1-structure on p.

We also discuss two sets of conditions on a pair of classes of morphisms TC and FB in a
locally cartesian closed category that can be used in combination with Construction 2.2.10
to construct J-structures. These conditions often hold for the classes of trivial cofibrations
and fibrations in model categories (or categories with weak factorization systems) providing
a way of constructing C-systems with J-structures starting from such categories.

In this paper we continue to use the diagrammatic order of writing composition of morphisms,
i.e., for f : X → Y and g : Y → Z the composition of f and g is denoted by f ◦ g.

In this paper, as in the preceding papers [13] and [15], we often have to consider structures
on categories that are not invariant under equivalences and their interaction with structures
that are invariant under the equivalences.

The methods used in this paper are fully constructive and the paper is written in “formal-
ization ready” style with all the proofs provided in enough detail to ensure that there are no
hidden difficulties for the formalization of all of the results presented here.

Except for the section that discusses the use of classes TC and FB, the methods we use
are also completely elementary in the sense that they rely only on the essentially algebraic
language of categories with various structures.

The key Definition 2.2.8 and its relation to the J-structures on categories CC(C, p) first
appeared in [11].

The author would like to thank the Department of Computer Science and Engineering of the
University of Gothenburg and Chalmers University of Technology for its hospitality during
the work on this paper.

2 J-structures on C-systems and on universe categories

2.1 The J-structure on a C-system

To define the J-structure on a C-system we will actually define three structures J0-structure,
J1-structure over a J0-structure and and J2-structure over a J1-structure with the J-structure
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being the same as a triple (IdT, refl, J) where Idt is a J0-structure, refl is a J1-structure
over IdT and J is a J2-structure over refl. For the notations used below see [15].

Definition 2.1.1 [2015.03.27.def1] A J0-structure on a C-system CC is a family of func-
tions

IdTΓ : {o1, o2 ∈ Õb1(Γ) | ∂(o1) = ∂(o2)} → Ob1(Γ)

given for all Γ ∈ Ob that is natural in Γ i.e. such that for any f : Γ′ → Γ and o, o′ ∈ Õb1(Γ)
with ∂(o) = ∂(o′), one has f ∗(IdTΓ(o, o′)) = IdTΓ′(f

∗(o), f ∗(o′)).

Definition 2.1.2 [2015.03.27.def2] Let IdT be a J0-structure on CC. A J1-structure over
IdT is a family of functions

refl : Õb1(Γ)→ Õb1(Γ)

given for all Γ ∈ Ob such that:

1. refl is natural in Γ,

2. for any Γ and o ∈ Õb1(Γ) one has

[2015.03.27.eq8]∂(refl(o)) = IdT (o, o) (1)

To define the notion of a J2-structure over a given J1-structure we will need to describe two
constructions first.

Problem 2.1.3 [2015.03.27.prob1] Given a J0-structure IdT to construct a family of
functions

IdxT : Ob1(Γ)→ Ob3(Γ)

such that for f : Γ′ → Γ and T ∈ Ob1(Γ) one has f ∗(IdxT (T )) = IdxT (f ∗(T )).

Construction 2.1.4 [2015.03.27.constr1]Recall that for T ∈ Ob1(Γ) we let δ(T ) denote
the morphism T → p∗T (T ) that can be described equivalently as sIdT or as the only morphism
such that δ(T ) ◦ pp∗T (T ) = IdT and δT ◦ q(pT , T ) = IdT . Because of the first equation we have

δ(T ) ∈ Õb(p∗T (T )).

We define:

[2015.04.06.eq1]IdxT (T ) := IdTp∗T (T )((p
∗
p∗T (T )(δ(T ))), δ(p∗T (T ))) (2)

We have
p∗p∗T (T )(δT ) ∈ Õb(p∗p∗T (T )(p

∗
T (T )))

and
δ(p∗T (T )) ∈ Õb(p∗p∗T (T )(p

∗
T (T )))
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and since ft(p∗p∗T (T )(p
∗
T (T ))) = p∗T (T ) the IdxT (T ) is well defined. The fact that IdxT (T ) ∈

Ob3(Γ) follows now from the fact that ft2(p∗T (T )) = ft(T ) = Γ. The objects and some of
the morphisms involved in this construction can be seen on the diagram:

p∗p∗T (T )(p
∗
T (T )) −−−→ p∗T (T ) −−−→ Ty pp∗

T
(T )

y ypT
p∗T (T )

pp∗
T

(T )

−−−→ T
pT−−−→ Γ

The proof that IdxT is natural in f : Γ′ → Γ is straightforward.

Problem 2.1.5 [2015.03.27.prob2] Given a J0-structure IdT and a J1-structure refl
over it to construct for all Γ ∈ Ob and T ∈ Ob1(Γ) a morphism

rfT : T → IdxT (T )

such that for any f : Γ′ → Γ one has f ∗(rfT ) = rff∗(T ).

Construction 2.1.6 [2015.03.27.constr2]We have:

δ(T )∗(IdxT (T )) = δ(T )∗(IdTp∗T (T )((p
∗
p∗T (T )(δT ))), δ(p∗T (T )))

= IdTT (δ(T )∗(p∗p∗T (T )(δT )), δ(T )∗(δ(p∗T (T )))) =

= IdTT (δ(T ), δ(T ))

where the last equality follows from the fact that f ∗(δ(T )) = sf and for any s ∈ Õb, ss = s.
This shows that we have a canonical square of the form

[2015.03.31.eq3]

IdT (δ(T ), δ(T ))
q(δ(T ),IdxT (T ))−−−−−−−−−→ IdxT (T )y y

T
δ(T )−−−→ p∗T (T )

(3)

and refl(δ(T )) is a morphism T → IdT (δ(T ), δ(T )). We define:

[2015.04.02.eq1]rfT := refl(δ(T )) ◦ q(δ(T ), IdxT (T )) (4)

The proof that for any f : Γ′ → Γ one has f ∗(rfT ) = rff∗(T ) is straightforward.

Definition 2.1.7 [2015.03.27.def3] Let IdT and refl be a J0-structure and a J1-structure
over it. A J2-structure over (IdT, refl) is data of the form: for all Γ ∈ Ob, for all T ∈
Ob1(Γ), for all P ∈ Ob1(IdxT (T )), for all s0 ∈ Õb(rf ∗T (P )), an element J(Γ, T, P, s0) of

Õb(P ) such that:
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1. J is natural in Γ, i.e., for any f : Γ′ → Γ and T, P, s0 as above one has

f ∗(J(Γ, T, P, s0)) = J(Γ′, f ∗(T ), f ∗(P ), f ∗(s0))

where the right hand side of the equation is well-defined because of the naturality in f
of IdxT and rf .

2. J satisfies the ι-rule. For Γ, T, P, s0 as above one has

rf ∗T (J(Γ, T, P, s0)) = s0

Remark 2.1.8 [2015.05.12.rem1]A J0-structure is called degenerate or extensional if for

all T ∈ Ob≥1(CC) and o, o′ ∈ Õb(T ) one has6

Õb(IdxT (o, o′)) =

{
∅ if o 6= o′

pt if o = o′

One can easily see that any two extensional J0-structures are equal and that any extensional
J0-structure has a unique extension to a full J-structure that is also called extensional.

We will not consider these extended versions of J in the present version of the paper.

Remark 2.1.9 [2015.05.24.rem1] When one studies J-structures on C-systems that have
no (Π, λ)-structures it is important, as emphasized for example in [9], to consider a more
complex structure than the one that we consider here. This more complex structure can
be seen as a family of structures eJn where eJ0 = J2 and where eJn over (IdT, refl) is a
collection of data of the form: for all Γ ∈ Ob, for all T ∈ Ob1(Γ), for all ∆ ∈ Obn(IdxT (T )),

for all P ∈ Ob1(∆), for all s0 ∈ Õb(rf ∗T (P )), an element eJn(Γ, T,∆, s0) in Õb(P ) such that
eJn satisfies the obvious analog of ι-rule and such that it is natural in Γ. See also Remark
2.2.11.

2.2 The J-structure on a universe in a category

Let C be a (pre-)category and p : Ũ → U a morphism in C. Recall that a universe structure
on p is a choice of pull-back squares of the form

(X;F )
Q(F )−−−→ Ũ

pX,F

y yp
X

F−−−→ U

for all X and all morphisms F : X → U . A universe in C is a morphism with a universe
structure on it and a universe category is a category with a universe and a choice of a final
object pt.

6The following is the classical way of saying that there is an equivalence between the types Õb(IdxT (o, o′))
and (o = o′).
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For f : W → X and g : W → Ũ we will denote by f ∗ g the unique morphism such that

(f ∗ g) ◦ pX,F = f

(f ∗ g) ◦Q(F ) = g

When we need to distinguish canonical squares of different universes we may write (X;F )p
and f ∗p g.

Remark 2.2.1 [2015.03.29.rm1] Note that we made no assumption about Q(IdU) being
equal to IdŨ . In fact, since we want the results of this paper to be constructive, we are not
allowed to make such an assumption since the question of whether or not a given morphism
is an identity morphism need not be decidable and therefore we can not “normalize” our
constructions by doing a “case” on whether a morphism is an identity morphism or not. The
importance of this observation (in the context of whether a simplex is degenerate or not)
was emphasized by [1].

For X ′
f→ X

F→ U we let Q(f, F ) denote the morphism

(pX′,f◦F ◦ f) ∗Q(f ◦ F ) : (X ′; f ◦ F )→ (X;F )

As is shown in [15], the square

[2015.04.06.l0.sq]

(X ′; f ◦ F )
Q(f,F )−−−−→ (X;F )

pX′,f◦F

y ypX,F
X ′

f−−−→ X

(5)

is a pull-back square.

Following [15] we define for any universe p : Ũ → U and any V ∈ C a functor

Dp(−, V ) : X 7→ qF :X→UHom((X;F ), V )

whose action on morphisms is given by

Dp(f, V ) : (F, a) 7→ (f ◦ F,Q(f, F ) ◦ a)

When C is a locally cartesian closed category any morphism p : Ũ → U defines a functor

Ip : V 7→ Hom((Ũ , p), (U × V, pr1))

and we have constructed in [15, Construction 3.9] a family of bijections

η!
p,X,V : Hom(X, Ip(V ))→ Dp(X, V )

that are natural in X and V . We let η denote the inverse bijections

ηp,X,V : Dp(X, V )→ Hom(X, Ip(V ))
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Using the functorial structure on the mapping V 7→ (U×V, pr1) together with the naturality
of internal Hom-objects in the second argument we get a functoriality structure on Ip

(f : V → V ′) 7→ (Ip(f) : Ip(V )→ Ip(V
′))

Similarly, using the functoriality of Hom in the second argument (see e.g. the appendix in

[15]) we obtain, for any p : Ũ → U , p′ : Ũ ′ → U and h : Ũ ′ → Ũ over U and V a morphism

Ih(V ) : Ip(V )→ Ip′(V )

Lemma 2.2.2 [2015.04.10.l2] In the notations introduced above let f : V → V ′ be a
morphism, then the square

Ip′(V )
Ip′ (f)
−−−→ Ip′(V

′)

Ih(V )

y yIh(V ′)

Ip(V )
Ip(f)−−−→ Ip(V

′)

Proof: This is a particular case of the commutative square of [15, Lemma 8.5].

Lemma 2.2.3 [2015.04.02.l4] Let p : Ũ → U and p′ : Ũ ′ → U be two morphisms with

universe structures and f : Ũ ′ → Ũ be a morphism over U . For V ∈ C let If (V ) be the
corresponding morphism Ip′(V )→ Ip(V ). Then for any X the square

Dp(X, V )
ηp,X,V−−−→ Hom(X, Ip(V ))

Df (X,V )

y y−◦If (V )

Dp′(X, V )
ηp′,X.V−−−−→ Hom(X, Ip′(V ))

where the left hand side arrow is of the form

Df (X, V ) : (F, F ′) 7→ (F, F ∗(f) ◦ F ′)

commutes.

Proof: Since η is defined as an inverse to η! it is sufficient to show that for any g ∈
Hom(X, Ip(V )) one has η

′,!(g ◦ If (V )) = Df (X, V )(η!(g)). Let

pr = prIp(V ) : Ip(V )→ U

pr′ = prlp′(V ) : Ip′(V )→ U

be the canonical projections. Let

st = stp(V ) : (Ip(V ); pr)→ V
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st′ = stp′(V ) : (Ip′(V ); pr′)′ → V

be the morphisms introduced in [15]. By [15, Problem 3.8] we have

η
′,!(g ◦ If (V )) = (g ◦ If (V ) ◦ pr′, Q′(g ◦ If (V ), pr′) ◦ st′)

and

Df (X, V )(η!(g)) = Df (X, V )(g ◦ pr,Q(g, pr) ◦ st) = (g ◦ pr, (g ◦ pr)∗(f) ◦Q(g, pr) ◦ st)

Therefore it is sufficient to show that

If (V ) ◦ pr′ = pr

and
Q′(g ◦ If (V ), pr′) ◦ st′ = (g ◦ pr)∗(f) ◦Q(g, pr) ◦ st

The first equality asserts that If (V ) is a morphism over U which follows from its construction.

By Lemma 3.1.1 we have

(g ◦ pr, (g ◦ pr)∗(f) ◦Q(g, pr) = Q′(g, pr) ◦ pr∗(f)

Next we have

Q′(g ◦ If (V ), pr′) = Q′(g, If (V ) ◦ pr′) ◦Q′(If (V ), pr′) = Q′(g, pr) ◦Q′(If (V ), pr′)

by [15, Lemma 3.2]. It remains to check that

Q′(If (V ), pr′) ◦ st′ = pr∗(f) ◦ st

This requires opening up the definitions of st and st′ which gives us

Q′(If (V ), pr′) ◦ ι′ ◦ ev′ ◦ pr2 = pr∗(f) ◦ ι ◦ ev ◦ pr2

We will obtain this equality as a consequence of commutativity of three squares:

(Ip(V ); pr)′
Q′(If (V ),pr)−−−−−−−→ (Ip′(V ); pr′)′

ι′

y ι′

y
(Ip(V ), pr)×U (Ũ ′, p′)

If (V )×Id−−−−−→ (Ip′(V ), pr′)×U (Ũ ′, p′)

(Ip(V ); pr)′
pr∗(f)−−−→ (Ip(V ); pr)

ι′

y yι
(Ip(V ), pr)×U (Ũ ′, p′)

Id×f−−−→ (Ip(V ), pr)×U (Ũ , p)

and

(Ip(V ), pr)×U (Ũ ′, p′)
If (V )×Id−−−−−→ (Ip′(V ), pr′)×U (Ũ ′, p′)

Id×f
y yev′

(Ip(V ), pr)×U (Ũ , p)
ev−−−→ U × V

The first two squares are particular cases of [15, Lemma 8.1]. To obtain the first one one
has to set Z = U , b = IdŨ ′ , and a = If (V ). To obtain the second one one has to set Z = U ,
b = f and a = IdIp(V ). The last square is a particular case of [15, Lemma 8.6].
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Definition 2.2.4 [2015.03.27.def4] A J0-structure on a universe p in a category C is a

morphism Eq : (Ũ ; p)→ U .

