Π-C-system from a locally cartesian closed 1-category with a universe ${ }^{\text {®I }}$

Vladimir Voevodsky ${ }^{\text {D, }}$ []

Started September 2014

Abstract

This is the fourth paper in a series started in [?].

1 Introduction

This is one the papers extending the material which I started to work on in [?]. I would like to thank QMATH ???
Check the name and definition in Cartmell. Also how much of the first section can be referred to him.

2 П-C-systems

The notion of a Π-C-system is equivalent to the notion of a contextual category with products of families of types from [?]. We use the name Π-C-systems to emphasize the fact that we are dealing here with an additional structure on a C-system rather than with a property of such an object.
Let us recall first the following definition.
Definition 2.1 [2009.11.24.def2] Let \mathcal{C} be a 1-category. Let $g: Z \rightarrow Y, f: Y \rightarrow X$ be a pair of morphisms such that for any $U \rightarrow X$ a fiber product $U \times_{X} Y$ exists. A pair

$$
\left(w: W \rightarrow X, h: W \times_{X} Y \rightarrow Z\right)
$$

such that $g \circ h=p r$ is called a universal pair for (f, g) if for any $U \rightarrow X$ the map

$$
\operatorname{Hom}_{X}(U, W) \rightarrow \operatorname{Hom}_{Y}\left(U \times_{X} Y, Z\right)
$$

of the form $u \mapsto h \circ\left(u \times I d_{Y}\right)$ is a bijection.
If a universal pair exists then it is easily seen to be unique up to a canonical isomorphism. We denote such a pair by $\left(\Pi(g, f), e_{g, f}: \Pi(g, f) \times_{X} Y \rightarrow Z\right)$. Note that if $f^{\prime}: Y \rightarrow X$ and $p r: Y^{\prime} \times_{X} Y \rightarrow Y$ is the projection then

$$
\left(\Pi(p r, f), p r^{\prime} \circ e_{p r, f}: \Pi(g, f) \times_{X} Y \rightarrow Y^{\prime}\right)=\left(\underline{H o m}_{X}\left(Y, Y^{\prime}\right), e v: \underline{H o m}_{X}\left(Y, Y^{\prime}\right) \times_{X} Y \rightarrow Y^{\prime}\right)
$$

so that relative internal Hom-objects are particular cases of universal pairs.

[^0]Definition 2.2 [2009.11.24.def1] A П-C-system is a C-system $C C$ together with additional data of the form

1. for each $Y \in O b(C C)_{\geq 2}$ an object $\Pi(Y) \in O b(C C)$ such that $f t(\Pi(Y))=f t^{2}(Y)$,
2. for each $Y \in O b(C C)_{\geq 2}$ a morphism eval : $T(f t(Y), \Pi(Y))=p_{f t(Y)}^{*}(\Pi(Y)) \rightarrow Y$ over $f t(Y)$,
such that
(i) for any $f: Z \rightarrow f t^{2}(Y)$ one has $f^{*}(\Pi(Y))=\Pi\left(f^{*}(Y)\right)$ and $f^{*}\left(e v a l_{Y}\right)=\operatorname{eval}_{f^{*}(Y)}$,
(ii) $\left.(\Pi(Y), \text { eval })_{Y}\right)$ is a universal pair for $\left(p_{Y}, p_{f t(Y)}\right)$.

Let us now prove that this definition can be re-written in a less compact but purely equational form. As before let us write B_{n} for $O b(C C)_{n}, \widetilde{B}_{n}$ for $\widetilde{O b}(C C)_{n}$ etc.
The C-system is completely determined by the sets $B_{n}, \widetilde{B}_{n+1}, n \geq 0$ and maps $\partial: \widetilde{B}_{n+1} \rightarrow B_{n+1}$, $f t: B_{n+1} \rightarrow B_{n}, \delta: B_{n} \rightarrow \widetilde{B}_{n+1}$ and the maps $T_{n+1}, \widetilde{T}_{n+1}, S_{n+1}, \widetilde{S}_{n+1}$ considered above.
Suppose now that we are given a Π-C-system. Then we have maps

