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Abstract

We then define the notion of a P -structure on a universe in a locally cartesian closed
category category and construct a (Π, λ)-structure on the C-systems CC(C, p) from a
P -structure on p.

In the last section we define homomorphisms of C-systems with (Π, λ)-structures
and functors of universe categories with P -structures and show that the construction
of the previous section is functorial relative to these definitions.

Contents

1 Introduction 1
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1 Introduction

The concept of a C-system in its present form was introduced in [?]. The type of the
C-systems is constructively equivalent to the type of contextual categories defined by Cart-
mell in [?] and [?] but the definition of a C-system is slightly different from the Cartmell’s
foundational definition.

In this paper we consider what might be the most important structure on C-systems - the
structure that corresponds, for the syntactic C-systems, to the operations of dependent prod-
uct, λ-abstraction and application. A C-system formulation of this structure was introduced
by John Cartmell in [?, pp. 3.37 and 3.41] as a part of what he called a strong M.L. structure.
It was studied further by Thomas Streicher in [?, p.71] who called a C-system (contextual
category) together with such a structure a “contextual category with products of families of
types”.

The constructions and proofs of the main part of the paper require knowing many facts
about C-systems. These facts are established in Section ??. Many of these facts are new,
some have been stated by Cartmell [?] and Streicher [?], but without proper mathematical
proofs. Among notable new facts we can mention Lemma ?? that shows that the canonical
direct product in a C-system is strictly associative.

In Section ?? we construct on any C-system presheaves Obn and Õbn. These presheaves
play a major role in our approach to the C-system formulation of systems of operations
that correspond to systems of inference rules. The main result here is Construction ?? for
Problem ??. It is likely that constructions for various other variants of this problem involving
morphisms between presheaves Ob∗ and Õb∗ can be given. The full generality of this result
should involve as the source fiber products of Ob∗ and Õb∗ relative to morphisms satisfying
certain properties and as the target Ob∗ or Õb∗. We limit ourselves to Construction ?? here
because it is the only case that will be required later in the paper.

In Section 2.3 we first remind the definition of the product of families of types structure on a
C-system. Then, in Definition??, we give the first of the two main definitions of this paper,
the definition of a (Π, λ)-structure. In the rest of this section we work on constructing a
bijection between the sets of structures of products of families of types and (Π, λ)-structures
on a given C-system. This is probably the most technical part of the paper which is not
surprising considering how different Definitions ?? and ?? are.

This construction uses most of the results of Section ??.
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The (Π, λ)-structures correspond to the (Π, λ, app, β, η)-system of inference rules. In Remark
?? we outline the definitions of classes of structures that correspond to the similar systems
but without the β- or η-rules. Such structures appear as natural variations of the (Π, λ)-
structures.

In Section 4 we consider the case of C-systems of the form CC(C, p) introduced in [?].
They are defined, in a functorial way, by a category C with a final object and a morphism
p : Ũ → U together with the choice of pullbacks of p along all morphisms in C. A morphism
with such choices is called a universe in C. As a corollary of general functoriality we also
obtain a construction of an isomorphism that connects the C-systems CC(C, p) corresponding
to different choices of pullbacks and different choices of final objects. It makes it possible to
say that CC(C, p) is defined by C and p.

We provide several intermediate results about CC(C, p) when C is a locally cartesian closed
category leading to the main result of this paper - Construction 4.4 that produces a (Π, λ)-
structure on CC(C, p) from a simple pullback3 based on p. This construction was first
announced in [?]. It and the ideas that it is based on are among the most important
ingredients of the construction of the univalent model of the Martin-Lof type theory.

In the following sections we study the behavior of our construction with respect to universe
category functors and prove that it is functorial with respect to functors equipped with an
additional structure that reflects compatibility with the choice of the generating pullback.

One may wonder how the construction of this paper relates to the earlier ideas of Seely [?]
and their refinement by Clairambault and Dybjer [?]. This question requires further study.

The methods of this paper are fully constructive.

The paper is written in the formalization-ready style that is in such a way that no long
arguments are hidden even when they are required only to substantiate an assertion that may
feel obvious to readers who are closely associated with a particular tradition of mathematical
thought.

As a result, a number of lemmas, especially in the appendices, may be well know to many
readers. Their proofs are nevertheless included to comply with the requirements of the
formalization ready style.