Let Eq be a J0-structure on p. Consider the object

EŨ := (Ũ ; p, Eq)

as an object over U relative to the composition of projections

EŨ
p

(Ũ ;p),Eq−→ (Ũ ; p)
p
Ũ,p−→ Ũ

p→ U

that we will denote by pEŨ .

Problem 2.2.5 [2015.05.08.prob1] To construct a universe structure on pEŨ .

Construction 2.2.6 [2015.05.08.constr1] We have three diagrams with pull-back squares
of the form:

(X;F,Q(F ) ◦ p,Q(Q(F ), p) ◦ Eq) Q(Q(Q(F ),p),Eq)−−−−−−−−−→ (Ũ ; p, Eq)y y
(X;F,Q(F ) ◦ p) Q(Q(F ),p)−−−−−−→ (Ũ ; p)

(X;F,Q(F ) ◦ p) Q(Q(F ),p)−−−−−−→ (Ũ , p)y ypŨ,p
(X,F )

Q(F )−−−→ Ũ

(X;F )
Q(F )−−−→ Ũ

pX,F

y y
X

F−−−→ U

and we define the canonical square for F relative to pEŨ to be the square obtained by
concatenating these three squares vertically.

Let us denote the components of the canonical squares for pEŨ as follows:

(X;F )E
Q(F )E−−−→ EŨ

pEX,F

y ypEŨ
X

F−−−→ U

Explicitly we have
(X;F )E = (X;F,Q(F ) ◦ p,Q(Q(F ), p) ◦ Eq)

Q(F )E = Q(Q(Q(F ), p), Eq)

pEX,F = p(X;F,Q(F )◦p),Q(Q(F ),p)◦Eq ◦ p(X;F ),Q(F )◦p ◦ pX,F
We will also write Q(f, F )E for the canonical morphisms from (X; f ◦ F )E to (X;F )E.
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Definition 2.2.7 [2015.03.27.def5] Let p be a universe in C and Eq be a J0-structure on

p. A J1-structure on p over Eq is a morphism Ω : Ũ → Ũ such that the square

[2015.03.27.sq1]

Ũ
Ω−−−→ Ũ

∆

y yp
(Ũ ; p)

Eq−−−→ U

(6)

where ∆ = (IdŨ) ∗ (IdŨ) is the diagonal of Ũ , commutes.

The square (6) defines a morphism Ũ → EŨ that we will denote by ω.

To define a J2-structure on a universe we will need to assume that C is a locally cartesian
closed category. Recall that locally cartesian closed category is a category with the choice
of fiber squares based on all pairs of morphisms with a common codomain as well as the
choice of relative internal Hom-objects and co-evaluation morphisms for all such pairs. For
our notations related to the locally cartesian closed categories as well as for some other
notations used below see [15].

When a universe is considered in a locally cartesian closed category we make no assumption
about the compatibility of choices of the pull-back squares of the universe structure on p
and pull-back squares of the locally cartesian closed structure.

Consider the functors Ip and IpEŨ . We have the following commutative square:

[2010.sq1]

IpEŨ(Ũ)
Iω(Ũ)−−−→ Ip(Ũ)

I
pEŨ

(p)

y yIp(p)

IpEŨ(U)
Iω(U)−−−→ Ip(U)

(7)

and therefore a morphism

IpEŨ(Ũ)
coJ−→ (IpEŨ(U), Iω(U))×Ip(U) (Ip(Ũ), Ip(p))

Definition 2.2.8 [2015.03.27.def6] A J2-structure on p relative to a J0-structure Eq and
J1-structure Ω, is a morphism

Jp : (IpEŨ(U), Iω(U))×Ip(U) (Ip(Ũ), Ip(p))→ IpEŨ(Ũ)

such that Jp ◦ coJ = Id.

Note that we have:

[2015.04.04.eq1]J ◦ Iω(Ũ) = J ◦ coJ ◦ prIp(Ũ) = prIp(Ũ) (8)
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[2015.04.04.eq2]J ◦ IpEŨ(p) = J ◦ coJ ◦ prIpEŨ(U) = prIpEŨ(U). (9)

where prIp(V ) is the canonical morphism Ip(V )→ U .

A J-structure on p is a triple (Eq,Ω, Jp) where Eq is a J0-structure, Ω is a J1-structure
relative to Eq and Jp a J2-structure relative to Eq and Ω.

For a J1-structure (Eq,Ω) on a universe in a category with a locally cartesian closed structure
let FpEq,Ω denote the fiber product

(IpEŨ(U), Iω(U))×Ip(U) (Ip(Ũ), Ip(p))

and let pFpEq,Ω = Iω(U) � Ip(p) be the projection FpEq,Ω → U . Let further pr1 be the

projection from Fp to IpEŨ(U) and pr2 the projection from Fp to Ip(Ũ).

Our solution to the following problem is the key to the construction of J-structures over
a given J1-structure in categories with weak factorization systems in particular in Quillen
model categories.

Problem 2.2.9 [2015.05.12.l1] Let C be a category with a locally cartesian closed structure
and Eq,Ω be a J1-structure on (C, p). To construct a bijection between the set of J-structures

on p over (Eq,Ω) and the set of morphisms (Fp, pFp) ×U (EŨ, pEŨ) → Ũ that split the
following square into two commutative triangles:

[2015.05.22.sq1]

(Fp, pFp)×U (Ũ , p)
adj(pr2)◦pr2−−−−−−−→ Ũ

IdFp×ω
y yp

(Fp, pFp)×U (EŨ, pEŨ)
adj(pr1)◦pr2−−−−−−−→ U

(10)

Construction 2.2.10 [2015.05.22.constr1] Observe first that there is a bijection between
the set of morphisms

(Fp, pFp)×U (EŨ, pEŨ)→ Ũ

that split the square (10) into two commutative triangles and the set of morphisms

(Fp, pFp)×U (EŨ, pEŨ)→ U × Ũ

that split into two commutative triangles the square:

(Fp, pFp)×U (Ũ , p)
adj(pr2)−−−−→ U × Ũ

IdFp×ω
y yIdU×p

(Fp, pFp)×U (EŨ, pEŨ)
adj(pr1)−−−−→ U × U

The rule f 7→ adj(f) gives us a bijection of the form

HomU((Fp, pFp), (IpEŨ(Ũ), ))→ HomU((Fp, pFp)×U (EŨ, pEŨ), (U × Ũ , pr2))
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All sections of coJ are automatically morphisms over U . Therefore it remains to show that
this bijection defines a bijection of the subset of morphisms that are sections of coJ and
morphisms that make the two triangles commutative.

One verifies first that a morphism f : Fp → IpEŨ(Ũ) is a section of coJ if and only if

f ◦ IpEŨ(p) = pr1 and f ◦ Iω(Ũ) = pr2. This is straightforward.

Next we have
IpEŨ(p) = HomU((EŨ, pEŨ), IdU × p)

Iω(Ũ) = HomU(ω, (U × Ũ , pr2))

Therefore by [15, Lemma 8.7] one has

adj(f ◦ IpEŨ(p)) = adj(f) ◦ (IdU × p)

adj(f ◦ Iω(Ũ)) = (IdFp ×U ω) ◦ adj(f)

and we conclude that f is a section of coJ iff

adj(f) ◦ (IdU × p) = adj(pr1)

(IdFp ×U ω) ◦ adj(f) = adj(pr2)

This completes the construction.

Remark 2.2.11 [2015.05.24.rem2] It is likely to be relatively easy to generalize the con-
structions of this paper to the extended J-structures eJn (see Remark 2.1.9). The key to
such generalization is [15, Remark 3.13]. The structures eJpn can be defined in the same
way as Jp but with the square (7) replaced by the square

[2015.05.24.sq1]

IpEŨ(Inp (Ũ))
Iω(Inp (Ũ))
−−−−−→ Ip(I

n
p (Ũ))

I
pEŨ

(Inp (p))

y yIp(Inp (p))

IpEŨ(Inp (U))
Iω(Inp (U))
−−−−−→ Ip(I

n
p (U))

(11)

2.3 J-structures on universes in categories with two classes of mor-
phisms

This is the only part of the paper where we depart from constructions that are conservatively
algebraic over the theory of categories, i.e., from constructions that can be expressed in terms
of adding new essentially algebraic operations to the theory of categories without adding new
sorts to this theory.

Considering classes of morphisms in categories can be expressed in the essentially algebraic
way but this requires adding new sorts to the theory.

This is also the only context where we use the concept “there exists” in this paper. In
all the previous cases the objects that we considered were given (specified). To make the
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lemmas proved below into constructions and to avoid the use of “there exists” one would
have to define the collection FB as a collection of pairs of a morphism p together with, for
all i ∈ TC, fW and fZ such that fZ ◦ p = i ◦ fW , a morphism g such that i ◦ g = fW and
g ◦ p = fW .

Recall that a collection of morphisms R is said to have the right lifting property for the
collection of morphisms L if for any commutative square of the form

Z
fZ−−−→ E

i

y yp
W

fW−−−→ B

such that i ∈ L and p ∈ R there exists a morphism g : W → E that makes the two triangles
into which it splits the square to commute i.e. a morphism g such that i ◦ g = fZ and
g ◦ p = fW .

We are going to consider two sets of conditions (Conditions 2.3.1 and 2.3.3) on a pair of classes
of morphisms FB and TC in a category with fiber products and then show in Theorems 2.3.2
and 2.3.8 how pairs satisfying conditions of each of these two sets can be used to construct
J-structures on elements of FB.

Our first set of conditions is as follows:

Conditions 2.3.1 [2015.05.22.cond2]

1. A morphism is in FB if and only if it has the right lifting property for TC,

2. consider morphisms f : B′ → B, p1 : E1 → B, p2 : E2 → B and i : E1 → E2 such that
p1, p2 ∈ FB and i ∈ TC. Then the morphism

IdB′ × i : (B′, f)×B (E1, p1)→ (B′, f)×B (E2, p2)

is in TC.

Theorem 2.3.2 [2015.05.22.th1] Let FB and TC be two classes of morphisms in a locally
cartesian closed category C that satisfy Conditions 2.3.1. Let p be a universe in C and (Eq,Ω)
a J1-structure on p such that:

1. p is in FB,

2. ω is in TC.

Then there exists an extension of (Eq,Ω) to a full J-structure on p.

Proof: Let us apply Construction 2.2.10 to (Eq,Ω). To construct the required morphism it
is sufficient to establish that IdFp × ω is in TC. It follows from the first of our conditions
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that FB is closed under pull-backs and compositions. Therefore, pEŨ is in FB. It remains
to apply the second of our conditions.

Our second set of conditions is more involved. Conditions of this set can be satisfied in
the situations arising when one attempts to localize Quillen model structures and when the
resulting sets of morphisms do not for a model structure. The difference is mainly concerned
with the fact that the good behavior is required only for fibrations over fibrant objects. One
particular example of such situation is considered in [12, Section 3.3].

Conditions 2.3.3 [2015.05.22.cond1]

1. Idpt is in FB,

2. let B be such that the morphism B → pt is in FB then a morphism p : E → B is in
FB if and only if it has the right lifting property for TC,

3. if p : E → B and B → pt are in FB, i : Z → W is in TC and f : W → B iis an
arbitrary morphism then

(i×U IdE) : (Z, i ◦ f)×B (E, p)→ (W, f)×B (E, p)

is in TC.

We will say that B is fibrant if the morphism B → pt is in FB.

Lemma 2.3.4 [2015.05.14.l2] Let p : E → B be in FB and f : B′ → B be a morphism.
Assume in addition that B and B′ are fibrant, then for any pull-back square of the form

E ′ −−−→ E

p′

y yp
B′

f−−−→ B

the morphism p′ is in FB.

Proof: Since B′ is fibrant it is sufficient to verify that p′ has the right lifting property for
TC. This can be shown in the standard way to be a consequence of p having the right lifting
property for TC. That p has this property we know because p is in FB and B is fibrant.

Lemma 2.3.5 [2015.05.14.l4] Let B be fibrant and p2 : E2 → E1, p1 : E1 → B be in FB.
Then p2 ◦ p1 is in FB.

Proof: Let us show first that E1 is fibrant i.e. that πE1 : E1 → pt is in FB. Since pt is
fibrant it is sufficient to show that πE1 has the right lifting property for TC. It is shown in
the standard way from the fact that both p1 and πB : B → pt have the right lifting property
for TC and πE1 = p1 ◦ πB.
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Since E1 is fibrant we know that p2 has the right lifting property for TC and since B is
fibrant we know that p1 has the right lifting property for FB. From this we conclude in the
standard way that p2 ◦ p1 have the right lifting property for TC and since B is fibrant this
implies that p2 ◦ p1 is in FB.

Lemma 2.3.6 [2015.05.14.l1] Assume that U, V are fibrant and that p : Ũ → U is in FB.
Then the morphism prIp(V ) : Ip(V )→ U is in FB.

Proof: Since U is fibrant it is sufficient to check that pr = prIp(V ) has the right lifting
property for TC. Consider a commutative square of the form

Z
fZ−−−→ HomU((Ũ , p), (U × V, pr1))

i

y ypr
W

fW−−−→ U

We need to construct a morphism f : W → HomU((Ũ , p), (U × V, pr1)) that would make
the two triangles commutative. The commutativity of the lower triangle means that f is
a morphism over U which is equivalent to the assumption that f = adj−1(g) for some

g : (W, fW )×U (Ũ , p)→ U × V over U .

Consider the square

(Z, i ◦ fW )×U (Ũ , p)
adj(fZ)−−−−→ U × V

i×Id
Ũ

y ypr1
(W, fW )×U (Ũ , p)

fW �p−−−→ U

By Lemma 2.3.4 we know that pr1 belongs to FB. By our assumptions on TC and FB we
know that i×IdŨ is in TC. Therefore there exists a morphism g : (W, fW )×U (Ũ , p)→ U×V
that makes the two triangles commute. The commutativity of the lower triangle means that
this is a morphism over U . Therefore adj−1(g) is defined. Set f = adj−1(g). It remains
to check that i ◦ f = fZ . This is equivalent to adj(i ◦ f) = adj(fZ). Since adj(i ◦ f) =
(i× IdŨ) ◦ adj(f) by [15, Lemma 8.7(3)], this is equivalent to (i× IdŨ) ◦ g = adj(fZ) which
is the commutativity of the upper triangle.

