
Π-C-system from a locally cartesian closed 1-category with a
universe1

Vladimir Voevodsky2,3

Started September 2014

Abstract

This is the fourth paper in a series started in [?].

1 Introduction

This is one the papers extending the material which I started to work on in [?]. I would like to
thank QMATH ???

Check the name and definition in Cartmell. Also how much of the first section can be referred to
him.

2 Π-C-systems

The notion of a Π-C-system is equivalent to the notion of a contextual category with products of
families of types from [?]. We use the name Π-C-systems to emphasize the fact that we are dealing
here with an additional structure on a C-system rather than with a property of such an object.

Let us recall first the following definition.

Definition 2.1 [2009.11.24.def2] Let C be a 1-category. Let g : Z → Y , f : Y → X be a pair of
morphisms such that for any U → X a fiber product U ×X Y exists. A pair

(w : W → X,h : W ×X Y → Z)

such that g ◦ h = pr is called a universal pair for (f, g) if for any U → X the map

HomX(U,W )→ HomY (U ×X Y, Z)

of the form u 7→ h ◦ (u× IdY ) is a bijection.

If a universal pair exists then it is easily seen to be unique up to a canonical isomorphism. We denote
such a pair by (Π(g, f), eg,f : Π(g, f)×X Y → Z). Note that if f ′ : Y → X and pr : Y ′ ×X Y → Y
is the projection then

(Π(pr, f), pr′ ◦ epr,f : Π(g, f)×X Y → Y ′) = (HomX(Y, Y ′), ev : HomX(Y, Y ′)×X Y → Y ′)

so that relative internal Hom-objects are particular cases of universal pairs.
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Definition 2.2 [2009.11.24.def1] A Π-C-system is a C-system CC together with additional data
of the form

1. for each Y ∈ Ob(CC)≥2 an object Π(Y ) ∈ Ob(CC) such that ft(Π(Y )) = ft2(Y ),

2. for each Y ∈ Ob(CC)≥2 a morphism eval : T (ft(Y ),Π(Y )) = p∗ft(Y )(Π(Y ))→ Y over ft(Y ),

such that

(i) for any f : Z → ft2(Y ) one has f∗(Π(Y )) = Π(f∗(Y )) and f∗(evalY ) = evalf∗(Y ),

(ii) (Π(Y ), evalY )) is a universal pair for (pY , pft(Y )).

Let us now prove that this definition can be re-written in a less compact but purely equational
form. As before let us write Bn for Ob(CC)n, B̃n for Õb(CC)n etc.

The C-system is completely determined by the sets Bn, B̃n+1, n ≥ 0 and maps ∂ : B̃n+1 → Bn+1,
ft : Bn+1 → Bn, δ : Bn → B̃n+1 and the maps Tn+1, T̃n+1, Sn+1, S̃n+1 considered above.

Suppose now that we are given a Π-C-system. Then we have maps

1. Π : Bn+2 → Bn+1, n ≥ 0,

2. λ : B̃n+2 → B̃n+1, n ≥ 0,

3. ev : (B̃n+1)∂ ×ft (Bn+2)Π ×∂ (B̃n+1)→ B̃n+1, n ≥ 0

as follows. The map Π is the map from Definition 2.2. Since (Π(Y ), evalY ) is a universal pair for
(pY , pft(Y )) the mapping

ϕY : {f ∈ B̃n+1 | ∂(f) = Π(Y )} → {s ∈ B̃n+2 | ∂(s) = Y }

given by the formula
ϕY (f) = evalY ◦ T̃ (ft(Y ), f)

is a bijection. One defines λY as the inverse to this bijection.

The map ev sends a triple (r, Y, f) such that ∂(r) = ft(Y ) and ∂(f) = Π(Y ) to

ev(r, Y, f) = S̃(r, eval ◦ T̃ (ft(Y ), f))

as partially illustrated by the following diagram:

Y ←−−− S(r, Y )

pY

y y
p∗ft(Y )(Π(Y )) −−−→ ft(Y ) ←−−−

r
ft2(Y )y y

Π(Y )
pΠ(Y )−−−→ ft2(Y )
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Lemma 2.3 [2009.11.30.l1] Let n ≥ i ≥ 0, Y ∈ Bn+2, g : Z → fti+2(Y ) and f ∈ B̃(Π(Y )).
Then one has

g∗(ϕY (f), i+ 2) = ϕg∗(Y,i+2)(g
∗(f, i+ 1))

