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Abstract

This is the fourth paper in a series started in [5].

1 Introduction

The concept of a C-system was introduced in [5].

Notation: For morphisms f : X → Y and g : Y → Z we denote their composition as f ◦ g. For
functors F : C → C′, G : C′ → C′′ we use the standard notation G ◦ F for their composition.

2 Π-C-systems

The notion of a Π-C-system is equivalent to the notion of a contextual category with products of
families of types from [2]. We use the name Π-C-systems to emphasize the fact that we are dealing
here with an additional structure on a C-system rather than with a property of such an object.

Let us recall first the following definitions.

Definition 2.1 [inthom] Let C be a category with direct products. For objects Y, Y ′ ∈ C the
internal Hom-object from Y to Y ′ is a pair (Hom(Y, Y ′), evY,Y ′ : Hom(Y, Y ′)× Y → Y ′) such that
for any Z the mapping Hom(Z,Hom(Y, Y ′))→ Hom(Z × Y, Y ′) given by f 7→ (f × IdY ) ◦ evY,Y ′

is a bijection.

Definition 2.2 [2009.11.24.def2] Let C be a category. Let g : Z → Y , f : Y → X be a pair of
morphisms such that for any U → X a fiber product U ×X Y exists. A pair

(w : W → X,h : W ×X Y → Z)

such that h ◦ g = pr2 is called a universal pair for (g, f) if for any U → X the map

HomX(U,W )→ HomY (U ×X Y, Z)

of the form u 7→ (u× IdY ) ◦ h is a bijection.

If a universal pair exists then it is easily seen to be unique up to a unique isomorphism. We denote
such a pair by (Π(g, f), eg,f : Π(g, f)×X Y → Z). Note that if f ′ : Y → X and pr : Y ′ ×X Y → Y
is the projection then

(Π(pr, f), pr′ ◦ epr,f : Π(g, f)×X Y → Y ′) = (HomX(Y, Y ′), ev : HomX(Y, Y ′)×X Y → Y ′)
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so that relative internal Hom-objects are particular cases of universal pairs. The converse is also
true and given all relative internal Hom-objects one can construct universal pairs.

Definition 2.3 [2009.11.24.def1] A Π-structure on a C-system CC is a collection of data of the
form

1. for each Y ∈ Ob(CC)≥2 an object Π(Y ) ∈ Ob(CC) such that ft(Π(Y )) = ft2(Y ),

2. for each Y ∈ Ob(CC)≥2 a morphism eval : p∗ft(Y )(Π(Y ))→ Y over ft(Y ),

such that

(i) for any f : Z → ft2(Y ) one has f∗(Π(Y )) = Π(f∗(Y )) and f∗(evalY ) = evalf∗(Y ),

(ii) (Π(Y ), evalY )) is a universal pair for (pY , pft(Y )).

A Π-C-system is a C-system with a Π-structure.

Remark 2.4 [2014.10.30.rm1] The type of Π-C-systems is easily seen to be constructively equiv-
alent to the type of “contextual categories with families of types” defined in [2, Def. 1.13, p.83].

3 Π-structures on the C-systems of the form CC(C, p).

For every category C and a morphism p : Ũ → U in C such that the pull-backs of p along all
morphisms to U (merely) exist we have constructed in [3] a C-system CC(C, p). In this section we
will show how to construct a Π-structure on CC(C, p) from a certain structure on p when C is a
locally cartesian closed category.

Recall that a category C is called a lcc (locally cartesian closed) category if it has fiber products
and all the over-categories C/X have internal Hom-objects. If C is an lcc category then for Y → X,
Y ′ → X one writes HomX(Y, Y ′) for the internal Hom-object from Y to Y ′ in C/X.

Definition 3.1 [2009.10.27.def1] Let C be an lcc category and let pi : Ũi → Ui, i = 1, 2, 3 be
three morphisms in C. A Π-structure on (p1, p2, p3) is a Cartesian square of the form

[Pisq1]

HomU1
(Ũ1, U1 × Ũ2)

P̃−−−→ Ũ3

p′2

y yp3

HomU1
(Ũ1, U1 × U2)

P−−−→ U3

(1)

such that p′2 is the natural morphism defined by p2. A Π-structure on p : Ũ → U is a Π-structure
on (p, p, p).