1. $\Pi: B_{n+2} \rightarrow B_{n+1}, n \geq 0$,
2. $\lambda: \widetilde{B}_{n+2} \rightarrow \widetilde{B}_{n+1}, n \geq 0$,
3. ev: $\left(\widetilde{B}_{n+1}\right)_{\partial} \times_{f t}\left(B_{n+2}\right)_{\Pi} \times_{\partial}\left(\widetilde{B}_{n+1}\right) \rightarrow \widetilde{B}_{n+1}, n \geq 0$
as follows. The map Π is the map from Definition [2.2. Since $\left.(\Pi(Y), \text { eval })_{Y}\right)$ is a universal pair for $\left(p_{Y}, p_{f t(Y)}\right)$ the mapping

$$
\phi_{Y}:\left\{f \in \widetilde{B}_{n+1} \mid \partial(f)=\Pi(Y)\right\} \rightarrow\left\{s \in \widetilde{B}_{n+2} \mid \partial(s)=Y\right\}
$$

given by the formula

$$
\phi_{Y}(f)=e v a l_{Y} \circ \widetilde{T}(f t(Y), f)
$$

is a bijection. One defines λ_{Y} as the inverse to this bijection.
The map ev sends a triple (r, Y, f) such that $\partial(r)=f t(Y)$ and $\partial(f)=\Pi(Y)$ to

$$
e v(r, Y, f)=\widetilde{S}(r, e v a l \circ \widetilde{T}(f t(Y), f))
$$

as partially illustrated by the following diagram:

Lemma 2.3 [2009.11.30.11] Let $n \geq i \geq 0, Y \in B_{n+2}, g: Z \rightarrow f t^{i+2}(Y)$ and $f \in \widetilde{B}(\Pi(Y))$.
Then one has

$$
g^{*}\left(\phi_{Y}(f), i+2\right)=\phi_{g^{*}(Y, i+2)}\left(g^{*}(f, i+1)\right)
$$

Proof: Let $h_{1}=q(g, f t(Y), i+1), h_{2}=q(g, f t(Y), i+2)$. Then one has

$$
\begin{gathered}
g^{*}\left(\phi_{Y}(f), i+2\right)=h_{1}^{*}\left(\phi_{Y}(f)\right)=h_{1}^{*}\left(e v a l_{Y} \circ \widetilde{T}(f t(Y), f)\right)=h_{1}^{*}\left(e v a l_{Y}\right) \circ h_{1}^{*}(\widetilde{T}(f t(Y), f)) \\
=\operatorname{eval}_{h_{1}^{*}(Y)} p_{g^{*}(f t(Y), i+1)}^{*}\left(h_{2}^{*}(f)\right)=\phi_{h_{1}^{*}(Y)}\left(h_{2}^{*}(f)\right)=\phi_{g^{*}(Y, i+2)}\left(g^{*}(f, i+1)\right) .
\end{gathered}
$$

As an immediate corollary of Lemma [2.3 we have:
Lemma 2.4 [2009.11.30.12] Let $n \geq i \geq 0, Y \in B_{n+2}, g: Z \rightarrow f t^{i+2}(Y)$ and $r \in \widetilde{B}(Y)$. Then one has

$$
g^{*}(\lambda(r), i+1)=\lambda\left(g^{*}(r, i+2)\right) .
$$

Lemma 2.5 [2009.11.30.13] Let $n \geq i \geq 0, Y \in B_{n+2}, g: Z \rightarrow f t^{i+2}(Y), r \in \widetilde{B}(f t(Y))$ and $f \in \widetilde{B}(\Pi(Y))$. Then one has

$$
g^{*}(e v(r, Y, f), i+1)=\operatorname{ev}\left(g^{*}(r, i+2), g^{*}(Y, i+2), g^{*}(f, i+1)\right)
$$

