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Abstract

This is the fourth paper in a series started in [?].

1 Introduction

This is one the papers extending the material which I started to work on in [?]. I would like to
thank QMATH 777

Check the name and definition in Cartmell. Also how much of the first section can be referred to
him.
2 II-C-systems

The notion of a II-C-system is equivalent to the notion of a contextual category with products of
families of types from [?]. We use the name II-C-systems to emphasize the fact that we are dealing
here with an additional structure on a C-system rather than with a property of such an object.

Let us recall first the following definition.

Definition 2.1 [2009.11.24.def2/ Let C be a 1-category. Let g : Z =Y, f:Y — X be a pair of
morphisms such that for any U — X a fiber product U x x Y exists. A pair

(w:W =X h:WxxY = 2)
such that g o h = pr is called a universal pair for (f,g) if for any U — X the map
Homx (U W) — Homy (U xx Y, Z)

of the form u — ho (u x Idy) is a bijection.

If a universal pair exists then it is easily seen to be unique up to a canonical isomorphism. We denote
such a pair by (II(g, f),eq,f : II(g, f) Xxx Y — Z). Note that if f':Y - X andpr: V' xx Y =Y
is the projection then

((pr, f),pr’ o epr,f (g, f) Xxx Y — Y') = (Homx(Y,Y'),ev: Homx (YY) xx Y = Y)

so that relative internal Hom-objects are particular cases of universal pairs.
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Definition 2.2 [2009.11.24.defl] A II-C-system is a C-system CC together with additional data
of the form

1. for each' Y € Ob(CC)>2 an object II(Y) € Ob(CC) such that ft(IL(Y)) = ft3(Y),
2. for each’ Y € Ob(CC)>2 a morphism eval : T(ft(Y),II(Y)) = Py (IL(Y)) = Y over ft(Y),

such that

(i) for any f: Z — ft*(Y) one has f*(II(Y)) = II(f*(Y)) and f*(evaly) = eval(y),
(ii) (IL(Y),evaly)) is a universal pair for (py,psi(v))-

Let us now prove that this definition can be re-written in a less compact but purely equational
form. As before let us write B,, for Ob(CC),, B, for Ob(CC), etc.

The C-system is completely determined by the sets B, §n+1, n > 0 and maps 0 : §n+1 — By,
ft: Bpy1 — Bp, 6 : B, = By and the maps Ty41, Tr+1, Snt1, Snt1 considered above.

Suppose now that we are given a II-C-system. Then we have maps
1. II: Bn+2 — Bn+17 n > 07
2. X §n+2 — §n+17 n > Oa

3. ev: (But1)o X gt (Bug2)t Xo (Bus1) = Buy1, n >0

as follows. The map II is the map from Definition 2. Since (II(Y'), evaly) is a universal pair for
(py,pfi(v)) the mapping

¢y {f € Buy1 |0(f) =TL(Y)} = {5 € Buya|0(s) = Y}

given by the formula

oy (f) = evaly o T(ft(Y), f)

is a bijection. One defines Ay as the inverse to this bijection.

The map ev sends a triple (r,Y, f) such that 9(r) = ft(Y) and 0(f) = II(Y) to

ev(r,Y, f) = §(r, eval o T(ft(Y),f))

as partially illustrated by the following diagram:



Lemma 2.3 [2009.11.30.11] Let n > i > 0, Y € Bpyo, g: Z — ft'P2(Y) and f € B(IL(Y)).
Then one has

g (By (f)yi+2) = Ggeiviire) (g™ (fri+ 1))
Proof: Let hy = q(g, ft(Y),i+ 1), ha = q(g, ft'Y),i + 2). Then one has
g by (f),i +2) = Bi(dy (f)) = hi(evaly o T(ft(Y), f)) = hi(evaly) o h{(T(ft(Y), f))
= evalp: (v)Pys(fo(v),i+1) (12()) = ny(v)(ha(f)) = Ggr (viit2) (9" (f i+ 1)).

As an immediate corollary of Lemma P23 we have:

Lemma 2.4 [2009.11.30.12] Letn > i >0, Y € Bnya, g: Z — ftiT2(Y) and r € B(Y). Then
one has
)i+ 1) = A(g*(ryi +2)).

