A Π-C-system defined by a Π-universe in a locally Cartesian closed category ${ }^{\text {II }}$

Vladimir Voevodsky ${ }^{[0,[]}$

Started October 2014

Abstract

This is the fourth paper in a series started in [5].

1 Introduction

The concept of a C-system was introduced in [5].
Notation: For morphisms $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ we denote their composition as $f \circ g$. For functors $F: \mathcal{C} \rightarrow \mathcal{C}^{\prime}, G: \mathcal{C}^{\prime} \rightarrow \mathcal{C}^{\prime \prime}$ we use the standard notation $G \circ F$ for their composition.

2 П-C-systems

The notion of a Π-C-system is equivalent to the notion of a contextual category with products of families of types from [2]. We use the name Π-C-systems to emphasize the fact that we are dealing here with an additional structure on a C-system rather than with a property of such an object.

Let us recall first the following definitions.
Definition 2.1 [inthom] Let \mathcal{C} be a category with direct products. For objects $Y, Y^{\prime} \in \mathcal{C}$ the internal Hom-object from Y to Y^{\prime} is a pair $\left(\underline{\operatorname{Hom}}\left(Y, Y^{\prime}\right)\right.$,ev$\left.v_{Y, Y^{\prime}}: \operatorname{Hom}\left(Y, Y^{\prime}\right) \times Y \rightarrow Y^{\prime}\right)$ such that for any Z the mapping $\operatorname{Hom}\left(Z, \underline{\operatorname{Hom}}\left(Y, Y^{\prime}\right)\right) \rightarrow \operatorname{Hom}\left(Z \times Y, Y^{\prime}\right)$ given by $f \mapsto\left(f \times I d_{Y}\right) \circ e v_{Y, Y^{\prime}}$ is a bijection.

Definition 2.2 [2009.11.24.def2] Let \mathcal{C} be a category. Let $g: Z \rightarrow Y, f: Y \rightarrow X$ be a pair of morphisms such that for any $U \rightarrow X$ a fiber product $U \times_{X} Y$ exists. A pair

$$
\left(w: W \rightarrow X, h: W \times_{X} Y \rightarrow Z\right)
$$

such that $h \circ g=p r_{2}$ is called a universal pair for (g, f) if for any $U \rightarrow X$ the map

$$
\operatorname{Hom}_{X}(U, W) \rightarrow \operatorname{Hom}_{Y}\left(U \times_{X} Y, Z\right)
$$

of the form $u \mapsto\left(u \times I d_{Y}\right) \circ h$ is a bijection.
If a universal pair exists then it is easily seen to be unique up to a unique isomorphism. We denote such a pair by $\left(\Pi(g, f), e_{g, f}: \Pi(g, f) \times_{X} Y \rightarrow Z\right)$. Note that if $f^{\prime}: Y \rightarrow X$ and $p r: Y^{\prime} \times_{X} Y \rightarrow Y$ is the projection then

$$
\left(\Pi(p r, f), p r^{\prime} \circ e_{p r, f}: \Pi(g, f) \times_{X} Y \rightarrow Y^{\prime}\right)=\left(\underline{H o m}_{X}\left(Y, Y^{\prime}\right), e v: \underline{H o m}_{X}\left(Y, Y^{\prime}\right) \times_{X} Y \rightarrow Y^{\prime}\right)
$$

[^0]so that relative internal Hom-objects are particular cases of universal pairs. The converse is also true and given all relative internal Hom-objects one can construct universal pairs.

Definition 2.3 [2009.11.24.def1] A Π-structure on a C-system $C C$ is a collection of data of the form

1. for each $Y \in O b(C C)_{\geq 2}$ an object $\Pi(Y) \in O b(C C)$ such that $f t(\Pi(Y))=f t^{2}(Y)$,
2. for each $Y \in O b(C C)_{\geq 2}$ a morphism eval : $p_{f t(Y)}^{*}(\Pi(Y)) \rightarrow Y$ over $f t(Y)$,
such that
(i) for any $f: Z \rightarrow f t^{2}(Y)$ one has $f^{*}(\Pi(Y))=\Pi\left(f^{*}(Y)\right)$ and $f^{*}\left(e v a l_{Y}\right)=\operatorname{eval}_{f^{*}(Y)}$,
(ii) $\left(\Pi(Y)\right.$, eval $\left.l_{Y}\right)$ is a universal pair for $\left(p_{Y}, p_{f t(Y)}\right)$.
$A \Pi$-C-system is a C-system with $a \Pi$-structure.
Remark 2.4 [2014.10.30.rm1] The type of Π-C-systems is easily seen to be constructively equivalent to the type of "contextual categories with families of types" defined in [2, Def. 1.13, p.83].

3Π-structures on the C-systems of the form $C C(\mathcal{C}, p)$.

For every category \mathcal{C} and a morphism $p: \widetilde{\mathcal{U}} \rightarrow \mathcal{U}$ in \mathcal{C} such that the pull-backs of p along all morphisms to \mathcal{U} (merely) exist we have constructed in [3] a C-system $C C(\mathcal{C}, p)$. In this section we will show how to construct a Π-structure on $C C(\mathcal{C}, p)$ from a certain structure on p when \mathcal{C} is a locally cartesian closed category.
Recall that a category \mathcal{C} is called a lcc (locally cartesian closed) category if it has fiber products and all the over-categories \mathcal{C} / X have internal Hom-objects. If C is an lcc category then for $Y \rightarrow X$, $Y^{\prime} \rightarrow X$ one writes $\underline{\operatorname{Hom}}_{X}\left(Y, Y^{\prime}\right)$ for the internal Hom-object from Y to Y^{\prime} in \mathcal{C} / X.