Proof: Let h1 = q(g, ft(Y ), i+ 1), h2 = q(g, ft(Y ), i+ 2). Then one has

g∗(ϕY (f), i+ 2) = h∗1(ϕY (f)) = h∗1(evalY ◦ T̃ (ft(Y ), f)) = h∗1(evalY ) ◦ h∗1(T̃ (ft(Y ), f))

= evalh∗
1(Y )p

∗
g∗(ft(Y ),i+1)(h

∗
2(f)) = ϕh∗

1(Y )(h
∗
2(f)) = ϕg∗(Y,i+2)(g

∗(f, i+ 1)).

As an immediate corollary of Lemma 2.3 we have:

Lemma 2.4 [2009.11.30.l2] Let n ≥ i ≥ 0, Y ∈ Bn+2, g : Z → fti+2(Y ) and r ∈ B̃(Y ). Then
one has

g∗(λ(r), i+ 1) = λ(g∗(r, i+ 2)).

Lemma 2.5 [2009.11.30.l3] Let n ≥ i ≥ 0, Y ∈ Bn+2, g : Z → fti+2(Y ), r ∈ B̃(ft(Y )) and
f ∈ B̃(Π(Y )). Then one has

g∗(ev(r, Y, f), i+ 1) = ev(g∗(r, i+ 2), g∗(Y, i+ 2), g∗(f, i+ 1))

Proof: Let h1 = q(g, ft(Y ), i+ 1), h2 = q(g, ft(Y ), i+ 2). Then one has:

g∗(ev(r, Y, f), i+ 1) = h∗2(S̃(r, eval ◦ T̃ (ft(Y ), f))) = h∗2(r
∗(eval ◦ T̃ (ft(Y ), f))) =

= (h∗2(r))
∗h∗1(eval ◦ T̃ (ft(Y ), f))) = (h∗2(r))

∗(h∗1(eval) ◦ h∗1p∗ft(Y )(f)) =

= (g∗(r, i+ 2))∗(eval ◦ p∗g∗(ft(Y ),i+1)(h
∗
2(f))) = ev(g∗(r, i+ 2), g∗(Y, i+ 2), g∗(f, i+ 1)).

Proposition 2.6 [2009.11.29.prop1] Let CC = (Bn, B̃n, ft, ∂, δ) be a C-system. Let further
(Π, eval) be a Π-structure on CC. Then the maps Π, λ, ev defined by this structure satisfy the
following conditions:

1. for Y ∈ Bn+2 one has

(a) ftΠ(Y ) = ft2(Y ),

(b) for n+ 1 ≥ i ≥ 1, Z ∈ Bn+2−i such that ft(Z) = fti+1(Y ), T (Z,Π(Y )) = Π(T (Z, Y )),

(c) for n+ 1 ≥ i ≥ 1, t ∈ B̃n+1−i such that ∂(t) = fti+1(Y ), S(t,Π(Y )) = Π(S(t, Y )),

2. for s ∈ B̃n+2 one has

(a) ∂ λ(s) = Π ∂(s),

(b) for n+ 1 ≥ i ≥ 1, Z ∈ Bn+2−i such that ft(Z) = fti+1 ∂(s), T̃ (Z, λ(s)) = λ(T̃ (Z, s)),

(c) for n+ 1 ≥ i ≥ 1, t ∈ B̃n+1−i such that ∂(t) = fti+1 ∂(s), S̃(t, λ(s)) = λ(S̃(t, s)),

3. for r ∈ B̃n+1, Y ∈ Bn+2 and f ∈ B̃n+1 such that ∂(r) = ft(Y ) and ∂(f) = Π(Y ) one has

(a) ∂(ev(r, Y, f)) = S(r, Y ),
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(b) for n+ 1 ≥ i ≥ 1, Z ∈ Bn+2−i such that ft(Z) = fti+1(Y ),

T̃ (Z, ev(r, Y, f)) = ev(T̃ (Z, r), T (Z, Y ), T̃ (Z, f)),

(c) for n+ 1 ≥ i ≥ 1, t ∈ B̃n+1−i such that ∂(t) = fti+1(Y ),

S̃(t, ev(r, Y, f)) = ev(S̃(t, r), S(t, Y ), S̃(t, f)),

4. for r ∈ B̃n+1, s ∈ B̃n+2 such that ft(∂(s)) = ∂(r)

ev(r, ∂ s, λ(s)) = S̃(r, s)

(β-reduction),

5. for Y ∈ Bn+2, f ∈ B̃n+1 such that ∂(f) = Π(Y ),

[2009.11.30.oldeq1]λ(ev(δft(Y ), T (ft(Y ), Y ), T̃ (ft(Y ), f))) = f (1)

(η-reduction).