Lemma 2.3.7 [2015.05.14.l3] Assume that U, V are fibrant and that p : Ũ → U and
r : V ′ → V are in FB then Ip(r) : Ip(V

′)→ Ip(V ) is in FB.

Proof: By Lemmas 2.3.6 and 2.3.5 we know that Ip(V ) is fibrant. Therefore it is sufficient
to show that Ip(r) has the right lifting property for TC. Consider a commutative square of
the form

[2015.05.14.sq1]

Z
fZ−−−→ HomU((Ũ , p), (U × V ′, pr1))

i

y yHomU ((Ũ ,p),IdU×r)

W
fW−−−→ HomU((Ũ , p), (U × V, pr1))

(12)
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The lower right corner is an object over U through the morphism p4pr1. Let pW =
fW ◦ (p4prU,VU ) and

pZ = i ◦ pW = fZ ◦ (p4prU,V
′

U )

Consider the square

[2015.05.14.sq2]

(Z, pZ)×U (Ũ , p)
adj(fZ)−−−−→ U × V ′

i×Id
Ũ

y yIdU×r
(W, pW )×U (Ũ , p)

adj(fW )−−−−→ U × V

(13)

This square commutes. Indeed,

adj(fZ) ◦ (IdU × r) = adj(fZ ◦HomU((Ũ , p), IdU × r)) =

adj(i ◦ fW ) = (i× IdŨ) ◦ adj(fW )

where the first equality is by [15, Lemma 8.7(1)] and the third by [15, Lemma 8.7(3)].
By Lemmas 2.3.4 and 2.3.5 we know that IdU × r is in FB. By our assumption (3) on
FB and TC we know that i × IdŨ is in TC. Therefore, there exists a morphism g :

(W, pW ) ×U (Ũ , p) → U × V ′ that splits this square into two commutative triangles. Since
the lower triangle commutes, g is a morphism over U and in particular g = adj(f) for some

f : W → HomU((Ũ , p), (U × V ′, pr1)). Let us show that f splits the square (12) into two

commutative triangles i.e. that we have i ◦ f = fZ and f ◦HomU((Ũ , p), IdU × r) = fW .

The first equality is equivalent to adj(i ◦ f) = adj(fZ) which is equivalent, by [15, Lemma
8.7(3)] to (i×IdŨ)◦g = adj(fZ) which is the commutativity of the upper of the two triangles
into which g splits (13).

The second equality is equivalent to adj(f ◦ HomU((Ũ , p), IdU × r)) = adj(fW ), which is
equivalent by [15, Lemma 8.7(1)] to g ◦ (IdU × r) = adj(fW ) which is the commutativity of
the lower of the two triangles into which g splits (13).

Lemma is proved.

We can now prove the second main theorem of this section.

Theorem 2.3.8 [2015.05.16.th1] Let (C, p, pt) be a universe category, let C be given a
locally cartesian closed structure and let TC and FB be two collections of morphisms in C
that satisfy Conditions 2.3.3. Let further Eq : (Ũ ; p)→ U and Ω : Ũ → Ũ be a J1-structure
and assume that the following conditions hold:

1. U is fibrant,

2. p is in FB,

3. ω is in TC.
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Then there exists a J-structure Jp extending (Eq,Ω).

Proof: Let us use the notations of Problem 2.2.9. We need to show that under the assump-
tions of the current theorem there exists a morphism that splits the square of Problem 2.2.9
into two commutative triangles. Observe first that constructing such a splitting is equivalent
to constructing the splitting of the square

(Ũ , p)×U (Fp, pFp)
σ◦adj(pr2)−−−−−−→ U × Ũ

ω×IdFp

y yIdU×p
(EŨ, pEŨ)×U (Fp, pFp)

σ′◦adj(pr1)−−−−−−→ U × U

where
σ : (Ũ , p)×U (Fp, pFp)→ (Fp, pFp)×U (Ũ , p)

σ′ : (EŨ, pEŨ)×U (Fp, pFp)→ (Fp, pFp)×U (EŨ, pEŨ)

are permutations of the factors.

It is easy to show that U × U is fibrant. Therefore it is sufficient to show that IdU × p is in
FB and ω×U IdFp is in TC. The first fact follows from the assumption that p is in FB and
that U is fibrant. The obtain the second fact let us apply condition (3) on the classes FB

and TC to B = U , f = pEŨ , i = ω and p = pFp. It remains to show that pFp is in FB.
We can represent pFp as the composition

Fp
pr1→ IpEŨ(U)

prI
pEŨ→ U

The morphism pEŨ is in FB as a composition of pull-backs of p with respect to morphisms
with fibrant domains through repeated application of Lemmas 2.3.4 and 2.3.5. Therefore,
the morphism prIpEŨ is in FB by Lemma 2.3.6 and as a corollary we know that IpEŨ(U) is
fibrant. Similarly Ip(U) is fibrant and ip(p) is in FB and applying again Lemma 2.3.4 we
see that pr1 is in FB. And again by Lemma 2.3.5 we see that pFp is in FB which finishes
the proof of the theorem.

Corollary 2.3.9 [2015.05.18.cor1] Let C be a locally cartesian closed category with a
Quillen model structure, p a universe in C and (Eq,Ω) a J1-structure on p. Assume further
that p is a fibration and ω is a trivial cofibration and that in addition one of the following
two conditions holds:

1. consider morphisms f : B′ → B, p1 : E1 → B, p2 : E2 → B and i : E1 → E2 such that
p1, p2 are fibrations and i a trivial cofibration. Then the morphism

IdB′ × i : (B′, f)×B (E1, p1)→ (B′, f)×B (E2, p2)

is a trivial cofibration,

2. U is fibrant and the pull-back of a trivial cofibration along a fibration is a trivial cofi-
bration.
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Then (Eq, ω) can be extended to a full J-structure on p.

The following result can be used to produce many examples of universes with J-structures
(but not the univalent universes). Let C be a locally cartesian closed category with coproducts
of sequences qn∈NXn. We let inn : Xn → qnXn and 〈fn〉n : qnXn → Y denote the canonical
morphisms. We let qfn : qnXn qn Yn denote the morphism 〈fn ◦ inn〉n.

Assume that these coproducts satisfy the following two conditions:

1. for a sequence of morphisms fn : En → Bn the square

qn(En, fn)×Bn (En, fn)
qnpr2−−−→ qnEn

qnpr1

y yqnfn
qnEn

qnfn−−−→ qnBn

is a pull-back square,

2. for a sequence of morphisms fn : En → Bn the square

qnEn+1
〈inn+1〉n−−−−−→ qnEn

qnfn+1

y yqnfn
qnBn+1

〈inn+1〉n−−−−−→ qnBn

is a pull-back square.

Problem 2.3.10 [2015.05.22.th2] Let C be as above FB and TC two classes of morphisms
satisfying one of the sets of conditions 2.3.3 or 2.3.1. Assume in addition the following:

1. the coproduct of a sequence of morphisms from TC is in TC and the coproduct of a
sequence of morphisms from FB is in FB,

2. the composition of a morphism from TC with an isomorphism is in TC,

3. for any morphism f : X → Y there is given an object P (f) and morphisms if : X →
P (f), qf : P (f)→ Y such that if ∈ TC, qf ∈ FB and f = if ◦ qf .

To construct, for any universe p : Ũ → U such that p ∈ FB a sequence of morphisms
pn : Ũn → Un such that p0 = p, pn ∈ FB and qnp, with the universe structure defined by the
fiber squares of C, has a J-structure with ω ∈ TC.

Construction 2.3.11 [2015.05.23.constr1] Define pn : Ũn → Un inductively as follows.

For n = 0 we take p0 = p. To define pn+1 consider the diagonal ∆n : Ũn → (Ũn, pn) ×Un
(Ũn, pn) and let

pn+1 = q∆n : P (∆n)→ (Ũn, pn)×Un (Ũn, pn)
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so that in particular Un+1 = (Ũn, pn)×Un (Ũn, pn).

Let U∗ = qnUn, Ũ∗ = qnŨn and p∗ = qnpn. According to the first of the two properties
that we required from the coproducts the canonical morphism

ι : qn(Ũn, pn)×Un (Ũn, pn)→ (Ũ∗, p∗)×U∗ (Ũ∗, p∗)

is an isomorphism. Together with the second property applied to the right-most square this
gives us a diagram with pull-back squares of the form:

qnŨn+1
=−−−→ qnŨn+1

=−−−→ qnŨn+1
〈inn+1〉n−−−−−→ Ũ∗

r◦ι
y r

y r

y yp∗
(Ũ∗, p∗)×U∗ (Ũ∗, p∗)

ι−1

−−−→ qn(Ũn, pn)×Un (Ũn, pn)
=−−−→ qnUn+1

〈inn+1〉n−−−−−→ U∗

where r = qnpn+1. Define Eq as the composition of the lower horizontal arrows of this
diagram (up to an isomorphism this is just 〈inn+1〉n). Since the squares of the diagram are
pull-back the natural morphism

ι′ : qnŨn+1 → ((Ũ∗, p∗)×U∗ (Ũ∗, p∗), Eq)U∗(Ũ∗, p∗)

is an isomorphism. Define
Ω = (qni∆n) ◦ ι′ ◦ 〈inn+1〉n

such that then
ω = (qni∆n) ◦ ι′

By our assumptions ω ∈ TC and then by Theorem 2.3.2 if FB and TC satisfied Conditions
2.3.1 or by Theorem 2.3.8 if FB and TC satisfied Conditions 2.3.3 we conclude that (Eq,Ω)
can be extended to a full J-structure on p∗.

2.4 Constructing a J-structure on CC(C, p) from a J-structure on
p

The construction of a C-system CC(C, p) from a category with a universe p and a final object
pt was presented in [13] and summarized in [15]. Let us recall some facts and notations. The
underlying category of CC(C, p) is equipped with a functor int to C. Note that while int is
the identity on morphisms by construction of CC(C, p), the notations for the same element of
Hom(Γ′,Γ) and Hom(int(Γ′), int(Γ)) may differ. In particular for f : Γ′ → Γ and F : Γ→ U
we have

[2015.04.02.eq2]q(f, int(Γ, F )) = Q(f, F ) (14)

For each Γ ∈ Ob(CC(C, p)) we have natural bijections

[2015.03.27.eq7b]u1 : Ob1(Γ)→ Hom(int(Γ), U) (15)
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[2015.03.27.eq7a]ũ1 : Õb1(Γ)→ Hom(int(Γ), Ũ) (16)

where u−1
1 (F ) = (Γ, F ) and where

[2015.03.31.eq5]ũ1(s) = s ◦Q(u1(∂(s))) (17)

In particular,

ũ1(s) ◦ p = s ◦Q(u1(∂(s))) ◦ p = s ◦ p∂(s) ◦ u1(∂(s)) = u1(∂(s))

i.e., with respect to these bijections the function ∂ : Õb1(Γ)→ Ob1(Γ) is given by composition

with p : Ũ → U .

Problem 2.4.1 [2015.03.27.prob3] Let Eq : (Ũ ; p) → U be a J0-structure on a universe
p in a category C. To construct a J0-structure on CC(C, p).

Construction 2.4.2 [2015.03.27.constr3] Since the canonical squares are pull-back squares
bijections u1 and ũ1 gives us a bijection

ũu : {o, o′ ∈ Õb1(Γ) | ∂(o) = ∂(o′)} → Hom(int(Γ), (Ũ ; p))

where ũu(o, o′) = ũ1(o) ∗ ũ1(o′). We set:

IdT (o, o′) = u−1
1 (ũu(o, o′) ◦ Eq).

We let IdTEq denote the J0-structure on CC(C, p) constructed from Eq in Construction
2.4.2. Note that

[2015.03.31.eq1]int(IdT (o, o′)) = (int(Γ); (ũ1(o) ∗ ũ1(o′)) ◦ Eq) (18)

Recall that in [16] we let pΓ,n : Γ→ ftn(Γ) denote the composition of n canonical projections
pΓ ◦ . . . ◦ pftn−1(Γ).

Lemma 2.4.3 [2015.03.27.l1] Let Eq be a J0-structure on p. Let Γ ∈ Ob and F : int(Γ)→
U . Then one has:

int(IdxT (Γ, F )) = (int(Γ);F )E

pIdxT (T ),3 = pEΓ,F

Q(F )E ◦Q(Eq) = Q(Q(Q(F ) ◦ p) ◦ Eq)

Proof: Let T = (Γ, F ). We have:

int(IdxT (T )) = int(IdTp∗T (T )(o, o
′)) = (int(p∗T (T )); (ũ1(o) ∗ ũ1(o′)) ◦ Eq)

where
o = p∗p∗T (T )(δ(T ))
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o′ = δ(p∗T (T ))

We have
int(p∗T (T )) = (int(Γ);F,Q(F ) ◦ p)

and
ũ1(p∗p∗T (T )(δ(T ))) = p(int(Γ,F,Q(F )◦p) ◦Q(F )

ũ1(δ(p∗T (T ))) = Q(Q(F ) ◦ p)
which shows that ũ1(o) ∗ ũ1(o′) = Q(Q(F ), p) and completes the proof of the first and the
second equations.

The third equality is a corollary of the equality Q(F )E = Q(Q(Q(F ), p), Eq) and the equality
Q(f, F ) ◦Q(F ) = Q(f ◦ F ).

Problem 2.4.4 [2015.03.27.prob4] Let Eq : (Ũ ; p) → U , Ω : Ũ → Ũ be a J0-structure
and a J1-structures on a universe p in a category C. To construct a J1-structure refl(Eq,Ω)
over IdTEq on CC(C, p).

Construction 2.4.5 [2015.03.27.constr4] Due to the natural bijections (16) the mor-
phism Ω defines maps

refl : Õb1(Γ)→ Õb1(Γ)

by the formula
refl(s) = ũ−1

1 (ũ1(s) ◦ Ω)

that are natural in Γ. The equation (1) follows from the commutativity of the square (6).

We let reflΩ denote the J1-structure constructed from Ω in Construction 2.4.5. The following
technical lemma is only needed in the proof of Lemma 2.4.7.

Lemma 2.4.6 [2015.04.02.l3] For s ∈ Õb1(Γ) one has:

reflΩ(s) ◦Q(s ◦Q(F ) ◦ Ω ◦ p) = s ◦Q(F ) ◦ Ω

where F = u1(∂(s)).