Definition 3.1 [2009.10.27.def1] Let \mathcal{C} be an lcc category and let $p_{i}: \widetilde{U}_{i} \rightarrow U_{i}, i=1,2,3$ be three morphisms in \mathcal{C}. $A \Pi$-structure on $\left(p_{1}, p_{2}, p_{3}\right)$ is a Cartesian square of the form

such that p_{2}^{\prime} is the natural morphism defined by p_{2}. $A \Pi$-structure on $p: \widetilde{U} \rightarrow U$ is a Π-structure on (p, p, p).

Problem 3.2 [2014.10.30.prob1.fromold] Let \mathcal{C} be as above, $p: \widetilde{U} \rightarrow U$ and let (\widetilde{P}, P) be a Π-structure on (p, p, p). To construct a structure of Π - C-system on $C C=C C(\mathcal{C}, p)$.

Construction 3.3 [2014.10.30.contr1.fromold] We start by recalling some constructions in \mathcal{C}.

Lemma 3.4 [2009.11.24.15] Consider a pair of pull back squares

Then there exists a unique morphism $f_{F_{1}, F_{2}}: I_{1} \rightarrow \underline{H o m}_{U_{1}}\left(\widetilde{U}_{1}, U_{1} \times U_{2}\right)$ such that its composition with the canonical morphism to U_{1} is F_{1} and the composition of its adjoint

$$
\left(f_{F_{1}, F_{2}} \times_{U_{1}} \widetilde{U}_{1}\right) \circ \mathrm{ev}: I_{2}=I_{1} \times_{U_{1}} \widetilde{U}_{1} \rightarrow U_{1} \times U_{2}
$$

with the projection to U_{2} is F_{2}.
Proof: Follows immediately from the definition of internal Hom-objects.

Lemma 3.5 [2009.11.24.13] In the notation of Lemma 3.4 let

be two pull-back squares. Then $f_{F_{1} \phi_{1}, F_{2} \phi_{2}}=\phi_{1} \circ f_{F_{1}, F_{2}}$.
Proof: Straightforward.

Let $p_{1}: \widetilde{U}_{1} \rightarrow U_{1}, p_{2}: \widetilde{U}_{2} \rightarrow U_{2}$ be a pair of morphisms in an lcc \mathcal{C}. Consider a pull-back square of the form

where

$$
e v: \underline{\operatorname{Hom}}_{U_{1}}\left(\widetilde{U}_{1}, U_{1} \times U_{2}\right) \times_{U_{1}} \widetilde{U_{1}} \rightarrow U_{1} \times U_{2}
$$

is the canonical morphism.
Then for any two pull-back squares as in Lemma [3.4, the morphism $f_{F_{1}, F_{2}}$ defines factorizations of the pull-back squares (Z) of the form

and

respectively and joining the left hand side squares of these diagrams we get a diagram with pull-back squares of the form

Let

$$
g: \operatorname{Hom}_{U_{1}}\left(\widetilde{U_{1}}, U_{1} \times \widetilde{U}_{2}\right) \times_{U_{1}} \widetilde{U_{1}} \rightarrow \operatorname{Fam}_{2}\left(p_{1}, p_{2}\right)
$$

be the morphism over $\operatorname{Hom}_{U_{1}}\left(\widetilde{U}_{1}, U_{1} \times U_{2}\right) \times_{U_{1}} \widetilde{U_{1}}$ whose composition with the projection Fam $_{2}\left(p_{1}, p_{2}\right) \rightarrow$ \widetilde{U}_{2} equals $\widetilde{e v} \circ p r_{2}$ where

$$
\widetilde{e v}: \underline{\operatorname{Hom}}_{U_{1}}\left(\widetilde{U}_{1}, U_{1} \times \widetilde{U}_{2}\right) \times_{U_{1}} \widetilde{U_{1}} \rightarrow U_{1} \times \widetilde{U}_{2}
$$

is the canonical morphism.
Lemma 3.6 [2009.11.24.12] The pair

$$
\left(\underline{\operatorname{Hom}}_{U_{1}}\left(\widetilde{U_{1}}, U_{1} \times \widetilde{U}_{2}\right) \rightarrow \underline{\operatorname{Hom}}_{U_{1}}\left(\widetilde{U}_{1}, U_{1} \times U_{2}\right), g\right)
$$

is universal for $\left(p_{12}, p r_{1}\right)$.
Proof: For a given $w: Z \rightarrow \underline{\operatorname{Hom}}_{U_{1}}\left(\widetilde{U}_{1}, U_{1} \times U_{2}\right)$, a morphism $Z \rightarrow \underline{\operatorname{Hom}}_{U_{1}}\left(\widetilde{U_{1}}, U_{1} \times \widetilde{U}_{2}\right)$ over $\operatorname{Hom}_{U_{1}}\left(\widetilde{U}_{1}, U_{1} \times U_{2}\right)$ is the same as a morphism $Z \times_{U_{1}} \widetilde{U}_{1} \rightarrow \widetilde{U}_{2}$ such that the adjoint of its composition with $p_{2}: \widetilde{U}_{2} \rightarrow U_{2}$ is w.
A morphism from Z to the universal pair for p_{12} over $\operatorname{Hom}_{U_{1}}\left(\widetilde{U}_{1}, U_{1} \times U_{2}\right)$ is a morphism $Z \times_{U_{1}} \widetilde{U_{1}} \rightarrow$ \widetilde{U}_{2} whose composition with p_{2} is $\left(w \times_{U_{1}} I d_{\widetilde{U}_{1}}\right) \circ(e v \circ p r)$ which coincides with the condition that the composition of its adjoint with p_{2} is w. This can be also seen from the diagram

Lemma 3.7 [2009.11.24.14] For two pull back squares as in (四), consider a pull-back square of the form

and the morphism

$$
g_{F_{1}, F_{2}}: R\left(F_{1}, F_{2}\right) \times_{I_{1}} I_{2} \rightarrow I_{3}
$$

whose composition with the morphism $I_{3} \rightarrow \widetilde{U}_{2}$ coincides with the composition

$$
R\left(F_{1}, F_{2}\right) \times_{I_{1}} I_{2}=R\left(F_{1}, F_{2}\right) \times_{U_{1}} \widetilde{U}_{1} \rightarrow \underline{H o m}_{U_{1}}\left(\widetilde{U}_{1}, U_{1} \times \widetilde{U}_{2}\right) \times_{U_{1}} \widetilde{U}_{1} \xrightarrow{\text { evopr }} \widetilde{U}_{2}
$$

Then $\left(R\left(F_{1}, F_{2}\right), g_{F_{1}, F_{2}}\right)$ is a universal pair for $\left(q_{2}, q_{1}\right)$.