On the other hand, not all preliminary lemmas are included or a reference to a complete proof
is given. There are some, but very much fewer than is usual in today’s papers, exceptions.

The main result of this paper is not a theorem but a construction and so are many of
the intermediate results. Because of the importance of constructions for this paper we use a
special pair of names Problem-Construction for the specification of the goal of a construction
and the description of the particular solution.

In the case of a Theorem-Proof pair one usually refers (by name or number) to the theorem
when using the proof of this theorem. This is acceptable in the case of theorems because
the future use of their proofs is such that only the fact that there is a proof but not the
particulars of the proof matter.

3We say “a pullback” instead of “a pullback square”.
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In the case of a Problem-Construction pair the content of the construction often matters in
the future use. Because of this we have to refer to the construction and not to the problem
and we assign in this paper numbers both to Problems and to Constructions.

We use below the concept of a universe. In the Zermelo-Fraenkel set theory, the main
intended formalization base for this paper, a universe is simply a set U that is usually
assumed to satisfy some properties such as, for example, that it is closed under formation of
pairs - if two sets A and B are elements of U then the set representing the pair (A,B) is an
element of U . We do not provide a precise set of such conditions that we assume. To assume
the universes mentioned in the paper to be Grothendieck universes would certainly suffice
but in most cases we need a much weaker set of conditions. It is likely that the conditions
that we need are weak enough to be able to prove the existence of such universes inside the
“canonical” Zermelo-Fraenkel theory without any large cardinal axioms.

In this paper we continue to use the diagrammatic order of writing composition of morphisms,
i.e., for f : X → Y and g : Y → Z the composition of f and g is denoted by f ◦ g.

We denote by Φ◦ the functor PreShv(C ′)→ PreShv(C) given by the pre-composition with
a functor Φop : Cop → (C ′)op, that is,

Φ◦(F )(X) = F (Φ(X))

In the literature this functor is denoted both by Φ∗ and Φ∗ and we decided to use a new
unambiguous notation instead.

Acknowledgements are at the end of the paper.

While abbreviated notations may be helpful for getting a general impression from a brief
scroll through the paper, long notations become indispensable when one seeks true under-
standing.

In view of Lemma 4.6, Construction ?? can be used not only to construct the product of
families of types structures on C-systems, but also to prove that such structures do not
exist. This applies also to structures corresponding to other systems of inference rules in
type theory. For example, a similar technique may be used not only to construct a model of
a particular kind of higher inductive types, but also to show that for a given universe p no
such model on CC(C, p) exists.

2 Presheaves Obi and Õbi on the C-systems defined by

universe categories

2.1 Functor Sig and functor isomorphisms SObi and SÕbi

In this section we consider three constructions that apply to any C-system CC. The functor
Sig : PreShv(CC)→ PreShv(CC) and two families of isomorphisms paramerized by i ∈ N:

SObi : Sig(Obi)→ Obi+1
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and
SÕbi : Sig(Õbi)→ Õbi+1

Let G be a presheaf on CC. For Γ ∈ CC we set

[2016.08.30.eq7]Sig(G)(Γ) = qT∈Ob1(Γ)G(T ) (2.1)

and for f : Γ′ → Γ

[2016.08.30.eq8]Sig(G)(f)(T, g) = (f ∗(T ),G(q(f, T ))(T )) (2.2)

Lemma 2.1 [2016.08.28.l1] The presheaf data Sig is a presheaf, that is, one has:

1. for Γ ∈ CC,
Sig(G)(IdΓ) = IdSig(G)(Γ)

2. for f ′ : Γ′′ → Γ′, f : Γ′ → Γ,

Sig(G)(f ′ ◦ f) = Sig(G)(f) ◦ Sig(G)(f ′)

Proof: For the identity we have

Sig(G)(IdΓ)(T, g) = (Id∗Γ(T ),G(q(IdΓ, T ))(g)) = (T, g)

where the second equality is by axioms of the C-system structure. For the composition we
have

Sig(G)(f ′)(Sig(G(f)(T, g))) = Sig(G)(f ′)(f ∗(T ),G(q(f, T ))(g)) =

((f ′)∗(f ∗(T )),G(q(f ′, f ∗(T )))(G(q(f, T ))(g))) = ((f ′)∗(f ∗(T )),G(q(f ′, f ∗(T ))◦q(f, T ))(g)) =

((f ′ ◦ f)∗(T ),G(q(f ′ ◦ f, T ))(g)) = Sig(G)(f ′ ◦ f)(T, g)

where the first two equalities are by definition of Sig(G), the third by the composition
property of G, the fourth by the axioms of the C-system structure and the fifth again by the
definition of Sig(G). This completes the proof of Lemma 2.1.