Problem 3.2 [2014.10.30.prob1.fromold] Let C be as above, p : Ũ → U and let (P̃ , P ) be a
Π-structure on (p, p, p). To construct a structure of Π-C-system on CC = CC(C, p).

Construction 3.3 [2014.10.30.contr1.fromold] We start by recalling some constructions in C.
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Lemma 3.4 [2009.11.24.l5] Consider a pair of pull back squares

[2009.11.24.eq3]

I2
F̃1−−−→ Ũ1

q1

y yp1

I1
F1−−−→ U1

I3
F̃2−−−→ Ũ2

q2

y yp2

I2
F2−−−→ U2

(2)

Then there exists a unique morphism fF1,F2 : I1 → HomU1
(Ũ1, U1 × U2) such that its composition

with the canonical morphism to U1 is F1 and the composition of its adjoint

(fF1,F2 ×U1 Ũ1) ◦ ev : I2 = I1 ×U1 Ũ1 → U1 × U2

with the projection to U2 is F2.

Proof: Follows immediately from the definition of internal Hom-objects.

Lemma 3.5 [2009.11.24.l3] In the notation of Lemma 3.4 let

J2
ϕ2−−−→ I2y yq1

J1
ϕ1−−−→ I1

J3
ϕ3−−−→ I3y yq2

J2
ϕ2−−−→ I2

be two pull-back squares. Then fF1ϕ1,F2ϕ2 = ϕ1 ◦ fF1,F2.

Proof: Straightforward.

Let p1 : Ũ1 → U1, p2 : Ũ2 → U2 be a pair of morphisms in an lcc C. Consider a pull-back square of
the form

[2009.11.24.eq4]

Fam2(p1, p2) −−−→ Ũ2

p12

y yp2

HomU1
(Ũ1, U1 × U2)×U1 Ũ1

ev◦pr2−−−−→ U2

(3)

where
ev : HomU1

(Ũ1, U1 × U2)×U1 Ũ1 → U1 × U2

is the canonical morphism.

Then for any two pull-back squares as in Lemma 3.4, the morphism fF1,F2 defines factorizations of
the pull-back squares (2) of the form

I2
fF1,F2

×U1
Ũ1−−−−−−−−→ HomU1

(Ũ1, U1 × U2)×U1 Ũ1
pr−−−→ Ũ1

q1

y y yp1

I1
fF1,F2−−−−→ HomU1

(Ũ1, U1 × U2) −−−→ U1
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and
I3 −−−→ Fam2(p1, p2) −−−→ Ũ2

q2

y yp12

yp2

I2
fF1,F2

×U1
Ũ1−−−−−−−−→ HomU1

(Ũ1, U1 × U2)×U1 Ũ1
ev◦pr2−−−−→ U2

respectively and joining the left hand side squares of these diagrams we get a diagram with pull-back
squares of the form

I3 −−−→ Fam2(p1, p2)

q2

y yp12

I2
fF1,F2

×U1
Ũ1−−−−−−−−→ HomU1

(Ũ1, U1 × U2)×U1 Ũ1

q1

y ypr1

I1
fF1,F2−−−−→ HomU1

(Ũ1, U1 × U2)

Let
g : HomU1

(Ũ1, U1 × Ũ2)×U1 Ũ1 → Fam2(p1, p2)

be the morphism overHomU1
(Ũ1, U1×U2)×U1Ũ1 whose composition with the projection Fam2(p1, p2)→

Ũ2 equals ẽv ◦ pr2 where

ẽv : HomU1
(Ũ1, U1 × Ũ2)×U1 Ũ1 → U1 × Ũ2

is the canonical morphism.

Lemma 3.6 [2009.11.24.l2] The pair

(HomU1
(Ũ1, U1 × Ũ2)→ HomU1

(Ũ1, U1 × U2), g)

is universal for (p12, pr1).

Proof: For a given w : Z → HomU1
(Ũ1, U1 × U2), a morphism Z → HomU1

(Ũ1, U1 × Ũ2) over

HomU1
(Ũ1, U1 × U2) is the same as a morphism Z ×U1 Ũ1 → Ũ2 such that the adjoint of its

composition with p2 : Ũ2 → U2 is w.

