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Abstract

We then define the notion of a P-structure on a universe in a locally cartesian closed
category category and construct a (II, A)-structure on the C-systems CC(C,p) from a
P-structure on p.

In the last section we define homomorphisms of C-systems with (II, A)-structures
and functors of universe categories with P-structures and show that the construction
of the previous section is functorial relative to these definitions.
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1 Introduction

The concept of a C-system in its present form was introduced in [?]. The type of the
C-systems is constructively equivalent to the type of contextual categories defined by Cart-
mell in [?] and [?] but the definition of a C-system is slightly different from the Cartmell’s
foundational definition.

In this paper we consider what might be the most important structure on C-systems - the
structure that corresponds, for the syntactic C-systems, to the operations of dependent prod-
uct, A-abstraction and application. A C-system formulation of this structure was introduced
by John Cartmell in [?, pp. 3.37 and 3.41] as a part of what he called a strong M.L. structure.
It was studied further by Thomas Streicher in [?, p.71] who called a C-system (contextual
category) together with such a structure a “contextual category with products of families of
types”.

The constructions and proofs of the main part of the paper require knowing many facts
about C-systems. These facts are established in Section ??7. Many of these facts are new,
some have been stated by Cartmell [?] and Streicher [?], but without proper mathematical
proofs. Among notable new facts we can mention Lemma 7?7 that shows that the canonical
direct product in a C-system is strictly associative.

In Section ?? we construct on any C-system presheaves Ob, and (%n These presheaves
play a major role in our approach to the C-system formulation of systems of operations
that correspond to systems of inference rules. The main result here is Construction 7?7 for
Problem ?7. It is likely that constructions for various other variants of this problem involving
morphisms between presheaves Ob, and Ob, can be given. The full generality of this result
should involve as the source fiber products of Ob, and Ob, relative to morphisms satisfying
certain properties and as the target Ob, or Ob,. We limit ourselves to Construction ?? here
because it is the only case that will be required later in the paper.

In Section we first remind the definition of the product of families of types structure on a
C-system. Then, in Definition??, we give the first of the two main definitions of this paper,
the definition of a (II, \)-structure. In the rest of this section we work on constructing a
bijection between the sets of structures of products of families of types and (II, A)-structures
on a given C-system. This is probably the most technical part of the paper which is not
surprising considering how different Definitions 7?7 and 7?7 are.

This construction uses most of the results of Section 77?.



The (II, A)-structures correspond to the (II, A, app, 5, n)-system of inference rules. In Remark
7?7 we outline the definitions of classes of structures that correspond to the similar systems
but without the /- or n-rules. Such structures appear as natural variations of the (II, \)-
structures.

In Section {] we consider the case of C-systems of the form CC(C,p) introduced in [?].
They are defined, in a functorial way, by a category C with a final object and a morphism
p: U — U together with the choice of pullbacks of p along all morphisms in C. A morphism
with such choices is called a universe in C. As a corollary of general functoriality we also
obtain a construction of an isomorphism that connects the C-systems CC(C, p) corresponding
to different choices of pullbacks and different choices of final objects. It makes it possible to
say that CC(C,p) is defined by C and p.

We provide several intermediate results about CC(C, p) when C is a locally cartesian closed
category leading to the main result of this paper - Construction that produces a (II, \)-
structure on CC(C,p) from a simple pullbackﬂ based on p. This construction was first
announced in [?]. Tt and the ideas that it is based on are among the most important
ingredients of the construction of the univalent model of the Martin-Lof type theory.

In the following sections we study the behavior of our construction with respect to universe
category functors and prove that it is functorial with respect to functors equipped with an
additional structure that reflects compatibility with the choice of the generating pullback.

One may wonder how the construction of this paper relates to the earlier ideas of Seely [?]
and their refinement by Clairambault and Dybjer [?]. This question requires further study.

The methods of this paper are fully constructive.

The paper is written in the formalization-ready style that is in such a way that no long
arguments are hidden even when they are required only to substantiate an assertion that may
feel obvious to readers who are closely associated with a particular tradition of mathematical
thought.

As a result, a number of lemmas, especially in the appendices, may be well know to many
readers. Their proofs are nevertheless included to comply with the requirements of the
formalization ready style.

On the other hand, not all preliminary lemmas are included or a reference to a complete proof
is given. There are some, but very much fewer than is usual in today’s papers, exceptions.

The main result of this paper is not a theorem but a construction and so are many of
the intermediate results. Because of the importance of constructions for this paper we use a
special pair of names Problem-Construction for the specification of the goal of a construction
and the description of the particular solution.

In the case of a Theorem-Proof pair one usually refers (by name or number) to the theorem
when using the proof of this theorem. This is acceptable in the case of theorems because
the future use of their proofs is such that only the fact that there is a proof but not the
particulars of the proof matter.

3We say “a pullback” instead of “a pullback square”.



In the case of a Problem-Construction pair the content of the construction often matters in
the future use. Because of this we have to refer to the construction and not to the problem
and we assign in this paper numbers both to Problems and to Constructions.

We use below the concept of a universe. In the Zermelo-Fraenkel set theory, the main
intended formalization base for this paper, a universe is simply a set U that is usually
assumed to satisfy some properties such as, for example, that it is closed under formation of
pairs - if two sets A and B are elements of U then the set representing the pair (A, B) is an
element of U. We do not provide a precise set of such conditions that we assume. To assume
the universes mentioned in the paper to be Grothendieck universes would certainly suffice
but in most cases we need a much weaker set of conditions. It is likely that the conditions
that we need are weak enough to be able to prove the existence of such universes inside the
“canonical” Zermelo-Fraenkel theory without any large cardinal axioms.

In this paper we continue to use the diagrammatic order of writing composition of morphisms,
ie, for f: X =Y and ¢g:Y — Z the composition of f and g is denoted by f o g.

We denote by ®° the functor PreShv(C") — PreShv(C) given by the pre-composition with
a functor @ : C? — (C")°, that is,

In the literature this functor is denoted both by ®* and ®, and we decided to use a new
unambiguous notation instead.

Acknowledgements are at the end of the paper.

While abbreviated notations may be helpful for getting a general impression from a brief
scroll through the paper, long notations become indispensable when one seeks true under-
standing.

In view of Lemma Construction ??7 can be used not only to construct the product of
families of types structures on C-systems, but also to prove that such structures do not
exist. This applies also to structures corresponding to other systems of inference rules in
type theory. For example, a similar technique may be used not only to construct a model of
a particular kind of higher inductive types, but also to show that for a given universe p no
such model on CC(C, p) exists.

2 Presheaves Ob;, and 29\19/2 on the C-systems defined by
universe categories

2.1 Functor Sig and functor isomorphisms SOb;, and Sbvbi

In this section we consider three constructions that apply to any C-system C'C'. The functor
Sig : PreShv(CC) — PreShv(CC) and two families of isomorphisms paramerized by i € N:
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and

SOb; : Sig(Ob;) — Ob;
Let G be a presheaf on CC. For I' € CC we set
2016.08.30.eq7]Sig(G)(T") = Ureop G (T) (2.1)
and for f: T/ — T
[2016.08.30.eq8]Sig(G)(f)(T'. 9) = (f*(T),G(a(f, T))(T)) (2.2)

Lemma 2.1 [2016.08.28.11/ The presheaf data Sig is a presheaf, that is, one has:

1. forT' € CC,
Sig(G)(Idr) = Idgigg)(r)

2. for f/:T" =1V, f:. TV =T,
Sig(G)(f' o f) = Sig(G)(f) o Sig(G)(f')

Proof: For the identity we have

Sig(9)(Idr)(T' g) = (Idr(T),G(q(Idr, T))(g)) = (T’ g)

where the second equality is by axioms of the C-system structure. For the composition we
have

Sig(G)(f)(Sig(G(/)(T’g))) = Sig(G)(f)(f*(T),G(a(f, T))(9)) =
()" (D)), Gla(f S TNNG((f, T 9))) = (f) (f (1)), Ga(f', f*(T))oq(f, T))(9)) =
((f" e /) (T),G(a(f o £, T))(9)) = Sig(G)(f o /)T 9)

where the first two equalities are by definition of Sig(G), the third by the composition
property of G, the fourth by the axioms of the C-system structure and the fifth again by the
definition of Sig(G). This completes the proof of Lemma [2.1]
One defines Sig on morphisms of presheaves r : G — G’ by the family of morphisms
[2016.08.30.eq9]Sig(r)r(T,g) = (T,rr(9)) (2.3)
Forr:G — G and f: IV — T', we have
Sig(G)(f) o Sig(r)r = Sig(r)r o Sig(G")(f)

that is, the family of functions Sig(r)r parametrized by I' € C'C' is a morphism of presheaves.
For G € PreShv(CC') we have

[2016.12.14.eq1]Sig(1dg)r (T, g) = (T, (I1dg)r(9)) = (T, g) (2.4)
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and forr: G — G, " : G" — G” we have

2016.12.14.eq2|Sig(ror)r(T, g) = (T, (ror’)r(g)) = (T, rp(rr(g))) = Sig(r')(Sig(r)(T' g))

(2.5)
These two equalities show that the functor data given by Sig on presheaves and Sig on
morphisms of presheaves is a functor that we also denote by

Sig : PreShv(CC) — PreShv(CC')

Remark 2.2 [2016.12.14.rem1] The construction of Sig works in more general setting
than presheaves.

Indeed, for any family of sets G(I') parametrized by I' € CC the formula defines a
new family of sets Sig(G)(I") also parametrized by I' € CC. For any two families G, G’
and a family of functions rr : G(I') — G'(T") the formula defines a family of functions
Sig(r)r : Sig(G)(X) — Sig(G')(X). The properties and hold in this more general
setting.

We can also define Sig(G) for any presheaf data, that is, for any pair consisting of a family
G(T') of sets parametrized by I' € CC and a family of functions G(f) : G(I') — G(I")
parametrized by f : IV — I' in Mor(CC). For this we can again use formulas (2.1 and

2.

If 0 : G(I') — G'(I') is a morphism of functor data, that is functions r, commute with
functions G(x), then Sig(r) is a morphism of functor data as well.

The presheaves Ob,, on C'C were defined in [?, Sec. 3]. On objects they are given by
[2016.11.15.eq5]00b,,(I") = {T € Ob(CC) | U(T) = U(T) +n, ft™(T)=T} (2.6)

and on morphisms f: IV — ' by T — f*(T).

Problem 2.3 [2016.08.30.probl/ For i > 0 to construct an isomorphism of presheaves

In constructing a solution of this problem and other problems where one needs to build an
of isomorphism of presheaves we will use the following lemma that is often used without an
explicit reference.

Lemma 2.4 [2016.11.14.11] Let ®,9" : C — D be functors and ¢ : & — ' a natural
transformation. Then ¢ is an isomorphism of functors if and only if for all objects X of C
the morphism ¢x : ®(X) — ®'(X) is an isomorphism in D.

The inverse isomorphism is formed by the family of morphisms qb)_(l = (¢x)7 "



Proof: One should first verify that the family /dy forms the identity isomorphism of func-
tors. This is immediate from the definitions.

If ¢ is an isomorphism and ¢! is its inverse, then the functions ¢y’ form inverses to the
functions ¢x. This proves the “only if part”.

If all morphisms ¢y are isomorphisms then the family (¢x)~! forms a morphism of presheaves
¢l :® — ®&. Indeed, for f: X — Y one has

¢y 0 ®(f) = '(f) o dy'

This equality follows by taking its composition with ¢x on the left and ¢y on the right.
That ¢! is both the left and the right inverse to ¢ is immediate from its definition. This
proves the “if” part.

Next will also need the following lemma.
Lemma 2.5 [2016.09.01.11/ Let T' € CC. Then one has:

1. if T € Oby(I') and X € Ob;,(T) then X € Ob; 41 (I),

Proof: The first assertion follows from the equalities I(X) = I(T) +i = (') + 1 + ¢ and
fERHX) = fH(ft(X)) = f((T) =T.

To prove the second assertion let X € Ob;y1(I'). Since [(X) > i we have I(ft'(X)) =
(X)—i=1UT)+(i+1) —i=1IT)+ 1. The equality ft'(ft"(X)) = ft'"'(X) =T is
obvious and we conclude that ft'(X) € Ob(T'). Next, again because [(X) > i, we have
I(X) =1(ft'(X)) +i and since ft'(X) = ft'(X) we have that X € Ob;(ft'(X)).

Construction 2.6 [2016.08.30.constrl] Let I' € C'C. Then Sig(Ob;)(T') is the set of
pairs (T, X) where T € Oby(T') and X € Ob;(T). By Lemma [2.5(1), the formula

[2016.09.01.eq4]SOb,; (T, X) = X (2.7)

defines a function Sig(Ob;)(I') — Ob;1(I).
Conversely, by Lemma [2.5(2), the formula

2016.09.01.eq5]SOb, (X) = (ft'(X), X) (2.8)

defines a function Ob;;1(I') — Sig(Ob;)(T).
If & = SOb;p and ¥ = SOb; then

O(P(X)) = D((ft'(X), X)) = X

and

U((T, X)) = U(X) = (ft'(X),X) = (T X)
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where the last equality follows from the equality T' = ft*(X). We conclude that SOb; r and
SOb;; + are mutually inverse bijections.

In view of Lemma it remains to verify that the family of bijections SOb; r parametrized
by I' € C'C is a morphism of presheaves, that is, that for any f : IV — I" and (T, X) €
Sig(Ob;)(I") we have

[2016.08.30.eq10]Ob, 1 (f)(SOb:r((T, X)) = SOb,(Sig(Ob)(/)(T. X)) (2.9)
Computing we get
Obi1(f)(SObir (T, X))) = f*(X)
SOb; r:(Sig(Obi)(/)(T, X)) = SObip (f(T), ¢(f, T)"(X)) = q(f, T)"(X)
and follows from [?, Lemma 2.7]. This completes Construction [2.6]

As a corollary of Construction [2.6] and Lemma [2.4] we obtain the fact that the family of
functions ([2.8]) parametrized by I' € C'C' is an isomorphism of presheaves that is inverse to
SOb;.

We proceed now to the construction of isomorphisms S/O\?)i. Recall that for a morphism
p:Y — X we set
sec(p) = {s € Mor(X,Y)|sop=Idx}

Elements of sec(p) are called sections of p.

The presheaves &)n where defined in [?, Sec. 3]. On objects they are given by

[2016.11.15.eq6]/Ovbn(F) = {0 € Mor(CC) | codom(o) € Ob,(I'), 0 € sec(Peodom(o)), codom(o) > T'}
(2.10)
and on morphisms f : IV — I' by o — f*(0), where f*(0) is defined in [?, Lemma 2.13].

For an element o € Ob,(I") we let Or(0), or simply (o), denote the object codom(o).

Recall from [?, Sec. 3], that /O\?)(C’C) is the set of elements o € Mor(CC) such that o €
5€C(Peodom(o)) and I(codom (o)) > 0. For such elements we also denote codom(o) by 9(0).

It follows easily from |D that for I' € Ob(CC) and n > 0 one has o € (%n(f‘) if and only
if 0 € Ob(CC) and 9(0) € Ob,(T). It also follows from (2.10) that Oby(T') = 0.