Proof: It follows from Lemma 3.6 and the fact that in a lce a pull-back of a universal pair is a universal pair.

Let us now construct a Π-structure on $C C=C C(\mathcal{C}, p)$. Let $n \geq 2$ and $\left(F_{1}, \ldots, F_{n}\right) \in C C$. Denote $\left(p t, F_{1}, \ldots, F_{n-2}\right)$ by I. Then we have two morphisms $F_{n-1}: I \rightarrow U$ and $F_{n}:\left(I, F_{n-1}\right) \rightarrow U$.

Applying Lemma $\sqrt{3.4}$ to the corresponding pull-back squares we get a morphism

$$
f_{F_{n-1}, F_{n}}: I \rightarrow \underline{\operatorname{Hom}}_{U}(\widetilde{U}, U \times U)
$$

Set $\Pi\left(F_{1}, \ldots, F_{n}\right)=\left(I, P \circ f_{F_{n-1}, F_{n}}\right)=\left(F_{1}, \ldots, F_{n-2}, P \circ f_{F_{n-1}, F_{n}}\right)$. Since the square ($\mathbb{(W)}$) is a pull-back square there is a unique morphism $\Pi\left(F_{1}, \ldots, F_{n}\right) \rightarrow \underline{\operatorname{Hom}}_{U}(\widetilde{U}, U \times \widetilde{U})$ such that the diagram

commutes and the composition of the two upper arrows is $Q\left(f_{F_{n-1}, F_{n}}\right)$. The left hand side square in this diagram is automatically a pull-back square. Applying to this square Lemma ${ }^{2} .7$ we obtain a morphism

$$
\operatorname{eval}_{\left(F_{1}, \ldots, F_{n}\right)}:\left(I, F_{n-1},\left(P \circ f_{F_{n-1}, F_{n}}\right) \circ p r\right) \rightarrow\left(I, F_{n-1}, F_{n}\right)
$$

over $\left(I, F_{n-1}\right)$ (where $p r:\left(I, F_{n-1}\right) \rightarrow I$ is the projection).
The fact that this construction satisfies the first condition of Definition 2.3 follows from Lemma [3.5. The fact that it satisfies the second condition of this definition follows from Lemma [3.7.

4 A reformulation of the Π-structure.

The definition of the Π-structure given in Definition 2.3 is convenient for the construction of instances of Π-structure on the C-systems such as $C C(\mathcal{C}, p)$ but much less convenient for the construction of such instances on C-systems that arise from the syntactic data such as the C-systems
$C C(R, L M)$ from [4]. It is also inconvenient for studying the Π-structures on the regular quotients of the C-systems.

In this section we will give another description of Π-structures that is better suited for these purposes. In order to do this we reformulate the Π-structure in terms of a structure on the sets $B_{n}=$ $O b(C C)_{n}$ and $\widetilde{B}_{n}=\widetilde{O b}(C C)_{n}$ that satisfies conditions that only refer to operations $\partial, f t, T, \widetilde{T}, S, \widetilde{S}$ and δ on these sets that were introduced in [5] and [6]. In other words we will describe the Π structure on a C-system in terms of a structure on the corresponding (unital) B0-system. This is analogous of how we have described the sub-systems and regular quotients of C-systems in [5] .

Definition 4.1 [2014.11.03.def2] An non-unital ap-П-structure on a non-unital B0-system $\mathbf{B}=$ ($B_{n}, \widetilde{B}_{n+1}, \partial, f t, T, \widetilde{T}, S, \widetilde{S}$) is given by three families of operations of the form:

1. $\Pi: B_{n+2} \rightarrow B_{n+1}$
2. $\lambda: \widetilde{B}_{n+2} \rightarrow \widetilde{B}_{n+1}$
3. ap : $\left(\widetilde{B}_{n+1}\right)_{\partial} \times_{\Pi}\left(B_{n+2}\right)_{f t} \times{ }_{\partial}\left(\widetilde{B}_{n+1}\right) \rightarrow \widetilde{B}_{n+1}$
(where $n \geq 0$) that satisfy the following conditions:
4. for $Y \in B_{n+2}$ one has
(a) $f t \Pi(Y)=f t^{2}(Y)$,
(b) for $n+1 \geq i \geq 1, Z \in B_{n+2-i}$ such that $f t(Z)=f t^{i+1}(Y)$,

$$
T(Z, \Pi(Y))=\Pi(T(Z, Y)),
$$

(c) for $n+1 \geq i \geq 1, t \in \widetilde{B}_{n+1-i}$ such that $\partial(t)=f t^{i+1}(Y)$,

$$
S(t, \Pi(Y))=\Pi(S(t, Y))
$$

2. for $s \in \widetilde{B}_{n+2}$ one has
(a) $\partial \lambda(s)=\Pi \partial(s)$,
(b) for $n+1 \geq i \geq 1, Z \in B_{n+2-i}$ such that $f t(Z)=f t^{i+1} \partial(s)$,

$$
\widetilde{T}(Z, \lambda(s))=\lambda(\widetilde{T}(Z, s))
$$

(c) for $n+1 \geq i \geq 1, t \in \widetilde{B}_{n+1-i}$ such that $\partial(t)=f t^{i+1} \partial(s)$,

$$
\widetilde{S}(t, \lambda(s))=\lambda(\widetilde{S}(t, s))
$$

3. for $r \in \widetilde{B}_{n+1}, Y \in B_{n+2}$ and $f \in \widetilde{B}_{n+1}$ such that $\partial(r)=f t(Y)$ and $\partial(f)=\Pi(Y)$ one has
(a) $\partial(a p(f, Y, r))=S(r, Y)$,
(b) for $n+1 \geq i \geq 1, Z \in B_{n+2-i}$ such that $f t(Z)=f t^{i+1}(Y)$,

$$
\widetilde{T}(Z, a p(f, Y, r))=a p(\widetilde{T}(Z, f), T(Z, Y), \widetilde{T}(Z, r))
$$