Proof: Let $h_{1}=q(g, f t(Y), i+1), h_{2}=q(g, f t(Y), i+2)$. Then one has:

$$
\begin{gathered}
g^{*}(e v(r, Y, f), i+1)=h_{2}^{*}(\widetilde{S}(r, \text { eval } \circ \widetilde{T}(f t(Y), f)))=h_{2}^{*}\left(r^{*}(\text { eval } \circ \widetilde{T}(f t(Y), f))\right)= \\
\left.=\left(h_{2}^{*}(r)\right)^{*} h_{1}^{*}(e v a l \circ \widetilde{T}(f t(Y), f))\right)=\left(h_{2}^{*}(r)\right)^{*}\left(h_{1}^{*}(e v a l) \circ h_{1}^{*} p_{f t(Y)}^{*}(f)\right)= \\
=\left(g^{*}(r, i+2)\right)^{*}\left(e v a l \circ p_{g^{*}(f t(Y), i+1)}^{*}\left(h_{2}^{*}(f)\right)\right)=e v\left(g^{*}(r, i+2), g^{*}(Y, i+2), g^{*}(f, i+1)\right) .
\end{gathered}
$$

Proposition 2.6 [2009.11.29.prop1] Let $C C=\left(B_{n}, \widetilde{B}_{n}, f t, \partial, \delta\right)$ be a C-system. Let further (Π, eval) be $a \Pi$-structure on $C C$. Then the maps Π, λ, ev defined by this structure satisfy the following conditions:

1. for $Y \in B_{n+2}$ one has
(a) $f t \Pi(Y)=f t^{2}(Y)$,
(b) for $n+1 \geq i \geq 1, Z \in B_{n+2-i}$ such that $f t(Z)=f t^{i+1}(Y), T(Z, \Pi(Y))=\Pi(T(Z, Y))$,
(c) for $n+1 \geq i \geq 1, t \in \widetilde{B}_{n+1-i}$ such that $\partial(t)=f t^{i+1}(Y), S(t, \Pi(Y))=\Pi(S(t, Y))$,
2. for $s \in \widetilde{B}_{n+2}$ one has
(a) $\partial \lambda(s)=\Pi \partial(s)$,
(b) for $n+1 \geq i \geq 1, Z \in B_{n+2-i}$ such that $f t(Z)=f t^{i+1} \partial(s), \widetilde{T}(Z, \lambda(s))=\lambda(\widetilde{T}(Z, s))$,
(c) for $n+1 \geq i \geq 1, t \in \widetilde{B}_{n+1-i}$ such that $\partial(t)=f t^{i+1} \partial(s), \widetilde{S}(t, \lambda(s))=\lambda(\widetilde{S}(t, s))$,
3. for $r \in \widetilde{B}_{n+1}, Y \in B_{n+2}$ and $f \in \widetilde{B}_{n+1}$ such that $\partial(r)=f t(Y)$ and $\partial(f)=\Pi(Y)$ one has
(a) $\partial(e v(r, Y, f))=S(r, Y)$,
(b) for $n+1 \geq i \geq 1, Z \in B_{n+2-i}$ such that $f t(Z)=f t^{i+1}(Y)$,

$$
\widetilde{T}(Z, e v(r, Y, f))=e v(\widetilde{T}(Z, r), T(Z, Y), \widetilde{T}(Z, f))
$$

(c) for $n+1 \geq i \geq 1, t \in \widetilde{B}_{n+1-i}$ such that $\partial(t)=f t^{i+1}(Y)$,

$$
\widetilde{S}(t, e v(r, Y, f))=e v(\widetilde{S}(t, r), S(t, Y), \widetilde{S}(t, f)),
$$

4. for $r \in \widetilde{B}_{n+1}, s \in \widetilde{B}_{n+2}$ such that $f t(\partial(s))=\partial(r)$

$$
e v(r, \partial s, \lambda(s))=\widetilde{S}(r, s)
$$

(β-reduction),
5. for $Y \in B_{n+2}, f \in \widetilde{B}_{n+1}$ such that $\partial(f)=\Pi(Y)$,

$$
\begin{equation*}
[\text { 2009.11.30.oldeq1 }] \lambda\left(e v\left(\delta_{f t(Y)}, T(f t(Y), Y), \widetilde{T}(f t(Y), f)\right)\right)=f \tag{1}
\end{equation*}
$$