Problem 2.7 [2016.08.30.prob2/ For i > 1 to construct an isomorphism of presheaves
S&i : Sig<b77i) — b\i)i—l-l
Lemma 2.8 [2016.11.18.11/ Let ' € CC. Then one has:

1. of T € (’)bl(F) and o € (%Z(T) then o € E?vb,»H(F),

2. if 0 € Obyy1(T) then fti(9(0)) € Ob(T) and o € Oby(f(d(0))).



Proof: If o € Ob;(T) we have i > 0 an therefore o € Ob(CC) and 8(0) € Ob;(T). By Lemma
ﬁ(l) we have d(0) € Ob;1(I"). Therefore o € Ob;1(T'). This proves the first assertion.

If o € @Vbi“(l“) then o € 67)(00) and 9(0) € Obi11(I'). By Lemma (2) we have
ft(0(0)) € Oby(T) and (o) € Ob;(ft1(9(0))). Therefore o € Ob;(ft'(d(0))).

We can now provide a construction for Problem

Construction 2.9 [2016.09.01.constr2| For I" € C'C we have
Sig(Ob;)(T) = {(T,0) | T € Oby(T"), 0 € Ob;(T)}
For (T,0) € Sig((%i)(F) we have o € (%i+1(F) by Lemma (1) and therefore the formula
[2016.09.01.eq6)SOb; (T, 0) = 0 (2.11)

defines a function Sig(CA)Z)i)(F) — (%iH(F).

If 0 € Ob;41(T) then by Lemma[2.8(2), f£(9(0)) € Oby(T") and o € Ob;(ft(9(0))). Therefore
the formula . ‘
2016.09.01.eq7]SOb, 1-(0) = (f(9(0)), 0) (2.12)

defines a function Obg,(T') — Sig(Ob;)(T).

—~ ~ 1
One verifies in the same way as in Construction that SOb;r and SOb, - are mutually
inverse bijections.

In view of Lemma it remains to verify that the family of functions S @VI)i,p parametrized
by I' € CC is a morphism of functors, that is, that for f : I — I" and (7', 0) € SOb;r one
has

[2016.09.01.eq2b]Ob,, 1 (f)(SOb; (T, 0)) = SOb; 1+(Sig(Ob;)(f)(T, 0)) (2.13)
Computing we get
Obi1(f)(SObip(T. 0)) = Obiya(f)(0) = £*(0)
SOb; 1/ (Sig(Ob;)(£)(T, 0)) = SObr(f*(T), q(f,T)*(0)) = q(£.T)" (o)

and we conclude that (2.13]) holds by [?, Lemma 2.15].

This completes Construction [2.9|

As a corollary of Construction 2.9 and Lemma [2.4] we obtain the fact that the family of
functions (2.12)) parametrized by I' € C'C' is an isomorphism of presheaves that is inverse to
SOb;.



Lemma 2.10 [2016.12.04.11/ For any i > 1 the square of morphisms of presheaves

Sig((’%z-) 0, CA)E%‘H
[2016.12.04.eq]§ig(3)l la (2.14)
SOb;

Sig(Ob;) — Sig(Ob;)
commutes.
Proof: Let I' € C'C. By definition we have
Sig(Ob)(T) = {(T.0) | T € Oby(T), 0 € Ob(T)}
Let (T,0) € Szg((’%z)(F) Then, again by definitions,
Or(SOb;p(T' 0)) = dr (o)

and

S(’)bhp(Szg(@)p(T, 0)) = SObiI(T, 8p(o)) = 8F(0)

The lemma is proved.

Remark 2.11 [2016.11.18.rem1] Define Sig" by induction on 4, setting Sig° = Idpresno(ce)

and Sigt! = Sig' o Sig. Then, also by induction on 4, we can construct isomorphisms

SOb; : Sz’gi(Obj) — Ob;;
where S Ob? = Idop, and S (’)bj.+1 is the composition

Sig(SOb

Sigit1(Ob;) = Sig(Sig'(Ob;)) b Sig(Obisy) 2y Ob,, i

In exactly the same way we construct isomorphisms

552)]- : Slgz((%J) — C/S/bi+j

2.2 The functor D,

In this section we work in the context of a category C with a universe p. The goal of the
section is to construct, for any such pair, a functor

D, : PreShv(C) — PreShv(C)

The definition of a universe in a category was given in [?, Definition 2.1]. We repeat it here
for the convenience of the reader.
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Definition 2.12 [2009.11.1.defl/ Let C be a category. A universe structure on a morphism
p:U — U in C is a mapping that assigns to any morphism f : X — U in C a pullback of
the form

(X.f) =5 U
[2016.12.02.eq&]wl lp (2.15)
x v
A universe in C is a morphism together with a universe structure on it.

We usually refer to a universe by the name of the corresponding morphism without men-
tioning the choices of pullbacks explicitly. To shorten the notation we will write pg instead

of Px F-

For f:W —>Xandg: W — U such that foF = gop we will denote by f *r g the unique
morphism W — (X; F') such that

[2016.11.10.eqlal(f *p g) 0 pr = f (2.16)

2016.11.10.eq1b](f *r g) 0 Q(F) = g (2.17)
For X' 5 X 5 U7 we let Q(f, F) denote the morphism
2016.12.02.eq4]Q(f, F) = (pror o f) 7 Q(f 0 F) : (X'; fo F) = (X; F)  (2.18)

Observe that one has

[2016.08.24.eq4]Q(f o F) = Q(f, F) o Q(F) (2.19)
[2016.08.26.q2]Q(Idx, F) = Id(x.r (2.20)
[2016.08.26.eq3]Q(f' o f, F) = Q(f', f o F) o Q(f, F) (2.21)

where the first equality follows directly from the definition, the second from the definition
and the uniqueness of the morphisms f *p g satisfying (??) and the third is proved in [?,
Lemma 2.5].

Let us fix a category C and a universe p in it.

For any G € PreShv(C) we define functor data D,(G) given on objects by
[2016.08.30.eq4]D,(G)(X) := llr.x uG((X; F)) (2.22)
and on morphisms by

2016.08.30.eq5] D, (G)(f) : (Fy7) = (f o F,G(Q(f, F))()) (2.23)
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Lemma 2.13 [2016.09.07.11] The functor data D,(G) specified above is a presheaf, i.e.,
one has

1. for any X € C, Dp(G)(Idx) = Idp,g)(x),
2. forany f: X —=Y,qg:Y —>ZinC,
Dy(G)(f 0 9) = Dp(G)(9) o Dp(G)(f)

Proof: For the first property we have

Dy(G)(Idx)((F,7)) = (Idx o F,G(Q(Idx, F))(7)) = (F,7)

where the second equality is by (2.20)) and the identity morphism axiom form the presheaf
g.

For the second one we have
Dy(G)(fog)(F,y) =(fogo F,G(Q(fog, F)(7))) =

(fogoFLG(Q(f,g0 F)oQ(g, F))(7)) = (folgo F),G(Q(f, 90 F))(G(Qg, F) (7)) =

Dy(G) () (Dp(G)(9)(F, 7)) = (Dp(G)(9) © Dp(G)(f))(F7)
where the second equality is by and the third one by the composition axiom of the

presheaf G.
One defines D,, on morphisms of presheaves r : G — G’ by the family of morphisms
12016.08.30.6] D, () x (F,7) = (F. r(xm) (7)) (2.24)
For f: X — X and r : G — G’ we have
[2016.11.14.eq2]D,(G)(f) o D,(r)x = Dy(r)x: o Dp(G')(f) (2.25)

that is, the family of functions D, (r)x parametrized by X € C is a morphism of presheaves.

For G € PreShv(C) we have
Dp(Idg)x = Idp,g)(x)

and for r : G — G and v’ : G’ — G” we have
[2016.12.18.eq4]|D,(r o r')x = D,(r)x o D,(1") x (2.26)

These two equalities show that the functor data given by D, on presheaves and D, on
morphisms of presheaves is a functor that we also denote by

D, : PreShv(C) — PreShv(C)

Note that for the presheaves of the form Yo(A), where Yo is the Yoneda embedding, we
have
[2016.11.14.eq4|D,(Yo(A))(X) = Up.xsuMore((X; F), A) (2.27)
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and for a morphism f: X — X',
2016.11.14.eqda|D,(Yo(A))(f)(F1, Fy) = (f o F1, Q(f, Fi) o Fy) (2.28)
For a morphism a : A’ — A we have
2016.12.02.eq6] D, (Yo(a))x (Fy, Fy) = (Fy, Fy 0 a) (2.29)

Define
[2016.12.24.eq1]D$(X, Y) = DZ(YO(Y))(X) (2.30)

such that in particular one has
Dg(X, Y)= More(X,Y)

Since D]}(Yo(Y')) is a presheaf we have, for any f : X’ — X, the function

DI(Yo(Y))(f) : Di(Yo(Y))(X) = DJ(Yo(Y))(X)
that we denote by

2016.12.24.eq2| D, (f,Y) : D(X,Y) — D (X',Y) (2.31)
Since Dy and Yo are functors we have, for any g : ¥ — Y”, a function

Dy (Yo(g))x : Dy(Yo(Y))(X) = Dy(Yo(Y")(X)

that we denote by

[2016.12.24.eq3]|D, (X, g) : D, (X,Y) — Dy (X,Y") (2.32)
Let d € Dy(X,Y). For f: X" — X we let fo"d denote D}(f,Y)(d). For g: Y — Y we

let d™o g denote Dy (X, g)(d). When no confusion is possible we will abbreviate both o™ and
"o to o.

Let us summarize, using this “o-notation” some of the results proved above in the following
lemma.

Lemma 2.14 [2017.01.07.11] For d € D;(X,Y) we have the following formulas:

1. IdXOd:d,
2. (ffof)od=[f"o(fed),
3. doldy =d,

4. do(gog)=(dog)og,
5. fo(dog)=(fod)og.
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Proof: The first two equalities follow from the axioms of presheaf for DJ}(Yo(Y')), the second
two from the fact that Yoo D} is a functor and the last one from the fact that the family of
functions D,(Yo(g))- is a morphism of presheaves.

Lemma 2.15 [2016.12.24.11] Let (C,p) be a universe category, n > 1, X,Y € C, and
(F,a) € Upx—uDl (X5 F),Y) = Dp(Dp 1 (Yo(Y)))(X) = Di(X,Y)

Then one has

1. for [ X'—> X
fo(F,a)=(foF,Q(f, F)oa)

2. forg:Y =Y’
(F,a)og:(F,aog)

Proof: In the first case we have
fo(Fa)=
Dy (Yo(Y))(f)(F.a)) = (f o F, Dy (Yo(Y)(Q(f, F))(a) =
(foF.Q(f,F)oa)

where the first equality is by the definition of D7 (f,Y’), the by (2.23) and the third by the
definition of D;L_l(Q(f, F)Y).

In the second case we have
(F,a)og =

D, (Yo(9))x((F,a)) = (F, D' (Yo(9)) x;rm)(a) =
(Flaog)
where the first equality is by the definition of DJ'(X, g), the second by (2.23) and the third
by the definition of D}~'((X; F), g). The lemma is proved.
Remark 2.16 [2015.07.29.rem?2] It is likely that the functions (2.31)) and (2.32]) generalize
to composition functions
2016.12.18.eq3| Dy (X,Y) x D}(Y, Z) — D™ (X, Z) (2.33)

The formulas 1.-5. suggest that these composition functions satisfy the unity and associa-
tivity axioms and therefore one obtains, from any universe category (C,p), a new category
(C,p). with the same collection of objects and morphisms between two objects given by

Morcp). (X, Y) =z Dy (X, Y)

The study of the composition functions (2.33)) and categories (C,p). is deferred to a later
paper.

Remark 2.17 [2016.12.14.rem2] The observations of Remark apply, with obvious
modifications, to the construction D, as well.
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2.3 Isomorphisms of presheaves u; and u;

[Sec.2.3]

We now consider a universe category, that is, a category C with a universe p and a choice
of a final object pt. We usually denote a universe category as (C, p) without mentioning the
final object. For any universe category we have constructed in [?, Section 2| a C-system

cC(C,p).
The main goal of this section is to provide constructions for Problems and [2.22]
Let us first recall the construction of CC(C,p). One defines first, by induction on n, pairs

(Ob,,,int, : Ob, — C) where Ob, = Ob,(C,p) is a set and int,, is a function from Ob,, to
objects of C. The definition is as follows:

1. Oby is the standard one point set unit whose element we denote by ¢¢t. The function
into maps tt to the final object pt of the universe category structure on C,

2. Ob,1 = Uacop, Mor(int(A),U) and int, 1 (A, F) = (int(A); F).

We then define Ob(CC(C,p)) as II,,500b,, such that elements of Ob(CC(C,p)) are pairs
I' = (n, A) where A € Ob,(C,p). We define the function int : Ob(CC(C,p)) — C as the sum
of functions int,,. Where no confusion between int and int,, is likely we will omit the index
n at int,,.

The morphisms in CC(C,p) are defined by
Morceepy = UrreonceyMore(int(T), int(I))

and the function int on morphisms maps a triple ((I',I”),a) to a. Note that the subset
in Mor that consists of f such that dom(f) = I' and codom(f) = I" is not equal to the
set More(int(T"),int(I")) but instead to the set of triples of the form f = ((I',I”),a) where
a € Morc(int(T'),int(I")). The functor int maps ((I',I"),a) to a. This map is bijective
and therefore the functor is fully faithful but its morphism component is not the identity
function.

The length function is defined by I((n, A)) = n.

One defines pt as pt = (0, tt). It is the only object of length 0.

If I' = (n, B) where n > 0 then, by construction, B = (A, F') where F' : int(A) — U. The
ft function is defined on such T by ft(T') = (n — 1, A) and on pt by ft(pt) = pt.

Lemma 2.18 [2016.08.22.11/ For I' = (n,A) and T = (n’,B) € Ob(CC(C,p)) one has
T € Oby (1) if and only if n’ = n+ 1 and there exists I : int(A) — U such that B = (A, F).

Proof: By definition of the length function I, we have [(I') = n and [(T") = n’. By definition
of Oby, T € Oby (1) if and only if n’ =n+ 1 and ft(T) =T.

IfT = (n+1, (A, F))then n’ = n+1. In particular, [(T') > 0 and therefore ft(T) = (n, A) =
I'. This proves the ”if” part.
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Assume that T = (n/, B) € Oby(I'). Then n’ =n + 1. Since n’ > 0, B is a pair of the form
(A, F). Since ft(T) = (n,A’) = (n, A) we have A" = A. This proves the “only if” part.

The p-morphism for I' = (n, A) where n > 0 and A = (B, F) is given by ((I', ft(T')), pr)
where pp are the p-morphisms of the universe structure.

For f: (n,A") = (n,A) and T such that [(T)) = {(I') + 1 and ft(T") = I" one has, by Lemma
218, T = (n+1,(A, F)) and one defines

[2016.08.22.eq2]f*(T) = (n+ 1, (4, int(f) o F)) (2.34)

and
[2016.08.22.eq3]q(f,T) = ((f*(T),T),Q(int(f), F)) (2.35)

The C-system axioms are verified in [?].

Let us denote by
int® : PreShv(C) — PreShv(CC)

is the functor of pre-composition with int°? and by
Yo:C — PreShv(C)

the Yoneda embedding of C.