One defines Sig on morphisms of presheaves r : G → G ′ by the family of morphisms

[2016.08.30.eq9]Sig(r)Γ(T, g) = (T, rT (g)) (2.3)

For r : G → G ′ and f : Γ′ → Γ, we have

Sig(G)(f) ◦ Sig(r)Γ′ = Sig(r)Γ ◦ Sig(G ′)(f)

that is, the family of functions Sig(r)Γ parametrized by Γ ∈ CC is a morphism of presheaves.

For G ∈ PreShv(CC) we have

[2016.12.14.eq1]Sig(IdG)Γ(T, g) = (T, (IdG)T (g)) = (T, g) (2.4)
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and for r : G → G ′, r′ : G ′ → G ′′ we have

[2016.12.14.eq2]Sig(r◦r′)Γ(T, g) = (T, (r◦r′)T (g)) = (T, r′T (rT (g))) = Sig(r′)(Sig(r)(T, g))
(2.5)

These two equalities show that the functor data given by Sig on presheaves and Sig on
morphisms of presheaves is a functor that we also denote by

Sig : PreShv(CC)→ PreShv(CC)

Remark 2.2 [2016.12.14.rem1] The construction of Sig works in more general setting
than presheaves.

Indeed, for any family of sets G(Γ) parametrized by Γ ∈ CC the formula (2.1) defines a
new family of sets Sig(G)(Γ) also parametrized by Γ ∈ CC. For any two families G,G′

and a family of functions rΓ : G(Γ) → G′(Γ) the formula (2.3) defines a family of functions
Sig(r)Γ : Sig(G)(X)→ Sig(G′)(X). The properties (2.4) and (2.5) hold in this more general
setting.

We can also define Sig(G) for any presheaf data, that is, for any pair consisting of a family
G(Γ) of sets parametrized by Γ ∈ CC and a family of functions G(f) : G(Γ) → G(Γ′)
parametrized by f : Γ′ → Γ in Mor(CC). For this we can again use formulas (2.1) and
(2.2).

If rΓ : G(Γ) → G′(Γ) is a morphism of functor data, that is functions r∗ commute with
functions G(∗), then Sig(r) is a morphism of functor data as well.

The presheaves Obn on CC were defined in [?, Sec. 3]. On objects they are given by

[2016.11.15.eq5]Obn(Γ) = {T ∈ Ob(CC) | l(T ) = l(Γ) + n, ftn(T ) = Γ} (2.6)

and on morphisms f : Γ′ → Γ by T 7→ f ∗(T ).

Problem 2.3 [2016.08.30.prob1] For i ≥ 0 to construct an isomorphism of presheaves

SObi : Sig(Obi)→ Obi+1

In constructing a solution of this problem and other problems where one needs to build an
of isomorphism of presheaves we will use the following lemma that is often used without an
explicit reference.

Lemma 2.4 [2016.11.14.l1] Let Φ,Φ′ : C → D be functors and φ : Φ → Φ′ a natural
transformation. Then φ is an isomorphism of functors if and only if for all objects X of C
the morphism φX : Φ(X)→ Φ′(X) is an isomorphism in D.

The inverse isomorphism is formed by the family of morphisms φ−1
X = (φX)−1.
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Proof: One should first verify that the family IdX forms the identity isomorphism of func-
tors. This is immediate from the definitions.

If φ is an isomorphism and φ−1 is its inverse, then the functions φ−1
X form inverses to the

functions φX . This proves the “only if part”.

If all morphisms φX are isomorphisms then the family (φX)−1 forms a morphism of presheaves
φ−1 : Φ′ → Φ. Indeed, for f : X → Y one has

φ−1
X ◦ Φ(f) = Φ′(f) ◦ φ−1

Y

This equality follows by taking its composition with φX on the left and φY on the right.
That φ−1 is both the left and the right inverse to φ is immediate from its definition. This
proves the “if” part.

Next will also need the following lemma.