Lemma 2.5 [2009.11.30.13] Let n > i > 0, Y € Bui2, g : Z — ftF2(Y), r € B(ft(Y)) and
f e B(L(Y)). Then one has

gH(ev(r, Y, f),i+ 1) = ev(g"(r,i+2), " (Vi +2), 9" (f,i + 1))

Proof: Let hy = q(g, ft(Y),i+ 1), ha = q(g, ftY),i+2).
g (ev(r,Y, f),i+ 1) = h3(S(r,eval o T(f1(Y), f))) = hi(r*(eval o T(fH(Y), f))) =
)

= (W3(r))*hi(eval o T(ft(Y), ))) = (W3(r))* (i (cval) o hiplyy(f) =
= (" (i + ) (eval o Py sy (B5(F)) = ev(g* (i +2), " (Vi + 2), 6" (fri + 1)),

Then one has:

Proposition 2.6 [2009.11.29.propl/ Let CC = (Bn,én,ft, 0,0) be a C-system. Let further
(I1, eval) be a Il-structure on CC. Then the maps 11, A\, ev defined by this structure satisfy the
following conditions:

1. forY € B,io one has

(a) fEINY) = f*(Y),
(b) forn+1>i>1, Z € Bpyo_; such that ft(Z) = ft'7Y(Y), T(Z,1(Y)) = I(T(Z,Y)),
(¢) forn+1>i>1,t€ Buyi_; such that d(t) = ftH1(Y), St I(Y)) = I(S(¢,Y)),

2. fors e §n+2 one has

(a) ON(s) =110(s),

(b) forn+1>i>1, Z € Buyro_; such that ft(Z) = ftit1 d(s), T(Z,\(s)) = MT(Z, s)),

(c) formn+1>i>1,t€ Bpy1_; such that (t) = ft10(s), S(t,\(s)) = A(S(t, s)),
Y)

3. forre §n+1, Y € Byio and f € §n+1 such that O(r) = ft(Y) and O(f) = II(
(a) O(ev(r,Y, f)) = S(r,Y),

one has



(b) forn+1>i>1, Z € Bpyo_; such that ft(Z) = ftiTH(Y),
T(Z,evo(r,Y, ) = eo(T(Z,7),T(Z,Y),T(Z, f)),
(c) forn+1>i>1,t€ Byyi_; such that d(t) = ftH1(Y),
S(t,ev(r,Y, f)) = ev(S(t,r),S(t,Y),S(t, f)),
4. forr € Bpy1, s € Bnys such that ft(0(s)) = (r)
ev(r,0s,\(s)) = S(r, s)
(B-reduction),

5. for Y € Bpya, f € Bny1 such that O(f) = II(Y),

2009.11.30.0ldeq1]A(ev(d vy, T(fH(Y),Y), T(ft(Y), f))) = f (1)

(n-reduction,).
Proof: (la) Follows from Definition Z2(1). (1b) Follows from Definition Z74(i) applied to f =
q(pz, ft2(Y),i —1). (1c) Follows from Definition 27(i) applied to f = q(t, ft2(Y),i — 1).

(2a) Follows from the definition of A. (2b) Follows from Lemma P applied to pz. (2c¢) Follows
from Lemma 24 applied to .

(3a) Follows from the definition of ev. (3b) Follows from Lemma P23 applied to pz. (3c) Follows
from Lemma P23 applied to t.

(4) One has

ev(r,ds,A(s)) = r*(eval o (Piyy)(A(s)))) = (v (s)) = r7(s) = S(r; s).
(5) Let Ty = T(ft(Y), ft(Y)) and To = T'(ft(Y),Y). Then
(S i), TFHY),Y), T(fHY), f) = 5y (evalr, o by (P () =
= 0fy(v(evalry) 0 83y P Dy (f) = evalsy, (1) 0 Py (f) = evaly o piyyy (f) = by (f)
which implies () by definition of A.

The converse to Proposition P8 holds as well. Let CC = (B, En, ft,0,0) be a C-system and let
1. II: Bn+2 — Bn-i-l) n = 07
2. X En_t,_g — §n+1, n > O,

3. ev: (Bnt1)o Xt (Bug2)n %o (Bnt1) = Bat1, n >0

be maps satisfying the conclusion of Proposition E&. For each Y € §n+2 define a morphism
evaly : T(ft(Y),II(Y)) = Y

by the formula
6’Ualy = q(pZ, Y) o €U(p*Z((5ft(y)), TQ(Z, Y), (5z)
where Z = p}y 5 (TI(Y)).