Problem 2.19 [2015.04.30.probla/ To construct an isomorphism of presheaves
[2016.11.12.eq2]u; : Ob; — int°(Yo(U)) (2.36)
such that forT' = (n, A) and T = (n+ 1, (A, F')) one has

[2015.04.30.eq3a]u, r(T) = F (2.37)

Construction 2.20 [2016.08.22.constrl] By definition of int® and Yo and Lemma [2.4]
an isomorphism of presheaves of the form (2.36]) is a family of functions of the form

uyr : Oby(I') = More(int(I'),U)

parametrized by I' € Ob(CC(C,p)) such that for any f : I — I" and any 7' € Ob;(I") one
has
2015.04.30.eqlalu; o (f*(T)) = int(f) o uy r(T) (2.38)

and for any I' the function wu; 1 is a bijection.

By Lemma the conditions (2.37)) define our family completely and it remains to verify
(2.38) and the bijectivity condition.

ForI'=(n,A), T=(n+1,(A F)), "= (n,A’) and f : I" — I" we have, by (2.34),
(1) = (' + 1, (A int(f) o F))
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Therefore,
ur o (f5(T)) = ur (0 + 1, (A int(f) o F))) = int(f) o F = int(f) o uy r(T)

which proves (2.38)).
By Lemma [2.18] for I' = (n, A), the formula F' +— (n+ 1, (A, F')) defines a function

More(int(A),U) — Oby(T)

By the same lemma and (2.37) this function is inverse to u; p. This proves the bijectivity
condition and completes Construction [2.20]

Using again Lemma [2.18 and (2.37) we see that for any I' € Ob(CC(C,p)) and T € Oby(T),

[2015.05.02.eqlalint(T) = (int(T);u, p(T)) (2.39)

and
2016.08.24.eq3]int(pr) = pu, (1) (2.40)

For f: IV — T and T as above we have

[2016.08.30.eq3]int(q(f, T)) = Q(int(f), ur.r(T)) (2.41)

Lemma 2.21 [2016.08.22.12) For T = (n, A) and o € Ob,(T') one has

[2016.08.22.eql]|codom(int(0)) = (int(I'); uy r(9(0))) (2.42)

Proof: We have codom(o) = 0(0o) € Oby(I"). Therefore (2.42)) follows from the equality
codom(int(f)) = int(codom(f)) and ({2.39).

The second problem whose solution is constructed in this section is as follows.

Problem 2.22 [2015.04.30.problb/ To construct an isomorphism of presheaves
[2016.11.12.eq3]i; : Oby — int°(Yo(U)) (2.43)
such that for o € (5791(F) one has
[2015.04.30.eq4a]u; r(0) = int(o) o Q(u1 r(0(0))) (2.44)

where the right hand side is defined by and the equality dom(Q(F)) = (dom(F); F).

To construct a solution for this problem we will need the following two lemmas.
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Lemma 2.23 [2016.08.26.11/ For a universe p in C and X € C, the function
Hpemor(x,vysec(pr) — Mor(X, U)

given by the formula (F,s) — so Q(F) is a bijection. The inverse bijection is given by the
formula F +— (F op, Idx * Fop F) where Idyx *fop L 18 defined because Idx o FFop= F op.

Proof: Let us denote the first function by ® and second one by W. We have

O(U(F)) = ®(Fop,ldx #5,, F) = (Idx #5,, F) o Q(Fop) = F

where the last equality is by the definition of x* Fop: and

U(D(F,s)) = (s 0 Q(F)) = ((s 0 Q(F)) 0 p, Idx *(soq(r))ep (8 © Q(F)))

Next we have
[2016.11.12.eql]so Q(F)op=soppo F =F (2.45)

It remains to compare Idx *sq(r)op (s © Q(F)) with s. To do it we need to compare its
post-compositions with pr and Q(F') with the same post-compositions for s.

By (2.45) we may replace s o Q(F) o p with F. We have
Idy xp (so Q(F))opr = Idx = sopp

Idy xp (s0Q(F)) o Q(F) =s0Q(F)=s0Q(F)
Therefore, Idx *r (s o Q(F)) = s and

U(D(F,s)) = (F,s)

The lemma is proved.

Lemma 2.24 [2016.08.26.14] Let p : Y — X be a morphism in C and ® : C — C' a
functor. Then for s € sec(p) one has ®(s) € sec(P(p)).

If @ s fully faithful then the resulting function
Dy sec(p) — sec(P(p))

s a bijection.

Proof: The first assertion follows immediately from the definition of sec and the axioms of
a functor.

Assume that @ is fully faithful. To prove that ®,.., is a bijection let

®,'5 - More (®(A), ®(B)) — More(A, B)
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be the inverse to the function ®4 5 : Mor¢(A, B) — More/(®(B), ®(B)) that we denoted
simply by ®. One verifies easily that for any A, B, C' € C the functions (IJZB, q)é,lc and @2}0
commute with the compositions and for any A € C one has @Z}A([ docay) = Ida.

Therefore, for s’ € sec(Py,x(p)) we have @y} (s') € sec(p). Indeed,

Dx x(Pyy(s) op) = Pxy (DX (s)) 0 Py x(p) = &' 0 Py x(p) = Ido(x)

and since (b;(lX<]dq> y) = Idx we obtain that (I);(}Y(Sl) op = Idx. This implies that ®.,
and the restriction of <I>X y to sec(®(p)) form a pair of functions between sec(p) and sec(P(p))
and one sees 1mmed1ately that they are mutually inverse.

Construction 2.25 [2016.08.22.constr2] By definition of int° and Yo and Lemma [2.4]
an isomorphism of presheaves of the form (2.43)) is a family of functions of the form

Urr : Oby(T) = More(int(I'), U)
parametrized by I' € Ob(CC(C, p)) such that for any f : I' — I’ and any o € Ob;(T') one has
[2015.04.30.eqlb]u; 1 (f*(0)) = int(f) o w1 r(o) (2.46)

and for any I' the function u, r is a bijection.

The equalities (2.44) define our family completely and it remains to prove (2.46)) and the
bijectivity condition.
For the proof of (2.46)) we have the following, where we write u instead of u; r and w; v and

u instead of uy r and uy v,

u(f*(0)) = int(f*(0)) 0 Q(u(d(f"(0)))) = int(f*(0)) o Qu(

int(f*(0)) o Q(int(f) o u(d(0))) = int(f(o )) Q(int(f), u(d(o
int(f*(0)) o int(q(f,d(0))) o Q(u(d ( ) = ( “(0) 0 q(f,0(0
int(q(f,T) o 0) 0 Q(u(d(0))) = int(f o 0) o Q(u(0(
mt(f)omt(O)OQ(U(a(O))) int(f) o u(o)

where the first equality is by (2.44)), second is by definition of f*(0), the third is by (2.3§),
the fourth is by , the fifth is by , the sixth is because int is a functor, the seventh

is by [?, (2.19)], the eights is by definition of ¢(f, —), the ninth is because int is a functor
and the tenth is again by (2.44)). This completes the proof of ([2.46]).

To prove that the function w; r is a bijection we will represent it as the composition of
functions that we can show to be bijections. The functions are of the form

s
*
—
o))
—
=)
N—
N—
N—
N—
I

\_/\_/
55
o o0
oo
S e
N~
D
o~
SARG)
=z =
I

(/,5?)1 (F) — HTeobl(p)a_l(T) — HF:int(F)—)UseC(pF> — MOT(Z?’Lt(F), U)
and are given by the formulas

o+ (0(0),0) (T, 0) — (u(T),int(0)) (F,s)— soQ(F)
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The first function is the function X — II,cy f~!(y), which is defined and is a bijection for
any function of sets f : X — Y. The second one is the total function of the function
and the family of functions int.,, of Lemma . Since w and the functions int.,, are
bijections the total function is a bijection. The third function is the bijection of Lemma[2.23]

Let us show that the composition of these bijections equals u. Indeed, for o € (5?)1(F) we
have

o+ (0(0),0) — (u(0(0)),int(0)) — int(o) o Q(u(d(0))) = u(o)
This completes Construction [2.25]

Remark 2.26 [2016.08.26.rem1| The inverse to u; r can be expressed by the formula

Uy (H) = int ! 1(Hop>( Idins(ry *mop H)

F,uir
Note that while we can omit explicitly mentioning dom(f) and codom(f) when we write

int(f) we must specify them when we write int~'(f) because int is bijective only on the

subsets of morphisms with fixed domain and codomain. This makes the expression for ﬂl_%

longer than one would prefer.

The family of functions Or forms a morphism of presheaves 5?)” — Ob,, that we usually
denote simply by 0.

Lemma 2.27 [2016.12.02.14] The square of morphisms of presheaves

Ob, —“ int°(Yo(U))
[2016.08.20.eq1]3l lmﬁ(yf)(p)) (2.47)
Ob; — int°(Yo(U))

commutes.

Proof: For I and o € Ob;(I) we have
int®(Yo(p))r(urr(0)) = (ur(0)) o p = int(o) o Q(urr(9(0))) o p =

int(0) © pu, p(5(0)) © t1,r(9(0)) = int(0 ° po(o)) © u1,r(9(0)) = u1,r(9(0))
where the first equality is by definition of int® and Yo, the second by (2.44)), the third by

commutativity of {D the fourth by {} and the fifth by the definition Ob;(T") in (2.10|
and the fact that d(0) = codom(o). The lemma is proved.

2.4 Functor isomorphisms SD,

In this section we continue to consider a universe category (C,p). For any (C,p) we will
relate the functor D,, on PreShv(C) and the functor Sig on PreShv(CC(C,p)).
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Problem 2.28 [2016.08.28.probl/ For a universe category (C,p) to construct an isomor-
phism of functors PreShv(C) — PreShv(CC) of the form

SD, :int® o Sig — D, o int®
Construction 2.29 [2016.08.28.constrl] In view of Lemmal[2.4] we have to construct, for
any G € PreShv(C), an isomorphism of presheaves on C'C' of the form
SD,g : Sig(int” o G) — int? o D,(G)

and to show that these isomorphisms are natural in G, that is, that for a morphism of
presheaves r : G — G’ one has

SD, g oint’(Dy(r)) = Sig(int°(r)) o SD, g

Applying Lemma again, we see that we need to construct, for each G and I' € CC, a
bijection SD, ¢, which we will denote ¢¢g r for the duration of the proof, of the form

¢g,r : Sig(int” o G)(I') = (int™ o Dp(G))(I') = Dp(G)(int(T'))
and to show that two conditions hold:
1. for any f:I” — I we have
[2016.08.30.eq1]¢g o D,(G)(int(f)) = Sig(int® o G)(f) o dg.r (2.48)
that is, the square
Sig(int? 0 G)(T) —2% D,(G)(int(T))
[2016.11.19.eqﬂ(}ntopog)(f)l lDP(Q)(int(f)) (2.49)

bgr/

Sig(int o G)(I') —— Dy(G)(int(I"))

commutes.
2. forany r: G — G and I' € C'C we have
2016.08.30.eq2]¢g.1 © Dy (F)imi(ry = Sig(int®(r))r o dgr v (2.50)
that is, the square
Sig(int? o G)(T) —255 D, (G)(int(T))
[2016.11.19.eq?n]g(int°(r))pl lpp(r)mt(r) (2.51)
Sig(int o G')(T) 255 D,(G")(int(T))

commutes.
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To construct ¢gr we first compute using (2.1)
Sig(int(’p e} g)(F) = HTGObl(p)Q(int(T))

and using
D,(G)(int(T)) = Upnyry—vG((int(T); F))

and define the function ¢¢gr by the formula
[2016.09.01.eq3]¢gr((T, 9)) = (u1r(T), 9) (2.52)

where the right hand side is defined because of (2.39). The function ¢gr is a bijection
as the total function of the bijection u; r and the family of bijections, namely the identity
functions.

To prove equality we compute using

Sig(int o G)(f)(T,g) = (f*(T),G(int(q(f, T)))(int(T)))
and using

Dy (G)(int(f))(F, g) = (int(f) o F,G(Qint(f), F))(g))

Equality ([2.48]) follows now from ({2.38]) and (2.41)).
To prove equality (2.50) we compute using (2.3))
Stg(int®(r))r(T, ) = (T’ rinecr)(9))

and using ((2.24])
DP(T)int(F) (F7 g) = (F7 T(znt(F),F)(g))

and ([2.50) follows from ([2.39)).

This completes Construction [2.29]

2.5 Isomorphisms of presheaves u, and u, for n > 2

In this section we continue to consider a universe category (C,p). For any such (C,p) and
any n > 1, we construct isomorphisms of presheaves on CC(C, p) of the form

[2016.11.22.eq1]u, : Ob, — int°(D) " (Yo(U))) (2.53)

and
2016.11.22.eq2]T, : Ob, — int° (D2~ (Yo(D))) (2.54)

where Dg = Idpreshu(c), and uy and u; are the isomorphisms constructed in Section . We
show that
2016.12.02.eq7] i, o int® (D)~ (Yo(p))) = 9 o i, (2.55)

Let us fix a universe category (C,p).
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Problem 2.30 [/2016.11.22.probl/ Let n > 2. To construct an isomorphism of presheaves
on CC(C,p) of the form (2.53).

Construction 2.31 [2016.11.22.constrl] We proceed by induction on n starting with
n = 1. Observe that SD, g is an isomorphism of the form

[2016.11.22.eq3]Sig(int°(G)) — int°(D,(G)) (2.56)

The isomorphism u; was constructed in Section 2.3] For the successor, define u,; as the
following composition

SOb= 5D, pr=1(vow)

Oby, 11 SO, Sig(Ob,) Sig(int°(Dy~'(Yo(U)))) >
int®(Dy(Dy~ ' (Yo(U)))) =——= int°(D}(Yo(U)))

Sig(un)

The isomorphism w41 is of the form

(2 57)
where the form of the first map is by (2.8), the second by (2.3) and the third by (2.52)). In

particular, for n = 1 we get

up,r(T) = (urr(fUT)), ur gy (T))

Problem 2.32 [2016.11.22.prob2/ Let n > 2. To construct an isomorphism of presheaves
on CC(C,p) of the form :

Construction 2.33 [2016.11.22.constr2] We proceed by induction on n starting with
n = 1. The isomorphism @; was constructed in Section [2.3] For the successor, define ;1
as the following composition, where we use that SD, g is of the form ([2.56)),

SO, 5D, pr=1(vo(dy)

Obpyq ——s Sig(Oby) T Sig(int® (DR (Y o(D)))) >
int*(Dy(Dp~ (Yo(U)))) ——  int°(Dy(Yo(U)))

Szg (un)

The isomorphism 1,41 r is of the form

[2016.12.22.eq2]o — (f1"(0(0)), 0) = (f1"(0(0)), Un,stn(0(0))(0)) = (ur,0(fT"(8(0))), tn,fin (60 (0))

(2.58)
where the form of the first map is by (2.12)), the second by ([2.3) and the third by (2.52)). In
particular, for n = 1 we get

uz,r(0) = (urr(f1(9(0))), t, (a1 ()
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Lemma 2.34 [2016.12.02.13] For any n > 1, holds, that is, the square
Ob, — int*(Dr~(Yo(U)))
| [int= 087 o)
Ob, —— int*(Dr(Yo(U)))

commautes.