Proof: We have

u1(∂(reflΩ(s))) = ũ1(refl(s)) ◦ p = ũ1(s) ◦ Ω ◦ p = s ◦Q(F ) ◦ Ω ◦ p

therefore
ũ1(reflΩ(s)) = reflΩ(s) ◦Q(u1(∂(reflΩ(s)))) =

reflΩ(s) ◦Q(s ◦Q(F ) ◦ Ω ◦ p)
On the other hand, by definition of reflΩ,

ũ1(reflΩ(s)) = ũ1(s) ◦ Ω = s ◦Q(F ) ◦ Ω.
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Lemma 2.4.7 [2015.03.31.l2] Given Eq and Ω consider the corresponding IdT and refl.
For T ∈ Ob1(Γ) let

rfT : int(T )→ int(IdxT (T ))

be the morphism constructed in Construction 2.1.6. On the other hand let

F ∗(ω) : (int(Γ);F )→ (int(Γ);F )E

is the pull-back of ω : Ũ → EŨ with respect to F = u1(T ) i.e. the unique morphism

(int(Γ);F )→ (int(Γ);F )E

such that
F ∗(ω) ◦ pEint(Γ),F = pT

F ∗(ω) ◦Q(int(Γ), F )E = Q(F ) ◦ ω

Then
rfT = F ∗(ω)

Proof: In view of Lemma 2.4.3, both rfT and F ∗(ω) are morphisms from (int(Γ);F ) to
(int(Γ);F )E. Let us denote int(Γ) by X and (int(Γ);F,Q(F ) ◦ p) by Y . We have

(X;F )E = (Y ;Q(Q(F ), p) ◦ Eq)

and we can see this object as a part of the diagram with two pull-back squares:

(Y ;Q(Q(F ), p) ◦ Eq) h1−−−→ EŨ
h2−−−→ Ũ

pY,Q(Q(F ),p)◦Eq

y y yp
Y

Q(Q(F ),p)−−−−−−→ (Ũ , p)
Eq−−−→ U

We have two projections

h = h1 ◦ h2 = Q(Q(Q(F ), p) ◦ Eq) : (X;F )E → Ũ

v : pY,Q(Q(F ),p)◦Eq : (X;F )E → Y

We need to check that
rfT ◦ h = F ∗(ω) ◦ h

rfT ◦ v = F ∗(ω) ◦ v

The morphism rfT is defined in (4) as

rfT = refl(δ(T )) ◦ q(δ(T ), IdxT (T )) = refl(δ(T )) ◦Q(δ(T ), Q(Q(F ), p) ◦ Eq)

where the second equation is from (14). We have

rfT ◦h = refl(δ(T ))◦Q(δ(T ), Q(Q(F ), p)◦Eq)◦h = refl(δ(T ))◦Q(δ(T )◦Q(Q(F ), p)◦Eq) =
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refl(δ(T )) ◦Q(Q(F ) ◦∆ ◦ Eq) = refl(δ(T )) ◦Q(Q(F ) ◦ (ω ◦ pEŨ) ◦ Eq) =

refl(δ(T )) ◦Q(Q(F ) ◦ ω ◦Q(Eq) ◦ p) = refl(δ(T )) ◦Q(Q(F ) ◦ Ω ◦ p)

On the other hand

F ∗(ω) ◦ h = F ∗(ω) ◦ h1 ◦ h2 = Q(F ) ◦ ω ◦ h2 = Q(F ) ◦ ω ◦Q(Eq) = Q(F ) ◦ Ω

We have u1(∂(δ(T ))) = Q(F ) ◦ p and

δ(T ) ◦Q(u1(∂(δ(T )))) = δ(T ) ◦Q(Q(F ) ◦ p) = δ(T ) ◦Q(pT ◦ F ) =

δ(T ) ◦ q(pT , T ) ◦Q(F ) = Idint(T ) ◦Q(F ) = Q(F )

Therefore by Lemma 2.4.6 we have

refl(δ(T )) ◦Q(Q(F ) ◦ Ω ◦ p) = Q(F ) ◦ Ω

Which proves that rfT ◦ h = F ∗(ω) ◦ h.

We have rfT ◦ v = δ(T ) because the square (3) commutes. Both rfT ◦ v and F ∗(ω) ◦ v
are morphisms int(T ) → int(p∗T (T )). Since p∗T (T ) is a part of a pull-back square with the
projections being pp∗T (T ) and Q(Q(F ) ◦ p) we need to check that

δ(T ) ◦Q(Q(F ) ◦ p) = F ∗(ω) ◦ v ◦Q(Q(F ) ◦ p) = F ∗(ω) ◦ h1 ◦ pEŨ =

Q(F ) ◦ ω ◦ pEŨ = Q(F ) ◦∆

which holds by a simple computation, and

Idint(T ) = δ(T ) ◦ pp∗T (T ) = F ∗(ω) ◦ v ◦ pp∗T (T )

For this equality we need to verify two further equalities

Q(F ) = Idint(T ) ◦Q(F ) = F ∗(ω) ◦ v ◦ pp∗T (T ) ◦Q(F )

and
pT = Idint(T ) ◦ pT = F ∗(ω) ◦ v ◦ pp∗T (T ) ◦ pT

The second one is the second equality of the two that define F ∗(ω). For the first one we have

F ∗(ω) ◦ v ◦ (pp∗T (T ) ◦Q(F )) = F ∗(ω) ◦ v ◦Q(Q(F ), p) ◦ pŨ ,p =

Q(F ) ◦∆ ◦ pŨ ,p = Q(F ).

This completes the proof of Lemma 2.4.7.

Problem 2.4.8 [2015.04.04.prob1] Let (Eq,Ω, Jp) be a J-structure on a universe p. To
construct for all Γ ∈ Ob = Ob(CC(C, p)), for all T ∈ Ob1(Γ), for all P ∈ Ob1(IdxT (T )), for

all s0 ∈ Õb(rf ∗T (P )), an element J(Γ, T, P, s0) of Õb(P ).
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Construction 2.4.9 [2015.04.04.constr1] Let X := int(Γ), F := u1(T ) : X → U . By
Lemma 2.4.3 we have int(IdxT (T )) = int(IdxT (Γ, F )) = (int(Γ);F )E. Therefore we further

have G := u1(P ) : (int(Γ);F )E → U and H̃ := ũ1(s0) : (X;F )→ Ũ .

Let us show first that
ηpEŨ(F,G) ◦ Iω(U) = ηp(F, H̃) ◦ Ip(p)

Indeed,
ηpEŨ(F,G) ◦ Iω(U) = ηp(F,G ◦ F ∗(ω)) = ηp(F, rfT ◦G) =

ηp(F, s0 ◦Q(rfT ◦G) ◦ p) = ηp(F, H̃ ◦ p) = ηp(F, H̃) ◦ Ip(p)
where the first equality is from Lemma 2.2.3, the second from Lemma 2.4.7, the third from
the commutativity of the canonical square and the fact that s0 is a section, the fourth from
(17) and the fifth from naturality of ηp,X,V in V .

Therefore the pair (ηpEŨ(F,G), ηp(F, H̃)) gives us a morphism

φ(Γ, T, P, s0) : X → (IpEŨ(U), Iω(U))×Ip(U) (Ip(Ũ), Ip(p))

and compositing it with Jp (cf. Definition 2.2.8) we obtain a morphism

φ(Γ, T, P, s0) ◦ Jp : X → IpEŨ(Ũ)

Consider the element

(F1, F2) = η!
pEŨ

(φ(Γ, T, P, s0) ◦ Jp) ∈ DpEŨ(X, Ũ)

By [15, Problem 3.8(1)] we have

(F1, F2 ◦ p) = DpEŨ(X, p)(F1, F2) = η!
pEŨ

(φ(Γ, T, P, s0) ◦ Jp ◦ IpEŨ(p)) =

η!
pEŨ

(ηpEŨ(F,G)) = (F,G)

Therefore, F2 is of the form (X;F )E → Ũ i.e. of the form ũ1,IdxT (T )(J)) for some J such
that ∂(J) = P .

Remark 2.4.10 [2015.05.08.rem1] Note that the defining property of J = JJp(Γ, T, P, s0)

is that it is the unique element of Õb(CC(C, p)) that satisfies the equation

ηpEŨ(u1,Γ(T ), ũ1,IdxT (T )(J)) = φ(Γ, T, P, s0) ◦ Jp

where
φ(Γ, T, P, s0) : int(Γ)→ (IpEŨ(U), Iω(U))×Ip(U) (Ip(Ũ), Ip(p))

is given by the pair of morphisms (ηpEŨ(u1,Γ(T ), u1,IdxT (T )(P )), ηp(u1,Γ(T ), ũ1,Γ(s0))).

Lemma 2.4.11 [2015.04.04.l4] Let Eq be a J0-structure on a universe p, f : Γ → Γ′ a
morphism in CC(C, p) and F : int(Γ)→ U a morphism in C. Let q3 : int(IdxT (Γ′, f ◦F ))→
int(IdxT (Γ, F )) be the morphism q(f, IdxT (Γ, F ), 3) defined by Γ since ft3(IdxT (Γ, F )) =
Γ. Then q3 = Q(f, F )E.
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Proof: Let X := int(Γ) and X ′ := int(Γ′). By definition, Q(f, F )E is the unique morphism
such that

Q(f, F )E ◦Q(F )E = Q(f ◦ F )E

Q(f, F )E ◦ pEX,F = pEX′,f◦F ◦ f
We will be building the proof using the following diagram

(X ′, f ◦ F )E
Q(Q(Q(f,F ),Q(F )◦p),Q(Q(F ),p)◦Eq)−−−−−−−−−−−−−−−−−−−−−→ (X;F )E

Q(Q(Q(F ),p),Eq)−−−−−−−−−→ EŨ
Q(Eq)−−−→ Ũ

p3

y y yp1

yp
• Q(Q(f,F ),Q(F )◦p)−−−−−−−−−−→ • Q(Q(F ),p)−−−−−−→ • Eq−−−→ U∥∥∥ ∥∥∥ ∥∥∥
• Q(Q(f,F ),Q(F )◦p)−−−−−−−−−−→ • Q(Q(F ),p)−−−−−−→ • Q(p)−−−→ Ũy y yp2

yp
• Q(f,F )−−−−→ • Q(F )−−−→ • p−−−→ U∥∥∥ ∥∥∥ ∥∥∥
• Q(f,F )−−−−→ • Q(F )−−−→ Ũy y yp
X ′

f−−−→ X
F−−−→ U

By construction that is seen on this diagram we have:

q3 = Q(Q(Q(f, F ), Q(F ) ◦ p), Q(Q(F ), p) ◦ Eq)

Q(X,F )E = Q(Q(Q(F ), p), Eq)

and
Q(X ′, f ◦ F )E = Q(Q(Q(f ◦ F ), p), Eq)

Therefore, the first equation that we need to verify is

Q(Q(Q(f, F ), Q(F ) ◦ p), Q(Q(F ), p) ◦ Eq) ◦Q(Q(Q(F ), p), Eq) = Q(Q(Q(f ◦ F ), p), Eq)

By [15, Lemma 3.2] we have, together with the defining rule Q(a,A)◦Q(A) = Q(a◦A), also
the rule:

Q(a1, a2 ◦ A) ◦Q(a2, A) = Q(a1 ◦ a2, A)

Applying it twice and then the defining rule we get:

Q(Q(Q(f, F ), Q(F ) ◦ p), Q(Q(F ), p) ◦ Eq) ◦Q(Q(Q(F ), p), Eq) =

Q(Q(Q(f, F ), Q(F ) ◦ p) ◦Q(Q(F ), p), Eq) =

Q(Q(Q(f, F ) ◦Q(F ), p), Eq) = Q(Q(Q(f ◦ F ), p), Eq)

which gives us the first equation. The second equation is immediate from the commutativity
of the three squares that define q3.
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Lemma 2.4.12 [2015.04.04.l1] Let (Eq,Ω, Jp) be a J-structure on a universe p. Then the
morphisms of Construction 2.4.9 are natural in Γ i.e. for any f : Γ′ → Γ one has

[2015.04.04.eq3]f ∗(JJp(Γ, T, P, s0)) = JJp(Γ
′, f ∗(T ), f ∗(P ), f ∗(s0)) (19)

Proof: Let us write J for JJp(Γ, T, P, s0) and J ′ for JJp(Γ
′, f ∗(T ), f ∗(P ), f ∗(s0)) and use

the notations of Construction 2.4.9. Recall that for f : Γ′ → Γ the operation f ∗ is defined
only on Ob1(Γ). In all other uses it is an abbreviation for operations such as X 7→ f ∗(X, i)
and s 7→ f ∗(s, i) for various i (see [16]). In particular, (19) is an abbreviation for

f ∗(J(Γ, T, P, s0), 4) = J(Γ′, f ∗(T ), f ∗(P, 4), f ∗(s0, 2))

which in its turn translates into the equation in Õb1(IdxT (f ∗(T ))) of the form

q(f, IdxT (T ), 3)∗(J, 1) = J ′

We have:
ηpEŨ(F, ũ1(J)) = φ(Γ, T, P, s0) ◦ Jp

ηpEŨ(f ◦ F, ũ1(J ′)) = φ(Γ′, f ∗(T ), f ∗(P ), f ∗(s0)) ◦ Jp

By naturality of η with respect to the first argument we have

f ◦ ηpEŨ(F, ũ1(J)) = ηpEŨ(f ◦ F,Q(f, F )E ◦ ũ1(J))

Therefore, by Lemma 2.4.11 we have

f ◦ ηpEŨ(F, ũ1(J)) = ηpEŨ(f ◦ F, ũ1(Q(f, F )∗E(J, 1))) =

ηpEŨ(f ◦ F, ũ1(q(f, IdxT (T ), 3)∗(J, 1)))

Since both ηpEŨ and ũ1 are bijections and in particular injections it is sufficient to show that

f ◦ φ(Γ, T, P, s0) ◦ Jp = φ(Γ′, f ∗(T ), f ∗(P ), f ∗(s0)) ◦ Jp

or that
f ◦ φ(Γ, T, P, s0) = φ(Γ′, f ∗(T ), f ∗(P ), f ∗(s0))

Since both φ expressions are morphism into a product this amounts to two equations that,
taking into account the definition of φ in Construction 2.4.9 are:

f ◦ ηpEŨ(F,G) = ηpEŨ(f ◦ F, u1(f ∗(P )))

and
f ◦ ηp(F, H̃) = ηp(f ◦ F, ũ1(f ∗(s0)))

The first equality follows naturality of η and Lemma 2.4.11. The second equality follows
from naturality of η. This finished the proof of Lemma 2.4.12.
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Lemma 2.4.13 [2015.04.04.l5] Let (Eq,Ω, Jp) be a J-structure on a universe p. Then
the morphisms of Construction 2.4.9 satisfy the second condition of the definition of a J2-
structure, i.e., for all Γ, T , P and s0 as above one has

rf ∗T (JJp(Γ, T, P, s0)) = s0

Proof: Let J = JJp(Γ, T, P, s0). Then, using the notations of Construction 2.4.9 we have:

ηEŨ(F, ũ1(J)) = φ ◦ Jp

Then
ηEŨ(F, ũ1(J)) ◦ Iω(Ũ) = ηp(F, F

∗(ω) ◦ ũ1(J))

By Lemma 2.4.7 we have F ∗(ω) = rfT . Therefore,

ηEŨ(F, ũ1(J)) ◦ Iω(Ũ) = ηp(F, rfT ◦ ũ1(J)) = ηp(F, ũ1(rf ∗T (J)))

On the other hand
φ ◦ Jp ◦ Iω(Ũ) = φ ◦ prIp(Ũ)

by (8) which equals, by construction, ηp(F, ũ1(s0)). Therefore,

ηp(F, ũ1(rf ∗T (J))) = ηp(F, ũ1(s0))

and using again that both η and ũ1 are injective we conclude that rf ∗T (J) = s0.