Lemma 2.5 [2016.09.01.l1] Let Γ ∈ CC. Then one has:

1. if T ∈ Ob1(Γ) and X ∈ Obi(T ) then X ∈ Obi+1(Γ),

2. if X ∈ Obi+1(Γ) then fti(X) ∈ Ob1(Γ) and X ∈ Obi(fti(X)).

Proof: The first assertion follows from the equalities l(X) = l(T ) + i = l(Γ) + 1 + i and
fti+1(X) = ft(fti(X)) = ft(T ) = Γ.

To prove the second assertion let X ∈ Obi+1(Γ). Since l(X) ≥ i we have l(fti(X)) =
l(X) − i = l(Γ) + (i + 1) − i = l(Γ) + 1. The equality ft1(fti(X)) = fti+1(X) = Γ is
obvious and we conclude that fti(X) ∈ Ob1(Γ). Next, again because l(X) ≥ i, we have
l(X) = l(fti(X)) + i and since fti(X) = fti(X) we have that X ∈ Obi(fti(X)).

Construction 2.6 [2016.08.30.constr1] Let Γ ∈ CC. Then Sig(Obi)(Γ) is the set of
pairs (T,X) where T ∈ Ob1(Γ) and X ∈ Obi(T ). By Lemma 2.5(1), the formula

[2016.09.01.eq4]SObi,Γ(T,X) = X (2.7)

defines a function Sig(Obi)(Γ)→ Obi+1(Γ).

Conversely, by Lemma 2.5(2), the formula

[2016.09.01.eq5]SOb−1
i,Γ(X) = (fti(X), X) (2.8)

defines a function Obi+1(Γ)→ Sig(Obi)(Γ).

If Φ = SObi,Γ and Ψ = SOb−1
i,Γ then

Φ(Ψ(X)) = Φ((fti(X), X)) = X

and
Ψ(Φ(T,X)) = Ψ(X) = (fti(X), X) = (T,X)
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where the last equality follows from the equality T = fti(X). We conclude that SObi,Γ and
SOb−1

i,Γ are mutually inverse bijections.

In view of Lemma 2.4, it remains to verify that the family of bijections SObi,Γ parametrized
by Γ ∈ CC is a morphism of presheaves, that is, that for any f : Γ′ → Γ and (T,X) ∈
Sig(Obi)(Γ) we have

[2016.08.30.eq10]Obi+1(f)(SObi,Γ((T,X))) = SObi,Γ′(Sig(Obi)(f)((T,X))) (2.9)

Computing we get
Obi+1(f)(SObi,Γ((T,X))) = f ∗(X)

SObi,Γ′(Sig(Obi)(f)((T,X))) = SObi,Γ′(f ∗(T ), q(f, T )∗(X)) = q(f, T )∗(X)

and (2.9) follows from [?, Lemma 2.7]. This completes Construction 2.6.

As a corollary of Construction 2.6 and Lemma 2.4 we obtain the fact that the family of
functions (2.8) parametrized by Γ ∈ CC is an isomorphism of presheaves that is inverse to
SObi.
We proceed now to the construction of isomorphisms SÕbi. Recall that for a morphism
p : Y → X we set

sec(p) = {s ∈Mor(X, Y ) | s ◦ p = IdX}

Elements of sec(p) are called sections of p.

The presheaves Õbn where defined in [?, Sec. 3]. On objects they are given by

[2016.11.15.eq6]Õbn(Γ) = {o ∈Mor(CC) | codom(o) ∈ Obn(Γ), o ∈ sec(pcodom(o)), codom(o) > Γ}
(2.10)

and on morphisms f : Γ′ → Γ by o 7→ f ∗(o), where f ∗(o) is defined in [?, Lemma 2.13].

For an element o ∈ Obn(Γ) we let ∂Γ(o), or simply ∂(o), denote the object codom(o).

Recall from [?, Sec. 3], that Õb(CC) is the set of elements o ∈ Mor(CC) such that o ∈
sec(pcodom(o)) and l(codom(o)) > 0. For such elements we also denote codom(o) by ∂(o).

It follows easily from (2.10) that for Γ ∈ Ob(CC) and n > 0 one has o ∈ Õbn(Γ) if and only

if o ∈ Õb(CC) and ∂(o) ∈ Obn(Γ). It also follows from (2.10) that Ob0(Γ) = ∅.