A morphism from Z to the universal pair for p12 overHomU1
(Ũ1, U1×U2) is a morphism Z×U1 Ũ1 →

Ũ2 whose composition with p2 is (w ×U1 IdŨ1
) ◦ (ev ◦ pr) which coincides with the condition that

the composition of its adjoint with p2 is w. This can be also seen from the diagram

Fam2(p1, p2) −−−→ Ũ2

p12

y yp2

HomU1
(Ũ1, U1 × Ũ2)×U1 Ũ1 −−−→ HomU1

(Ũ1, U1 × U2)×U1 Ũ1
ev◦pr−−−→ U2y ypr

HomU1
(Ũ1, U1 × Ũ2) −−−→ HomU1

(Ũ1, U1 × U2)

4



Lemma 3.7 [2009.11.24.l4] For two pull back squares as in (2), consider a pull-back square of
the form

R(F1, F2) −−−→ HomU1
(Ũ1, U1 × Ũ2)y y

I1
fF1,F2−−−−→ HomU1

(Ũ1, U1 × U2)

and the morphism
gF1,F2 : R(F1, F2)×I1 I2 → I3

whose composition with the morphism I3 → Ũ2 coincides with the composition

R(F1, F2)×I1 I2 = R(F1, F2)×U1 Ũ1 → HomU1
(Ũ1, U1 × Ũ2)×U1 Ũ1

ev◦pr→ Ũ2

Then (R(F1, F2), gF1,F2) is a universal pair for (q2, q1).

Proof: It follows from Lemma 3.6 and the fact that in a lcc a pull-back of a universal pair is a
universal pair.

Let us now construct a Π-structure on CC = CC(C, p). Let n ≥ 2 and (F1, . . . , Fn) ∈ CC. Denote
(pt, F1, . . . , Fn−2) by I. Then we have two morphisms Fn−1 : I → U and Fn : (I, Fn−1)→ U .

Applying Lemma 3.4 to the corresponding pull-back squares we get a morphism

fFn−1,Fn : I → HomU (Ũ , U × U)

Set Π(F1, . . . , Fn) = (I, P ◦ fFn−1,Fn) = (F1, . . . , Fn−2, P ◦ fFn−1,Fn). Since the square (1) is a

pull-back square there is a unique morphism Π(F1, . . . , Fn) → HomU (Ũ , U × Ũ) such that the
diagram

Π(F1, . . . , Fn) −−−→ HomU (Ũ , U × Ũ)
P̃−−−→ Ũy y y

I
fFn−1,Fn−−−−−−→ HomU (Ũ , U × U)

P−−−→ U

commutes and the composition of the two upper arrows is Q(fFn−1,Fn). The left hand side square
in this diagram is automatically a pull-back square. Applying to this square Lemma 3.7 we obtain
a morphism

eval(F1,...,Fn) : (I, Fn−1, (P ◦ fFn−1,Fn) ◦ pr)→ (I, Fn−1, Fn)

over (I, Fn−1) (where pr : (I, Fn−1)→ I is the projection).

The fact that this construction satisfies the first condition of Definition 2.3 follows from Lemma
3.5. The fact that it satisfies the second condition of this definition follows from Lemma 3.7.

4 A reformulation of the Π-structure.

The definition of the Π-structure given in Definition 2.3 is convenient for the construction of in-
stances of Π-structure on the C-systems such as CC(C, p) but much less convenient for the con-
struction of such instances on C-systems that arise from the syntactic data such as the C-systems
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CC(R,LM) from [4]. It is also inconvenient for studying the Π-structures on the regular quotients
of the C-systems.

In this section we will give another description of Π-structures that is better suited for these
purposes. In order to do this we reformulate the Π-structure in terms of a structure on the sets Bn =
Ob(CC)n and B̃n = Õb(CC)n that satisfies conditions that only refer to operations ∂, ft, T, T̃ , S, S̃
and δ on these sets that were introduced in [5] and [6]. In other words we will describe the Π-
structure on a C-system in terms of a structure on the corresponding (unital) B0-system. This is
analogous of how we have described the sub-systems and regular quotients of C-systems in [5].