Problem 2.4.14 [2015.04.04.prob2] Let (Eq,Ω, Jp) be a J-structure on a universe p. To
construct a J-structure on CC(C, p) relative to IdTEq and reflΩ.

Construction 2.4.15 [2015.04.04.constr2] One has to combine Construction 2.4.9 with
Lemmas 2.4.12 and 2.4.13.

3 Functoriality of the J-structures

3.1 A theorem about functors between categories with two uni-
verses

Before we can formulate the definition of what it means for a universe category functor to be
compatible with J-structures we need some general results about functors between categories
with two universes that we will later apply to the universes p : Ũ → U and pEŨ : EŨ → U
in a locally cartesian closed category C.
Given two universes (p, pX,F , Q(F )) and (p′, p′X,F , Q(F )′) where p : Ũ → U and p′ : Ũ ′ → U
and the canonical squares are of the form

(X;F )
Q(F )−−−→ Ũ

pX,F

y yp
X

F−−−→ U

(X;F )′
Q(F )′−−−→ Ũ ′

p′X,F

y yp′
X

F−−−→ U
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and f : Ũ ′ → Ũ over U , we let F ∗(f) denote the unique morphism (X;F )′ → (X;F ) such
that

[2015.04.08.eq3]F ∗(f) ◦Q(F ) = Q(F )′ ◦ f (20)

[2015.04.08.eq4]F ∗(f) ◦ pX,F = p′X,F (21)

Note that F ∗(f) depends on the universe structures on p and p′. Even when two universe
structures give the same choices of the objects (X;F ) and (X;F )′ the difference in the choice
of some of the morphisms, e.g., Q(F ) will affect morphisms F ∗(f). We will need the following
lemma about these morphisms.

For X ′
f→ X

F→ U we let Q(f, F ) denote the morphism

(pX′,f◦F ◦ f) ∗Q(f ◦ F ) : (X ′; f ◦ F )→ (X;F )

We let Q′(−) and Q′(−,−) denote the morphisms Q(−) and Q(−,−) relative to the universe
p′.

Lemma 3.1.1 [2015.04.20.l1] Let X ′
g→ X

F→ U be two morphisms. Then the square

(X ′; g ◦ F )′
Q′(g,F )−−−−→ (X;F )′

(g◦F )∗(f)

y yF ∗(f)

(X ′; g ◦ F )
Q(g,F )−−−−→ (X;F )

commutes.

Proof: Since (X;F ) is a fiber product relative to the projections pX,F and Q(F ) it is
sufficient to verify that

Q′(g, F ) ◦ F ∗(f) ◦Q(F ) = (g ◦ F )∗(f) ◦Q(g, F ) ◦Q(F )

and
Q′(g, F ) ◦ F ∗(f) ◦ pX,F = (g ◦ F )∗(f) ◦Q(g, F ) ◦ pX,F

which easily follows from the defining equations for Q(−,−) and (−)∗.

Let (C, p, pt), (C ′, p′, pt′) be two universe categories such that C and C ′ are equipped with
locally cartesian closed structures. In [15, Construction 5.6] we have defined, for any universe
category functor

Φ = (Φ, φ, φ̃) : (C, p, pt)→ (C ′, p′, pt′)

and any V ∈ C, a morphism

χΦ(V ) : Φ(Ip(V ))→ Ip′(Φ(V ))

We now need to consider the case when we have the following collection of data:
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1. two universes p1, p2 in C with the common codomain U and a morphism g : Ũ1 → Ũ2

over U ,

2. two universes p′1, p′2 in C ′ with the common codomain U ′ and a morphism g′ : Ũ ′1 → Ũ ′2
over U ′,

3. a functor Φ : C → C ′,

4. a morphism φ : Φ(U)→ U ′,

5. two morphisms φ̃i : Φ(Ũi)→ Ũ ′i , i = 1, 2

and this data is such that:

1. the square

Φ(Ũ1)
φ̃1−−−→ Ũ ′1

Φ(g)

y yg′
Φ(Ũ2)

φ̃2−−−→ Ũ ′2
commutes,

2. the triples Φi := (Φ, φ, φ̃i), i = 1, 2 are universe category functors i.e. Φ takes canonical
squares of p1 and p2 to pull-back squares and the squares

Φ(Ũ1)
φ̃1−−−→ Ũ ′1

Φ(p1)

y yp′1
Φ(U) −−−→

φ
U

Φ(Ũ2)
φ̃2−−−→ Ũ ′2

Φ(p2)

y yp′2
Φ(U) −−−→

φ
U

are pull-back squares.

Let us denote the exchange morphisms

χΦi
(V ) : Φ(Ipi(V ))→ Ipi(Φ(V ))

by χi(V ). The maps Φ2
i in the following lemma are constructed in [15, Construction 5.2].

Lemma 3.1.2 [2015.04.08.l1] Under the previous assumptions and notations the squares

Dp2(X, V )
Φ2

2−−−→ Dp2(Φ(X),Φ(V ))

Dg(X,V )

y yDg′ (Φ(X),Φ(V ))

Dp1(X, V )
Φ2

1−−−→ Dp′1
(Φ(X),Φ(V ))

commute.
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Proof: Let (F1, F2) ∈ Dp2(X,F ) then

Dg′(Φ(X),Φ(V ))(Φ2
2(F1, F2)) = Dg′(Φ(X),Φ(V ))(Φ(F1) ◦ φ, ι2 ◦ Φ(F2)) =

= (Φ(F1) ◦ φ, (Φ(F1) ◦ φ)∗(g′) ◦ ι2 ◦ Φ(F2))

On the other hand

Φ2
1(Dg(X, V )(F1, F2)) = Φ2

1(F1, F
∗
1 (g) ◦ F2) =

(Φ(F1) ◦ φ, ι1 ◦ Φ(F ∗1 (g) ◦ F2))

It remains to check that

(Φ(F1) ◦ φ)∗(g′) ◦ ι2 ◦ Φ(F2) = ι1 ◦ Φ(F ∗1 (g) ◦ F2)

For which it is sufficient to check that

(Φ(F1) ◦ φ)∗(g′) ◦ ι2 = ι1 ◦ Φ(F ∗1 (g))

The codomain of both morphisms is Φ((X;F1)p2) and since Φ takes canonical squares based
on p2 to pull-back squares it is sufficient to check that

(Φ(F1) ◦ φ)∗(g′) ◦ ι2 ◦ Φ(Q2(F1)) ◦ φ̃2 = ι1 ◦ Φ(F ∗1 (g)) ◦ Φ(Q2(F1)) ◦ φ̃2

and
(Φ(F1) ◦ φ)∗(g′) ◦ ι2 ◦ Φ(pX,F1,2) = ι1 ◦ Φ(F ∗1 (g)) ◦ Φ(pX,F1,2)

For the first equation we have

(Φ(F1) ◦ φ)∗(g′) ◦ ι2 ◦Φ(Q2(F1)) ◦ φ̃2 = (Φ(F1) ◦ φ)∗(g′) ◦Q2(Φ(F1) ◦ φ) = Q1(Φ(F1) ◦ φ) ◦ g′

where the first equality is from the definition of ι in [15, Construction 5.2] and the second
from (20). On the other hand

ι1 ◦ Φ(F ∗1 (g)) ◦ Φ(Q2(F1)) ◦ φ̃2 = ι1 ◦ Φ(F ∗1 (g) ◦Q2(F1)) ◦ φ̃2 = ι1 ◦ Φ(Q1(F1) ◦ g) ◦ φ̃2 =

ι1 ◦ Φ(Q1(F1)) ◦ Φ(g) ◦ φ̃2 = ι1 ◦ Φ(Q1(F1)) ◦ φ̃1 ◦ g′ = Q1(Φ(F1) ◦ φ) ◦ g′

This proofs the first equation. For the second equation we have:

(Φ(F1) ◦ φ)∗(g′) ◦ ι2 ◦ Φ(pX,F1,2) = (Φ(F1) ◦ φ)∗(g′) ◦ pΦ(X),Φ(F1)◦φ,2 = pΦ(X),Φ(F1)◦φ,1

and

ι1 ◦ Φ(F ∗1 (g)) ◦ Φ(pX,F1,2) = ι1 ◦ Φ(F ∗1 (g) ◦ pX,F1,2) = ι1 ◦ Φ(pX,F1,1) = pΦ(X),Φ(F1)◦φ,1

This finishes the proof of the lemma.
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Lemma 3.1.3 [2015.04.06.l7] Under the previous assumptions and notations the squares

Φ(Ip2(V ))
χ2(V )−−−→ Ip′2(Φ(V ))

Φ(Ig(V ))

y yIg′ (Φ(V ))

Φ(Ip1(V ))
χ1(V )−−−→ Ip′1(Φ(V ))

commute.

Proof: Let X = Ip2(V ). We have

χ2(V ) ◦ Ig′(Φ(V )) = η′(Φ2
2(η−1(IdX))) ◦ Ig′(Φ(V ))

by definition of χ in [15, Construction 5.6]. Then by Lemma 2.2.3 and Lemma 3.1.2 we have:

η′(Φ2
2(η−1(IdX))) ◦ Ig′(Φ(V )) = η(Dg′(Φ(X),Φ(V ))(Φ2

2(η−1(IdX)))) =

η(Φ2
1(Dg(X, V )(η−1(IdX))))

Then, again by Lemma 2.2.3, we have

η(Φ2
1(Dg(X, V )(η−1(IdX)))) = η(Φ2

1(η−1(IdX ◦ Ig(V ))) = η(Φ2
1(η−1(Ig(V ))))

It remains to show that

η(Φ2
1(η−1(Ig(V )))) = Φ(Ig(V )) ◦ χ1(V )

Let a be any element of Hom(Ip2(V ), Ip1(V )). Let us show that

η(Φ2
1(η−1(a))) = Φ(a) ◦ χ1(V )

We have
Φ(a) ◦ χ1(V ) = Φ(a) ◦ η′(Φ2

1(η−1(IdIp1 (V )))) =

η′(Dp′1
(Φ(a),Φ(V ))(Φ2

1(η−1(IdIp1 (V ))))

where the second equality holds because of naturality of η in the first argument. Then

η′(Dp′1
(Φ(a),Φ(V ))(Φ2

1(η−1(IdIp1 (V )))) = η′(Φ2
1(Dp1(a, V )(η−1(Ip1(V ))))

by [15, Lemma 5.4] and

η′(Φ2
1(Dp1(a, V )(η−1(Ip1(V )))) = η′(Φ2

1(η−1(a ◦ Idp1(V )))) = η′(Φ2
1(η−1(a)))

again by naturality of η in the first argument. This finishes the proof of Lemma 3.1.3.

Consider the morphisms
ζi : Φ(Ipi(U))→ Ipi(U

′)
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given by ζi = χi(U) ◦ Ipi(φ) and

ζ̃i : Φ(Ipi(Ũ1))→ Ipi(Ũ
′
1)

given by ζ̃i = χi(Ũ1) ◦ Ipi(φ̃1). Note that

ζi = ξ(Φ,φ,φ̃i)

where ξ are the morphisms introduced in [15] and ζ̃1 = ξ(Φ,φ,φ̃1) but ζ̃2 6= ξ(Φ,φ,φ̃2).

Theorem 3.1.4 [2015.04.10.th3] Under the previous assumptions and notations the mor-

phisms ζ1, ζ2, ζ̃1, ζ̃2 form a morphism from the square

Φ(Ip2(Ũ1))
Φ(Ig(Ũ1))−−−−−→ Φ(Ip1(Ũ1))

Φ(Ip2 (p2))

y yΦ(Ip1 (p2))

Φ(Ip2(U))
Φ(Ig(U))−−−−−→ Φ(Ip1(U))

to the square

Ip′2(Ũ ′1)
Ig
′
(Ũ ′1)

−−−−→ Ip′1(Ũ ′1)

Ip′2
(p′2)

y yIp′1 (p′2)

Ip′2(U ′)
Ig
′
(U ′)−−−−→ Ip′1(U ′)

Proof: We need to prove commutativity of the outer squares of the following four diagrams:

Φ(Ip2(Ũ1))
χ2(Ũ1)−−−→ Ip′2(Φ(Ũ1))

Ip′2
(φ̃1)

−−−−→ Ip′2(Ũ ′1)

Φ(Ig(Ũ1))

y yIg′ (Φ(Ũ1))

yIg′ (Ũ ′1)

Φ(Ip1(Ũ1))
χ1(Ũ1)−−−→ Ip′1(Φ(Ũ1))

Ip′1
(φ̃1)

−−−−→ Ip′1(Ũ ′1)

Φ(Ip2(U1))
χ2(U1)−−−→ Ip′2(Φ(U1))

Ip′2
(φ̃1)

−−−−→ Ip′2(U ′1)

Φ(Ig(U1))

y yIg′ (Φ(U1))

yIg′ (U ′1)

Φ(Ip1(U1))
χ1(U1)−−−→ Ip′1(Φ(U1))

Ip′1
(φ̃1)

−−−−→ Ip′1(U ′1)

Φ(Ip2(Ũ1))
χ2(Ũ1)−−−→ Ip′2(Φ(Ũ1))

Ip′2
(φ̃1)

−−−−→ Ip′2(Ũ ′1)

Φ(Ip2 (p1))

y yIp′2 (Φ(p1))

yIp′2 (p′1)

Φ(Ip2(U1))
χ2(U1)−−−→ Ip′2(Φ(U1))

Ip′2
(φ̃1)

−−−−→ Ip′2(U ′1)
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Φ(Ip1(Ũ1))
χ1(Ũ1)−−−→ Ip′1(Φ(Ũ1))

Ip′1
(φ̃1)

−−−−→ Ip′2(Ũ ′1)

Φ(Ip1 (p1))

y yIp′1 (Φ(p1))

yIp′1 (p′1)

Φ(Ip1(U1))
χ1(U1)−−−→ Ip′1(Φ(U1))

Ip′1
(φ̃1)

−−−−→ Ip′1(U ′1)

The left squares in the first and the second diagram are commutative by Lemma 3.1.3.