(c) for $n+1 \geq i \geq 1, t \in \widetilde{B}_{n+1-i}$ such that $\partial(t)=f t^{i+1}(Y)$,

$$
\widetilde{S}(t, a p(f, Y, r))=a p(\widetilde{S}(t, f), S(t, Y), \widetilde{S}(t, r))
$$

4. for $r \in \widetilde{B}_{n+1}, s \in \widetilde{B}_{n+2}$ such that $f t(\partial(s))=\partial(r)$

$$
a p(\lambda(s), \partial s, r)=\widetilde{S}(r, s)
$$

(β-reduction).
Definition 4.2 [2014.11.03.def3] Let \mathbf{B} be a unital B0-system. Then a non-unital ap-П-structure is called a unital ap-ח-structure if for $n \geq 0, Y \in B_{n+2}, f \in \widetilde{B}_{n+1}$ such that $\partial(f)=\Pi(Y)$,

$$
\begin{equation*}
[\text { 2009.11.30.oldeq1 }] \lambda\left(a p(\widetilde{T}(f t(Y), f)), T(f t(Y), Y), \delta_{f t(Y)}\right)=f \tag{4}
\end{equation*}
$$

(η-reduction).
Problem 4.3 [2014.11.03.prob2] To construct a bijection between Π-structures on a C-system $C C$ and unital ap-П-structures on the corresponding B0-system \mathbf{B}.

Construction $4.4[2014.11 .03 . c o n s t r 1]$ Suppose that we are given a Π-structure on $C C$. Then we have maps

1. $\Pi: B_{n+2} \rightarrow B_{n+1}, n \geq 0$,
2. $\lambda: \widetilde{B}_{n+2} \rightarrow \widetilde{B}_{n+1}, n \geq 0$,
3. ap: $\left(\widetilde{B}_{n+1}\right)_{\partial} \times_{\Pi}\left(B_{n+2}\right)_{f t} \times_{\partial}\left(\widetilde{B}_{n+1}\right) \rightarrow \widetilde{B}_{n+1}, n \geq 0$
defined as follows. The map Π is the map from Definition [2.3. Since $\left(\Pi(Y), e v a l_{Y}\right)$ is a universal pair for $\left(p_{Y}, p_{f t(Y)}\right)$ the mapping

$$
\phi_{Y}:\left\{f \in \widetilde{B}_{n+1} \mid \partial(f)=\Pi(Y)\right\} \rightarrow\left\{s \in \widetilde{B}_{n+2} \mid \partial(s)=Y\right\}
$$

given by the formula

$$
\phi_{Y}(f)=\widetilde{T}(f t(Y), f) \circ \operatorname{eval}_{Y}
$$

is a bijection. One defines λ_{Y} as the inverse to this bijection.
The map $a p$ sends a triple (f, Y, r) such that $\partial(r)=f t(Y)$ and $\partial(f)=\Pi(Y)$ to

$$
a p(f, Y, r)=\widetilde{S}(r, \widetilde{T}(f t(Y), f) \circ \text { eval })
$$

as partially illustrated by the following diagram:

Lemma 4.5 [2009.11.30.11] Let $n \geq i \geq 0, Y \in B_{n+2}, g: Z \rightarrow f t^{i+2}(Y)$ and $f \in \widetilde{B}(\Pi(Y))$.
Then one has

$$
g^{*}\left(\phi_{Y}(f), i+2\right)=\phi_{g^{*}(Y, i+2)}\left(g^{*}(f, i+1)\right)
$$

Proof: Let $h_{1}=q(g, f t(Y), i+1), h_{2}=q(g, Y, i+2)$. Then one has

$$
\begin{gathered}
g^{*}\left(\phi_{Y}(f), i+2\right)=h_{1}^{*}\left(\phi_{Y}(f)\right)=h_{1}^{*}\left(\widetilde{T}(f t(Y), f) \circ e v a l_{Y}\right)=h_{1}^{*}(\widetilde{T}(f t(Y), f)) \circ h_{1}^{*}\left(e v a l_{Y}\right) \\
=p_{g^{*}(f t(Y), i+1)}^{*}\left(h_{2}^{*}(f)\right) \circ \operatorname{eval}_{h_{1}^{*}(Y)}=\phi_{h_{1}^{*}(Y)}\left(h_{2}^{*}(f)\right)=\phi_{g^{*}(Y, i+2)}\left(g^{*}(f, i+1)\right) .
\end{gathered}
$$

As an immediate corollary of Lemma 4.5 we have:
Lemma 4.6 [2009.11.30.12] Let $n \geq i \geq 0, Y \in B_{n+2}, g: Z \rightarrow f t^{i+2}(Y)$ and $r \in \widetilde{B}(Y)$. Then one has

$$
g^{*}(\lambda(r), i+1)=\lambda\left(g^{*}(r, i+2)\right) .
$$

Lemma 4.7 [2009.11.30.13] Let $n \geq i \geq 0, Y \in B_{n+2}, g: Z \rightarrow f t^{i+2}(Y), r \in \widetilde{B}(f t(Y))$ and $f \in \widetilde{B}(\Pi(Y))$. Then one has

$$
g^{*}(a p(f, Y, r), i+1)=a p\left(g^{*}(f, i+1), g^{*}(Y, i+2), g^{*}(r, i+2)\right)
$$