Proposition 2.7 [2009.11.30.prop2/ Under the assumption made above the morphisms evaly
are well defined and (11, eval) is a II-structure on CC.

Proof: Let us show that evay is well defined. This requires us to check the following conditions:

1.

ft2(Y) = ft(II(Y)), therefore Z is defined,

- ft(Z) = ftO(dp4vy) since ft(Z) = ft(Y'), therefore p7 (94 (yy) is defined,
. ft3(Z) = ft3(Y), therefore T5(Z,Y) is defined,
-5 (051v)))) = PP} (1Y), fUT2(Z,Y)) = Ta(Z, f1(Y)) = P50} (FHY)),

L 002) = P5(Z) = Pyl (L(Y)) = Ly sy, therefore ev = ev(py(3puy) To(Z,Y), 07) is

defined,

d(ev) = (p7(07:v)))" (12(2,Y)) = (p7(0ex))) T (2, T(f1(Y),Y)) =
= (Pz(85v)) " (p2)" (L))" (Y5 2),2) = (07 (0 113))) 4Pz, Py (FEY ) (Pgecv)) " (Y, 2) =
= (Pz05ev))) a(pz, Py (FH(Y))) a(pse(ry, SUY)) (V) =
= (qruv), FUY))a(pz, Py (FE(Y))pZ053)))" (V) = p7(Y)

and q(pz,Y) : p5(Y) = Y. Therefore evaly is defined and is a morphism from Z to Y as
required by Definition P74(2).

We leave the verification of the conditions (i) of (ii) of Definition 272 for the later, more mechanized
version of this paper.

[I-universes in lcc categories. Recall that a (level 1) category C is called a lcc (locally Cartesian
closed) category if it has fiber products and all the over-categories C/X have internal Hom-objects.

Definition 2.8 [2009.10.27.defl/ Let C be an lcc category and let p; : U — U, i =1,2,3 be
three morphisms in C. A Il-structure on (p1,p2,ps) is a Cartesian square of the form

Homy, (U), Uy x Uy) —2— Uy
[Pisq1] pél lps (2)

Homy, (U1, Uy x Up) —2— Us

such that pl, is the natural morphism defined by pa. A II-structure on p : U — U is a -structure
n (p,p,p).

Remark 2.9 A Il-structure on (pi,p2,p3) corresponds to the rule

X :U,f: X — U
DX:Up,Lf: X—>Ubk]]x: Xev(f,z): U




Let C be as above, p : U — U and let (P, P) be a Il-structure on (p,p,p). Let us construct a
structure of II-C-system on CC = CC(C, p).

We start by recalling some level 1 constructions in C.

Lemma 2.10 [2009.11.24.15] Consider a pair of pull back squares

F; F:

I — ﬁl I3 —2 ﬁQ
[2009.11.24.eq%]l lpl Cpl lpz (3)
I L) Uy I i> Us

Then there exists a unique morphism fr g, : I1 — HomUl(ﬁl, Ui x Us) such that its composition
with the natural morphism to Uy is F1 and the composition of its adjoint

evo (fr.m Xty (71) =1 Xy, U, — Uy x Uy

with the projection to Us is Fy.
Proof: Follows immediately from the definition of internal Hom-objects.

Lemma 2.11 [2009.11.24.13/ In the notation of Lemma ZID let

Jy =2 1, Js —2 L
l lql l lqz
é1 b2
J —— I Jo —— Iy

be two pull-back squares. Then fr ¢, Fopo = fF1,F © 1.

Proof: Straightforward.

Let p; : Uy — Ui, p2: Us — Us be a pair of morphisms in an lcc C. Consider a pull-back square of

the form _
Famsy(p1, p2) — Us

[2009.11.24.eq4] plzl lm (4)

proev

HomUl(ﬁl,Ul X UQ) Xty ffvl — UQ

where B .
ev : HomUl(Ul,Ul X UQ) Xty U1 — U1 X U2

is the canonical morphism.