Problem 2.7 [2016.08.30.prob2] For i ≥ 1 to construct an isomorphism of presheaves

SÕbi : Sig(Õbi)→ Õbi+1

Lemma 2.8 [2016.11.18.l1] Let Γ ∈ CC. Then one has:

1. if T ∈ Ob1(Γ) and o ∈ Õbi(T ) then o ∈ Õbi+1(Γ),

2. if o ∈ Õbi+1(Γ) then fti(∂(o)) ∈ Ob1(Γ) and o ∈ Õbi(fti(∂(o))).
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Proof: If o ∈ Õbi(T ) we have i > 0 an therefore o ∈ Õb(CC) and ∂(o) ∈ Obi(T ). By Lemma

2.5(1) we have ∂(o) ∈ Obi+1(Γ). Therefore o ∈ Õbi+1(T ). This proves the first assertion.

If o ∈ Õbi+1(Γ) then o ∈ Õb(CC) and ∂(o) ∈ Obi+1(Γ). By Lemma 2.5(2) we have

fti(∂(o)) ∈ Ob1(Γ) and ∂(o) ∈ Obi(fti(∂(o))). Therefore o ∈ Õbi(fti(∂(o))).

We can now provide a construction for Problem 2.7.

Construction 2.9 [2016.09.01.constr2] For Γ ∈ CC we have

Sig(Õbi)(Γ) = {(T, o) |T ∈ Ob1(Γ), o ∈ Õbi(T )}

For (T, o) ∈ Sig(Õbi)(Γ) we have o ∈ Õbi+1(Γ) by Lemma 2.8(1) and therefore the formula

[2016.09.01.eq6]SÕbi,Γ(T, o) = o (2.11)

defines a function Sig(Õbi)(Γ)→ Õbi+1(Γ).

If o ∈ Õbi+1(Γ) then by Lemma 2.8(2), fti(∂(o)) ∈ Õb1(Γ) and o ∈ Õbi(fti(∂(o))). Therefore
the formula

[2016.09.01.eq7]SÕb
−1

i,Γ(o) = (fti(∂(o)), o) (2.12)

defines a function Õbi+1(Γ)→ Sig(Õbi)(Γ).

One verifies in the same way as in Construction 2.6 that SÕbi,Γ and SÕb
−1

i,Γ are mutually
inverse bijections.

In view of Lemma 2.4 it remains to verify that the family of functions SÕbi,Γ parametrized
by Γ ∈ CC is a morphism of functors, that is, that for f : Γ′ → Γ and (T, o) ∈ SObi,Γ one
has

[2016.09.01.eq2b]Õbi+1(f)(SÕbi,Γ(T, o)) = SÕbi,Γ′(Sig(Õbi)(f)(T, o)) (2.13)

Computing we get

Õbi+1(f)(SÕbi,Γ(T, o)) = Õbi+1(f)(o) = f ∗(o)

SÕbi,Γ′(Sig(Õbi)(f)(T, o)) = SÕbi,Γ′(f ∗(T ), q(f, T )∗(o)) = q(f, T )∗(o)

and we conclude that (2.13) holds by [?, Lemma 2.15].

This completes Construction 2.9.

As a corollary of Construction 2.9 and Lemma 2.4 we obtain the fact that the family of
functions (2.12) parametrized by Γ ∈ CC is an isomorphism of presheaves that is inverse to

SÕbi.
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Lemma 2.10 [2016.12.04.l1] For any i ≥ 1 the square of morphisms of presheaves

[2016.12.04.eq1]

Sig(Õbi)
SÕbi−−−→ Õbi+1

Sig(∂)

y y∂
Sig(Obi)

SObi−−−→ Sig(Obi)

(2.14)

commutes.

Proof: Let Γ ∈ CC. By definition we have

Sig(Õbi)(Γ) = {(T, o) |T ∈ Ob1(Γ), o ∈ Õbi(T )}

Let (T, o) ∈ Sig(Õbi)(Γ). Then, again by definitions,

∂Γ(SÕbi,Γ(T, o)) = ∂Γ(o)

and
SObi,Γ(Sig(∂)Γ(T, o)) = SObi,Γ(T, ∂Γ(o)) = ∂Γ(o)

The lemma is proved.