Proof: Let $h_{1}=q(g, f t(Y), i+1), h_{2}=q(g, Y, i+2)$. Then one has:

$$
\begin{gathered}
g^{*}(a p(f, Y, r), i+1)=h_{2}^{*}(\widetilde{S}(r, \widetilde{T}(f t(Y), f)) \circ \text { eval })=h_{2}^{*}\left(r^{*}(\widetilde{T}(f t(Y), f) \circ \text { eval })\right)= \\
\left.=\left(h_{2}^{*}(r)\right)^{*} h_{1}^{*}(\widetilde{T}(f t(Y), f) \circ \text { eval })\right)=\left(h_{2}^{*}(r)\right)^{*}\left(h_{1}^{*} p_{f t(Y)}^{*}(f) \circ h_{1}^{*}(e v a l)\right)= \\
=\left(g^{*}(r, i+2)\right)^{*}\left(p_{g^{*}(f t(Y), i+1)}^{*}\left(h_{2}^{*}(f)\right) \circ \text { eval }\right)=a p\left(g^{*}(f, i+1), g^{*}(Y, i+2), g^{*}(r, i+2)\right) .
\end{gathered}
$$

Proposition 4.8 [2009.11.29.prop1] Let $C C$ be a C-system. Let further (Π, eval) be a Π structure on $C C$. Then the maps Π, λ, ap constructed above form an ap- Π-structure.

Proof: Consider the conditions of Definition $4 . \mathrm{D}$:
(1a) Follows from Definition $23(1)$. (1b) Follows from Definition $2.3(\mathrm{i})$ applied to $f=q\left(p_{Z}, f t^{2}(Y), i-\right.$ 1). (1c) Follows from Definition $R .3(\mathrm{i})$ applied to $f=q\left(t, f t^{2}(Y), i-1\right)$.
(2a) Follows from the definition of λ. (2b) Follows from Lemma 4.6 applied to p_{Z}. (2c) Follows from Lemma 4.6 applied to t.
(3a) Follows from the definition of $a p$. (3b) Follows from Lemma 4.7 applied to p_{Z}. (3c) Follows from Lemma 4.7 applied to t.
(4) One has

$$
a p(\lambda(s), \partial s, r)=r^{*}\left(\left(p_{f t(Y)}^{*}(\lambda(s)) \circ \text { eval }\right)\right)=r^{*}\left(\phi_{Y}(s)\right)=r^{*}(s)=\widetilde{S}(r, s)
$$

Consider the condition of Definition [.2.2. Let $T_{1}=T(f t(Y), f t(Y))$ and $T_{2}=T(f t(Y), Y)$. Then

$$
\operatorname{ap}\left(\widetilde{T}(f t(Y), f), T(f t(Y), Y), \delta_{f t(Y)}\right)=\delta_{f t(Y)}^{*}\left(p_{T_{1}}^{*}\left(p_{f t(Y)}^{*}(f)\right) \circ \operatorname{eval}_{T_{2}}\right)=
$$

$$
=\delta_{f t(Y)}^{*} p_{T_{1}}^{*} p_{f t(Y)}^{*}(f) \circ \delta_{f t(Y)}^{*}\left(e v a l_{T_{2}}\right)=p_{f t(Y)}^{*}(f) \circ e v a l_{\delta_{f t(Y)}^{*}\left(T_{2}\right)}=p_{f t(Y)}^{*}(f) \circ e v a l_{Y}=\phi_{Y}(f)
$$

which implies (\mathbb{Z}) by definition of λ.

To construct the inverse bijection consider a C-system $C C$ and let

1. $\Pi: B_{n+2} \rightarrow B_{n+1}, n \geq 0$,
2. $\lambda: \widetilde{B}_{n+2} \rightarrow \widetilde{B}_{n+1}, n \geq 0$,
3. ap: $\left(\widetilde{B}_{n+1}\right)_{\partial} \times_{\Pi}\left(B_{n+2}\right)_{f t} \times_{\partial}\left(\widetilde{B}_{n+1}\right) \rightarrow \widetilde{B}_{n+1}, n \geq 0$
be maps satisfying the conditions of Definitions 扄 and

$$
\text { eval }_{Y}: T(f t(Y), \Pi(Y)) \rightarrow Y
$$

by the formula

$$
\operatorname{eval}_{Y}=\operatorname{ap}\left(\delta_{Z}, T_{2}(Z, Y), p_{Z}^{*}\left(\delta_{f t(Y)}\right)\right) \circ q\left(p_{Z}, Y\right)
$$

where $Z=p_{f t(Y)}^{*}(\Pi(Y))$.
Proposition 4.9 [2009.11.30.prop2] Under the assumption made above the morphisms eval ${ }_{Y}$ are well defined and (Π, eval) is a Π-structure on CC.

Proof: Let us show that $e v a l_{Y}$ is well defined. This requires us to check the following conditions:

1. $f t^{2}(Y)=f t(\Pi(Y))$, therefore Z is defined,
2. $f t(Z)=f t \partial\left(\delta_{f t(Y)}\right)$ since $f t(Z)=f t(Y)$, therefore $p_{Z}^{*}\left(\delta_{f t(Y)}\right)$ is defined,
3. $f t^{2}(Z)=f t^{2}(Y)$, therefore $T_{2}(Z, Y)$ is defined,
4. $\left.\partial\left(p_{Z}^{*}\left(\delta_{f t(Y)}\right)\right)\right)=p_{Z}^{*} p_{f t(Y)}^{*}(f t(Y)), f t\left(T_{2}(Z, Y)\right)=T_{2}(Z, f t(Y))=p_{Z}^{*} p_{f t(Y)}^{*}(f t(Y))$,
5. $\partial\left(\delta_{Z}\right)=p_{Z}^{*}(Z)=p_{Z}^{*} p_{f t(Y)}^{*}(\Pi(Y))=\Pi_{T_{2}(Z, Y)}$, therefore $a p=a p\left(\delta_{Z}, T_{2}(Z, Y), p_{Z}^{*}\left(\delta_{f t(Y)}\right)\right)$ is defined,
6.