(η-reduction).
 $q\left(p_{Z}, f t^{2}(Y), i-1\right)$. (1c) Follows from Definition $\overline{22}(\mathrm{i})$ applied to $f=q\left(t, f t^{2}(Y), i-1\right)$.
(2a) Follows from the definition of λ. (2b) Follows from Lemma $\mathbb{L} .4$ applied to p_{Z}. (2c) Follows from Lemma 2.4 applied to t.
(3a) Follows from the definition of $e v$. (3b) Follows from Lemma 2.5 applied to p_{Z}. (3c) Follows from Lemma 2.5 applied to t.
(4) One has

$$
e v(r, \partial s, \lambda(s))=r^{*}\left(e v a l \circ\left(p_{f t(Y)}^{*}(\lambda(s))\right)\right)=r^{*}\left(\phi_{Y}(s)\right)=r^{*}(s)=\widetilde{S}(r, s)
$$

(5) Let $T_{1}=T(f t(Y), f t(Y))$ and $T_{2}=T(f t(Y), Y)$. Then

$$
\begin{gathered}
e v\left(\delta_{f t(Y)}, T(f t(Y), Y), \widetilde{T}(f t(Y), f)\right)=\delta_{f t(Y)}^{*}\left(\operatorname{eval}_{T_{2}} \circ p_{T_{1}}^{*}\left(p_{f t(Y)}^{*}(f)\right)\right)= \\
=\delta_{f t(Y)}^{*}\left(e v a l_{T_{2}}\right) \circ \delta_{f t(Y)}^{*} p_{T_{1}}^{*} p_{f t(Y)}^{*}(f)=\operatorname{eval}_{\delta_{f t(Y)}^{*}\left(T_{2}\right)}^{*} p_{f t(Y)}^{*}(f)=\operatorname{eval}_{Y} \circ p_{f t(Y)}^{*}(f)=\phi_{Y}(f)
\end{gathered}
$$

which implies (\mathbb{I}) by definition of λ.

The converse to Proposition [2.6] holds as well. Let $C C=\left(B_{n}, \widetilde{B}_{n}, f t, \partial, \delta\right)$ be a C-system and let

1. $\Pi: B_{n+2} \rightarrow B_{n+1}, n \geq 0$,
2. $\lambda: \widetilde{B}_{n+2} \rightarrow \widetilde{B}_{n+1}, n \geq 0$,
3. ev: $\left(\widetilde{B}_{n+1}\right)_{\partial} \times_{f t}\left(B_{n+2}\right)_{\Pi} \times_{\partial}\left(\widetilde{B}_{n+1}\right) \rightarrow \widetilde{B}_{n+1}, n \geq 0$
be maps satisfying the conclusion of Proposition [2.6. For each $Y \in \widetilde{B}_{n+2}$ define a morphism

$$
\text { eval }_{Y}: T(f t(Y), \Pi(Y)) \rightarrow Y
$$

by the formula

$$
\operatorname{eval}_{Y}=q\left(p_{Z}, Y\right) \circ e v\left(p_{Z}^{*}\left(\delta_{f t(Y)}\right), T_{2}(Z, Y), \delta_{Z}\right)
$$

where $Z=p_{f t(Y)}^{*}(\Pi(Y))$.

Proposition 2.7 [2009.11.30.prop2] Under the assumption made above the morphisms eval ${ }_{Y}$ are well defined and (Π, eval) is a Π-structure on $C C$.