The left squares in the third and the fourth diagram are commutative by [15, Lemma 5.7].

The right hand side squares in the first and second diagram commute by Lemma 2.2.2.

The right hand side squares of the third and the fourth diagram commute because Ip′i are
functorial and therefore take commutative squares to commutative squares.

Theorem is proved.

3.2 Universe category functors compatible with J-structures

Let us define now conditions on functors of universe categories that reflect the idea of compat-
ibility with the J0- J1- and J2-structures on the universes. Recall that for universe categories
(C, p, pt), (C ′, p′, pt′) a functor of universe categories is a triple (Φ, φ, φ̃) where Φ : C → C ′ is
a functor that takes the canonical squares to pull-back squares and pt to a final object and
φ : Φ(U)→ U ′, φ̃ : Φ(Ũ)→ Ũ ′ are morphisms such that the square

[2015.04.06.eq10]

Φ(Ũ)
φ̃−−−→ Ũ ′

Φ(p)

y p′

y
Φ(U)

φ−−−→ U

(22)

is a pull-back square. For any functor of universe categories and X ∈ C, F : X → U the
morphism

Φ(pX,F ) ∗ (Φ(Q(F )) ◦ φ̃) : Φ((X;F ))→ (Φ(X); Φ(F ) ◦ φ)

is an isomorphism and we will denote it ΦX,F . Let ΦŨp be the composition

Φ((Ũ ; p))
Φ
Ũ,p−→ (Φ(Ũ); Φ(p) ◦ φ) = (Φ(Ũ); φ̃ ◦ p′) Q′(φ̃,p′)−→ (Ũ ′; p′)

We also have another description of this morphism given by the following lemma.

Lemma 3.2.1 [2015.04.10.l5] One has:

ΦŨp = (Φ(pŨ ,p) ◦ φ̃) ∗ (Φ(Q(p)) ◦ φ̃)

Proof: One has

ΦŨp ◦ p′
Ũ ′,p′

= ΦŨ ,p ◦Q
′(φ̃, p′) ◦ p′

Ũ ′,p′
= ΦŨ ,p ◦ pΦ(Ũ),φ̃◦p′ ◦ φ̃ = Φ(pŨ ,p) ◦ φ̃
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where the second equality is by definition of Q′(−,−) and the third equality is by definition
of ΦŨ ,p. Then

ΦŨp ◦Q′(p′) = ΦŨ ,p ◦Q
′(φ̃, p′) ◦Q′(p′) = ΦŨ ,p ◦Q(φ̃ ◦ p′) =

ΦŨ ,p ◦Q(Φ(p) ◦ φ) = Φ(Q(p)) ◦ φ̃

where again the second equality is by definition of Q(−,−) and the fourth equality is by
definition of ΦŨ ,p.

Lemma 3.2.2 [2015.04.10.l6] For s, s′ : Y → Ũ such that s ◦ p = s′ ◦ p one has

Φ(s ∗ s′) ◦ ΦŨp = Φ(s ◦ φ̃) ∗ Φ(s′ ◦ φ̃)

in particular
Φ(∆) ◦ ΦŨp = φ̃ ∗ φ̃

Proof: Using Lemma 3.2.1 we have

Φ(s ∗ s′) ◦ ΦŨp ◦ p′
Ũ ′,p′

= Φ(s ∗ s′) ◦ Φ(pŨ ,p) ◦ φ̃ = s ◦ φ̃

and
Φ(s ∗ s′) ◦ ΦŨp ◦Q′(p′) = Φ(s ∗ s′) ◦ Φ(Q(p)) ◦ φ̃ = s′ ◦ φ̃

The particular case of ∆ follows from the fact that ∆ = IdŨ ∗ IdŨ .

Lemma 3.2.3 [2015.04.06.l5] The square

Φ((Ũ ; p))
ΦŨp−−−→ (Ũ ′; p′)yΦ(p

Ũ,p
)

yp′Ũ′,p′
Φ(Ũ)

φ̃−−−→ Ũ ′

is a pull-back square.

Proof: This square is equal to the composition of two squares

Φ((Ũ ; p))
Φ
Ũ,p−−−→ (Φ(Ũ); φ̃ ◦ p′) Q′(φ̃,p′)−−−−→ (Ũ ′; p′)

Φ(p
Ũ,p

)

y ypΦ(Ũ),φ̃◦p′

yp′Ũ′,p′
Φ(Ũ) Φ(Ũ)

φ̃−−−→ Ũ ′

The right hand side square is a pull-back square (5). The left hand side square is a pull-
back square as a commutative square whose sides are isomorphisms. We conclude that the
composition of these two squares is a pull-back square.
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Definition 3.2.4 [2015.04.06.def4] Let Eq be a J0-structure on p and Eq′ a J0-structure

on p′. A universe category functor (Φ, φ, φ̃) is said to be compatible with Eq and Eq′ if the
square

[2015.04.06.eq6]

Φ((Ũ ; p))
Φ(Eq)−−−→ Φ(U)

ΦŨp

y yφ
(Ũ ′; p′)

Eq′−−−→ U ′

(23)

commutes.

Let Eq, Eq′ be as above. Let (Φ, φ, φ̃) be a universe functor compatible with Eq, and Eq′.
Define a morphism

φ̃E : Φ(EŨ)→ EŨ ′ = ((Ũ ′; p′), Eq′)

as (Φ(p(Ũ ;p),Eq) ◦ ΦŨp) ∗ (Φ(Q(Eq)) ◦ φ̃).

Lemma 3.2.5 [2015.04.06.l4] Let Eq, Eq′ be as above. Let (Φ, φ, φ̃) be a universe functor
compatible with Eq, and Eq′. Then the square

Φ(EŨ)
φ̃E−−−→ EŨ ′

Φ(p
(Ũ ;p),Eq

)

y yp(Ũ′;p′),Eq′

Φ((Ũ ; p))
ΦŨp−−−→ (Ũ ′; p′)

is a pull-back square.

Proof: Consider the diagram

[2015.04.06.eq8]

Φ(EŨ)
φ̃E−−−→ EŨ ′

Q(Eq′)−−−−→ Ũ ′

Φ(p
(Ũ ;p),Eq

)

y yp(Ũ′;p′),Eq′

yp′
Φ((Ũ ; p))

ΦŨp−−−→ (Ũ ′; p′)
Eq′−−−→ U ′

(24)

The outer square of this diagram is equal to the outer square of the diagram

[2015.04.06.eq7]

Φ(EŨ)
Φ(Q(Eq))−−−−−→ Φ(Ũ)

φ̃−−−→ Ũ ′

Φ(p
(Ũ ;p),Eq

)

y yΦ(p)

yp′
Φ((Ũ ; p))

Φ(Eq)−−−→ Φ(U)
φ−−−→ U ′

(25)

where the equality of the lower horizontal arrows follows from the commutativity of the
square (23). The left hand side square of this diagram is a pull-back square because Φ takes
canonical squares to pull-back squares. The right hand side square is a pull-back square
by definition of a functor of universe categories. Therefore the outer square is a pull-back
square. The right hand side square of (24) is a canonical square and therefore a pull-back
square. We conclude that the left hand square of (24) is a pull-back square.
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Lemma 3.2.6 [2015.04.06.l6] Let Eq, Eq′ be as above. Let (Φ, φ, φ̃) be a functor of uni-
verse categories compatible with Eq, and Eq′. Then the square

[2015.04.06.eq9]

Φ(EŨ)
φ̃E−−−→ EŨ ′

Φ(pEŨ)

y ypEŨ ′
Φ(U)

φ−−−→ U ′

(26)

is a pull-back square.

Proof: It follows from the fact that the square (26) is equal to the vertical composition of
the squares of Lemmas 3.2.5 and 3.2.3 with the square (22).

Definition 3.2.7 [2015.04.06.def5] Let Eq, Eq′ be as above and let Ω, Ω′ be J1-structures

over Eq and Eq′ respectively. A universe category functor (Φ, φ, φ̃) is said to be compatible
with Ω and Ω′ if the square

Φ(Ũ)
Φ(Ω)−−−→ Φ(Ũ)

φ̃

y yφ̃
Ũ ′

Ω′−−−→ Ũ ′

commutes.

Lemma 3.2.8 [2015.04.10.l7] Let Eq,Ω and Eq′,Ω′ be as above and let Φ be a universe
category functor compatible with Eq,Eq′ and Ω,Ω′. Then the square

Φ(Ũ)
φ̃−−−→ Ũ ′

Φ(ω)

y yω′
Φ(EŨ)

φ̃E−−−→ EŨ ′

commutes.

Proof: Since EŨ ′ = ((Ũ ′; p′);Eq′) it is sufficient to verify that the compositions of the two
paths in the square with p(Ũ ′;p′),Eq′ and Q(Eq′) coincide. We have:

φ̃ ◦ ω′ ◦Q(Eq′) = φ̃ ◦ Ω′

by definition of ω′. On the other hand

Φ(ω) ◦ φ̃E ◦Q(Eq′) = Φ(ω) ◦ Φ(Q(Eq)) ◦ φ̃ = Φ(Ω) ◦ φ̃

where the first equation holds by definition of φ̃E. The proof follows now from the assumption
that Φ is compatible with Ω and Ω′.
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To formulate the condition of compatibility of a universe functor with full J-structures on C
and C ′ we will use Theorem 3.1.4.

Let Φ = (Φ, φ, φ̃) be a functor of universe categories. In view of Lemma 3.2.6, if Φ is com-

patible with Eq and Eq′ then the triple ΦE := (Φ, φ, φ̃E) is a functor of universe categories
as well. If, in addition, Φ is compatible with Ω and Ω′ then, by Lemma 3.2.8, morphisms ω
and ω′ satisfy the conditions on morphisms g and g′ of Section 3.1.

Let
ξΦ : Φ(Ip(U))→ Ip′(U

′)

ξ̃Φ : Φ(Ip(Ũ))→ Ip′(Ũ
′)

denote the compositions χΦ(U) ◦ Ip′(φ) and χΦ(Ũ) ◦ Ip′(φ̃) and let

ζΦ : Φ(IpEŨ(U))→ IpEŨ ′(U
′)

ζ̃Φ : Φ(IpEŨ(Ũ))→ IpEŨ ′(Ũ
′)

be given by the compositions χΦE
(U) ◦ IpEŨ ′(φ) and χΦE

(Ũ) ◦ IpEŨ ′(φ̃). Note that ζΦ = ξΦE

but ζ̃Φ is different from ξ̃ΦE
since the latter is equal to the composition χΦE

(EŨ)◦IpEŨ ′(φ̃E).
Applying Theorem 3.1.4 in this context we get the following.

Theorem 3.2.9 [2015.04.10.th1] Let Φ be a functor of universe categories compatible
with the J1-structures (Eq,Ω) and (Eq′,Ω′) on p and p′ respectively. Then the morphisms

ξΦ, ξ̃Φ, ζΦ, ζ̃Φ form a morphism from the square

Φ(IpEŨ(Ũ))
Φ(Iω(Ũ))−−−−−→ Φ(Ip(Ũ))

Φ(I
pEŨ

(p))

y yΦ(Ip(p))

Φ(IpEŨ(U))
Φ(Iω(U))−−−−−→ Φ(Ip(U))

to the square

IpEŨ ′(Ũ
′)

Iω
′
(Ũ ′)−−−−→ Ip′(Ũ

′)

I
pEŨ′ (p

′)

y yIp′ (p′)
IpEŨ ′(U

′)
Iω(U ′)−−−→ Ip′(U

′)

Let RΦ denote the composition

Φ((IpEŨ(U), Iω(U))×Ip(U) (Ip(Ũ), Ip(p)))→ Φ(IpEŨ(U), Iω(U))×Φ(Ip(U)) Φ(Ip(Ũ), Ip(p))→

(IpEŨ ′(U
′), Iω

′
(U ′))×Ip′ (U ′) (Ip′(Ũ

′), Ip′(p
′))

where the second arrow is defined by ξΦ, ξ̃Φ and ζΦ in view of Theorem 3.2.9.
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Definition 3.2.10 [2015.04.06.def6] Let Eq, Eq′, Ω and Ω′ be as above. Let Jp and Jp′

be J2-structures over (Eq,Ω) and (Eq′,Ω′) respectively. A universe category functor (Φ, φ, φ̃)
is said to be compatible with Jp and Jp′ if it is compatible with Eq, Eq′ and Ω, Ω′ in the
sense of Definitions 3.2.4 and 3.2.7 respectively and the square

Φ((IpEŨ(U), Iω(U))×Ip(U) (Ip(Ũ), Ip(p)))
RΦ−−−→ (IpEŨ ′(U

′), Iω
′
(U ′))×Ip′ (U ′) (Ip′(Ũ

′), Ip′(p
′))

Φ(Jp)

y yJp′
Φ(IpEŨ(Ũ))

ζ̃Φ−−−→ IpEŨ ′(Ũ
′)

commutes.

3.3 Homomorphisms of C-systems compatible with J-structures

Definition 3.3.1 [2015.04.06.def1] Let H : CC → CC ′ be a homomorphism of C-systems.

1. Let IdT , IdT ′ are J0-structures on CC and CC ′ respectively. Then H is called a
homomorphism of C-systems with J0-structures (CC, IdT ) → (CC, IdT ′) if for each

Γ ∈ Ob(CC) and o, o′ ∈ Õb1(Γ) such that ∂(o) = ∂(o′), one has

H(IdTΓ(o, o′)) = IdT ′H(Γ)(H(o), H(o′))

(the right hand side of the equality makes sense because H commutes with ∂).

2. Let IdT , IdT ′ be as above and let refl, refl′ be J1-structures over IdT and IdT ′

respectively. A homomorphism of C-systems with J0-structures H : (CC, IdT ) →
(CC ′, IdT ′) is called a homomorphism of C-systems with J1-structures

(CC, IdT, refl)→ (CC ′, IdT ′, refl′)

if for all Γ ∈ Ob(CC) and o ∈ Õb1(Γ) one has

H(refl(o)) = refl′(H(o))

For a C-system CC with a J0-structure IdT and a J1-structure refl over IdT define
Jdom(CC, IdT, refl) as the set of quadruples (Γ, T, P, s0) where Γ ∈ Ob, T ∈ Ob1(Γ), P ∈
Ob1(IdxT (T )) and s0 ∈ Õb(rf ∗T (P )). Equivalently we can say that Jdom(CC, IdT, refl) is

the subset in Ob×Ob×Ob× Õb that consists of quadruples (Γ, T, P, s0) where ft(T ) = Γ,

ft(P ) = IdxT (T ) and ∂(s0) = rf ∗T (P ). Then a J2-structure is defined by a map Jdom→ Õb
with some properties.