$$
\begin{gathered}
\partial(a p)=\left(p_{Z}^{*}\left(\delta_{f t(Y)}\right)\right)^{*}\left(T_{2}(Z, Y)\right)=\left(p_{Z}^{*}\left(\delta_{f t(Y)}\right)\right)^{*} T(Z, T(f t(Y), Y))= \\
=\left(p_{Z}^{*}\left(\delta_{f t(Y)}\right)\right)^{*}\left(p_{Z}\right)^{*}\left(\left(p_{f t(Y)}\right)^{*}(Y, 2), 2\right)=\left(p_{Z}^{*}\left(\delta_{f t(Y)}\right)\right)^{*} q\left(p_{Z}, p_{Y}^{*}(f t(Y))\right)^{*}\left(p_{f t(Y)}\right)^{*}(Y, 2)= \\
=\left(p_{Z}^{*}\left(\delta_{f t(Y)}\right)\right)^{*} q\left(p_{Z}, p_{Y}^{*}(f t(Y))\right)^{*} q\left(p_{f t(Y)}, f t(Y)\right)^{*}(Y)= \\
=\left(q\left(p_{f t(Y)}, f t(Y)\right) q\left(p_{Z}, p_{Y}^{*}(f t(Y))\right) p_{Z}^{*}\left(\delta_{f t(Y)}\right)\right)^{*}(Y)=p_{Z}^{*}(Y)
\end{gathered}
$$

and $q\left(p_{Z}, Y\right): p_{Z}^{*}(Y) \rightarrow Y$. Therefore $e v a l_{Y}$ is defined and is a morphism from Z to Y as required by Definition [2.3(2).

We leave the verification of the conditions (i) of (ii) of Definition 2.3 for the later, more mechanized version of this paper.

5 Another reformulation of the П-structure.

Problem 5.1 [2014.11.03.prob1] To construct a bijection between pairs of families of operations on a unital B-system \mathbf{B} of the form

$$
\begin{gathered}
\Pi: B_{n+2} \rightarrow B_{n+1} \\
a p:\left(\widetilde{B}_{n+1}\right)_{\partial} \times_{\Pi}\left(B_{n+2}\right)_{f t} \times_{\partial}\left(\widetilde{B}_{n+1}\right) \rightarrow \widetilde{B}_{n+1}
\end{gathered}
$$

satisfying the conditions $1(a)-(c)$ and 3(a)-(c) of Definition 4.1 and pairs of families of operations

$$
\begin{gathered}
\Pi: B_{n+2} \rightarrow B_{n+1} \\
a p 1:\left(\widetilde{B}_{n+1}\right)_{\partial} \times_{\Pi}\left(B_{n+2}\right) \rightarrow \widetilde{B}_{n+2}
\end{gathered}
$$

such that Π again satisfies the conditions 1(a)-(c) of Definition 4.1 and ap1 satisfies the following conditions.
For $n \geq 0, Y \in B_{n+2}$ and $f \in \widetilde{B}_{n+1}$ such that $\partial(f)=\Pi(Y)$ one has:

1. $\partial(a p 1(f, Y))=Y$,
2. for $n+1 \geq i \geq 1, Z \in B_{n+2-i}$ such that $f t(Z)=f t^{i+1}(Y)$ one has

$$
\widetilde{T}(Z, \operatorname{ap} 1(f, Y))=\operatorname{ap} 1(\widetilde{T}(Z, f), T(Z, Y))
$$

3. for $n+1 \geq i \geq 1, t \in B_{n+1-i}$ such that $\partial(t)=f t^{i+1}(Y)$ one has

$$
\widetilde{S}(t, a p 1(f, Y))=\operatorname{ap} 1(\widetilde{S}(t, f), S(t, Y))
$$

4. $\widetilde{S}(\delta(f t(Y)), a p 1(\widetilde{T}(f t(Y), f), T(f t(Y), Y)))=a p 1(f, Y)$

Construction 5.2 [2014.11.03.constr2/Given Π and $a p 1$ define $a p$ as follows:

$$
a p(f, Y, r)=\widetilde{S}(r, a p 1(f, Y))
$$

For the properties of $a p$ we have:

$$
\begin{gathered}
\partial(\operatorname{ap}(f, Y, r))=\partial(\widetilde{S}(r, \operatorname{ap} 1(f, Y)))=S(r, \partial(\operatorname{ap} 1(f, Y)))=S(r, Y) \\
\widetilde{T}(Z, \operatorname{ap}(f, Y, r))=\widetilde{T}(Z, \widetilde{S}(r, \operatorname{ap} 1(f, Y)))=\widetilde{S}(\widetilde{T}(Z, r), \widetilde{T}(Z, \operatorname{ap} 1(f, Y)))= \\
\widetilde{S}(\widetilde{T}(Z, r), \operatorname{ap} 1(\widetilde{T}(Z, f), T(Z, Y)))=\operatorname{ap}(\widetilde{T}(Z, r), T(Z, Y), \widetilde{T}(Z, f))
\end{gathered}
$$

(using the TS-condition of B-systems).

$$
\begin{gathered}
\widetilde{S}(t, a p(f, Y, r))=\widetilde{S}(t, \widetilde{S}(r, \operatorname{ap} 1(f, Y)))=\widetilde{S}(\widetilde{S}(t, r), \widetilde{S}(t, \operatorname{ap} 1(f, Y)))= \\
\widetilde{S}(\widetilde{S}(t, r), \operatorname{ap} 1(\widetilde{S}(t, f), S(t, Y)))=\operatorname{ap}(\widetilde{S}(t, f), S(t, Y), \widetilde{S}(t, r))
\end{gathered}
$$