Proof: We proceed by induction on n starting at n = 1. For n = 1 it is shown in Lemma

227
For the successor of n we have the diagram

-~ —1

Obyi =22 Sig(Oby) 225 Siglint®(Dp(Yo(D))) ——2 int®(Dy(DR(Y o))
al Sig(f»l Sz‘g<mt°<D;<Yo<p>>>>l mtO(Dpw;(Yo(p))))l

Obpsr 22 Sig(Ob,) et Sig(int>(D2(Yo(U)))) —225 int*(Dy(DE(Yo(U))))

where the composition of the upper horizontal arrows is u, and the composition of the lower
horizontal ones is u,. To prove the lemma it is sufficient to show that the three squares of
the diagram commute.

The commutativity of the left square follows easily from Lemma [2.10. The middle square
commutes by the inductive assumption using the fact that Sig is a functor. The right square
commutes because SD, is an isomorphism of functors, that is, it is natural in morphisms of
presheaves.

2.6 The case of a locally cartesian closed C - isomorphisms 7, and
Lon

[Sec.2.6] In this section C is a locally cartesian closed category (see Appendix with a
binary product structure (see Appendix .

The main construction of this section is Construction for Problem that provides,
for a universe p in a category C as above, representations for the presheaves D,(Yo(V)). As

a corollary we provide constructions for Problems and [2.42]
For a morphism p : U — U in C and an object V of C let

1,(V) = Homy, (U, p), (U x V, pr1))

and let
prl,(V) =pQpry : L,(V) - U

be the canonical morphism.
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For a morphism f:V — V' let
I,(f) = Homy (U, p), U x f)
By (5.10)),(5.11)) and Definition [5.4{3) we have
I,(Idy) = Idp, v

and for f': V' — V" we have

Ip(f © f/) = Ip(f) © Ip(f,)
which shows that the mappings V +— L,(V) and f — I,(f) define a functor from C to itself.

The main goal of this section is to construct an isomorphism 7 between functors from C to
PreShv(C) of the form:
n:YooD,— I,0Yo

This isomorphisms provides, in particular, a family, parametrized by V € C, of representa-
tions for the functors D,(Yo(V)).

Note that I, depends on the choice of both the locally cartesian closed and the binary
product structures on C, but does not depend on the universe structure. On the other hand,
the construction of the functors D, (F’) requires a universe structure on p but does not require
either the locally cartesian closed or the binary product structure on C.

The computations below are required because we have to deal with this fact. In particular,
we have to take into the account that for F': X — U the fiber product (X, F') xy (U, p) that
we have from the structure of a category with pullbacks on C need not be equal to (X; F)
that we have from the universe structure on p.

Let p : U — U be a universe and V an object of C. We assume that C is equipped with a
locally cartesian closed and a binary product structures. For F': X — U there is a unique
morphism

p (XGF) = (X, F) ><U(l7>p)

such that
lp OpPri = pr
[2016.12.02.eq3] (2.59)

tp o pry = Q(F)
which is a particular case of the morphisms ¢ of Lemma [5.3]

The evaluation morphism in the case of I,(V) is a morphism in C/U of the form
evl, : (I,(V),prL,(V)) xg (U x V,pry) = (U x V., pry)

Define a morphism
st,(V) : (Ip(V);prL,(V)) =V

as the composition:
[2016.12.02.eq2]st, (V) := tp1,(v) 0 evd, (V) o pry (2.60)

We will need to use some properties of these morphisms.
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Lemma 2.35 [2015.04.14.12a/ Let f : V — V' be a morphism, then one has
QU(f), priy(V")) o sty(V') = st,(V) o f

Proof: Let pr = pri,(V), pr' = pri,(V'), v = tpr, U = Ly, ev = evl (V) and ev’ = evl, (V).
Then we have to verify that the outer square of the following diagram commutes:

(L(V)ipr) —— (L(V),pr) xy (U,p) -2 UxV 5 vV
Q(Ip(f),pr’)l Ip(f)xfdﬁl IdUXfl lf
(LVY)ipr') — (L(V'),pr') xu (U,p) - U x V' 225 p7

The commutativity of the left square is a particular case of Lemma [5.3] The commutativity
of the right square is an immediate corollary of the definition of Idy x f. The commutativity
of the middle square is a particular case of (5.7)).

Remark 2.36 [2016.04.23.rem1]| In [?] generalized polynomial functors are defined as
functors isomorphic to functors of the form I,,.

Problem 2.37 [2015.03.29.probl/ Let C be a locally cartesian closed category with a bi-
nary product structure and p a universe in C. To construct, for all V € C, isomorphisms of
presheaves

nv : Dp(Yo(V)) = Yo(I,(V))
that are natural in V', i.e., such that for all f:V — V' the square

D,(Yo(V)) 222 D (vo(v))

w| [

Yo(L,(V)) —% yo(r,(v7))

commutes.

Construction 2.38 [2015.03.29.constrl] We will use the notation introduced before Re-
mark [2.16] We need to construct bijections

nvx : Dp(X, V) = More(X, 1,(V))
such that for all f:V — V', X € C and d € D,(X,V) one has
[2016.09.11.eq1]ny.x(d) o I,(f) = nv'.x(d o f) (2.61)
and for any f: X' — X and d € D,(Yo(V))(X) one has
[2016.09.11.eq2] f o ny.x(d) = nv.x:(f o d) (2.62)
We will construct bijections
Mox : Mor(X, L,(V)) = Dy(X,V)
such that for all g : X — I,,(V') one has:

26



1. for all f:V — V' one has
[2016.09.11.eq3]7'(9) o f = 1'(g o I,(f)) (2.63)

2. for all f: X" — X one has

[2016.09.11.eq4]f o' (g) = n'(f o g) (2.64)

and then define 9y x as the inverse to 7, . One proves easily that (2.61) implies ([2.63) and
(2.62) implies ([2.64)).

By (2.27)) we have
Dp(X, V) = HF:X—)UMOTC«X; F)? V)

For g : X — I,(V) we set

2016.12.02.eq5]ny, v (g) := (g o prI,(V),Q(g, pri,(V)) o st,(V)) (2.65)

as can be seen on the diagram

prip(V)

To see that this is a bijection observe first that it equals to the composition
Mor(X, L,(V)) = Up.xsuMory (X, F), (I,(V),prL,(V))) = Up.xsuMor((X; F),V)

where the first function is given by the formula g — (g o pri,(V),g) and the second is the
sum over all F': X — U of functions g — Q(g,prl,(V)) o st,(V).

The first function is a function of the form A — Il,egh™!(b), which is defined and is a
bijection for any function of sets h : A — B. It remains to show that the second one is a
bijection for every F.

By definition of the Homy, structure we know that for each F' the function
adj : Mory (X, F), (I,(V),prL,(V))) = Mory (X, F) x¢ (U, p), (U x V,pry))

given by g — (g xu Id g ) o evl,(V) is a bijection.

By definition of the binary product, the function of post-composition with prs,

Mory (X, F) xy (U,p), (U % V,pr1)) = Mor((X, F) xy (U,p),V)
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is a bijection. By Lemma [5.2] ¢ is an isomorphism and therefore the pre-composition with
it is a bijection. Now we have two functions

Mory (X, F), (I,(V), prI,(V))) = Mor((X; F),V)

given by g — tp o (g Xy Idg) o evl, (V) o pry and g — Q(g,prl,(V)) o st,(V) of which the
first one is the bijection. It remains to show that these functions are equal. In view of ([2.60))
it is sufficient to show that

e o (g xu 1dg) = Q(g,priy(V)) o tyri,v)

To do it we have to to show that the compositions of the left and right hand sides with pry
(to I,(V)) and pry (to U) are equal.

For pr; we have
tpo(gxyldg)opri=tpopriog=prpog

Q(gvprlp(v)) o LprIp(V) opry = Q(g,p?‘fp(V)) o ppTIp(V) - pgoprlp(V) 0g=prog

where we used the defining equations (2.59)) of ¢, the definition (2.18)) of Q(—,—) and the
fact that ¢ is a morphism over U.

For pry we have
tpo (g xy Idg) opry =1popryoldy = 1popry = Q(F)

Qg prLp(V)) © tpri, vy 0 pra = Q(g, priy(V)) o QprL,(V)) = Qg o priy(V)) = Q(F)

where we used the defining equations (2.59)) of ¢, (2.19) and the fact that ¢ is a morphism
over U.

We now have to check the behavior of n* with respect to morphisms in V' (equality (2.63))
and X (equality (2.64)).

Let pr = pri,(V) and pr’ = prL,(V’). Let g : X — I,(V) be as above. For f:V — V' we
have

1 (g) o f = Dy(Yo(f))x(gopr,Qg.pr) o sty(V)) = (g 0 pr,Q(g, pr) o sty(V) o f)
where the first equality is by and the second by and
(g0 L(f) = (9o L(f) o pr', Qg o I,(f), pr') o sty(V'))

where the equality is by (2.65). We have pr = I,(f) o pr’ because I,(f) is a morphism over
U. It remains to check that

Q(g,pr) o sty(V)o f=Q(go I,(f),pr') o st,(V')

By [?, Lemma 2.5] we have

Q(go I,(f),pr') = Q(g,pr) o QUL (f),pr')
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and the remaining equality

Q(g,pr) o sty(V)o f=Q(g,pr) o QU (f),pr') o st,(V')
follows from Lemma 2.35]
Consider now f: X’ — X. Then

fon'(g) =Dy(Yo(V))(f)(gopr,Qg,pr) o st,(V)) =
(fogopr,Q(f,gopr)oQ(g,pr)ost,(V))

and
W' (fog)=(fogopr,Q(fog.pr)ost,(V))
where we used (2.65)) and ([2.28)) and the required equality follows from [?, Lemma 2.5].

Problem 2.39 [2016.12.02.probl] For a locally cartesian closed category C with a binary
product structure and a universe p in C to construct, for alln >0 and V € C, isomorphisms
of presheaves

M,y : Dy(Yo(V)) = Yo(I;(V))
that are natural in'V, i.e., such that for all f :V — V' the square

. Dp(Yo(f) ,
D} (Yo(V)) ——— Dp(Yo(V"))

2017.01.03.eq1] nn,vl lnn,w (2.66)

Yo(Ip(f))
—

Yo(I;(V)) Yo(I; (V"))

commutes.
Construction 2.40 [2016.12.02.constrl/Proceed by induction on n starting with n = 0.

By our convention, Dg = Idpresho(c) and [:2 = Idc. We set 1oy = Idy,vy. For the successor
we define 1,41y as the composition

Dyt (Yo(V)) =
Dp(Yo(L;(V)))
Yo(Iy+1(V))

Dp(nn,v) M, 17 (V)

Dp(Dy(Yo(V))) Yo(I,(I;(V))) =

The naturality in V' is easily proved by induction.

Note that we can write 7,y x as a function of the form
D;‘(X, Y) = More(X, I;L(Y))

Let us spell out the formulas expressing the fact that 7,y is a morphism of presheaves and
the naturality of 7,y in Y in the o-notation. Let d € D}(X,Y’). Then for f: X" — X one
has

[2017.01.03.eq2]n,(f od) = f on,(d) (2.67)
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and for g : Y — Y’ one has

2017.01.03.eq3]1,(d © g) = 1,(d) © I"(g) (2.68)

Indeed, the first formula is an expression of the fact that the family of functions 7,y __ is a
morphism of presheaves and the second formula an expression of the commutativity of the
square ([2.66]).

We let nihy denote the isomorphism inverse to 7,y. For m : X — [(Y) we have the
following formulas that follow from (2.67) and (2.68). For f : X — X’ one has

[2016.09.11.eq4n|f o 7', (m) = n\,(f o m) (2.69)
and for g : Y — Y’ one has
2016.09.11.eq3n],,(m) 0 g = 1, (m o I} (g)) (2.70)
Let us also introduce the following notation that will be useful below. For Y € C let
2017.01.07.eql}Idy = 1, (Idy ) € Dy (1(Y),Y) (2.71)

We have the following formulas.
Lemma 2.41 [2017.01.07.12/ In the notations introduced above one has:
1. form: X — I'(Y) one has
[2017.01.07.eq3]m o Id} = ', (m) (2.72)
2. forg:Y — Y’ one has
[2017.01.07.eqd]Id} o g = n,, (1} (g)) (2.73)
Proof: For the first formula we have
mo Idy =mon,(Idpy)) = n,(mo Idp ) = n,(m)

where the first equality is by the definition of Id}, the second by (2.69)) and the third by the
identity axiom of C.

For the second formula we have

Idy o g =n,(Idpyy) 0 g = n,(Idipvy 0 I3(g)) = 1, (17 (9))

where the first equality is by the definition of Id}, the second by (2.70) and the third by the
identity axiom of C. The lemma is proved.

Note that (2.72)) implies in particular that we have
[2017.01.07.eq5]n,(d) o Idy = 1., (n,(d)) = d (2.74)
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Problem 2.42 [2015.03.17.prob3] For C as above, a universe p: U — U in C and n > 1
to construct isomorphisms of presheaves

fin : Oby, — int®(Yo(I31(U)))

and . B
i = Ob, — mto(Yo(Igfl(U)))

such that the square

Ob, —Ls int>(Yo(In=1(T)))
[2016.12.04.eq2]al lmtO(yOU;fl(pm (2.75)
Ob, —— int>(Yo(I~1(U)))

commutes.

Construction 2.43 [2015.03.17.constr2/Compose isomorphism u, of Construction [2.31]
(resp. isomorphism u, of Construction [2.33) with the isomorphism int°(n,—1,) (resp.
int°(n,_, 7)) where n,_1y (resp. 77n—1,(7) is the isomorphism of Construction m

To prove the commutativity of (2.75)) consider the diagram

nt®(n ~

Ob, —™ s int*(Dr -\ (Yo(0))) T e (vo(In-)(T7))

8l int"(D;l_l(YO(p)))l lint"(YO(fﬁ_l(p)))

int® (nn—l,U)

Ob, — int*(Dy~' (Yo(U))) int*(Yo(I;7H(U)))

The composition of the upper arrows is 1, and the composition of the lower ones is ,,. It
remains to show that the two squares commute. The left square commutes by Lemma [2.34]
The right square commutes because int° is a functor and 7,,_; y is natural in V.

Observe that for I' € CC(C,p), T € Ob,(I') and o € 5?7”(1—‘) one has:

12017.01.03.6q4)1t, +(T) = 11 5nar) (£ (1)) € it (Yo I~ (U)))(T) = Morc(iniT) I%L-%U))
2.76
and

[2017.01.03.€05] 10,1 (0) = 1,1 7 insry (Un,r(0)) € mto(Yo(Ig’l((?)))(F) = Morc(int(T), Ig’l(f]))
(2.77)
and the commutativity of (2.75)) is equivalent to the assertion that for all I' and o as above

one has
[2017.01.03.eq6) /1, r(0(0)) = finr(0) 0 ]]’}(p) (2.78)
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3 Functoriality

3.1 Universe category functors and the D, construction

Let (C,p,pt) and (C',p’, pt') be two universe categories. Recall from [?] the following defini-
tion.