Lemma 3.3.2 [2015.04.06.l3] Let H : CC → CC ′ be a homomorphism of C-systems. Let
Γ, X, Y ∈ Ob(CC), m,n ∈ N and suppose that ftm(X) = ftn(Y ) = Γ. Let f : X → Y be a
morphism over Γ and let F : Γ′ → Γ be a morphism. Then

H(F ∗(f)) = H(F )∗(H(f))
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Proof: This is easy to show from the defining properties of F ∗(f) and H(F )∗(H(f)).

Lemma 3.3.3 [2015.04.06.l2] Let IdT , IdT ′, refl and refl′ be as in Definition 3.3.1 and
let

H : (CC, IdT, refl)→ (CC ′, IdT ′, refl′)

be a homomorphism of C-systems with J1-structures. Then for all elements (Γ, T, P, s0) of
Jdom(IdT, refl) one has (H(Γ), H(T ), H(P ), H(s0)) ∈ Jdom(IdT ′, refl′).

Proof: We have ft(H(T )) = H(ft(T )) = H(Γ) and ft(H(P )) = H(ft(P )) = H(IdxT (T )).
We also have ∂(H(s0)) = H(∂(s0)) = H(rf ∗T (P )). By Lemma 3.3.2 we further have

H(rf ∗T (P )) = H(rfT )∗(H(P ))

It remains to show that H(IdxT (T )) = IdxT ′(H(T )) and H(rfT ) = rf ′H(T ). This follows by

a straightforward but lengthy computation from the defining equations (2) and (4).

Definition 3.3.4 [2015.04.06.def2] Let IdT , IdT ′, refl and refl′ be as in Definition 3.3.1
and let J , J ′ be J2-structures over (IdT, refl) and (IdT ′, refl′) respectively. A homomor-
phism of C-systems with J1-structures

H : (CC, IdT, refl)→ (CC ′, IdT ′, ref ′)

is called a homomorphism of C-systems with J-structures

(CC, IdT, refl, J)→ (CC ′, IdT ′, ref ;′ , J ′)

if for all Γ ∈ Ob(CC), T ∈ Ob1(Γ), P ∈ Ob1(IdxT (T )) and s0 ∈ Õb(rf ∗T (P )) one has

H(J(Γ, T, P, s0)) = J ′(H(Γ), H(T ), H(P ), H(s0))

where the right hand side of the equation makes sense by Lemma 3.3.3.

3.4 Functoriality of the J-structures (IdTEq, reflΩ, JJp)

Let us first remind that by [13, Construction 4.7] any universe category functor Φ = (Φ, φ, φ̃)
defines a homomorphism of C-systems

H : CC(C, p)→ CC(C ′, p′)

To define H on objects, one defines by induction on n, for all Γ ∈ Obn(CC(C, p)), pairs
(H(Γ), ψΓ) where H(Γ) ∈ Ob(CC(C ′, p′)) and ψΓ is a morphism

ψΓ : int′(H(Γ))→ Φ(int(Γ))
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as follows. For n = 0 one has H(()) = () and ψ() : pt′ → Φ(pt) is the unique morphism to a
final object Φ(pt). For (Γ, F ) ∈ Obn+1 one has

H((Γ, F )) = (H(Γ), ψΓ ◦ Φ(F ) ◦ φ)

and ψ(Γ,F ) is the unique morphisms int′(H(Γ, F ))→ Φ(int(Γ, F )) such that

ψ(Γ,F ) ◦ Φ(Q(F )) ◦ φ̃ = Q′(ψΓ ◦ Φ(F ) ◦ φ)

and
ψ(Γ,F ) ◦ Φ(pΓ,F ) = pH((Γ,F )) ◦ ψΓ

Observe that ψΓ is automatically an isomorphism. The action of H on morphisms is given,
for f : Γ→ Γ′, by

H(f) = ψΓ ◦ Φ(f) ◦ ψ−1
Γ′

Lemma 3.4.1 [2015.04.12.l1] Let Φ be a universe category functor as above that is com-
patible with the J0-structures Eq and Eq′ on p and p′ respectively. Then the homomorphism
of C-systems H = H(Φ) is a homomorphism of C-systems with J0-structures relative to
IdTEq and IdTEq′.

Proof: Let IdT = IdTEq and IdT ′ = IdTEq′ . We need to check that for all Γ ∈ Ob(CC(C, p))
and o, o′ ∈ Õb1(Γ) such that ∂(o) = ∂(o′) one has

H(IdT (o, o′)) = IdT ′(H(o), H(o′))

Since
∂(H(IdT (o, o′)) = H(Γ)

∂(IdT ′(H(o), H(o′))) = ft(∂(H(o))) = H(ft(∂(o))) = H(Γ)

this is equivalent to
u1(H(IdT (o, o′))) = u1(IdT ′(H(o), H(o′)))

By [15, Lemma 6.1(1)] we have

u1(H(IdT (o, o′))) = ψΓ ◦ Φ(u1(IdT (o, o′))) ◦ φ = ψΓ ◦ Φ((ũ1(o) ∗ ũ1(o′)) ◦ Eq) ◦ φ =

ψΓ ◦ Φ(ũ1(o) ∗ ũ1(o′)) ◦ Φ(Eq) ◦ φ = ψΓ ◦ Φ(ũ1(o) ∗ ũ1(o′)) ◦ ΦŨp ◦ Eq′

By Lemma 3.2.2 we have

ψΓ ◦ Φ(ũ1(o) ∗ ũ1(o′)) ◦ ΦŨp ◦ Eq′ = ψΓ ◦ ((Φ(ũ1(o)) ◦ φ̃) ∗ (Φ(ũ1(o′)) ◦ φ̃)) ◦ Eq′

and [15, Lemma 6.1(2)]

ψΓ ◦ ((Φ(ũ1(o)) ◦ φ̃) ∗ (Φ(ũ1(o′)) ◦ φ̃)) ◦ Eq′ =

((ψΓ ◦ Φ(ũ1(o)) ◦ φ̃) ∗ (ψΓ ◦ Φ(ũ1(o′)) ◦ φ̃)) ◦ Eq′ =
(ũ1(H(o)) ∗ ũ1(H(o′))) ◦ Eq′ = IdT ′(H(o), H(o))

Lemma is proved.
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Lemma 3.4.2 [2015.04.12.l2] Let Φ be a universe category functor as above that is com-
patible with the (J0,J1)-structures (Eq,Ω) and (Eq′,Ω′) on p and p′ respectively. Then the
homomorphism of C-systems H = H(Φ) is a homomorphism of C-systems with (J0,J1)-
structures relative to (IdTEq, reflΩ) and (IdTEq′ , reflΩ′).

Proof: Let refl = reflΩ and refl′ = reflΩ′ . The compatibility condition is

Φ(Ω) ◦ φ̃ = φ̃ ◦ Ω′

We need to check that for Γ ∈ Ob(CC(C, p)) and s ∈ Õb1(Γ) one has

H(refl(s)) = refl′(H(s))

By [15, Lemma 6.1(2)] we have

H(refl(s)) = H(ũ−1
1 (ũ1(s)◦Ω)) = ũ−1

1 (ψΓ◦Φ(ũ1(s)◦Ω)◦φ̃) = ũ−1
1 (ψΓ◦Φ(ũ1(s))◦Φ(Ω)◦φ̃) =

= ũ−1
1 (ψΓ ◦ Φ(ũ1(s)) ◦ φ̃ ◦ Ω′) = ũ−1

1 (ũ1(H(s)) ◦ Ω′) = refl′(H(s)).

To prove the functoriality of the full J-structures we will need some lemmas first.

Recall that in [16] we let pΓ,n : Γ→ ftn(Γ) denote the composition of n canonical projections
pΓ ◦ . . . ◦ pftn−1(Γ).

Lemma 3.4.3 [2015.05.10.l1] Let Φ be a universe category functor and Γ ∈ Ob(CC(C, p))
be such that l(Γ) ≥ n. Then the square

int′(H(Γ))
ψΓ−−−→ Φ(int(Γ))

pH(Γ),n

y yΦ(pΓ,n)

int′(ftn(Γ))
ψftn(Γ)−−−−→ Φ(int(ftn(Γ)))

commutes.

Proof: It follows by simple induction from the defining relation

ψΓ ◦ Φ(pΓ) = pH(Γ) ◦ ψft(Γ)

of ψΓ.

Lemma 3.4.4 [2015.05.06.l3] Let Eq,Eq′ be J0-structures on (C, p) and (C ′, p′) and Φ be
a universe category functor compatible with Eq and Eq′. The for all Γ ∈ Ob(CC(C, p)),

T ∈ Ob1(Γ), P ∈ Ob1(IdxT (T )) and o ∈ Õb(P ) one has:
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1. (u′1,H(Γ)(H(T )), u′1,IdxT ′(H(T ))(H(P ))) is a well defined element of DpEŨ ′(Φ(int(Γ)), U ′)
and

(u′1,H(Γ)(H(T )), u′1,IdxT ′(H(T ))(H(P ))) =

DpEŨ ′(ψΓ, Ũ
′)(DpEŨ ′(int(H(Γ)), φ)(Φ2

E(u1,Γ(T ), u1,Idx(T )(P ))))

2. (u′1,H(Γ)(H(T )), ũ′1,IdxT ′(H(T ))(H(o))) is a well defined element of DpEŨ ′(Φ(int(Γ)), Ũ ′)
and

(u′1,H(Γ)(H(T )), ũ′1,IdxT ′(H(T ))(H(o))) =

DpEŨ ′(ψΓ, Ũ
′)(DpEŨ ′(int(H(Γ)), φ̃)(Φ2

E(u1,Γ(T ), ũ1,Idx(T )(o))))

Remark 3.4.5 Since u2(T ) = (u1(ft(T )), u1(T )) and ũ2(s) = (u1(ft(∂(s))), ũ1(s)) , this
lemma is very similar to [15, Lemma 6.1(3,4)] but its proof is much more involved because
of the interaction of the two different universe functors.

Proof: We will only consider the second assertion. The proof of the first one is similar and
simpler.

To prove that the pair (u′1,H(Γ)(H(T )), ũ′1,IdxT ′(H(T ))(H(o))) is a well defined element of

DpEŨ ′(Φ(int(Γ)), Ũ ′) we need to show that ft(∂(H(o))) = IdxT ′(H(T )) and that the source
of ũ′1,IdxT ′(H(T ))(H(o))) equals to (int(H(Γ));u′1(H(T )))E, i.e., that

int′(IdxT ′(H(T ))) = (int(H(Γ));u′1(H(T )))E

The former is a corollary of our assumptions and Lemma 3.4.1 and the latter is a corollary
of [15, Problem 3.3(1)] and the first equation of Lemma 2.4.3.

Let X = int(Γ), F = u1,Γ(T ) and G̃ = ũ1,Idx(T )(o). By definitions we have

DpEŨ ′(ψΓ, )(DpEŨ ′( , φ̃)(Φ2
E(F, G̃))) = DpEŨ ′(ψΓ, )(DpEŨ ′( , φ̃)(Φ(F ) ◦ φ, ι ◦ Φ(G̃))) =

DpEŨ ′(ψΓ, )(Φ(F ) ◦ φ, ι ◦ Φ(G̃) ◦ φ̃) = (ψΓ ◦ Φ(F ) ◦ φ,Q(ψΓ,Φ(F ) ◦ φ)E′ ◦ ι ◦ Φ(G̃) ◦ φ̃)

where
ι : (Φ(X); Φ(F ) ◦ φ)E′ → Φ((X;F )E)

is the unique morphism such that

ι ◦ Φ(pEX,F ) = pE
′

Φ(X),Φ(F )◦φ

ι ◦ Φ(Q(F )E) ◦ φ̃E = Q(Φ(F ) ◦ φ)E′

On the other hand
u1,H(Γ)(H(T )) = ψΓ ◦ Φ(u1,Γ(T )) ◦ φ

ũ1,IdxT ′(H(T ))(H(o)) = ũ1,H(IdxT (T ))(H(o)) = ψH(IdxT (T )) ◦ Φ(ũ1,IdxT (T )(o)) ◦ φ̃
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by [15, Lemma 6.1(1,2)]. Therefore, to prove the lemma it is sufficient to show that

ψIdxT (T ) = Q(ψΓ,Φ(F ) ◦ φ)E′ ◦ ι

Both sides are morphisms with the codomain

Φ(int(IdxT (T ))) = Φ((X;F )E)

and since ΦE is a universe category functor it is sufficient to show that the compositions of
the two sides with Φ(pEX,F ) and Φ(Q(F )E) ◦ φ̃E are the same. Since

Q(ψΓ,Φ(F ) ◦ φ)E′ ◦ ι ◦ Φ(pEX,F ) = Q(ψΓ,Φ(F ) ◦ φ)E′ ◦ pE
′

Φ(X),Φ(F )◦φ =

pE
′

int′(H(Γ)),ψΓ◦Φ(F )◦φ ◦ ψΓ = pE
′

int′(H(T )) ◦ ψΓ

the first equation reduces to

[2015.05.10.eq1]ψIdxT (T ) ◦ Φ(pET ) = pE
′

int′(H(T )) ◦ ψΓ (27)

and since

Q(ψΓ,Φ(F ) ◦ φ)E′ ◦ ι ◦ Φ(Q(F )E) ◦ φ̃E = Q(ψΓ,Φ(F ) ◦ φ)E′ ◦Q(Φ(F ) ◦ φ)E′ =

Q(ψΓ ◦ Φ(F ) ◦ φ)E′

the second equation reduces to

[2015.05.10.eq2.0]ψIdxT (T ) ◦ Φ(Q(F )E) ◦ φ̃E = Q(ψΓ ◦ Φ(F ) ◦ φ)E′ (28)

Equation (27) follows immediately from Lemma 3.4.3 and the second equation of Lemma
2.4.3.