(using the SS-condition of B-systems).
Given Π and $a p$ define $a p 1$ as follows:

$$
\operatorname{ap} 1(f, Y)=a p(\widetilde{T}(f t(Y), f), T(f t(Y), Y), \delta(f t(Y)))
$$

For the properties of $a p 1$ we have:

$$
\begin{aligned}
\partial(\operatorname{ap} 1(f, Y))= & \partial(a p(\widetilde{T}(f t(Y), f), T(f t(Y), Y), \delta(f t(Y))))= \\
& S(\delta(f t(Y)), T(f t(Y), Y))=Y
\end{aligned}
$$

(using S $\delta \mathrm{T}$-condition of B-system).

$$
\begin{gathered}
\widetilde{T}(Z, a p 1(f, Y))=\widetilde{T}(Z, a p(\widetilde{T}(f t(Y), f), T(f t(Y), Y), \delta(f t(Y))))= \\
a p(\widetilde{T}(Z, \widetilde{T}(f t(Y), f)), T(Z, T(f t(Y), Y)), \widetilde{T}(Z, \delta(f t(Y))))= \\
\operatorname{ap}(\widetilde{T}(T(Z, f t(Y)), \widetilde{T}(Z, f)), T(T(Z, f t(Y)), T(Z, Y)), \delta(T(Z, f t(Y))))= \\
\operatorname{ap}(\widetilde{T}(f t(T(Z, Y)), \widetilde{T}(Z, f)), T(f t(T(Z, Y)), T(Z, Y)), \delta(f t(T(Z, Y))))= \\
a p 1(\widetilde{T}(Z, f), T(Z, Y))
\end{gathered}
$$

(using the TT- and $\mathrm{T} \delta$-conditions of B-systems).

$$
\begin{gathered}
\widetilde{S}(t, \operatorname{ap} 1(f, Y))=\widetilde{S}(t, a p(\widetilde{T}(f t(Y), f), T(f t(Y), Y), \delta(f t(Y))))= \\
\operatorname{ap}(\widetilde{S}(t, \widetilde{T}(f t(Y), f)), S(t, T(f t(Y), Y)), \widetilde{S}(t, \delta(f t(Y))))= \\
\operatorname{ap}(\widetilde{T}(S(t, f t(Y)), \widetilde{S}(t, f)), T(S(t, f t(Y)), S(t, Y)), \delta(S(t, f t(Y))))= \\
\operatorname{ap}(\widetilde{T}(f t(S(t, Y)), \widetilde{S}(t, f)), T(f t(S(t, Y)), S(t, Y)), \delta(f t(S(t, Y))))= \\
\operatorname{ap} 1(\widetilde{S}(t, f), S(t, Y))
\end{gathered}
$$

(using the ST- and $\mathrm{S} \delta$-conditions of B-systems).

$$
\begin{gathered}
\widetilde{S}(\delta(f t(Y)), a p 1(\widetilde{T}(f t(Y), f), T(f t(Y), Y)))= \\
\widetilde{S}(\delta(f t(Y)), a p(\widetilde{T}(f t(T(f t(Y), Y)), \widetilde{T}(f t(Y), f)), \\
T(f t(T(f t(Y), Y)), T(f t(Y), Y)), \delta(f t(T(f t(Y), Y)))))= \\
a p(\widetilde{S}(\delta(f t(Y)), \widetilde{T}(f t(T(f t(Y), Y)), \widetilde{T}(f t(Y), f))), \\
S(\delta(f t(Y)), T(f t(T(f t(Y), Y)), T(f t(Y), Y))), \widetilde{S}(\delta(f t(Y)), \delta(f t(T(f t(Y), Y)))))= \\
a p(\widetilde{S}(\delta(f t(Y)), \widetilde{T}(f t(Y), \widetilde{T}(f t(Y), f))), \\
S(\delta(f t(Y)), T(f t(Y), T(f t(Y), Y))), \widetilde{S}(\delta(f t(Y)), \delta(T(f t(Y), f t(Y)))))= \\
a p(\widetilde{T}(f t(Y), f), T(f t(Y), Y), \delta(f t(Y)))=a p 1(f, Y)
\end{gathered}
$$

(using the TT- S $\delta \mathrm{T}-\delta \mathrm{T}$ - conditions of B-systems).
To check that these constructions are mutually inverse:
Starting with $a p$ we have

$$
\begin{gathered}
a p^{\prime}(f, Y, r)=\widetilde{S}(r, a p 1(f, Y))=\widetilde{S}(r, a p(\widetilde{T}(f t(Y), f), T(f t(Y), Y), \delta(f t(Y))))= \\
a p(\widetilde{S}(r, \widetilde{T}(f t(Y), f)), S(r, T(f t(Y), Y)), \widetilde{S}(r, \delta(f t(Y))))= \\
a p(f, Y, r)
\end{gathered}
$$

(using the STid- and δ Sid- conditions of B-systems).
Starting with ap1 we have

$$
\begin{aligned}
& \operatorname{ap1}^{\prime}(f, Y)=\operatorname{ap}(\widetilde{T}(f t(Y), f), T(f t(Y), Y), \delta(f t(Y)))= \\
& \widetilde{S}(\delta(f t(Y)), \operatorname{ap} 1(\widetilde{T}(f t(Y), f), T(f t(Y), Y)))=\operatorname{ap} 1(f, Y)
\end{aligned}
$$

6Π-structure on C -systems of the form $C C(R, L M)$ and their regular subquotients.