Definition 3.1 [2016.12.09.defl] A universe category functor from (C,p,pt) to (C',p',pt’)

is a triple ® = (D, ¢, gb) where ® is a functor C — C' and ¢ : ®(U) — U’, (b <I>(U) — U
are two morphisms such that one has:

1. ® takes the pt to a final object,
2. ® takes the canonical pullbacks based on p to pullbacks,

3. the square B
o(U) —2 U
[2015.03.21.sq]ﬂ(p)l lp/ (3.1)
o(U) —2 U
1 a pullback.

Problem 3.2 [2016.12.14.probl/ Let ® = (P, ¢, 5) be a universe category functor (C,p) —
(C',p'). To construct a functor morphism

[2016.12.14.eq3]®D : ©° 0 D, — D,/ o ®° (3.2)

Construction 3.3 [2016.12.14.constrl] Both the left and the right hand side of (3.2)) are
functors of the form
PreShv(C') — PreShv(C)

Therefore, we need, for any presheaf G’ on C' and any X € C, to construct a function
[2016.12.14.eq4|P Dy x : D,(P°(G"))(X) — °(Dy(G"))(X) (3.3)
and to prove that

1. the family ®Dg¢ _ is a morphism of presheaves, that is, for any a : X — Y in C, the

square
Dy (@°(G))(Y) 2, <Dpf<g')>< >
[2016.12.16.%%0(9»)@% l«po (3.4)
D,(@°(F))(X) —% &°(Dy(d"))(X)
commutes,
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2. ®D is a natural transformation of functors to presheaves, that is, for any ' : F' — G’
and any X € C the square
of TV ®Drr x o /
Dy(®°(F))(X) —— °(Dy (F))(X)
[2016.12.16.eq31c1>°(f’))xl FO(DP,(,H))X (3.5)

D(@°(G))(X) 2% °(D,(¢")(X)

commutes.

Computing the left and right hand side of (3.3) we see that ®Dg x should be a function of
the form
IT gex:m)— I 9du@ex);r)
F:X—U FL:d(X) U’
Let F': X — U. Consider (P(X); D(F) o ¢). Since (3.1]) is a pullback there is a unique

morphism ¢ such that go ¢ = Q(®(F) o ¢) and q o ®(p) = pa(x),a(F)es © P(F). Then the
external square in the diagram

(D(X); B(F) o ¢) —1 &) NG

lpé(X),d)(F)qu @(p)J/ J/p/
B(X) iGN Y{ g QAN 5

is a pullback and since the right hand side square is a pullback, the left hand side square
is a pullback as well. Together with the fact that ® takes pullback squares based on p to
pullback squares this implies that we obtain two pullbacks based on ®(F') ad ®(p).

By Lemma [5.8] and Lemma [5.2] we have a unique morphism, which is an isomorphism,

tp" (X)) O(F) 0 9) = O((X; F))

such that
2015.04.08.eq1]iy”" 0 ®(px.r) = Pa(x)a(F)os (3.6)
[2015.04.08.eq2]i53" 0 B(Q(F)) 0 ¢ = Q(P(F) 0 §) (3.7)
and we define:
2016.12.16.eq4]® Dg: x (F,7') = (®(F) 0 ,G'(13") (7)) (3.8)

When no confusion is likely, we will omit the indexes at ¢.

To prove that (3.4) commutes let
(F:Y = Uy €G(2((Y; 1)) € Dp(2°(G)(Y)
Then one path in the square gives us

(©°(Dy (9)(a)) (D7 x ((F. 7)) =
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(@°(Dp (GN(@))(B(F) 0 6,G'(1)(7)) = Dy (G)(2(a)) (2(F) © 6,G'(1)(1))) =
(B(a) 0 ©(F) 0 ¢, G (Q((a), D(F) 0 $))(G (L)(Vl)))
(P(ac F)o¢, G (Q(P(a), (F) 0 ¢)or)(v))

where the first equality is by (3.8]), the second by the definition of ®°, the third by ({2.23))
and the fourth by the composition axiom of ® and G’.

The other path gives us
©Dg: x (Dy(2°(9)(a)((F,7")) =
®Dg/ x((ao F,2°(G")(Q(a, 1))(7"))) = ®Dg x((a o F,G"(2(Q(a, F)))(v))) =
(®(ao F)od,G'()(G'(2(Q(a, 1)) (7)) =
(®(aocF)od G (tod(Qa F)))(Y))

where the first equality is by (2.23]), the second by the definition of ®°, the third by (3.8])
and the fourth by the composition axiom of G’.

It remains to show that
[2016.12.16.eq7]Q(P(a), P(F)o¢) ot =10 P(Q(a, F)) (3.9)
We have four pullbacks

Q(®(acF)og) Q(E(F)og) =~

(®(X); ®(ao F)og¢) U (B(Y);®(F) o) U’

p@(X),@(aoF)o¢l lp/ p<I>(Y),<I>(F)o¢>J/ J/p/

O(X) 2lches g o(Y) 2Eed g
and ~ -
@((X, a0 F)) ®(Q(aoF))og 17/ (P((Y7 F)) D(Q(F))od ﬁ/

(I)(pX,aoF)J( lp’ ‘I)(PY,F)l lp’

CI)(X) ®(aoF)og U CI)(Y) P(F)ogp U
and a morphism ®(a) : (X)) — ®(Y) such that P(ao F)o¢p = &(a) o P(F)o¢. Applying to
these pullbacks Lemma and then applying Lemma we obtain a commutative square

(®(X); (a0 F)og) o),

|

(@(Y); ®(F) 0 ¢)

lb

o(XiaoF))  ZEEEL (Y
To prove (3.9) it remains to show that
2016.12.16.eq5c1 (®(a), Id5) = Q(®(a), D(F) o ¢) (3.10)
and
[2016.12.16.eq6]cs(P(a), Id5) = ®(Q(a, F)) (3.11)
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In view of the definition of the morphisms ¢y, ¢ given in Lemma to prove ((3.10) we need
to show that

Q(®(a), (F) 0 ¢) 0 pa(v)a(Fjop = Pa(xX)d(acF)op © P(a)
Q(®(a), ©(F) o ¢) 0 Q(P(F) 0 ¢) = Q(P(ac F)og)
The first equality follows from ([2.18]). The second equality follows from (2.19)). In both cases
we need also to use that ®(ao F) = ®(a) o O(F).

To prove (3.11]) we need to show that
®(Q(a, I)) o (py,r) = P(px.aor) o (a)

P(Q(a. F)) o 2(Q(F)) 06 = 2(Q(ao F))o ¢
The first equality again follows from (2.18)) and the composition axiom for ® and the second
equality follows from ([2.19) and the composition axiom for ®. This completes the proof of

commutativity of (3.4).
To prove that commutes let
(F': X = U, B € F(P((X;F)))) € Dy(®°(F))(X)
Then one path in the square gives us
O (Dp (f)x (2D x ((F. ) =
(D () x (2(F) 0 ¢, F'(1)(8))) = Dy (fex)(R(F) 0 ¢, F'(1)(8))) =
(P(F) © &, flo(xyamon (T ()(B)))
where the first equality is by (3.8)), the second by the definition of ®° and the third by ([2.24).

The other path gives us
©Dgr x (Dp(2°(f)x ((F,8))) =
Dy x ((F.(2°(f))x:p) () = @Dgr x ((F, fox.ry (8))) =
(D(F) 0 8, G'()(fo(x.ry)(B))
where the first equality is by , the second by the definition of ®° and the third by .

It remains to show that

flaxyamyn(F (@)(B) = G' (1) (foix.r)(B)

which follows from the axiom of compatibility with morphisms of the natural transformation
' F" — G'. This completes the proof of commutativity of (3.5)) and with it Construction
9.k

Problem 3.4 [2016.12.18.probl/ Let ® : (C,p) — (C',p’) be a universe category functor.
Let F € PreShv(C), F' € PreShu(C’) and let

m:F — ®°(F')
be a morphism of presheaves. Let n € N. To construct a morphism of presheaves

Dg(m) : Dj(F) — (D (F))
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Construction 3.5 [2016.12.18.constrl] We proceed by induction on n.
For n = 0 we set D%(m) = m.
For the successor of n we need to construct a morphism
Dgt(m) : Dy(Dy(F)) = @°(Dy Dy (F)))
We define it as the composition

Dy(D(m)) ®Lpn, 1)

Dp(Dy(F)) Dy(®°(Dy (F))) ———— &°(Dp (D5 (F"))

The explicit form of the morphism Dy (m) when n > 1 is given by the following lemma.

Lemma 3.6 [2016.12.22.11/ In the context of Problem[3.4 letn >1, X € C, and
(F,a) € Upx-u Dy~ (F)((X; F)) = Dy (F)(X)
Then one has
Dg(m)x((F,a)) = (®(F) 0 ¢; Dy (F)(1)(Dg " (m)x:r)(a))

where
v=13"  (B(X); D(F) 0 ¢) = B((X; F))

1s the morphism defined by and .

Proof: We have
Dg(m)x((F,a)) =

(I)DD;‘,—l(P),X(Dp(Dgl(m))X((E a))) = (I)DD:,—I(P),X((R Dg ™ (m)xsr(a)) =
((F) 0 ¢ Dy H(F) (1) (D (m) (x:m) (@)

where the first equality is by definition of D% (m), the second by (2.24) and the third by

(3.8). The lemma is proved.

Lemma 3.7 [2016.12.18.11/ In the assumptions of Problem consider a commutative

square in PreShv(C) of the form
Fi —= O°(F))
[2016.12.18.eq1}vl l@w) (3.12)
Fr —25 °(F))

Then, for any n € N, the square

Dg(m1)

Dy (F1) °(Dy, (F7))
[2016.12.18.eq2¥}(v)l l@"(D;(v’)) (3.13)
n Da(ma) 2o/ myn
Dy(Fy) ——— @°(D}(F3))

commutes.
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Proof: We proceed by induction on n.

For n = 0 the square ([3.13) coincides with the square (3.12)).

For the successor of n, (3.13) is the external square of the diagram

CPDDn (F)

Dy (D (F1)) Dy(9°(Dy)(F7))) ———— @°(Dy(D}(F1)))
DP(D;;(U))J Dy (@°(D" (”’)))l l@O(DmD;,(v')))

Dp(Dg (ml))
_—

®Dpm, (74)

DP(Dg(mQ)) o n / p o n /
Dy(®°(Dy(F3))) ——— °(Dy(Dy(F3)))

Dp(Dy(F2))

The left hand side square in this diagram is obtained by applying D, to the square ((3.13)
for n. It is commutative because D, is a functor and in particular satisfies the composition
axiom ([2.26]).

The right hand side square is commutative because ® D is a natural transformation of func-
tors that satisfies the axiom of compatibility with morphisms of presheaves. In our particular
case this axiom is applied to the morphism of presheaves D), (V).

This completes the proof of the lemma.

The following problem and construction are the only ones in this section where we change
our context from considering a universe category functor to simply a functor between two
categories.

Problem 3.8 [2016.12.18.prob3/ Given a functor ® : C — C’ between two categories to
construct, for each' Y € C, a morphism of presheaves

yo®Y :Yo(Y) = ®°(Yo(®(Y)))
and to show that for a morphism g :Y — Y’ the square

Yo(Y) vt P°(Yo(®(Y)))
[2016.12.18.eq840(g)l °(Yo(® (3.14)
Yo(Y') 2 oo(vo(@(y')))
commutes.
Construction 3.9 [2016.12.18.constr3] We need to define, for all X € C, functions
Yo(Y)(X) = More(X,Y) = More:/(®(X),®(Y)) = 2°(Yo(P(Y)))(X)
which we define as the restriction of @y, to More(X,Y):

[2016.12.18.eq7]yoy” (f) = ®(f) (3.15)
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Let us show that this family is a morphism of presheaves, i.e., that for any a : X’ — X the

square
DY

Vo(Y)(X) === @°(Yo(@(Y)))(X)
[2016.12.18.eq5}(Y)(a)l °(Yo(@(¥)))(@) (3.16)
Yo(r)(x) 5 an(vo@(v)) ()
commutes. Note that for an element f': ®(X) — ®(Y) of ®°(Yo(P(Y)))(X) we have
(2016.12.18.eq6]P°(Yo(®(Y)))(a)(f") = ®(a) o f’ (3.17)
Let f: X — Y be an element of Yo(Y)(X).
Applying one path in to f we get
O°(Yo(2(Y)))(a)(yox " (f) = 2°(Yo(®(Y))(a)(®(f)) = (a) o B(f)

where the first equality is by (3.15)) and the second is by (3.17]).
Applying another path we get

yox: (Yo(Y)(a)(f)) = @Y o(Y)x:(ao f) = ®(ao f)
where the first equality is by definition of Yo(Y) and the second by (3.15)).

We conclude that (3.16)) commutes by the composition axiom of ®.

Let ¢ : Y — Y’ be a morphism. Note that for an element f' : &(X) — ®(Y) of
P°(Yo(P(Y)))(X) we have

[2016.12.18.eq9]9°(Yo(®(g)))(f) = f' o ®(g) (3.18)
Let us show that the square commutes. Let X € C and f € Yo(Y)(X).
Applying one path in to f we get
°(Yo(®(9)))(yo™" (f)) = °(Yo(®(9)))(2(f)) = (f) o (g)

where the first equality is by (3.15)) and the second by (3.18)).
Applying another path we get

yo® (Yo(g)(f)) = yo™" (fo g) = (f 0 g)

where the first equality is by the definition of Yo(g) and the second by (3.15)). We conclude
that (3.14)) commutes by the composition axiom of ®.

This completes the construction.

Recall that for X, Y € C and n > 0 we have defined in (2.30) the set D}(X,Y) as follows:
D(X.Y) = D(Yo(Y))(X)

We also introduced before Remark [2.16] the o-notation that we will use below.
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Problem 3.10 [2016.12.18.prob2/ In the assumptions as above, to define, for all XY € C
and n > 0, functions
@7, 1 DI(X,Y) = DL(B(X), B(V))

Construction 3.11 [2016.12.18.constr2] Applying Construction [3.5] to the morphism of
presheaves yo®Y of Construction we obtain morphisms of presheaves

Dy (yo™") : Dy(Yo(Y)) = @°(Dy(Yo(®(Y))))
Evaluating this morphism on X we obtain a function

2016.12.20.eq3] D (X, Y) = D7 (Yo(Y))(X) — ®°(D(Yo(B(Y))))(X) = D (B(X), B(Y))

For n = 0 we have
DS(X, Y)=Yo(Y)(X)= More(X,Y)

and <I>9(7Y is the function ®x y, that is, the restriction of @y, to the subset More(X,Y) of
Mor(C).

The explicit form of the function ®% ;- when n > 1 is given by the following lemma.
Lemma 3.12 [2016.12.22.12] In the context of Problem letn>1, X,Y € C and
(F,a) € Up.x—uDl ' ((X;F),Y) = Dp(Dp ' (Yo(Y)))(X) = Di(X,Y)

Then one has
& (Fa)) = (B(F) 0 6,00 BI5L, ()
where v : (D(X), (F) o ¢) = ®((X; F)) is the morphism defined by (3.6) and (3.7).

Proof: By construction we have ®% ,, = D (yo™")x. By Lemma 3.6/ we have
Dig(yo™")x((F.a)) = ((F) 0 ¢, D~ (Yo(2(Y)))(1)(Dg " (yo™ ) (xry(a))
Again by construction we have @?);,IF)Y = Dg‘l(yoé’y)(x;p) and D;,_I(YO(CD(Y)))(L) =

D;,_l(b, Y) =10 —. The lemma is proved.