Definition 4.1 [2014.11.03.def2] An non-unital ap-Π-structure on a non-unital B0-system B =
(Bn, B̃n+1, ∂, ft, T, T̃ , S, S̃) is given by three families of operations of the form:

1. Π : Bn+2 → Bn+1

2. λ : B̃n+2 → B̃n+1

3. ap : (B̃n+1)∂ ×Π (Bn+2)ft ×∂ (B̃n+1)→ B̃n+1

(where n ≥ 0) that satisfy the following conditions:

1. for Y ∈ Bn+2 one has

(a) ftΠ(Y ) = ft2(Y ),

(b) for n+ 1 ≥ i ≥ 1, Z ∈ Bn+2−i such that ft(Z) = fti+1(Y ),

T (Z,Π(Y )) = Π(T (Z, Y )),

(c) for n+ 1 ≥ i ≥ 1, t ∈ B̃n+1−i such that ∂(t) = fti+1(Y ),

S(t,Π(Y )) = Π(S(t, Y )),

2. for s ∈ B̃n+2 one has

(a) ∂ λ(s) = Π ∂(s),

(b) for n+ 1 ≥ i ≥ 1, Z ∈ Bn+2−i such that ft(Z) = fti+1 ∂(s),

T̃ (Z, λ(s)) = λ(T̃ (Z, s)),

(c) for n+ 1 ≥ i ≥ 1, t ∈ B̃n+1−i such that ∂(t) = fti+1 ∂(s),

S̃(t, λ(s)) = λ(S̃(t, s)),

3. for r ∈ B̃n+1, Y ∈ Bn+2 and f ∈ B̃n+1 such that ∂(r) = ft(Y ) and ∂(f) = Π(Y ) one has

(a) ∂(ap(f, Y, r)) = S(r, Y ),

(b) for n+ 1 ≥ i ≥ 1, Z ∈ Bn+2−i such that ft(Z) = fti+1(Y ),

T̃ (Z, ap(f, Y, r)) = ap(T̃ (Z, f), T (Z, Y ), T̃ (Z, r)),
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(c) for n+ 1 ≥ i ≥ 1, t ∈ B̃n+1−i such that ∂(t) = fti+1(Y ),

S̃(t, ap(f, Y, r)) = ap(S̃(t, f), S(t, Y ), S̃(t, r)),

4. for r ∈ B̃n+1, s ∈ B̃n+2 such that ft(∂(s)) = ∂(r)

ap(λ(s), ∂ s, r) = S̃(r, s)

(β-reduction).

Definition 4.2 [2014.11.03.def3] Let B be a unital B0-system. Then a non-unital ap-Π-structure
is called a unital ap-Π-structure if for n ≥ 0, Y ∈ Bn+2, f ∈ B̃n+1 such that ∂(f) = Π(Y ),

[2009.11.30.oldeq1]λ(ap(T̃ (ft(Y ), f)), T (ft(Y ), Y ), δft(Y )) = f (4)

(η-reduction).

Problem 4.3 [2014.11.03.prob2] To construct a bijection between Π-structures on a C-system
CC and unital ap-Π-structures on the corresponding B0-system B.

Construction 4.4 [2014.11.03.constr1] Suppose that we are given a Π-structure on CC. Then
we have maps

1. Π : Bn+2 → Bn+1, n ≥ 0,

2. λ : B̃n+2 → B̃n+1, n ≥ 0,

3. ap : (B̃n+1)∂ ×Π (Bn+2)ft ×∂ (B̃n+1)→ B̃n+1, n ≥ 0

defined as follows. The map Π is the map from Definition 2.3. Since (Π(Y ), evalY ) is a universal
pair for (pY , pft(Y )) the mapping

ϕY : {f ∈ B̃n+1 | ∂(f) = Π(Y )} → {s ∈ B̃n+2 | ∂(s) = Y }

given by the formula
ϕY (f) = T̃ (ft(Y ), f) ◦ evalY

is a bijection. One defines λY as the inverse to this bijection.

The map ap sends a triple (f, Y, r) such that ∂(r) = ft(Y ) and ∂(f) = Π(Y ) to

ap(f, Y, r) = S̃(r, T̃ (ft(Y ), f) ◦ eval)

as partially illustrated by the following diagram:

Y ←−−− S(r, Y )

pY

y y
p∗ft(Y )(Π(Y )) −−−→ ft(Y ) ←−−−

r
ft2(Y )y y

Π(Y )
pΠ(Y )−−−→ ft2(Y )
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Lemma 4.5 [2009.11.30.l1] Let n ≥ i ≥ 0, Y ∈ Bn+2, g : Z → fti+2(Y ) and f ∈ B̃(Π(Y )).
Then one has

g∗(ϕY (f), i+ 2) = ϕg∗(Y,i+2)(g
∗(f, i+ 1))