We have
φ̃E = (Φ(p(Ũ ;p),Eq) ◦ ΦŨp) ∗ (Φ(Q(Eq)) ◦ φ̃)

Therefore (28) is equivalent to two equations:

ψIdxT (T ) ◦ Φ(Q(F )E) ◦ Φ(p(Ũ ;p),Eq) ◦ ΦŨp =

Q(ψΓ ◦ Φ(F ) ◦ φ)E′ ◦ p(Ũ ′;p′),Eq′ (29)

and
ψIdxT (T ) ◦ Φ(Q(F )E) ◦ Φ(Q(Eq)) ◦ φ̃ =

Q′(ψΓ ◦ Φ(F ) ◦ φ)E′ ◦Q(Eq′) (30)

The first equality we will have to decompose further into two using the fact that by Lemma
3.2.1 we have

ΦŨp = (Φ(pŨ ,p) ◦ φ̃) ∗ (Φ(Q(p)) ◦ φ̃)

Therefore (29) is equivalent to two equations

ψIdxT (T ) ◦ Φ(Q(F )E) ◦ Φ(p(Ũ ;p),Eq) ◦ Φ(pŨ ,p) ◦ φ̃ =
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[2015.05.10.eq2aa]Q(ψΓ ◦ Φ(F ) ◦ φ)E′ ◦ p(Ũ ′;p′),Eq′ ◦ pŨ ′,p′ (31)

and
ψIdxT (T ) ◦ Φ(Q(F )E) ◦ Φ(p(Ũ ;p),Eq) ◦ Φ(Q(p)) ◦ φ̃ =

[2015.05.10.eq2ab]Q(ψΓ ◦ Φ(F ) ◦ φ)E′ ◦ p(Ũ ′;p′),Eq′ ◦Q(p′) (32)

To prove (30) observe first two useful equalities

u1(IdxT (T )) = Q(Q(F ), p) ◦ Eq

Q(u1(IdxT (T ))) = Q(F )E ◦Q(Eq)

where the first follows from the proof of Lemma 2.4.3 and the second is the combination of
the first with the third equality of the same lemma.

Now we have:

ψIdxT (T ) ◦ Φ(Q(F )E) ◦ Φ(Q(Eq)) ◦ φ̃ = ψIdxT (T ) ◦ Φ(Q(F )E ◦Q(Eq)) ◦ φ̃ =

ψIdxT (T )◦Φ(Q(u1(IdxT (T ))))◦ φ̃ = Q′(ψIdxT (T )◦Φ(u1(IdxT (T )))◦φ) = Q(u1(H(IdxT (T ))))

and

Q(ψΓ ◦ Φ(F ) ◦ φ)E′ ◦Q(Eq′) = Q′(u1(H(T )))E′ ◦Q(Eq′) = Q′(u1(H(IdxT (T ))))

The equality (30) is proved.

To prove (31) observe two equalities:

Q(F )E ◦ p(Ũ ;p),Eq = pIdxT (T ) ◦Q(Q(F ), p)

Q(Q(F ), p) ◦ pŨ ,p = pft(IdxT (T ) ◦Q(F )

The same equalities hold for F ′ = ψΓ ◦Φ(F ) ◦ φ = u′1(H(T )) and the equation (31) becomes

ψIdxT (T ) ◦ Φ(pIdxT (T )) ◦ Φ(pft(IdxT (T ))) ◦ Φ(Q(F )) ◦ φ̃ = pIdxT ′(H(T )) ◦ pft(IdxT ′(H(T ))) ◦Q(F ′)

Using the defining equations for ψ we rewrite the left hand side as

ψIdxT (T )◦Φ(pIdxT (T ))◦Φ(pft(IdxT (T )))◦Φ(Q(F ))◦φ̃ = pH(Idx(T ))◦pft(H(IdxT (T )))◦ψT ◦Φ(Q(F ))◦φ̃

It remains to show that

Q(ψΓ ◦ Φ(F ) ◦ φ) = ψ(Γ,F ) ◦ Φ(Q(F )) ◦ φ̃

which is the defining equation of ψ(G,F ).

To prove (32) let us rewrite the left hand side first

ψIdxT (T ) ◦ Φ(Q(F )E) ◦ Φ(p(Ũ ;p),Eq) ◦ Φ(Q(p)) ◦ φ̃ =

ψIdxT (T ) ◦ Φ(pIdxT (T ) ◦Q(Q(F ), p)) ◦ Φ(Q(p)) ◦ φ̃ =
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pH(IdxT (T )) ◦ ψft(IdxT (T )) ◦ Φ(Q(Q(F ) ◦ p)) ◦ φ̃ =

pH(IdxT (T )) ◦ ψ(Γ,F,Q(F )◦p) ◦ Φ(Q(Q(F ) ◦ p)) ◦ φ̃ = pH(IdxT (T )) ◦Q(u1(H(ft(IdxT (T )))))

Where the first equality holds in view of the upper square of Construction 2015.05.08.constr1,
the second one is one of the defining equalities of φ and the third one is from [15, Lemma
3.2].

Let F ′ = u1(H(T )). Rewriting the right hand side we get

Q(ψΓ ◦ Φ(F ) ◦ φ)E′ ◦ ◦p(Ũ ′;p′),Eq′ ◦Q(p′) = Q(F ′)E′ ◦ p(Ũ ′;p′),Eq′ ◦Q(p′) =

pIdxT ′(H(T ) ◦Q(Q(F ′), p′) ◦Q(p′) = pIdxT ′(H(T ) ◦Q(Q(F ′) ◦ p′) =

pIdxT ′(H(T ) ◦Q(u1(ft(IdxT (H(T )))))

Where the second equality is from the upper square of Construction 2015.05.08.constr1 in
C ′, the third equality is from [15, Lemma 3.2], and the fourth from the middle square of
Construction 2015.05.08.constr1 in C ′.
Lemma 3.4.4 is proved.

Lemma 3.4.6 [2015.04.12.l3] Let Φ be a universe category functor as above that is com-
patible with the (J0,J1,J2)-structures (Eq,Ω, Jp) and (Eq′,Ω′, Jp) on p and p′ respectively.
Then the homomorphism of C-systems H = H(Φ) is a homomorphism of C-systems with
(J0,J1,J2)-structures relative to (IdTEq, reflΩ, JJp) and (IdTEq′ , reflΩ′ , JJp′).

Proof: Let IdT = IdTΩ, IdT ′ = IdTΩ′ , refl = reflΩ, refl′ = reflΩ′ , J = JJp and J ′ = JJp′ .

We need to verify that for all Γ ∈ Ob(CC(C, p)), T ∈ Ob1(Γ), P ∈ Ob1(IdxT (T )) and

s0 ∈ Õb(rf ∗T (P )) one has

H(J(Γ, T, P, s0)) = J ′(H(Γ), H(T ), H(P ), H(s0))

The defining equation for J ′ is

ηpEŨ ′(u
′
1(H(T )), ũ′1,IdxT ′(H(T )(J

′))) = φ(H(Γ), H(T ), H(P ), H(s0)) ◦ Jp′

and to prove the lemma we need to show that H(J) satisfies this equation.

Using Lemma 3.4.4 we have

ηpEŨ(u′1(H(T )), ũ′1,IdxT ′(H(T )(H(J)))) =

ηpEŨ ′(DpEŨ ′(ψΓ, )(DpEŨ ′( , φ̃)(Φ2
E(u1(T ), ũ1,IdxT (T )(J))))) =

ψΓ ◦ ηpEŨ ′(Φ
2
E(u1(T ), ũ1,IdxT (T )(J))) ◦ IpEŨ ′(φ̃)

By [15, Lemma 5.8] and by the defining equation for J we further have

ψΓ ◦ ηpEŨ ′(Φ
2
E(u1(T ), ũ1,IdxT (T )(J))) ◦ IpEŨ ′(φ̃) =
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ψΓ ◦ Φ(ηpEŨ(u1(T ), ũ1,IdxT (T )(J))) ◦ χΦE
(Ũ) ◦ IpEŨ ′(φ̃) =

ψΓ ◦ Φ(φ(Γ, T, P, s0) ◦ Jp) ◦ χΦE
(Ũ) ◦ IpEŨ ′(φ̃) = ψΓ ◦ Φ(φ(Γ, T, P, s0) ◦ Jp) ◦ ζ̃Φ

It remains to show that

ψΓ ◦ Φ(φ(Γ, T, P, s0) ◦ Jp) ◦ ζ̃Φ = φ(H(Γ), H(T ), H(P ), H(s0)) ◦ Jp′

By the compatibility condition of Definition 3.2.10 we see that it is sufficient to prove that

ψΓ ◦ Φ(φ(Γ, T, P, s0)) ◦RΦ = φ(H(Γ), H(T ), H(P ), H(s0))

Let
pr1 : (IpEŨ(U), Iω)×Ip(U) (Ip(Ũ), Ip(p))→ IpEŨ(U)

pr2 : (IpEŨ(U), Iω)×Ip(U) (Ip(Ũ), Ip(p))→ Ip(Ũ)

be the projections and let pr′1, pr′2 be their analogs in C ′. Then one has

RΦ ◦ pr′1 = Φ(pr1) ◦ ζΦ

RΦ ◦ pr′2 = Φ(pr2) ◦ ξ̃Φ

On the other hand the defining relations of φ(Γ, T, P, s0) are

φ(Γ, T, P, s0) ◦ pr1 = ηpEŨ(F,G)

φ(Γ, T, P, s0) ◦ pr2 = ηp(F, H̃)

where
F = u1,Γ(T ) G = u1,IdxT (T )(P ) H̃ = ũ1,T (s0)

and similarly for F ′, G′ and H̃ ′.

We need to prove

[2015.05.10.eq3a]ψΓ◦Φ(φ(Γ, T, P, s0))◦RΦ◦pr′1 = φ(H(Γ), H(T ), H(P ), H(s0))◦pr′1 (33)

and

[2015.05.10.eq3b]ψΓ◦Φ(φ(Γ, T, P, s0))◦RΦ◦pr′2 = φ(H(Γ), H(T ), H(P ), H(s0))◦pr′2 (34)

For (33), rewriting the left hand side we get

ψΓ ◦ Φ(φ(Γ, T, P, s0)) ◦RΦ ◦ pr′1 = ψΓ ◦ Φ(φ(Γ, T, P, s0)) ◦ Φ(pr1) ◦ ζΦ =

ψΓ ◦ Φ(φ(Γ, T, P, s0) ◦ pr1) ◦ ζΦ = ψΓ ◦ Φ(ηpEŨ(F,G)) ◦ ζΦ

Continuing we get

ψΓ ◦ Φ(ηpEŨ(F,G)) ◦ ζΦ = ψΓ ◦ Φ(ηpEŨ(F,G)) ◦ ξΦE
◦ IpEŨ ′(φ) =
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ψΓ ◦ ηpEŨ ′(Φ
2
E(F,G)) ◦ IpEŨ ′(φ)

where the last equality holds by [15, Lemma 5.8] applied to X = int(Γ), V = U and Φ = ΦE.
Continuing further we get

ψΓ ◦ ηpEŨ ′(Φ
2
E(F,G)) ◦ IpEŨ ′(φ) = ηpEŨ ′(DpEŨ(ψΓ, )(DpEŨ( , φ)(Φ2(F,G)))) =

ηpEŨ ′((u
′
1,H(Γ)(H(T )), u1,IdxT ′(H(T ))(H(P ))))

where the last equality holds by Lemma 3.4.4(1).

Rewriting the right hand side we get

φ(H(Γ), H(T ), H(P ), H(s0)) ◦ pr′1 = ηpEŨ ′(F
′, G′)

where F ′ = u1,H(Γ)(H(T )) and G′ = u1,IdxT ′(H(Γ))(H(P )). This shows that the first equality
holds.

For (34), rewriting the left hand side we get

ψΓ ◦ Φ(φ(Γ, T, P, s0)) ◦RΦ ◦ pr′2 = ψΓ ◦ Φ(φ(Γ, T, P, s0)) ◦ Φ(pr2) ◦ ξ̃Φ =

ψΓ ◦ Φ(φ(Γ, T, P, s0) ◦ pr2) ◦ ξ̃Φ = ψΓ ◦ Φ(ηp(F, H̃)) ◦ ξ̃Φ = ηp′(ũ
′
2,H(Γ)(H(s0)))

where the last equality holds by [15, Lemma 6.2(2)] since (F, H̃) = u2,Γ(s0).

Rewriting the right hand side we get

φ(H(Γ), H(T ), H(P ), H(s0)) ◦ pr′2 = ηp′(F
′, H̃ ′)

which proves the second equality since (F ′, H̃ ′) = ũ′2,H(Γ)(H(s0)).
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Birkhäuser Boston Inc., Boston, MA, 1991. Correctness, completeness and independence
results, With a foreword by Martin Wirsing.

[9] Benno van den Berg and Richard Garner. Types are weak ω-groupoids. Proc. Lond.
Math. Soc. (3), 102(2):370–394, 2011.

[10] Benno van den Berg and Richard Garner. Topological and simplicial models of identity
types. ACM Trans. Comput. Log., 13(1):Art. 3, 44, 2012.

[11] Vladimir Voevodsky. The equivalence axiom and univalent models of type theory. arXiv
1402.5556, pages 1–11, 2010.

[12] Vladimir Voevodsky. Simplicial radditive functors. J. K-Theory, 5(2):201–244, 2010.

[13] Vladimir Voevodsky. A C-system defined by a universe category. arXiv 1409.7925,
submitted, pages 1–7, 2014.

[14] Vladimir Voevodsky. C-system of a module over a monad on sets. arXiv 1407.3394,
submitted, pages 1–20, 2014.

[15] Vladimir Voevodsky. Products of families of types in the C-systems defined by a universe
category. arXiv 1503.07072, submitted, pages 1–30, 2015.

[16] Vladimir Voevodsky. Subsystems and regular quotients of C-systems. In Conference on
Mathematics and its Applications, (Kuwait City, 2014), number to appear, pages 1–11,
2015.

[17] Michael Warren. Homotopy models of intensional type theory. http: // mawarren.

net/ papers/ prospectus. pdf , 2006.

[18] Michael Warren. Homotopy theoretic aspects of constructive type theory. http: //

mawarren. net/ papers/ phd. pdf , 2008.

[19] Michael A. Warren. The strict ω-groupoid interpretation of type theory. In Models,
logics, and higher-dimensional categories, volume 53 of CRM Proc. Lecture Notes, pages
291–340. Amer. Math. Soc., Providence, RI, 2011.

50

http://mawarren.net/papers/prospectus.pdf
http://mawarren.net/papers/prospectus.pdf
http://mawarren.net/papers/phd.pdf
http://mawarren.net/papers/phd.pdf

	Introduction
	J-structures on C-systems and on universe categories
	The J-structure on a C-system
	The J-structure on a universe in a category
	J-structures on universes in categories with two classes of morphisms
	Constructing a J-structure on CC(C,p) from a J-structure on p

	Functoriality of the J-structures
	A theorem about functors between categories with two universes
	Universe category functors compatible with J-structures
	Homomorphisms of C-systems compatible with J-structures
	Functoriality of the J-structures (IdTEq,refl,JJp)