Lemma 3.13 [2016.12.20.11/ In the context of Construction one has:

1. let f: X' — X be a morphism, then the square

n
X,y

3]
[2016.12.20.eq42¥(f,Y)l lD;L/(@(f),‘P(Y)) (3.20)

DX(X'Y) T, D (D(X'), d(Y))

p
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2. let g:Y — Y’ be a morphism, then the square

n

DI(X,Y) XY D (a(X), (V)

p

[2016.12.20.eq2$(X79)l lD;,@(X),cb(g)) (3.21)
DMLY XY pn (X)), (Y
p( ) ) — p’( ( )a ( ))

commutes.

Proof: Commutativity of (3.20]) follows from (3.19)) and the fact that D% (yo®Y) is a mor-

phism of presheaves.

Commutativity of (3.21)) follows from (3.19), the commutativity of (3.14) and Lemma [3.7]

In the o-notation the assertion of Lemma looks as follows. Let d € D}}(X,Y’). Then for
f: X' — X one has

[2017.01.05.eq1]®(f) o ®"(d) = ®"(f o d) (3.22)
and for g : Y — Y’ one has

[2017.01.05.eq2]®@"(d) o ®(g) = ®"(d o g) (3.23)

3.2 Universe category functors and isomorphisms u, and u,

By [?, Construction 4.7] any universe category functor ® = (@, ¢, ¢) from (C,p) to (C', p)
defines a homomorphism of C-systems

H:CC(C,p) — Ccc(,p)
Let 1o : pt' — ®(pt) be the unique morphism. To define H on objects, one uses the fact that
Ob(CO(C,p)) = I1,,500b,(C, p)
and defines H(n, A) as (n, H,(A)) where
H, : Ob,(C,p) — Ob,(C',p)

To obtain H, one defines by induction on n, pairs (H,,,) where H, is as above and 1, is
a family of isomorphisms

Un(A) sint,(H,(A)) — P(int,(A))

as follows:
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1. for n = 0, Hy is the unique function from a one point set to a one point set and

¢0(A) = ,QZ)O?

2. for the successor of n one has
[2016.12.10.eq1]H, 11 (A, F) = (H,(A), ¥n(A) 0 O(F) 0 ¢) (3.24)
and ¥,1(A, F) is the unique morphism int(H(A, F)) — ®(int(A, F)) such that
[2016.12.10.€q2]th, 11 (A, F) 0 ®(Q(F)) 0 ¢ = Q(¢n(A) 0 O(F) 0 ¢) (3.25)

and
[2016.12.10.eq3]), 11 (A, F) o O(pp) = Do (A)od(F)og © U (A) (3.26)

The function H : Ob(CC(C,p)) — Ob(CC(C',p')) is the sum of functions H,,. For I' = (n, A)
in Ob(C'C(C,p)) we let ¥(I') = ,,(A) such that 9 is the sum of families ),

W(T) < int(H(T)) — ®(int(T))

The action of H on morphisms is given by the condition that for f : [V — T', H(f) is a
unique morphism of the form H(I"") — H(I") such that

[2016.12.10.eqd]int(H(f)) = (I") o ®(int(f)) o (')~ (3.27)

We will often write H also for the functions H,, and ¢ for the functions t,.

Lemma 3.14 [2015.03.21.14] Let (P, ¢, ¢) be universe category functor. Then:

1. for T € Oby(T") one has

ur ) (H(T)) = (') 0 ®(uy p(T)) © ¢

2. foroe€ C%l(F) one has

ura(r)(H(0)) = (') 0 ®(urr(0)) o ¢
Proof: Let I' = (n, A).
In the case of T'€ Oby ("), it T'= (n+ 1, (A, F')) then
ui(H(T)) = w(n+1, H(A, F)) = ui(n + 1, (H(A), (') 0 ®(F) 0 ¢)) = (') 0 ®(F) 0 ¢

where the last equality is by (2.37)).

In the case of 0 € Oby (L), if d(0) = (n+ 1, (A, F)) then d(H(0)) = (n+ 1, H(A, F)). Since
o:I"— 0(o) we have

[2016.12.10.eq6]H (0) = (') o ®(int(0)) o (A, F)~* (3.28)
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and

ur(H(0)) = H(0) o Q(ur(n + 1, H(A, F))) = H(0) 0 Q(¢)(A) 0 ®(F) 0 ¢) =
H(0) 0 (A, F) 0 ®(Q(F)) 0 ¢ = ¢(T) 0 ®(int(0)) 0 (A, F) ' 0 (4, F) 0 B(Q(F)) 0 & =
$(T) 0 B(int(0)) 0 ®(Q(F)) 0 ¢ = P(T") 0 B(int(0) 0 Q(F)) 0 ¢ =
W(I) 0 ®(Ts(0) 0 &

Where the first equality is by (2.44]), the second by (3.24]) and (2.37)), the third by (3.25)),
the fourth by (3.28]) and the seventh again by (2.44)).

We now want to express the assertion of Lemma in terms of the commutativity of a
diagram of natural transformations of presheaves on CC(C,p).

Lemma 3.15 [2016.12.20.12] The family of morphisms
(1) int(H(T)) — ®(int())
s a natural isomorphism of functors

Y : Hoint —intod

Proof: By construction, ¢(I") is a family of morphisms of the form (H o int)(I') — (int o
®)(T). It remains to verify that for f: " — I' one has

(L) o (int o ®)(f) = (H o int)(f) o (1)

This equality is equivalent to (3.27)).

We will use the natural transformation ¢° that ) defines on the corresponding functors
between the categories of presheaves. Note that for a natural transformation a : ®; — ®4 of
functors of the form C — C’ and a presheaf F’ on C' we have

Q3 (F)(X) = F(P2(X)) = F(P1(X)) = D (F')(X)
that is, for a : &1 — Py we have a° : ®5 — ®7. In particular, in the case of 1) we have:

° : ®°oint® = (int o ®)° — (H oint)® =int° o H°

42



Lemma 3.16 [2016.12.20.13/ In the context of Lemma the following two diagrams of
natural transformations of presheaves on CC(C,p) commute:

Ob,  —“  int(Yo(U)) Ob,  —“s i (Yo(D))
int® (yo®V) int® (yo® )
int®(®°(Yo(2(U)))) int®(d°(Yo(2(U))))
lHObl int°(9°(Yo(9))) lm% int*(@°(Yo()))
int°(®°(Yo(U"))) int®(9°(Yo(U")))
Yo(U”) VY o(@rr)
Ho(Ob) Y% geginte(vo(U')) He(Ob) 2 go(inte (v o(T7))

Proof: Consider the first diagram. For I' and T' € Ob;(I') one path in the diagram applied
to 1" gives us

Y° (int(2°(Yo(9))) (int” (yo™ (ur,r(T))))) = ¥°(int”(2°(Y 0(9))) (@ (ur,r(T)))) =

V2 (@(ur,r(T)) 0 @) = p(I') 0 P(urr(T)) 0 ¢
while the other path gives

H®(ur)(HOb(T)) = wy,mry (H(T))
The equality of these two expressions is the statement of Lemma |3.14{(1).

The case of the second diagram is strictly parallel. The lemma is proved.

Consider now isomorphisms u,, and wu, for general n > 1.

Lemma 3.17 [2016.12.20.14] Let ® = (P, ¢, ¢) be a universe category functor and n > 1.
Then

1. for T € Ob,(I') one has

2016.12.20.eq5uy, m1(r) (H(T)) = ¢(T) o (@i o (unr(T)) 0 ) (3.29)

2. foroe€ (%n(l—‘) one has

[2016.12.20.eq6]t,, 1) (H(0)) = (') o (®"! (1, r(0)) 0 ¢) (3.30)

int(T),U

Proof: Let us verify first that the right hand side of (3.29) is defined and belongs to the
same set as the left hand side.
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By (2-36) and (2.53), we have u,, r(T) € Dy~ (int(T'), U). Therefore,
@y o (nr(T) € Dy (@ (int(T)), 2(U))
Since ¢ : ®(U) — U’ and (T) : int(H(T')) — ®(int(T)) we have
WD) o (R} ) v (Unr(T)) 0 ¢) € Dy~ (int(H(T)), U")

on the other hand u, yry(H(T)) is an element of D;‘/_l(mt(H(F)), U’) as well. Therefore,
(3.29) is an equality between two elements of the same set.

To prove (3.29) we proceed by induction on n. For n = 1 this equality is the same as the
equality of Lemma [3.14{1).

For the successor of n > 1 we reason as follows. Let 77 = ft"(T) € Oby(T") and let us
abbreviate u; — to u;. By (2.57) and since H commutes with ft we have

2016.12.24.e4]u, 1 (H(T)) = (uy (f"(H(T))), wn(H(T))) = (ur(H(T")), un(H(T)))
By the inductive assumption we have

2016.12.24.€q5u, (H(T)) = ¢(T") o (B} 1) (un(T)) 0 ) (3.32)

On the other hand, by (2.57), Lemma [3.12| and (2.39) we have
®ir), 0 (Uni1(T)) = Lyry o (ua(T7), un(T))) =

(@(u1(T")) © 6,10 B iy (), (Un (1)) = (R(ur(T7)) 0 ¢, 0.0 By 1y (un(T)))

where

= (@ @) (it (T)); @(ug(T')) 0 ) = S((int(D); ur (T"))) = (int(T"))

is defined by the obvious analogs of (3.6)) and (3.7)).
By Lemma [2.15(2) we have

(P(u(T") © b, 10 (Bt 1 (un(T))) 0 & = (R(ur(T")) © b, (10 B iy 1 (un(T))) © )
Next, by Lemma [2.15(1) we have
V() o (2(ur(T7)) 0 ¢, (0 Rfy iy 1 (n (1)) 0 ) =
(W(T) 0 @(ur(T") 0 ¢, QW (T), ®(us(T")) © ¢) © (¢ 0 B}y 1y (un(T))) © 6))

[t remains to compare the last expression with (3.31])). Both expressions are pairs. The first
components of these pairs are equal by Lemma m(l) To show that the second components
are equal we need, in view of (3.32)), to show that

QUAT), D(ur(T")) 0 §) o (10 Byl (un(T))) 0 6) = H(T') 0 (Bt 1 (1a(T)) © §)



In view of the “associativities” of Lemma [2.14] it is sufficient to show that
[2016.12.24.eq7]Q(Y(T), (us (T")) 0 ¢) o v = (T") (3.33)

where

L= (@@ (it (T)); D(ug (T7)) 0 ) — B((int(D); uy (T")))

Let I' = (m, A) and F = u; p(71") such that 7" = (m + 1, (A, F')). Then, (T") = ¢((A, F))
is the unique morphism that satisfies the equations (3.25) and (3.26). Therefore, to prove
(3.33) we need to show that the following equalities hold:

[2016.12.24.eq8]Q(1/(A), (F) 0 ) 0 15" " 0 B(Q(F)) 0 ¢ = Q((A) 0 ®(F) 0 ) (3.34)

[2016.12.24.eq9]Q(¢(A), ®(F) 0 ¢) 0 13" 0 ®(pr) = pyiayeayes © W(A)  (3.35)
For (3.34]) we have
Q(A), (F)0¢)o10®(Q(F)) 0 = Q(1b(A), B(F)0$) 0 Q(D(F) 0 $) = Q(1)(A) 0 (F) 0 $)
where the first equality is by (3.7)) and the second one by ([2.19)).
For ([3.35)) we have

Q(U(A), ®(F)od)oro®(pp) = Q(Y(A), B(F) 0 @) © pa(rios = Py(A)ed(F)os © Y(A)
where the first equality is by (3.6) and the second one by (2.18)) and (12.16]).
A strictly parallel reasoning applies to the proof of (3.30)).

This completes the proof of Lemma [3.17]

3.3 Universe category functors and the I, construcion

Let (C,p) and (C',p') be locally cartesian closed universe categories with binary product
structure as considered in Section 2.6 Let @ : (C,p) — (C',p) be a universe category
functor. No assumption is made about the compatibility of ® with the locally cartesian
closed or binary product structures.

In what follows we omit the indexes at 7,, 7, and ®" where no confusion is possible.

Problem 3.18 [2015.03.21.probl/ In the context introduced above to construct, for any
n>0andY €C, a morphism

Xon(Y) : ®(I;(Y)) = [i(2(Y))
such that for any g : Y — Y’ the square

X@,n(y)

(1, (Y)) Ly (®(Y))

[2016.12.30.eq111(]1$(g))l 17,(2(9)) (3.36)
n X‘I:',n(Y/) n
(1Y) ——— L (P(Y))

commautes.
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Construction 3.19 [2015.03.21.constrl] We set

Xon(Y) = 1. (®"(Idy))

where Idy is defined in (2.71). In what follows we often omit the index ® at x. Let
g:Y — Y’ Let us show that the square (3.36) commutes. We have

Xn(Y) 0 Iy (®(g)) =

i (@"(Idy)) o I;(®(g)) = na(®"(Idy) 0 B(g)) = na(®"(Idy 0 g)) =

1 (@" (1, (17(9))))
where the first equality is by the definition of x,,, the second by (2.68)), the third by (3.23),
and the fourth by ([2.73)).

On the other hand we have,
(1 (g)) o xa(Y') =
®(1;(9)) o nu(@"(Idy)) = mu(P(L;(g)) 0 D" (Idy,)) = 1a(®" (I (g) 0 1dy.)) =
(@™ (1,1 (9))))

where the first equality is by the definition of x,,, the second by (2.67)), the third by (3.22]),
and the fourth by (2.72)).

This shows that the square (3.36)) commutes and completes the construction.

We will use the following formula.

Lemma 3.20 [2017.01.07.13/ In the notation introduced above and d € D} (X,Y) one has
1 (®"(d)) = ®(1n(d)) © Xn(Y')
Proof: We have
(1 (d)) 0 xa(Y) =
‘I’(ﬁn(d)) © 77n<(I)n(]d7}l/)) = nn(cl)(nn(d)) o (I)n(]d?/)) = nn(q)n(nn(d) ° ]d?/)) =
1 (®"(d))

where the first equality is by the definition of x,, the second by (2.67)), the third by (3.22]),
and the fourth by ([2.74)).
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3.4 Universe category functors and the isomorphisms p, and i,

For a universe category functor (®, ¢, ¢) and n > 0 let us denote by
S ((U)) — I(U')
the composition x&,(U) o I];(#) and by

Eo,0 O(IN(T)) — IH(T")

the composition x&,(U) o I])(¢).

In view of the commutativity of the squares (3.36) and (3.1)) and the composition axiom for
the functor I); the squares

[2017.01.01.eq@;}(6))l 17,(0) (3.37)

commute.

Lemma 3.21 [2015.05.06.12/ Let (P, ¢, ¢) be a universe category functor, T' € Ob(CC(C,p))
andn > 1. Then one has:

1. forT € Ob,(T)

2017.01.01.€q7] 151y (H(T)) = () 0 D (111 (T)) © £ (3.38)

2. foroe (%H(F)
[2017.01.01.€48]7in s1(r) (H (0)) = () 0 ®(fin.r(0)) 0 £ (3.39)

Proof: Let us show first that the right hand sides of (3.38)) and (3.39)) are defined and belong

to the same sets as the left hand sides.