Proof: Let h1 = q(g, ft(Y ), i+ 1), h2 = q(g, Y, i+ 2). Then one has

g∗(ϕY (f), i+ 2) = h∗1(ϕY (f)) = h∗1(T̃ (ft(Y ), f) ◦ evalY ) = h∗1(T̃ (ft(Y ), f)) ◦ h∗1(evalY )

= p∗g∗(ft(Y ),i+1)(h
∗
2(f)) ◦ evalh∗

1(Y ) = ϕh∗
1(Y )(h

∗
2(f)) = ϕg∗(Y,i+2)(g

∗(f, i+ 1)).

As an immediate corollary of Lemma 4.5 we have:

Lemma 4.6 [2009.11.30.l2] Let n ≥ i ≥ 0, Y ∈ Bn+2, g : Z → fti+2(Y ) and r ∈ B̃(Y ). Then
one has

g∗(λ(r), i+ 1) = λ(g∗(r, i+ 2)).

Lemma 4.7 [2009.11.30.l3] Let n ≥ i ≥ 0, Y ∈ Bn+2, g : Z → fti+2(Y ), r ∈ B̃(ft(Y )) and
f ∈ B̃(Π(Y )). Then one has

g∗(ap(f, Y, r), i+ 1) = ap(g∗(f, i+ 1), g∗(Y, i+ 2), g∗(r, i+ 2))

Proof: Let h1 = q(g, ft(Y ), i+ 1), h2 = q(g, Y, i+ 2). Then one has:

g∗(ap(f, Y, r), i+ 1) = h∗2(S̃(r, T̃ (ft(Y ), f)) ◦ eval) = h∗2(r
∗(T̃ (ft(Y ), f) ◦ eval)) =

= (h∗2(r))
∗h∗1(T̃ (ft(Y ), f) ◦ eval)) = (h∗2(r))

∗(h∗1p
∗
ft(Y )(f) ◦ h

∗
1(eval)) =

= (g∗(r, i+ 2))∗(p∗g∗(ft(Y ),i+1)(h
∗
2(f)) ◦ eval) = ap(g∗(f, i+ 1), g∗(Y, i+ 2), g∗(r, i+ 2)).

Proposition 4.8 [2009.11.29.prop1] Let CC be a C-system. Let further (Π, eval) be a Π-
structure on CC. Then the maps Π, λ, ap constructed above form an ap-Π-structure.

Proof: Consider the conditions of Definition 4.1:

(1a) Follows from Definition 2.3(1). (1b) Follows from Definition 2.3(i) applied to f = q(pZ , ft
2(Y ), i−

1). (1c) Follows from Definition 2.3(i) applied to f = q(t, ft2(Y ), i− 1).

(2a) Follows from the definition of λ. (2b) Follows from Lemma 4.6 applied to pZ . (2c) Follows
from Lemma 4.6 applied to t.

(3a) Follows from the definition of ap. (3b) Follows from Lemma 4.7 applied to pZ . (3c) Follows
from Lemma 4.7 applied to t.

(4) One has

ap(λ(s), ∂ s, r) = r∗((p∗ft(Y )(λ(s)) ◦ eval)) = r∗(ϕY (s)) = r∗(s) = S̃(r, s).

Consider the condition of Definition 4.2. Let T1 = T (ft(Y ), ft(Y )) and T2 = T (ft(Y ), Y ). Then

ap(T̃ (ft(Y ), f), T (ft(Y ), Y ), δft(Y )) = δ∗ft(Y )(p
∗
T1
(p∗ft(Y )(f)) ◦ evalT2) =
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= δ∗ft(Y )p
∗
T1
p∗ft(Y )(f) ◦ δ

∗
ft(Y )(evalT2) = p∗ft(Y )(f) ◦ evalδ∗ft(Y )

(T2) = p∗ft(Y )(f) ◦ evalY = ϕY (f)

which implies (4) by definition of λ.

To construct the inverse bijection consider a C-system CC and let

1. Π : Bn+2 → Bn+1, n ≥ 0,

2. λ : B̃n+2 → B̃n+1, n ≥ 0,

3. ap : (B̃n+1)∂ ×Π (Bn+2)ft ×∂ (B̃n+1)→ B̃n+1, n ≥ 0

be maps satisfying the conditions of Definitions 4.1 and 4.2. For each Y ∈ B̃n+2 define a morphism

evalY : T (ft(Y ),Π(Y ))→ Y

by the formula
evalY = ap(δZ , T2(Z, Y ), p∗Z(δft(Y ))) ◦ q(pZ , Y )

where Z = p∗ft(Y )(Π(Y )).