Proof: Let us show that eva a_{Y} is well defined. This requires us to check the following conditions:

1. $f t^{2}(Y)=f t(\Pi(Y))$, therefore Z is defined,
2. $f t(Z)=f t \partial\left(\delta_{f t(Y)}\right)$ since $f t(Z)=f t(Y)$, therefore $p_{Z}^{*}\left(\delta_{f t(Y)}\right)$ is defined,
3. $f t^{2}(Z)=f t^{2}(Y)$, therefore $T_{2}(Z, Y)$ is defined,
4. $\left.\partial\left(p_{Z}^{*}\left(\delta_{f t(Y)}\right)\right)\right)=p_{Z}^{*} p_{f t(Y)}^{*}(f t(Y)), f t\left(T_{2}(Z, Y)\right)=T_{2}(Z, f t(Y))=p_{Z}^{*} p_{f t(Y)}^{*}(f t(Y))$,
5. $\partial\left(\delta_{Z}\right)=p_{Z}^{*}(Z)=p_{Z}^{*} p_{f t(Y)}^{*}(\Pi(Y))=\Pi_{T_{2}(Z, Y)}$, therefore $e v=e v\left(p_{Z}^{*}\left(\delta_{f t(Y)}\right), T_{2}(Z, Y), \delta_{Z}\right)$ is defined,
6.

$$
\begin{gathered}
\partial(e v)=\left(p_{Z}^{*}\left(\delta_{f t(Y)}\right)\right)^{*}\left(T_{2}(Z, Y)\right)=\left(p_{Z}^{*}\left(\delta_{f t(Y)}\right)\right)^{*} T(Z, T(f t(Y), Y))= \\
=\left(p_{Z}^{*}\left(\delta_{f t(Y)}\right)\right)^{*}\left(p_{Z}\right)^{*}\left(\left(p_{f t(Y)}\right)^{*}(Y, 2), 2\right)=\left(p_{Z}^{*}\left(\delta_{f t(Y)}\right)\right)^{*} q\left(p_{Z}, p_{Y}^{*}(f t(Y))\right)^{*}\left(p_{f t(Y)}\right)^{*}(Y, 2)= \\
=\left(p_{Z}^{*}\left(\delta_{f t(Y)}\right)\right)^{*} q\left(p_{Z}, p_{Y}^{*}(f t(Y))\right)^{*} q\left(p_{f t(Y)}, f t(Y)\right)^{*}(Y)= \\
=\left(q\left(p_{f t(Y)}, f t(Y)\right) q\left(p_{Z}, p_{Y}^{*}(f t(Y))\right) p_{Z}^{*}\left(\delta_{f t(Y)}\right)\right)^{*}(Y)=p_{Z}^{*}(Y)
\end{gathered}
$$

and $q\left(p_{Z}, Y\right): p_{Z}^{*}(Y) \rightarrow Y$. Therefore eval l_{Y} is defined and is a morphism from Z to Y as required by Definition $\mathbb{L 2 2 (2)}$.

We leave the verification of the conditions (i) of (ii) of Definition 2.2 for the later, more mechanized version of this paper.
Π-universes in lcc categories. Recall that a (level 1) category \mathcal{C} is called a lcc (locally Cartesian closed) category if it has fiber products and all the over-categories \mathcal{C} / X have internal Hom-objects.

Definition 2.8 [2009.10.27.def1] Let \mathcal{C} be an lcc category and let $p_{i}: \widetilde{U}_{i} \rightarrow U_{i}, i=1,2,3$ be three morphisms in \mathcal{C}. $A \Pi$-structure on $\left(p_{1}, p_{2}, p_{3}\right)$ is a Cartesian square of the form

such that p_{2}^{\prime} is the natural morphism defined by p_{2}. $A \Pi$-structure on $p: \widetilde{U} \rightarrow U$ is a Π-structure on (p, p, p).

Remark 2.9 A Π-structure on $\left(p_{1}, p_{2}, p_{3}\right)$ corresponds to the rule

$$
\frac{\Gamma, X: U_{1}, f: X \rightarrow U_{2} \triangleright}{\Gamma, X: U_{1}, f: X \rightarrow U_{2} \vdash \prod x: X \cdot e v(f, x): U_{3}}
$$

Let \mathcal{C} be as above, $p: \widetilde{U} \rightarrow U$ and let (\widetilde{P}, P) be a Π-structure on (p, p, p). Let us construct a structure of Π-C-system on $C C=C C(\mathcal{C}, p)$.
We start by recalling some level 1 constructions in \mathcal{C}.
Lemma 2.10 [2009.11.24.15] Consider a pair of pull back squares