Indeed, by (2.76)), pt,,r(T) is an element of More(int(T'), I}~ (U)) and therefore ®(p,, r(T))
is an element of More (®(int(I)), (L}~ (U))).

The morphism ¢ (I") is of the form int(H(I")) — ®(int(I")) and the morphism &g ,,—1 is of the
form ®(1~HU)) — Ig,_l(U "). Therefore, the composition on the right hand side of 1} is
defined and belongs to the same set More (int(H(T)), ];L,_I(U’)) as fin,m () (H(T)).

A parallel reasoning shows that the right hand side of (3.39) is defined and both sides are
elements of the set More (int(H(T)), I;L,’I(U’)).

Next, we have
pin, () (H(T)) = int®(n—1,07) 1y (un(H(T))) = 1,07 intm ) (un(H(T))) =

47



Nn-1,07ime(r () (P(T) 0 (8" (un(T)) 0 ¢)) = (L) © 11,07 @ (ine () (B" ' (un(T)) 0 ) =
(L) 0 Dt oty (B (1 (7)) 0 17 (6)
where the first equality is by the definition of ju, (cf. Construction [2.43)), the second by the
definition of int°, the third by (3.29)), the fourth by (2.67)) and the fifth by (2.68]).

Next
-1 (®" " (un(T))) 0 I () =

® (-1 (un(T))) © Xn-1(U) © I (9) = (-1 (un(T))) 0 &u1 =
O(pan(T)) © Ena

where the first equality holds by Lemma [3.20] the second one by the definition of £, and the
third one by the definition of ju,. This reasoning proves ({3.38)).

The proof of (3.39) is strictly parallel to the proof of (3.38)).

The lemma is proved.

4 P-structures on universes and (I, \)-structures

4.1 Construction of (II, \)-structures on the C-systems CC(C,p)

We will show now how to construct (II, A)-structures on C-systems of the form CC(C,p) for
locally cartesian closed universe categories (C,p) with a binary product structure.

That construction for Problem [£.7] without the part that concerns the bijection, exists was
originally stated in [?, Proposition 2] with a sketch of a proof given in the 2009 version of

7).

Let us recall the following definition from [?]:

Definition 4.1 [2015.03.09.defl/ Let CC be a C-system. A pre-(I1, \)-structure on CC
15 a pair of morphisms of presheaves

IT: Obg — Obl
A 69772 — 69771
such that the square
Ob, —2— Ob,
[2015.03.09.eq1]al la (4.1)

ObQ L> Obl

commutes.

A pre-(T1, X)-structure is called a (IT, \)-structure if the square 1 a pullback.
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Definition 4.2 [2015.03.29.defl/ Let C be a locally cartesian closed category with a binary

product structure and p : U — U a universe in C. A pre-P-structure on p is a pair of
morphisms

P:I,U)—=U
P:L(U)—=U
such that the square
L) 2 U
[2009.pr0d.squarej(p)l lp (4.2)
LWU) -5 U

18 @ commutes.

A pre-P-structure is called a P-structure if the square 1 a pullback.

Problem 4.3 [2015.03.17.prob0/ Let (C,p) be a locally cartesian closed universe category

with a binary product structure. Let (P, P) be a pre-P-structure on p. To construct a (II, \)-
structure on CC(C,p).

Construction 4.4 [2015.03.17.constr3/Consider the diagram:

Oby —"s int(Yo(L,(T))) 20PN o (vo(TT)) < Oby

2016.12.09.eq1] al lmto (Yol (p lmmyo(p)) la (4.3)

int® (P))

Oby —2 int*(Yo(I,(U))) 204D oy o(tr)) s OB,

Since the squares (2.75) commute, the square (4.2) commutes and both Yo and int® are
functors, the external square of this diagram commutes and therefore defines a pre-(II, \)
structure.

We conclude that for a pre-P-structure (P, 15) the pair of morphisms
A = Jis 0 int®(Yo(P)) o i;!
2016.12.09.6q3 YolP)) o i (4.4)
IT = iy 0 int°(Yo(P)) o py!

is a pre-(II, A)-structure on CC(C, p).

Lemma 4.5 [2017.01.07.14/ In the context of Constmction if (P, P) is a P-structure
then the pre-(I1, \)-structure constructed there is a (I1, X)-structure.

Proof: We need to show that the external square of the diagram (4.3)) square is a pullback.

Horizontal composition of pullbacks is a pullback. The left hand side square is a pullback
because it is a commutative square with two parallel sides being isomorphisms. The right
hand side square is a pullback for the same reason.
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It remains to show that the middle square is pullback. This square is obtained by applying
first the functor Yo and then the functor int° to the pullback square (4.2]).

Our claim follows now from two facts:

1. the Yoneda functor Yo : C — PreShv(C) takes pullbacks to pullbacks,

2. for any functor F': C" — C, the functor
F°: PreShv(C) — PreShuv(C’)

of pre-composition with F°P; takes pullbacks to pullbacks.

We assume that these two facts are known.

There is an important class of cases when the function from P-structures on p to (II, A)-
structures on CC(C, p) is a bijection.

Lemma 4.6 [2016.09.09.11] Let (C,p) be a universe category such that the functor
Yooint®:C — PreShv(CC(C,p))

is fully faithful. Then the function from the pre-P-structures on p to the pre-(I1, \)-structures

on CC(C,p) defined by Construction[{.4] is a bijection.

Moreover, the restriction of this function to the function from P-structures to (I1, \)-structures,
which is defined in view of Lemmal[4.5, is a bijection as well.

Proof: Let a be the inverse to (Yoo int®), g 5 and a be the inverse to (Yo o int®)r,w)u-

Given a pre-(II, A)-structure (IT, \) let

P=a(i; oNofi
2016.09.09.eq]1] (7 ) (4.5)
P=a(uy" ollo )

Then P : Ip(fj) — U and P : I,(U) — U. Let S be the square that P and P form with
I,(p) and p. Then the square (Yo oint°)(S) is of the form

“lodo

int°(Yo(L(0))) 222 i (Yo(D))

[2017.01.07.eq7(]yo(1p(p)))l linto(Yo(p)) (4.6)

pi5 "ollopy
—_—

int°(Yo(L(U))) int°(Yo(U))

Since the left and right squares of (4.3)) commute and their horizontal arrows are isomor-
phisms, the square (Yo o int°)(S) is isomorphic to the original square formed by II and A
and as a square isomorphic to a commutative square is commutative.
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One verifies immediately that the function from pre-(II, A)-structures to pre-P-structures
that this construction defines is both left and right inverse to the function of Construction

44

Assume now that we started with a (I, A)-structure. Then the square (Yo o int°)(S) is
isomorphic to a pullback and therefore is a pullback. The functor Yo is fully-faithful and
by our assumption so is int°. Therefore, Yo o int® is fully-faithful. Fully-faithful functors
reflect pullbacks, that is, if the image of a square under a fully-faithful functor is a pullback
than the original square is a pullback. We conclude that both the direct and the inverse
bijection map the subsets of P-structures and (II, A)-structures to each other. Therefore, by
[?7, Lemma 5.1], the restrictions of the total bijections to these subsets are bijections as well.

The lemma is proved.

Problem 4.7 [2016.12.09.prob2/ Let (C,p) be a universe category.

To construct a function from the set of P-structures on p to the set of structures of products

of families of types on CC(C,p).
To show that if the functor Yo ownt® is fully faithful than this function is a bijection.

Construction 4.8 [2016.12.09.constr2]| The required function is the composition of the
function of Construction with the construction for [?, Problem 4.5] described in that

paper.

Remark 4.9 [2017.01.07.rem1] One can define a mixed P-structure (or pre-P-structure)
as follows:

Definition 4.10 [2009.10.27.defl] Let C be an lcc category and let p; : U —Us,i=1,23
be three morphisms in C. A P-structure on (py,p2,p3) is a pullback of the form

ﬁ ~
Ipl(Ug) E— U3
[Pisq;hkml lpg (4.7)
L, (Us) —— Us
Then a P-structure on p is a P-structure on (p, p,p). This concept can be used to construct

universes in C-systems that participate in impredicative (II, A)-structures.

4.2 Functoriality properties of the (II, \)-structures constructed
from P-structures

Recall that in [?, pp. 1067-68] we have constructed, for any homomorphism H : CC' — CC’
of C-systems, and any n > 0, natural transformations

HOb, : Ob; — H°(Ob,)
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where for I' € CC and T € Ob;(I") one has
HOb,(T) = Hop(T)

and L .
HOb,, : Ob; — H°(Ob;)

where for I' € CC and o € (%n(f‘) one has

HOb,(0) = Hyzor(0)

Definition 4.11 [2016.09.13.defl/ Let H : CC' — CC" be a homomorphism of C-systems.
Let (II, \) and (II', X') be pre-(II, \)-structures on CC and CC" respectively.

Then H s called a (I1, \)-homomorphism if the following two squares commute

ObQ L) Obl 697)2 % (/_97)1
H@bzl lHObl H&gl J{H(f’ﬁn
H*(0by) 0% Ho(Ob)) H*(Ohy) %% H°(Oby)

If (1, A) and (II', \') are (I1, A)-structures then H is called a (I1, \)-homomorphism if it is a
(IT, ) -homomorphism with respect to the corresponding pre-(11, X)-structures.

Unfolding the definition of HOb; and H (/97)1 we see that H is a (II, A\)-homomorphism if and
only if for all I' € C'C one has

1. for all T € Oby(T") one has

[2016.09.13.eq1] H(TIn(T)) = Ty (H(T)) (4.8)

2. for all 0 € 5?)2(1—‘) one has

[2016.09.13.eq2] H (Ar(0)) = Ny (H (0)) (4.9)

Theorem 4.12 [2015.03.21.th1] Let (C,p) and (C',p") be universe categories with locally
cartesian closed and binary product structures. Let (®, ¢, @) be a universe category functor
above and let (P, P), (P', P') be pre-P-structures on p and p’ respectively.

Assume that the squares

@ (P)

O(1,(U)) (V) ®(I,(U)) — @(U)
(2015.03.23.5q1] gq,l lqa c lg (4.10)
LWy -2 v L0y s o
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commute. Then the homomorphism
H(®,6,0) : CC(C.p) = CC(C'.p))
is a homomorphism of C-systems with pre-(11, X)-structures relative to the pre-(I1, \)-structures

obtained from (P, P) and (P', P") by Construction '

Proof: We have to show that for all I € Ob(CC(C,p)), T € Oby(T') and 0 € Oby(T') the
equalities (4.8) and (4.9) hold. We will prove the first equality. The proof of the second is
strictly parallel to the proof of the first.

By definition we have:
H(I(T)) = H(uy" (m(uz(T)) 0 P)) = (ur) " (&(T) 0 D(n(uz(T)) 0 P) 0 ¢) =

(u1) " ((T) 0 @(n(us(T))) © D(P) © )
where the second equality holds by Lemma [3.14(1) and

T'(H(T)) = (u1) ™ (uz(H(T)) o P') = (ua) ™" (1 (uz(H(T))) o P')
Let us show that
1 (ua(H(T))) o P' = (I') 0 2(n(ua(T))) 0 D(P) 0 ¢
By Lemma [B:21[1) we have
1 (uz(H(T))) o P' = (') 0 @(n(uz(T))) 0 {o © P’

It remains to show that
g0 P =®(P)o¢

which is our assumption about the commutativity of the square first square in (4.10)).

5 Appendices
The facts discussed and proved in the following appendices are certainly well known. We

had to repeat them here because we need to fix notations and because there is a number of
facts whose proves I could not find in the literature.

5.1 Appendix A. Categories with binary products and binary carte-
sian closed categories

Let C be a category.
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Definition 5.1 [2016.12.02.defl/ A binary product diagram is a pair of morphisms of the
form (pry :bp — X, pro : bp — Y) such that for all A € C the function

[2016.12.02.eq2a|More(A,bp) — Morc(A, X) x More(A,Y) (5.1)

given by a — (a o pry,aopry) is a bijection.

The structure of binary products on C is a family, parametrized by pairs of objects (X,Y) €
C x C, of binary product diagrams (pri(X,Y) : bp(X,Y) — X, pro( X, Y) : bp(X,Y) = Y).

Unless another notation is given, as for the binary products in the slice categories considered
below, the object bp(X,Y') is denoted by X x Y and the structural morphisms from X x Y
to X and Y by prf( Y and prf o respectively. We will often abbreviate the notation pr;X ol
to pr;.

The following lemma expresses the well know “uniqueness” property of the binary products.

We need its explicit form because in the next lemma we will need to state and prove that
the corresponding “canonical” isomorphisms are natural.

Lemma 5.2 [2016.12.02.11] Let (pry; : bp; — X,pra; : bp; = Y), where i = 1,2, be two
binary product diagrams. Let t19 : bp1 — bpe be the morphism such that t19 0 pris = pri
and t120pro o = pray and Ly : bpy — bpy be the morphism given by the symmetric condition.
Then 15 and 191 are mutually inverse isomorphisms.

Proof: To show that ¢; 90191 = Idy,, we need to compare two morphisms whose codomain
is a binary product. To do it it is sufficient, because of the injectivity of (5.1)), to prove that
their compositions with the two projections are equal. This follows by simple rewriting. The
same applies to the second composition.

Lemma 5.3 [2015.04.16.11/ Let C be a category. Consider four binary product diagrams
(proi:bps — X, prog : bps = Y) and (pry; - bpy — X', pry,; : bp; = Y') where i = 1,2. Let
L= t15 : pby —= pby be as in Lemma [5.9 and similarly ' : pby — pbly. Let a : X' — X and
b:Y' =Y.

Let ci(a,b) : pb; — pb; be the unique morphisms such that c;i(a,b) o pri; = pri; oa and
ci(a,b) opro; =bopry,;. Then the square

b, 2

Pblz —>62(a’b) pba

commutes, i.e., c¢i(a,b) oL =1 oco(a,b).

Proof: Since (pry2,pra2) is a binary product digagram it is sufficient to prove that

C1(a7 b) 0LODPrie = /o 02(6% b) o prize
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and
C1(a7 b) OLODPryg = /o 02(6% b) o Pprag

For the first one we have:
/
ci(a,b)oropris =ci(a,b)opriy =pri;oa
and
Vocy(a,b)opria =1t opri,oa=prioa

The verification of the second equality is similar.

Given a category with binary products and morphisms a : X — X', b : Y — Y’ denote
by a xb: X xY — X’ x Y’ the unique morphism such that (a x b) o pry = pry o a and
(a X b)opry=pryob.

One has
[2016.11.26.eq1)dyyy = Idx x Idy (5.2)

and for a,b as above and o’ : X' — X", I/ : X’ — X" one has
[2016.11.26.eq2](a x b) o (@' x V') = (aod’) x (bol) (5.3)

One proves these two equalities by composing both sides with pr; and pry and using the
uniqueness part of the binary product axiom.