Proof: (1a) Follows from Definition 2.2(1). (1b) Follows from Definition 2.2(i) applied to f =
q(pZ , ft

2(Y ), i− 1). (1c) Follows from Definition 2.2(i) applied to f = q(t, ft2(Y ), i− 1).

(2a) Follows from the definition of λ. (2b) Follows from Lemma 2.4 applied to pZ . (2c) Follows
from Lemma 2.4 applied to t.

(3a) Follows from the definition of ev. (3b) Follows from Lemma 2.5 applied to pZ . (3c) Follows
from Lemma 2.5 applied to t.

(4) One has

ev(r, ∂ s, λ(s)) = r∗(eval ◦ (p∗ft(Y )(λ(s)))) = r∗(ϕY (s)) = r∗(s) = S̃(r, s).

(5) Let T1 = T (ft(Y ), ft(Y )) and T2 = T (ft(Y ), Y ). Then

ev(δft(Y ), T (ft(Y ), Y ), T̃ (ft(Y ), f)) = δ∗ft(Y )(evalT2 ◦ p∗T1
(p∗ft(Y )(f))) =

= δ∗ft(Y )(evalT2) ◦ δ∗ft(Y )p
∗
T1
p∗ft(Y )(f) = evalδ∗

ft(Y )
(T2) ◦ p

∗
ft(Y )(f) = evalY ◦ p∗ft(Y )(f) = ϕY (f)

which implies (1) by definition of λ.

The converse to Proposition 2.6 holds as well. Let CC = (Bn, B̃n, ft, ∂, δ) be a C-system and let

1. Π : Bn+2 → Bn+1, n ≥ 0,

2. λ : B̃n+2 → B̃n+1, n ≥ 0,

3. ev : (B̃n+1)∂ ×ft (Bn+2)Π ×∂ (B̃n+1)→ B̃n+1, n ≥ 0

be maps satisfying the conclusion of Proposition 2.6. For each Y ∈ B̃n+2 define a morphism

evalY : T (ft(Y ),Π(Y ))→ Y

by the formula
evalY = q(pZ , Y ) ◦ ev(p∗Z(δft(Y )), T2(Z, Y ), δZ)

where Z = p∗ft(Y )(Π(Y )).
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Proposition 2.7 [2009.11.30.prop2] Under the assumption made above the morphisms evalY
are well defined and (Π, eval) is a Π-structure on CC.

Proof: Let us show that evaY is well defined. This requires us to check the following conditions:

1. ft2(Y ) = ft(Π(Y )), therefore Z is defined,

2. ft(Z) = ft∂(δft(Y )) since ft(Z) = ft(Y ), therefore p∗Z(δft(Y )) is defined,

3. ft2(Z) = ft2(Y ), therefore T2(Z, Y ) is defined,

4. ∂(p∗Z(δft(Y )))) = p∗Zp
∗
ft(Y )(ft(Y )), ft(T2(Z, Y )) = T2(Z, ft(Y )) = p∗Zp

∗
ft(Y )(ft(Y )),

5. ∂(δZ) = p∗Z(Z) = p∗Zp
∗
ft(Y )(Π(Y )) = ΠT2(Z,Y ), therefore ev = ev(p∗Z(δft(Y )), T2(Z, Y ), δZ) is

defined,

6.
∂(ev) = (p∗Z(δft(Y )))

∗(T2(Z, Y )) = (p∗Z(δft(Y )))
∗T (Z, T (ft(Y ), Y )) =

= (p∗Z(δft(Y )))
∗(pZ)

∗((pft(Y ))
∗(Y, 2), 2) = (p∗Z(δft(Y )))

∗q(pZ , p
∗
Y (ft(Y )))∗(pft(Y ))

∗(Y, 2) =

= (p∗Z(δft(Y )))
∗q(pZ , p

∗
Y (ft(Y )))∗q(pft(Y ), ft(Y ))∗(Y ) =

= (q(pft(Y ), ft(Y ))q(pZ , p
∗
Y (ft(Y )))p∗Z(δft(Y )))

∗(Y ) = p∗Z(Y )

and q(pZ , Y ) : p∗Z(Y ) → Y . Therefore evalY is defined and is a morphism from Z to Y as
required by Definition 2.2(2).