Proposition 4.9 [2009.11.30.prop2] Under the assumption made above the morphisms evalY
are well defined and (Π, eval) is a Π-structure on CC.

Proof: Let us show that evalY is well defined. This requires us to check the following conditions:

1. ft2(Y ) = ft(Π(Y )), therefore Z is defined,

2. ft(Z) = ft∂(δft(Y )) since ft(Z) = ft(Y ), therefore p∗Z(δft(Y )) is defined,

3. ft2(Z) = ft2(Y ), therefore T2(Z, Y ) is defined,

4. ∂(p∗Z(δft(Y )))) = p∗Zp
∗
ft(Y )(ft(Y )), ft(T2(Z, Y )) = T2(Z, ft(Y )) = p∗Zp

∗
ft(Y )(ft(Y )),

5. ∂(δZ) = p∗Z(Z) = p∗Zp
∗
ft(Y )(Π(Y )) = ΠT2(Z,Y ), therefore ap = ap(δZ , T2(Z, Y ), p∗Z(δft(Y ))) is

defined,

6.
∂(ap) = (p∗Z(δft(Y )))

∗(T2(Z, Y )) = (p∗Z(δft(Y )))
∗T (Z, T (ft(Y ), Y )) =

= (p∗Z(δft(Y )))
∗(pZ)

∗((pft(Y ))
∗(Y, 2), 2) = (p∗Z(δft(Y )))

∗q(pZ , p
∗
Y (ft(Y )))∗(pft(Y ))

∗(Y, 2) =

= (p∗Z(δft(Y )))
∗q(pZ , p

∗
Y (ft(Y )))∗q(pft(Y ), ft(Y ))∗(Y ) =

= (q(pft(Y ), ft(Y ))q(pZ , p
∗
Y (ft(Y )))p∗Z(δft(Y )))

∗(Y ) = p∗Z(Y )

and q(pZ , Y ) : p∗Z(Y ) → Y . Therefore evalY is defined and is a morphism from Z to Y as
required by Definition 2.3(2).

We leave the verification of the conditions (i) of (ii) of Definition 2.3 for the later, more mechanized
version of this paper.
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5 Another reformulation of the Π-structure.

Problem 5.1 [2014.11.03.prob1] To construct a bijection between pairs of families of operations
on a unital B-system B of the form

Π : Bn+2 → Bn+1

ap : (B̃n+1)∂ ×Π (Bn+2)ft ×∂ (B̃n+1)→ B̃n+1

satisfying the conditions 1(a)-(c) and 3(a)-(c) of Definition 4.1 and pairs of families of operations

Π : Bn+2 → Bn+1

ap1 : (B̃n+1)∂ ×Π (Bn+2)→ B̃n+2

such that Π again satisfies the conditions 1(a)-(c) of Definition 4.1 and ap1 satisfies the following
conditions.

For n ≥ 0, Y ∈ Bn+2 and f ∈ B̃n+1 such that ∂(f) = Π(Y ) one has:

1. ∂(ap1(f, Y )) = Y ,

2. for n+ 1 ≥ i ≥ 1, Z ∈ Bn+2−i such that ft(Z) = fti+1(Y ) one has

T̃ (Z, ap1(f, Y )) = ap1(T̃ (Z, f), T (Z, Y ))

3. for n+ 1 ≥ i ≥ 1, t ∈ Bn+1−i such that ∂(t) = fti+1(Y ) one has

S̃(t, ap1(f, Y )) = ap1(S̃(t, f), S(t, Y ))

4. S̃(δ(ft(Y )), ap1(T̃ (ft(Y ), f), T (ft(Y ), Y ))) = ap1(f, Y )

Construction 5.2 [2014.11.03.constr2]Given Π and ap1 define ap as follows:

ap(f, Y, r) = S̃(r, ap1(f, Y ))

For the properties of ap we have:

∂(ap(f, Y, r)) = ∂(S̃(r, ap1(f, Y ))) = S(r, ∂(ap1(f, Y ))) = S(r, Y )

T̃ (Z, ap(f, Y, r)) = T̃ (Z, S̃(r, ap1(f, Y ))) = S̃(T̃ (Z, r), T̃ (Z, ap1(f, Y ))) =

S̃(T̃ (Z, r), ap1(T̃ (Z, f), T (Z, Y ))) = ap(T̃ (Z, r), T (Z, Y ), T̃ (Z, f))

(using the TS-condition of B-systems).