Then for any two pull-back squares as in Lemma 210, the morphism fr, r, defines factorizations
of the pull-back squares (B) of the form

fFy,Fy X U ~ __ .
I, 22700 Homy, (Uy, Uy x Us) xp, Uy —2— Uy

! ! I

At Homy, (00, Uy x Uy)  —— Uy

6



and _
Ig e Famz(pl,pz) —_— U2

@ = |7

fFl,F2><U1(71 ~ 5 proev
I2 _— HomUl(Ul,Ul X UQ) Xty U1 — U2

respectively and joining the left hand side squares of these diagrams we get a diagram with pull-back

squares of the form
I3 — Fama(p1,p2)

| |

[Py, ry Xy Ut

I, 2220 Homy, (U, Uy x Us) xp, Uy
qll l’”
LN Homy, (01, Uy x Uy)

Let
g : Homyy, (U1, Uy x Us) xy, Uy — Fama(p1, p2)

be the morphism over Homy;, ((71, Ui xUsz) Xy, U; whose composition with the projection Fama(p1, p2) —
U, equals pr o év where

€ev : HomUl(ﬁlle X ﬁg) XUy ﬁ; — U1 X ﬁz

is the canonical morphism.

Lemma 2.12 [2009.11.24.12] The pair
(Homy, (U1, Uy x Ua) = Homyy, (U1, Ur x Ua), )

is universal for (pio2,pr).

Proof: For a given w : Z — HomUl(ﬁl,Ul x Us), a morphism Z — HomUl(f]vl,Ul x Us) over
HomUl(Ul,Ul x Usy) is the same as a morphism Z xg, Uy — Us such that the adjoint of its
composition with py : Uy — Us is w.

A morphism from Z to the universal pair for pi5 over Homy, (ﬁl, U1 xUs) is a morphism Z X, ﬁ; —

U, whose composition with ps is (pr o ev) o (w xu, I dU~1) which coincides with the condition that
the composition of its adjoint with ps is w. This can be also seen from the diagram

Fama(p1,p2) —— Uy

i | |

proev

HﬂUl(ﬁl,Ul x Up) xp, Uy —— Myl(ﬁl,(h x Uz) xp, Uy 22%% Uy

| |7

HomUl([j'l,Ul X [72) — HomUl(’le,Ul X UQ)



Lemma 2.13 [2009.11.24.14] For two pull back squares as in (@), consider a pull-back square of
the form N N
R(F1,F;) —— Homy, (Ur,U; x Us)

! l

Lo P Homy, (01U x Un)
and the morphism

9, Fy t R(F1, Fy) xp, Io — I3

whose composition with the morphism Is — Us coincides with the composition
R(Fy, Fy) x1, I = R(Fy, F3) xy, Uy = Homy;, (U1, Uy x Uy) xp, Uy "= Uy

Then (R(F1, F2), gr ) is a universal pair for (q1,q2).

Proof: It follows from Lemma T2 and the fact that in a lcc a pull-back of a universal pair is a
universal pair.

Let us now construct a II-C-system on CC' = CC(C,p). Let n > 2 and (Fi,..., F,) € CC. Denote
(pt, F1,...,F,_2) by I. Then we have two morphisms F,,_1: I — U and F,, : (I, F,—1) = U.

Applying Lemma 210 to the corresponding pull-back squares we get a morphism
fr 1y I — Homy (U,U x U)

Set II(Fy,...,F,) = (I,Po fr,_,r) = (Fi,...,Fy_2,Po fr,_, p,). Since the square (B) is a
pull-back square there is a unique morphism II(Fi,..., F,) — Homy(U,U x U) such that the
diagram

I(F,....F) —— Homy(U,UxU) —2— U

! | l

fFy_1,Fn ~ P
1 ——— Homy(U,U xU) —— U
commutes and the composition of the two upper arrows is Q(fr, , r,). The left hand side square
in this diagram is automatically a pull-back square. Applying to this square Lemma I3 we obtain
a morphism

eUa/l(Fl,...,Fn) : (I7 Fn-1, (P © an—laFn) OpT‘) - (I, Fhn1, Fn)
over (I, Fy,_1) (where pr: (I, F,,—1) — I is the projection).

The fact that this construction satisfies the first condition of Definition 2 follows from Lemma
P11, The fact that it satisfies the second condition of this definition follows from Lemma PZT3.
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