Then there exists a unique morphism $f_{F_{1}, F_{2}}: I_{1} \rightarrow \underline{\operatorname{Hom}}_{U_{1}}\left(\widetilde{U}_{1}, U_{1} \times U_{2}\right)$ such that its composition with the natural morphism to U_{1} is F_{1} and the composition of its adjoint

$$
e v \circ\left(f_{F_{1}, F_{2}} \times_{U_{1}} \widetilde{U}_{1}\right): I_{2}=I_{1} \times_{U_{1}} \widetilde{U}_{1} \rightarrow U_{1} \times U_{2}
$$

with the projection to U_{2} is F_{2}.
Proof: Follows immediately from the definition of internal Hom-objects.

Lemma 2.11 [2009.11.24.13] In the notation of Lemma 210 let

be two pull-back squares. Then $f_{F_{1} \phi_{1}, F_{2} \phi_{2}}=f_{F_{1}, F_{2}} \circ \phi_{1}$.
Proof: Straightforward.

Let $p_{1}: \widetilde{U}_{1} \rightarrow U_{1}, p_{2}: \widetilde{U}_{2} \rightarrow U_{2}$ be a pair of morphisms in an lcc \mathcal{C}. Consider a pull-back square of the form

where

$$
e v: \underline{\operatorname{Hom}}_{U_{1}}\left(\widetilde{U}_{1}, U_{1} \times U_{2}\right) \times_{U_{1}} \widetilde{U_{1}} \rightarrow U_{1} \times U_{2}
$$

is the canonical morphism.
Then for any two pull-back squares as in Lemma [2.10, the morphism $f_{F_{1}, F_{2}}$ defines factorizations of the pull-back squares (3) of the form

and

respectively and joining the left hand side squares of these diagrams we get a diagram with pull-back squares of the form

Let

$$
g: \operatorname{Hom}_{U_{1}}\left(\widetilde{U_{1}}, U_{1} \times \widetilde{U}_{2}\right) \times_{U_{1}} \widetilde{U_{1}} \rightarrow \operatorname{Fam}_{2}\left(p_{1}, p_{2}\right)
$$

be the morphism over $\operatorname{Hom}_{U_{1}}\left(\widetilde{U}_{1}, U_{1} \times U_{2}\right) \times_{U_{1}} \widetilde{U_{1}}$ whose composition with the projection Fam $_{2}\left(p_{1}, p_{2}\right) \rightarrow$ \widetilde{U}_{2} equals $p r \circ \widetilde{e v}$ where

$$
\widetilde{e v}: \underline{\operatorname{Hom}}_{U_{1}}\left(\widetilde{U}_{1}, U_{1} \times \widetilde{U}_{2}\right) \times_{U_{1}} \widetilde{U_{1}} \rightarrow U_{1} \times \widetilde{U}_{2}
$$

is the canonical morphism.
Lemma 2.12 [2009.11.24.12] The pair

$$
\left(\underline{\operatorname{Hom}}_{U_{1}}\left(\widetilde{U_{1}}, U_{1} \times \widetilde{U}_{2}\right) \rightarrow \underline{\operatorname{Hom}}_{U_{1}}\left(\widetilde{U}_{1}, U_{1} \times U_{2}\right), g\right)
$$

is universal for $\left(p_{12}, p r\right)$.
Proof: For a given $w: Z \rightarrow \underline{\operatorname{Hom}}_{U_{1}}\left(\widetilde{U}_{1}, U_{1} \times U_{2}\right)$, a morphism $Z \rightarrow \underline{\operatorname{Hom}}_{U_{1}}\left(\widetilde{U_{1}}, U_{1} \times \widetilde{U}_{2}\right)$ over $\operatorname{Hom}_{U_{1}}\left(\widetilde{U}_{1}, U_{1} \times U_{2}\right)$ is the same as a morphism $Z \times_{U_{1}} \widetilde{U}_{1} \rightarrow \widetilde{U}_{2}$ such that the adjoint of its composition with $p_{2}: \widetilde{U}_{2} \rightarrow U_{2}$ is w.
A morphism from Z to the universal pair for p_{12} over $\operatorname{Hom}_{U_{1}}\left(\widetilde{U}_{1}, U_{1} \times U_{2}\right)$ is a morphism $Z \times_{U_{1}} \widetilde{U_{1}} \rightarrow$ \widetilde{U}_{2} whose composition with p_{2} is $(p r \circ e v) \circ\left(w \times_{U_{1}} I d_{\widetilde{U}_{1}}\right)$ which coincides with the condition that the composition of its adjoint with p_{2} is w. This can be also seen from the diagram