In a remarkable paper [T] A. Hirschowitz and M. Maggesi introduced the notion of an exponential monad ([$\mathbb{L}, \mathrm{p} .559]$). Let \mathcal{C} be a category with finite coproducts \amalg and a final object $p t$. Let Maybe : $\mathcal{C} \rightarrow \mathcal{C}$ be the functor of the form $X \mapsto X \amalg p t$. For a monad $R=(R, \rho$, eta $)$ on \mathcal{C} there is a natural transformation

$$
\gamma: \text { Maybe } \circ R \rightarrow R \circ \text { Maybe }
$$

given by $R\left(i_{X}: X \rightarrow X \amalg p t\right)$ on $R(X)$ and by the restriction of $\eta_{X \amalg p t}: X \amalg p t \rightarrow R(X \amalg p t)$ to the $p t$ on the $p t$.
The authors of [T] observe that for a left module $L M=(L M, \mu)$ over R, the functor $L M^{\prime}$ of the form $L M^{\prime}=L M \circ$ Maybe together with the natural transformation

$$
\mu^{\prime}: L M \circ \text { Maybe } \circ R \xrightarrow{L M \circ \gamma} L M \circ R \circ M a y b e \xrightarrow{\mu \circ M a y b e} L M \circ \text { Maybe }
$$

is again a left R-module. When \mathcal{C} is the category of sets and R is the monad of λ-expressions modulo α-equivalence the λ-abstraction is an R-linear homomorphism of left R-modules

$$
\text { abs }: R^{\prime} \rightarrow R
$$

and the same applies to the monads and modules obtained from general signatures with bindings. When, in addition to the α-equivalence, the λ-expressions are considered modulo β - and η-equivalences the resulting monads of expressions have the property that abs becomes an isomorphism. This leads to the following definition ([I]).

Definition 6.1 [HM2010.p559] An exponential structure on a monad R on Sets is an R-linear isomorphism of left R-modules:

$$
\text { abs }: R^{\prime} \rightarrow R
$$

It is further shown that there are two other equivalent ways of presenting an exponential structure. One is by specifying an explicit inverse isomorphism which is denoted

$$
a p 1: R \rightarrow R^{\prime}
$$

and another one by specifying in addition to abs an R-linear morphism

$$
\text { app }: R \times R \rightarrow R
$$

that, together with $a b s$, satisfies two equations expressing the analogs of the β - and η-equivalences if $\operatorname{abs}\left(E\left(x_{1}, \ldots, x_{n}, y\right)\right)$ is interpreted as the λ-abstraction $\lambda y . E\left(x_{1}, \ldots, x_{n}, y\right)$ and $\operatorname{app}(E, F)$ as application $E F$.

Remark 6.2 [2014.11.03.rem1] Note that $R^{\prime} \rightarrow R$ is a morphism of left R-modules. Both R^{\prime} and R also have natural structures of right R-modules that are given by the R-algebra structures on $R(X)$ and $R(X \amalg p t)$. If $R^{\prime} \rightarrow R$ where an isomorphism of right R-modules i.e. an isomorphism of R-algebras this would be equivalent to having an isomorphism $X \amalg p t \rightarrow X$ in the Kleisli category of R. The isomorphism of left R-modules does not have such an interpretation.

Problem 6.3 [2014.11.03.prob3] To construct for a pair ($R, L M$) where R is a monad on sets and LM a left R-module with values in Sets a function from the pairs (Prod,abs) where

$$
\text { Prod : } L M \times L M^{\prime} \rightarrow L M
$$

is a homomorphism of left R-modules and

$$
\text { abs }: R^{\prime} \rightarrow R
$$

an exponential structure on R to the ap- Π-structures on $B(R, L M)$.

Construction 6.4 [2014.11.03.constr2/We first construct for any triple (Prod, abs, app) an ap-Π-structure on $B(R, L M)$. We define the operations as follows.

$$
\begin{gathered}
\Pi\left(E_{1}, \ldots, E_{n}, A, B\right)=\left(E_{1}, \ldots, E_{n}, \operatorname{Prod}(A, B)\right) \\
\lambda\left(E_{1}, \ldots, E_{n}, A, B, r\right)=\left(E_{1}, \ldots, E_{n}, \operatorname{Prod}(A, B), \operatorname{abs}(a)\right) \\
\operatorname{ap}\left(\left(E_{1}, \ldots, E_{n}, \operatorname{Prod}(A, B), f\right),\left(E_{1}, \ldots, E_{n}, A, B\right),\left(E_{1}, \ldots, E_{n}, A, r\right)\right)=\left(E_{1}, \ldots, E_{n}, ? ? ? a p p(f, r)\right)
\end{gathered}
$$

??? Write the explicit formulas for the operations on $\mathrm{B}(\mathrm{R}, \mathrm{LM})$ using the η, bind, ρ.

Theorem about Π-structures on the regular quotients!
Remark 6.5 A Π-structure on $\left(p_{1}, p_{2}, p_{3}\right)$ corresponds to the rule

$$
\frac{\Gamma, X: U_{1}, f: X \rightarrow U_{2}}{\Gamma, X: U_{1}, f: X \rightarrow U_{2} \vdash \prod x: X . e v(f, x): U_{3}}
$$

References

[1] André Hirschowitz and Marco Maggesi. Modules over monads and initial semantics. Inform. and Comput., 208(5):545-564, 2010.
[2] Thomas Streicher. Semantics of type theory. Progress in Theoretical Computer Science. Birkhäuser Boston Inc., Boston, MA, 1991. Correctness, completeness and independence results, With a foreword by Martin Wirsing.
[3] Vladimir Voevodsky. A C-system defined by a universe in a category. http://arxiv. org/ abs/1409. 7925, 2014.
[4] Vladimir Voevodsky. C-system of a module over a monad on sets. http://arxiv. org/abs/ 1407. 3394, 2014.
[5] Vladimir Voevodsky. Subsystems and regular quotients of C-systems. http://arxiv. org/ abs/1406. 7413, 2014.
[6] Vladimir Voevodsky. B-systems. http://arxiv. org/abs/1410. 5389, October 2014.

[^0]: ${ }^{1} 2000$ Mathematical Subject Classification: 03B15, 03B22, 03F50, 03G25
 ${ }^{2}$ School of Mathematics, Institute for Advanced Study, Princeton NJ, USA. e-mail: vladimir@ias.edu
 ${ }^{3}$ Work on this paper was supported by NSF grant 1100938.