We leave the verification of the conditions (i) of (ii) of Definition 2.2 for the later, more mechanized
version of this paper.

Π-universes in lcc categories. Recall that a (level 1) category C is called a lcc (locally Cartesian
closed) category if it has fiber products and all the over-categories C/X have internal Hom-objects.

Definition 2.8 [2009.10.27.def1] Let C be an lcc category and let pi : Ũi → Ui, i = 1, 2, 3 be
three morphisms in C. A Π-structure on (p1, p2, p3) is a Cartesian square of the form

[Pisq1]

HomU1
(Ũ1, U1 × Ũ2)

P̃−−−→ Ũ3

p′2

y yp3

HomU1
(Ũ1, U1 × U2)

P−−−→ U3

(2)

such that p′2 is the natural morphism defined by p2. A Π-structure on p : Ũ → U is a Π-structure
on (p, p, p).

Remark 2.9 A Π-structure on (p1, p2, p3) corresponds to the rule

Γ, X : U1, f : X → U2▷
Γ, X : U1, f : X → U2 ⊢

∏
x : X.ev(f, x) : U3
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Let C be as above, p : Ũ → U and let (P̃ , P ) be a Π-structure on (p, p, p). Let us construct a
structure of Π-C-system on CC = CC(C, p).

We start by recalling some level 1 constructions in C.

Lemma 2.10 [2009.11.24.l5] Consider a pair of pull back squares

[2009.11.24.eq3]

I2
F̃1−−−→ Ũ1

q1

y yp1

I1
F1−−−→ U1

I3
F̃2−−−→ Ũ2

q2

y yp2

I2
F2−−−→ U2

(3)

Then there exists a unique morphism fF1,F2 : I1 → HomU1
(Ũ1, U1 × U2) such that its composition

with the natural morphism to U1 is F1 and the composition of its adjoint

ev ◦ (fF1,F2 ×U1 Ũ1) : I2 = I1 ×U1 Ũ1 → U1 × U2

with the projection to U2 is F2.

Proof: Follows immediately from the definition of internal Hom-objects.

Lemma 2.11 [2009.11.24.l3] In the notation of Lemma 2.10 let

J2
ϕ2−−−→ I2y yq1

J1
ϕ1−−−→ I1

J3
ϕ3−−−→ I3y yq2

J2
ϕ2−−−→ I2

be two pull-back squares. Then fF1ϕ1,F2ϕ2 = fF1,F2 ◦ ϕ1.

Proof: Straightforward.

Let p1 : Ũ1 → U1, p2 : Ũ2 → U2 be a pair of morphisms in an lcc C. Consider a pull-back square of
the form

[2009.11.24.eq4]

Fam2(p1, p2) −−−→ Ũ2

p12

y yp2

HomU1
(Ũ1, U1 × U2)×U1 Ũ1

pr◦ev−−−→ U2

(4)

where
ev : HomU1

(Ũ1, U1 × U2)×U1 Ũ1 → U1 × U2

is the canonical morphism.

Then for any two pull-back squares as in Lemma 2.10, the morphism fF1,F2 defines factorizations
of the pull-back squares (3) of the form

I2
fF1,F2

×U1
Ũ1−−−−−−−−→ HomU1

(Ũ1, U1 × U2)×U1 Ũ1
pr−−−→ Ũ1

q1

y y yp1

I1
fF1,F2−−−−→ HomU1

(Ũ1, U1 × U2) −−−→ U1
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and
I3 −−−→ Fam2(p1, p2) −−−→ Ũ2

q2

y yp12

yp2

I2
fF1,F2

×U1
Ũ1−−−−−−−−→ HomU1

(Ũ1, U1 × U2)×U1 Ũ1
pr◦ev−−−→ U2

respectively and joining the left hand side squares of these diagrams we get a diagram with pull-back
squares of the form

I3 −−−→ Fam2(p1, p2)

q2

y yp12

I2
fF1,F2

×U1
Ũ1−−−−−−−−→ HomU1

(Ũ1, U1 × U2)×U1 Ũ1

q1

y ypr

I1
fF1,F2−−−−→ HomU1

(Ũ1, U1 × U2)

Let
g : HomU1

(Ũ1, U1 × Ũ2)×U1 Ũ1 → Fam2(p1, p2)

be the morphism overHomU1
(Ũ1, U1×U2)×U1Ũ1 whose composition with the projection Fam2(p1, p2)→

Ũ2 equals pr ◦ ẽv where

ẽv : HomU1
(Ũ1, U1 × Ũ2)×U1 Ũ1 → U1 × Ũ2

is the canonical morphism.