S̃(t, ap(f, Y, r)) = S̃(t, S̃(r, ap1(f, Y ))) = S̃(S̃(t, r), S̃(t, ap1(f, Y ))) =

S̃(S̃(t, r), ap1(S̃(t, f), S(t, Y ))) = ap(S̃(t, f), S(t, Y ), S̃(t, r))

(using the SS-condition of B-systems).

Given Π and ap define ap1 as follows:

ap1(f, Y ) = ap(T̃ (ft(Y ), f), T (ft(Y ), Y ), δ(ft(Y )))

10



For the properties of ap1 we have:

∂(ap1(f, Y )) = ∂(ap(T̃ (ft(Y ), f), T (ft(Y ), Y ), δ(ft(Y )))) =

S(δ(ft(Y )), T (ft(Y ), Y )) = Y

(using SδT-condition of B-system).

T̃ (Z, ap1(f, Y )) = T̃ (Z, ap(T̃ (ft(Y ), f), T (ft(Y ), Y ), δ(ft(Y )))) =

ap(T̃ (Z, T̃ (ft(Y ), f)), T (Z, T (ft(Y ), Y )), T̃ (Z, δ(ft(Y )))) =

ap(T̃ (T (Z, ft(Y )), T̃ (Z, f)), T (T (Z, ft(Y )), T (Z, Y )), δ(T (Z, ft(Y )))) =

ap(T̃ (ft(T (Z, Y )), T̃ (Z, f)), T (ft(T (Z, Y )), T (Z, Y )), δ(ft(T (Z, Y )))) =

ap1(T̃ (Z, f), T (Z, Y ))

(using the TT- and Tδ-conditions of B-systems).

S̃(t, ap1(f, Y )) = S̃(t, ap(T̃ (ft(Y ), f), T (ft(Y ), Y ), δ(ft(Y )))) =

ap(S̃(t, T̃ (ft(Y ), f)), S(t, T (ft(Y ), Y )), S̃(t, δ(ft(Y )))) =

ap(T̃ (S(t, ft(Y )), S̃(t, f)), T (S(t, ft(Y )), S(t, Y )), δ(S(t, ft(Y )))) =

ap(T̃ (ft(S(t, Y )), S̃(t, f)), T (ft(S(t, Y )), S(t, Y )), δ(ft(S(t, Y )))) =

ap1(S̃(t, f), S(t, Y ))

(using the ST- and Sδ-conditions of B-systems).

S̃(δ(ft(Y )), ap1(T̃ (ft(Y ), f), T (ft(Y ), Y ))) =

S̃(δ(ft(Y )), ap(T̃ (ft(T (ft(Y ), Y )), T̃ (ft(Y ), f)),

T (ft(T (ft(Y ), Y )), T (ft(Y ), Y )), δ(ft(T (ft(Y ), Y ))))) =

ap(S̃(δ(ft(Y )), T̃ (ft(T (ft(Y ), Y )), T̃ (ft(Y ), f))),

S(δ(ft(Y )), T (ft(T (ft(Y ), Y )), T (ft(Y ), Y ))), S̃(δ(ft(Y )), δ(ft(T (ft(Y ), Y ))))) =

ap(S̃(δ(ft(Y )), T̃ (ft(Y ), T̃ (ft(Y ), f))),

S(δ(ft(Y )), T (ft(Y ), T (ft(Y ), Y ))), S̃(δ(ft(Y )), δ(T (ft(Y ), ft(Y ))))) =

ap(T̃ (ft(Y ), f), T (ft(Y ), Y ), δ(ft(Y ))) = ap1(f, Y )

(using the TT- SδT- δT- conditions of B-systems).

To check that these constructions are mutually inverse:

Starting with ap we have

ap′(f, Y, r) = S̃(r, ap1(f, Y )) = S̃(r, ap(T̃ (ft(Y ), f), T (ft(Y ), Y ), δ(ft(Y )))) =

ap(S̃(r, T̃ (ft(Y ), f)), S(r, T (ft(Y ), Y )), S̃(r, δ(ft(Y )))) =

ap(f, Y, r)

(using the STid- and δSid- conditions of B-systems).