From ([5.3)) one derives
2016.11.28.eq3](a x Idy) o (' x Idy) = (aoa') x Idy (5.4)

and
[2016.11.28.eq4](Idx x b) o (Idx x V) = Idx x (boV') (5.5)

The definition of a binary cartesian closed structure given below differs slightly from the
definition of the cartesian closed structure given in [?, IV.6] in that, that we do not require
the specification of a finite object but only of binary products. The rest of the definition is
identical to the one in [?], but written more explicitly in order to introduce the notations
that are used in proofs in the main part of the paper.

Since we never use the definition of [?, IV.6] we will often write “cartesian closed” instead
of “binary cartesian closed”.

Definition 5.4 [2016.11.28.defl] The (binary) cartesian closed structure on a category C
s a collection of data of the form:

1. the structure of a category with binary products on C,

2. for all X,Y € C an object Hom(X,Y),
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3. forall X and b:Y — Y’ a morphism
Hom(X,b) : Hom(X,Y) - Hom(X,Y")
such that for all'Y one has
Hom(X, Idy) = Idgom(x,y)
and for allb:Y —Y', 0 :Y' = Y" one has

Hom(X,bol') = Hom(X,b) o Hom(X,V)

4. For all X, Y a morphism
evy - Hom(X,Y) x X =Y
such that for all W the function
adjy”™ - Mor(W, Hom(X,Y)) — Mor(W x X,Y)

given by
[2016.11.28.eq2]u — (u x Idy) o evy (5.6)

is a bijection and such that for allb:Y — Y’ the square
Hom(X,Y)x X 0y v
[2016.11.28.@}@(X,b)x1dxl lb (5.7)
Hom(X,Y') x X i Y’
commutes.

A cartesian closed category is a category together with a cartesian closed structure on it.

By definition the objects Hom(X,Y") are functorial only in Y. Their functoriality in X is a
consequence of a lemma. For X, X')Y and a : X — X’ let

Hom(a,Y): Hom(X',Y) — Hom(X,Y)
be the unique morphism such that
[2016.11.28.eq5]adj(Hom(a,Y)) = (Idgom(x'yv) X a) 0 evy (5.8)

Then one has:
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Lemma 5.5 [2015.04.10.11/ The morphisms Hom(—,Y") satisfy the equalites
Hom(aod',Y)= Hom(d,Y)o Hom(a,Y)
Hom(Idx,Y) = Idgom(x,y)

making Hom(—,Y) into a contravariant functor from C to itself.
In addition, for allb:Y — Y’ the square

Hom(X,b)
_—

Hom(X'Y) Hom(X',Y")

M(a,Y))l lHﬂ(a,Y’)

Hom/(X',b)
_—

Hom(X,Y) Hom(X,Y")

commutes.

Proof: It is a particular case of [?, Theorem 3, p.100]. The commutativity of the square is
a part of the ”bifunctor” claim of the theorem.

Lemma 5.6 [2015.04.20.12/ In a cartesian closed category let X, X' Y be objects and let
a: X — X' be a morphism. Then the square

Hom(X',Y)Xa

Id
Hom(X")Y) x X Hom (X" Y) x X'

Hom(a,Y)X]dXJ/ le’uf/ﬁ

Hom(X,Y) x X Y

commautes.

Proof: Let us show that both paths in the square are adjoints to Hom(a,Y). For the path
that goes through the upper right corner it follows from the definition of Hom(a,Y') as the
morphism whose adjoint is (Id x a) oev. For the path that goes through the lower left corner
it follows from the definition of adjoint applied to Hom(a,Y). Indeed, the adjoint to this
morphism is

adj(Hom(a,Y)) = (Hom(a,Y) x Idx) o evy

Lemma 5.7 [2015.05.12.12] Let C be a cartesian closed category. Let X, Y, W € C, then
one has:

1. LetY"' be an object and b : Y — Y" a morphism. Then for anyr € Mor(W, Hom(X,Y"))
one has
adj(r o Hom(X,b)) = adj(r) ob

2. Let X' be an object a - X — X' a morphism. Then for any r € Mor(W, Hom(X',Y))
one has
adj(r o Hom(a,Y)) = (Idw x a) o adj(r)

57



3. Let W' be an object ¢ : W — W' a morphism. Then for any r € Mor(W', Hom(X,Y))
one has
adj(cor) = (¢ x Idx) o adj(r)

Proof: The proof of the first case is given by
adj(r o Hom(X,b)) = ((r o Hom(X,b)) x Idx) o evy =

(r x Idx) o (Hom(X,b)) x Idx) o evy =
(r x Idx) oevy, ob=adj(r)ob

where the first equality is by (5.6)), second equality by Lemma , the third equality by the
commutativity of (5.7) and the fourth equality again by (5.6)).

The proof of the second case is given by the following sequence of equalities where we use
the notation Hm for Hom(a,Y') as well as a number of other abbreviations:

adj(ro Hm) = ((ro Hm) x Id) o ev = (r x Id) o (Hm x Id) o ev = (r x Id) o adj(Hm) =

(rxId)o(Idxa)oev=(rxa)oev= (Idxa)o(rxId)oev=(Idxa)oadj(r)

where the first equality is by (5.6)), the second by ((5.4]), the third by (5.6), the fourth by
(5.8)), the fifth by (5.3, the sixth by (5.3)) and the seventh by (5.6)).

The proof of the third case is given by
adj(cor) = ((cor) x Idx) oevy = (¢ x Idx) o (r x Idx) o evy =

(¢ x Idx) o adj(r)
where the first equality is by (5.6)), second equality by (5.4) and the third equality by (/5.6]).

Lemma is proved.

5.2 Appendix B. Slice categories, pullbacks and locally cartesian
closed categories

For a category C and Z € C one denotes by C/Z the slice category of C over Z. When
one works in the set theory one has to choose one of the several possible definitions of C/Z.
Indeed, the set of objects of C/Z can be defined as the set of pairs (X, f) where X € C and
[+ X — Z or as the set of morphisms f € Mor(C) such that codom(f) = Z. There is an
obvious bijection between these two sets but they are not equal. We define Ob(C/Z) as the
set of pairs (X, f). Even more choices exist in the definition of the set of morphisms of C/Z.
One definition is the set of triples (((X, f), (Y, 9)),a) where (X, f),(Y,g) € Ob(C/Z) and
a: X — Y issuch that f = aog. Another one is the set of pairs (a, g) where a,g € Mor(C)
are such that codom(a) = dom(g) and codom(f) = Z. Again, these sets are obviously
isomorphic but not equal. Various other choices are possible. We will use the second option.
We denote the pair (a, g) by a’.
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The mappings (X, f) — X and a? — a define a functor C/Z — C that we denote by 7z 4.
We will rarely write the functions (77 4)op and (7z4)aor explicitly using them instead as
“coercions”. Formally speaking, we will assume that (77 4)op (resp. (7z.4)mor) is inserted
in our notation whenever an object (resp. a morphism) of C/Z is specified where an object
(resp. a morphism) of C is required.

We will say that a : X — Y is a morphism over Z if a o g = f. For given (X, f) and (Y, g),
the function
2016.11.26.eq3]a’ > a (5.9)

defines a bijection between morphisms (X, f) — (Y, g) in C/Z and morphisms X — Y over
Z in C.

In a category with binary products the morphism Idz x b satisfies the equality
(IdZ X b) opry =pry

and therefore defines a morphism from (Z x Y, pr;y) to (Z x Y/, pry) in C/Z. We will denote
this morphism in the slice category by Z x b. Since (5.9) is injective, the equalities (5.2]) and

(5.3) imply that
[2016.11.30.eq1)Z x Idy = Idzxy ) (5.10)

and
(2016.11.30.eq2]Z x (bob') = (Z x b) o (Z x V) (5.11)

that is, that the mappings X — (Z x Y,pr1), b — Z x b define a functor Z x — from C to
C/Z.

The same holds for morphisms of the form a : X — X’. We denote the morphism in C/Z
corresponding to the morphism a x Idz by a x Z and the resulting functor C — C/Z by
— X Z.

Lemma 5.8 [2016.12.16.11/ Let
X =Y
[2016.12.16.eq14'l lg (5.12)
v L 7
be a commutative square of morphisms in C and f =aog=a'og. Then

(X.f) =" (¥.g)
[2016.12.16.eq2l<)]]/)g’l (5.13)
(Y, 9')
is a binary product diagram in C/Z if and only if s a pullback in C.
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Proof: Assume that is a binary product diagram. Let W € Cand let d : W — Y,
d : W — Y’ be such that dog = d og. Let e = dog. Then d9 : (W,e) — (Y, g) and
(d)9 : (W,e) — (Y, g') are morphisms in C/Z and therefore there exists ¢/ : (W, e) — (X, f)
such that ¢f 0 a9 = d and ¢/ o (a')9 = (d')9 in C/G, that is, coa = d and coa’ = d' in
C. Let ¢ : W — X be another morphism in C such that ¢ oca = d and ¢ oa’ = d’. Then
e=dog=coaog=cofand therefore (¢')/ is a morphism (W,e) — (X, f) in C/Z. Next,
() 0ad = (¢ 0a)d =d and (') o (a')9 = (¢ 0d')¥ = (d')9. Therefore (/)7 = ¢/, that is,
¢ = ¢’. This shows that is a pullback in C.

Similar reasoning shows that if (5.12)) is a pullback in C then (5.13) is a binary product
diagram in C/Z.

Lemma 5.8, combined with a related statement about commutative squares, implies that a
choice of binary product structures on all the slice categories C/Z is “the same as” the choice
of pullbacks for all pairs of morphisms with the common codomain in C.

To be precise we have to say that how to construct a bijection between the set of families of
binary product structures on the categories C/Z for all Z and the set of pullback structures
on C.

We usually denote the distinguished binary product of (X, f) and (Y, ¢) in C/Z by (X, f) xz
(Y, g) and the canonical morphism from (X, f) xz (Y, g) to Z by fog.

For f: X — Z and g : Y — Z, the two commutative triangles formed by pry : (X, f) Xz
(Y.g) = (X, f), f, fegand pry: (X, f) xz (Y.g) = (Y, 9), g, f ¢ g are adjacent and define
the familiar commutative square of the pullback of f and g.

This defines a function in one direction.

For f: X — Z and g : Y — Z, the diagonal of the pullback square based on f and g is an
object over Z and the two projections define morphisms from this object to (X, f) and (Y, g)
respectively. The corresponding pair of morphisms in C/Z is a binary product diagram. This
defines a morphism in the other direction.

The fact that these morphisms are inverse to each other follows readily from the construction.

Given a binary products structure on C/Z, morphisms f : X — Z, g : Y — Z and morphisms
a: X" — X,b:Y" =Y we have a morphism a’ x 7 b9 which is the unique morphism in C/Z
of the form

al xz 09 (X' a0 f)xz (Y bog) = (X, f) xz (Y,9)

such that
[2016.11.24.eq1](a’ xz b9) o pry = prioa’ (5.14)

and
[2016.11.24.eq2](a’ x5 b9) o pro = pry o b? (5.15)

Lemma 5.9 [2015.05.14.11] In the setting introduced above one has:
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1 Idix,pyx 5 (v,g) = Ld(x,p) Xz Ld(v,g),

2. suppose that we have in addition morphisms a' : X" — X' and b’ : Y" —Y'. Then

(@) %z (1)) o (af %7 b%) = (d' 0 @) x 7 (b 0 b)*
Proof: It is a particular case of ((5.2)) and (5.3]).

Following the general case considered in Appendix we will write (X, f) xz b9 (resp.
a’ xz (Y, g)) for the morphism in C/X (resp. C/Y) corresponding to Idx s Xz b9 (resp.
(lf Xz [d(y,g)).

In view of Lemma [5.9] and (5.14)), for any (X, f : X — Z), the functions

(Y, 9) = (X, f) xz (Y, g9),pr1)
®9: (Y, d)— (Y,9) =~ (X, f) xz V7

form a functor from C/Z to C/X and similarly by Lemma [5.9/and (5.15)), for any (Y,g:Y —
Z) the functions

(X, ) = (X, f) xz (Y, 9),pra)
(al + (X', f') = (X, f)) = af <z (Y. g)!
form a functor from C/Z to C/Y .

Definition 5.10 [2015.03.27.defl/ A locally cartesian closed structure on a category C is
a family of (binary) cartesian closed structures on the categories C/Z for all Z € C.

We usually denote the binary product on C/Z as above.

We usually denote the internal-hom objects inC/Z by Hom,((X, f), (Y, g)) and the canonical
morphisms from Hom,((X, f), (Y, q)) to Z by fAg.

The rest of the notations (Hom,((X, f),b9), ev((}),(j;), adj(()v,‘g)l)’(x’f), Homy(a’, (Y, g))) imme-
diately follow from the ones introduced previously.

A locally cartesian closed category is a category together with a locally cartesian closed struc-
ture on 1t.

The name “locally cartesian closed” follows naturally from this definition and the intuition
based on the example of the category of open sets of a topological space or a Grothendieck
site. If only the subsets of the open sets of a particular covering are known then one sometimes
says that the space is known only locally, but the global structure that arises from gluing of
all these subsets together is not known. Hence the “local” structure of a category is given
by the structure of its slice categories.

Example 5.11 [2015.05.20.ex1]| The following example shows that there can be many

different structures of a category with pullbacks on a category and also many locally cartesian
closed structures.
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Let us take as our category the category F' whose objects are natural numbers and

Mor(n,m) = Fun({0,...,n—1},{0,...,m — 1})

Since every isomorphism class contains exactly one object every auto-equivalence of this
category is an automorphism. Let & be such an automorphism. It is easy to see that it
must be identity on the set of objects. Let X = {0,1}. Consider ® on End(X). Since ®
must respect identities and compositions, ® must take Aut(X) to itself and must act on
it by identity. If 1 and o are the two elements of Aut(X) we conclude that ®(1) = 1 and
P(o) =0.

Let us choose now any structure of a category with pullbacks on F' and let us consider two
new structures str; and str, that are obtained by modifying pullbacks as follows. In both
structures we set all pullbacks to be as they were except for the pullback of the pair of
morphisms (Idx, [dx). For this pair we set the pullbacks to be as follows:

x iy x X 25 X
[2015.05.20.sq;)ll lldx for stry and al Jldx for str,.  (5.16)

The preceding discussion of the auto-equivalences of F' shows that there is no auto-equivalence
which would transform str; into str,.

The category F' also has a locally cartesian closed structure and it can be shown that it can
be modified so that its pullback components are str; and str,. This shows that F' has at least

two locally cartesian closed structures that are not equivalent modulo the auto-equivalences
of F.

The solution to this seeming paradox is that there is a category structure on the set of pull-
back structures (resp. locally cartesian closed structures) on a category. Any two pullback
structures (resp. lcc structures) are isomorphic in this category and in this sense pullbacks
on a category are “unique”.

Remark 5.12 [2015.05.20.rem1| The previous example has a continuation in the univa-
lent foundations where there is a notion of a category and pre-category. There the types of
pullback structures and of locally cartesian closed structures on a category (as opposed to
those on a general pre-category) are of h-level 1, i.e., classically speaking are either empty
or contain only one element.

In addition any such structure on a pre-category should define a structure of the same kind
on the Rezk completion of this pre-category with all the different structures on the pre-
category becoming equal on the Rezk completion. In the case of the previous example the
Rezk completion of F'is the category F'Sets of finite sets and in view of the univalence axiom
for finite sets the two pullbacks of will become equal in F'Sets.
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