Lemma 2.13 [2009.11.24.14] For two pull back squares as in (国), consider a pull-back square of the form

and the morphism

$$
g_{F_{1}, F_{2}}: R\left(F_{1}, F_{2}\right) \times_{I_{1}} I_{2} \rightarrow I_{3}
$$

whose composition with the morphism $I_{3} \rightarrow \widetilde{U}_{2}$ coincides with the composition

$$
R\left(F_{1}, F_{2}\right) \times_{I_{1}} I_{2}=R\left(F_{1}, F_{2}\right) \times_{U_{1}} \widetilde{U}_{1} \rightarrow \underline{H o m}_{U_{1}}\left(\widetilde{U}_{1}, U_{1} \times \widetilde{U}_{2}\right) \times_{U_{1}} \widetilde{U}_{1} \xrightarrow{\text { proev }} \widetilde{U}_{2}
$$

Then $\left(R\left(F_{1}, F_{2}\right), g_{F_{1}, F_{2}}\right)$ is a universal pair for $\left(q_{1}, q_{2}\right)$.
Proof: It follows from Lemma 2.2 and the fact that in a lcc a pull-back of a universal pair is a universal pair.

Let us now construct a Π-C-system on $C C=C C(\mathcal{C}, p)$. Let $n \geq 2$ and $\left(F_{1}, \ldots, F_{n}\right) \in C C$. Denote $\left(p t, F_{1}, \ldots, F_{n-2}\right)$ by I. Then we have two morphisms $F_{n-1}: I \rightarrow U$ and $F_{n}:\left(I, F_{n-1}\right) \rightarrow U$.

Applying Lemma 2.10 to the corresponding pull-back squares we get a morphism

$$
f_{F_{n-1}, F_{n}}: I \rightarrow \underline{\operatorname{Hom}}_{U}(\widetilde{U}, U \times U)
$$

Set $\Pi\left(F_{1}, \ldots, F_{n}\right)=\left(I, P \circ f_{F_{n-1}, F_{n}}\right)=\left(F_{1}, \ldots, F_{n-2}, P \circ f_{F_{n-1}, F_{n}}\right)$. Since the square (ZZ) is a pull-back square there is a unique morphism $\Pi\left(F_{1}, \ldots, F_{n}\right) \rightarrow \underline{\operatorname{Hom}}_{U}(\widetilde{U}, U \times \widetilde{U})$ such that the diagram

commutes and the composition of the two upper arrows is $Q\left(f_{F_{n-1}, F_{n}}\right)$. The left hand side square in this diagram is automatically a pull-back square. Applying to this square Lemma [2]3 we obtain a morphism

$$
\operatorname{eval}_{\left(F_{1}, \ldots, F_{n}\right)}:\left(I, F_{n-1},\left(P \circ f_{F_{n-1}, F_{n}}\right) \circ p r\right) \rightarrow\left(I, F_{n-1}, F_{n}\right)
$$

over $\left(I, F_{n-1}\right)$ (where $p r:\left(I, F_{n-1}\right) \rightarrow I$ is the projection).
The fact that this construction satisfies the first condition of Definition 2.2 follows from Lemma [2.]. The fact that it satisfies the second condition of this definition follows from Lemma [2.13.

[^0]: ${ }^{1} 2000$ Mathematical Subject Classification: 03B15, 03B22, 03F50, 03G25
 ${ }^{2}$ School of Mathematics, Institute for Advanced Study, Princeton NJ, USA. e-mail: vladimir@ias.edu
 ${ }^{3}$ Work on this paper was supported by NSF grant 1100938.