Starting with ap1 we have

ap1′(f, Y ) = ap(T̃ (ft(Y ), f), T (ft(Y ), Y ), δ(ft(Y ))) =

S̃(δ(ft(Y )), ap1(T̃ (ft(Y ), f), T (ft(Y ), Y ))) = ap1(f, Y )
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6 Π-structure on C-systems of the form CC(R,LM) and their regular sub-
quotients.

In a remarkable paper [1] A. Hirschowitz and M. Maggesi introduced the notion of an exponential
monad ([1, p.559]). Let C be a category with finite coproducts ⨿ and a final object pt. Let
Maybe : C → C be the functor of the form X 7→ X ⨿ pt. For a monad R = (R, ρ, eta) on C there is
a natural transformation

γ : Maybe ◦R→ R ◦Maybe

given by R(iX : X → X ⨿ pt) on R(X) and by the restriction of ηX⨿pt : X ⨿ pt → R(X ⨿ pt) to
the pt on the pt.

The authors of [1] observe that for a left module LM = (LM,µ) over R, the functor LM ′ of the
form LM ′ = LM ◦Maybe together with the natural transformation

µ′ : LM ◦Maybe ◦R LM◦γ−→ LM ◦R ◦Maybe
µ◦Maybe−→ LM ◦Maybe

is again a left R-module. When C is the category of sets and R is the monad of λ-expressions
modulo α-equivalence the λ-abstraction is an R-linear homomorphism of left R-modules

abs : R′ → R

and the same applies to the monads and modules obtained from general signatures with bind-
ings. When, in addition to the α-equivalence, the λ-expressions are considered modulo β- and
η-equivalences the resulting monads of expressions have the property that abs becomes an isomor-
phism. This leads to the following definition ([1]).

Definition 6.1 [HM2010.p559] An exponential structure on a monad R on Sets is an R-linear
isomorphism of left R-modules:

abs : R′ → R

It is further shown that there are two other equivalent ways of presenting an exponential structure.
One is by specifying an explicit inverse isomorphism which is denoted

ap1 : R→ R′

and another one by specifying in addition to abs an R-linear morphism

app : R×R→ R

that, together with abs, satisfies two equations expressing the analogs of the β- and η-equivalences
if abs(E(x1, . . . , xn, y)) is interpreted as the λ-abstraction λy.E(x1, . . . , xn, y) and app(E,F ) as
application E F .

Remark 6.2 [2014.11.03.rem1] Note that R′ → R is a morphism of left R-modules. Both R′

and R also have natural structures of right R-modules that are given by the R-algebra structures on
R(X) and R(X ⨿ pt). If R′ → R where an isomorphism of right R-modules i.e. an isomorphism of
R-algebras this would be equivalent to having an isomorphism X ⨿ pt→ X in the Kleisli category
of R. The isomorphism of left R-modules does not have such an interpretation.
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Problem 6.3 [2014.11.03.prob3] To construct for a pair (R,LM) where R is a monad on sets
and LM a left R-module with values in Sets a function from the pairs (Prod, abs) where

Prod : LM × LM ′ → LM

is a homomorphism of left R-modules and

abs : R′ → R

an exponential structure on R to the ap-Π-structures on B(R,LM).

Construction 6.4 [2014.11.03.constr2]We first construct for any triple (Prod, abs, app) an ap-
Π-structure on B(R,LM). We define the operations as follows.

Π(E1, . . . , En, A,B) = (E1, . . . , En, P rod(A,B))

λ(E1, . . . , En, A,B, r) = (E1, . . . , En, P rod(A,B), abs(a))

ap((E1, . . . , En, P rod(A,B), f), (E1, . . . , En, A,B), (E1, . . . , En, A, r)) = (E1, . . . , En, ???app(f, r))

??? Write the explicit formulas for the operations on B(R,LM) using the η, bind, ρ.

Theorem about Π-structures on the regular quotients!

Remark 6.5 A Π-structure on (p1, p2, p3) corresponds to the rule

Γ, X : U1, f : X → U2

Γ, X : U1, f : X → U2 ⊢
∏

x : X.ev(f, x) : U3
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