Lemma 2.12 [2009.11.24.l2] The pair

(HomU1
(Ũ1, U1 × Ũ2)→ HomU1

(Ũ1, U1 × U2), g)

is universal for (p12, pr).

Proof: For a given w : Z → HomU1
(Ũ1, U1 × U2), a morphism Z → HomU1

(Ũ1, U1 × Ũ2) over

HomU1
(Ũ1, U1 × U2) is the same as a morphism Z ×U1 Ũ1 → Ũ2 such that the adjoint of its

composition with p2 : Ũ2 → U2 is w.

A morphism from Z to the universal pair for p12 overHomU1
(Ũ1, U1×U2) is a morphism Z×U1 Ũ1 →

Ũ2 whose composition with p2 is (pr ◦ ev) ◦ (w ×U1 IdŨ1
) which coincides with the condition that

the composition of its adjoint with p2 is w. This can be also seen from the diagram

Fam2(p1, p2) −−−→ Ũ2

p12

y yp2

HomU1
(Ũ1, U1 × Ũ2)×U1 Ũ1 −−−→ HomU1

(Ũ1, U1 × U2)×U1 Ũ1
pr◦ev−−−→ U2y ypr

HomU1
(Ũ1, U1 × Ũ2) −−−→ HomU1

(Ũ1, U1 × U2)
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Lemma 2.13 [2009.11.24.l4] For two pull back squares as in (3), consider a pull-back square of
the form

R(F1, F2) −−−→ HomU1
(Ũ1, U1 × Ũ2)y y

I1
fF1,F2−−−−→ HomU1

(Ũ1, U1 × U2)

and the morphism
gF1,F2 : R(F1, F2)×I1 I2 → I3

whose composition with the morphism I3 → Ũ2 coincides with the composition

R(F1, F2)×I1 I2 = R(F1, F2)×U1 Ũ1 → HomU1
(Ũ1, U1 × Ũ2)×U1 Ũ1

pr◦ev→ Ũ2

Then (R(F1, F2), gF1,F2) is a universal pair for (q1, q2).

Proof: It follows from Lemma 2.12 and the fact that in a lcc a pull-back of a universal pair is a
universal pair.

Let us now construct a Π-C-system on CC = CC(C, p). Let n ≥ 2 and (F1, . . . , Fn) ∈ CC. Denote
(pt, F1, . . . , Fn−2) by I. Then we have two morphisms Fn−1 : I → U and Fn : (I, Fn−1)→ U .

Applying Lemma 2.10 to the corresponding pull-back squares we get a morphism

fFn−1,Fn : I → HomU (Ũ , U × U)

Set Π(F1, . . . , Fn) = (I, P ◦ fFn−1,Fn) = (F1, . . . , Fn−2, P ◦ fFn−1,Fn). Since the square (2) is a

pull-back square there is a unique morphism Π(F1, . . . , Fn) → HomU (Ũ , U × Ũ) such that the
diagram

Π(F1, . . . , Fn) −−−→ HomU (Ũ , U × Ũ)
P̃−−−→ Ũy y y

I
fFn−1,Fn−−−−−−→ HomU (Ũ , U × U)

P−−−→ U

commutes and the composition of the two upper arrows is Q(fFn−1,Fn). The left hand side square
in this diagram is automatically a pull-back square. Applying to this square Lemma 2.13 we obtain
a morphism

eval(F1,...,Fn) : (I, Fn−1, (P ◦ fFn−1,Fn) ◦ pr)→ (I, Fn−1, Fn)

over (I, Fn−1) (where pr : (I, Fn−1)→ I is the projection).

The fact that this construction satisfies the first condition of Definition 2.2 follows from Lemma
2.11. The fact that it satisfies the second condition of this definition follows from Lemma 2.13.
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