Remark 2.11 [2016.11.18.rem1] Define Sigi by induction on i, setting Sig0 = IdPreShv(CC)

and Sigi+1 = Sigi ◦ Sig. Then, also by induction on i, we can construct isomorphisms

SObij : Sigi(Obj)→ Obi+j

where SOb0
j = IdObj and SObi+1

j is the composition

Sigi+1(Obj) = Sig(Sigi(Obj))
Sig(SObij)−−−−−−→ Sig(Obi+j)

SObi+j−−−−→ Obi+j+1

In exactly the same way we construct isomorphisms

SÕb
i

j : Sigi(Õbj)→ Õbi+j

2.2 The functor Dp

In this section we work in the context of a category C with a universe p. The goal of the
section is to construct, for any such pair, a functor

Dp : PreShv(C)→ PreShv(C)

The definition of a universe in a category was given in [?, Definition 2.1]. We repeat it here
for the convenience of the reader.
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Definition 2.12 [2009.11.1.def1] Let C be a category. A universe structure on a morphism

p : Ũ → U in C is a mapping that assigns to any morphism f : X → U in C a pullback of
the form

[2016.12.02.eq8]

(X, f)
Q(F )−−−→ Ũ

pX,F

y yp
X

F−−−→ U

(2.15)

A universe in C is a morphism together with a universe structure on it.

We usually refer to a universe by the name of the corresponding morphism without men-
tioning the choices of pullbacks explicitly. To shorten the notation we will write pF instead
of pX,F .

For f : W → X and g : W → Ũ such that f ◦ F = g ◦ p we will denote by f ∗F g the unique
morphism W → (X;F ) such that

[2016.11.10.eq1a](f ∗F g) ◦ pF = f (2.16)

[2016.11.10.eq1b](f ∗F g) ◦Q(F ) = g (2.17)

For X ′
f→ X

F→ U we let Q(f, F ) denote the morphism

[2016.12.02.eq4]Q(f, F ) = (pf◦F ◦ f) ∗F Q(f ◦ F ) : (X ′; f ◦ F )→ (X;F ) (2.18)

Observe that one has

[2016.08.24.eq4]Q(f ◦ F ) = Q(f, F ) ◦Q(F ) (2.19)

[2016.08.26.eq2]Q(IdX , F ) = Id(X;F ) (2.20)

[2016.08.26.eq3]Q(f ′ ◦ f, F ) = Q(f ′, f ◦ F ) ◦Q(f, F ) (2.21)

where the first equality follows directly from the definition, the second from the definition
and the uniqueness of the morphisms f ∗F g satisfying (??) and the third is proved in [?,
Lemma 2.5].

Let us fix a category C and a universe p in it.

For any G ∈ PreShv(C) we define functor data Dp(G) given on objects by

[2016.08.30.eq4]Dp(G)(X) := qF :X→UG((X;F )) (2.22)

and on morphisms by

[2016.08.30.eq5]Dp(G)(f) : (F, γ) 7→ (f ◦ F,G(Q(f, F ))(γ)) (2.23)
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Lemma 2.13 [2016.09.07.l1] The functor data Dp(G) specified above is a presheaf, i.e.,
one has

1. for any X ∈ C, Dp(G)(IdX) = IdDp(G)(X),

2. for any f : X → Y , g : Y → Z in C,

Dp(G)(f ◦ g) = Dp(G)(g) ◦Dp(G)(f)

Proof: For the first property we have

Dp(G)(IdX)((F, γ)) = (IdX ◦ F,G(Q(IdX , F ))(γ)) = (F, γ)

where the second equality is by (2.20) and the identity morphism axiom form the presheaf
G.

For the second one we have

Dp(G)(f ◦ g)(F, γ) = (f ◦ g ◦ F,G(Q(f ◦ g, F ))(γ))) =

(f ◦ g ◦ F,G(Q(f, g ◦ F ) ◦Q(g, F ))(γ)) = (f ◦ (g ◦ F ),G(Q(f, g ◦ F ))(G(Q(g, F ))(γ))) =

Dp(G)(f)(Dp(G)(g)(F, γ)) = (Dp(G)(g) ◦Dp(G)(f))(F, γ)

where the second equality is by (2.21) and the third one by the composition axiom of the
presheaf G.

One defines Dp on morphisms of presheaves r : G → G ′ by the family of morphisms

[2016.08.30.eq6]Dp(r)X(F, γ) = (F, r(X;F )(γ)) (2.24)

For f : X → X ′ and r : G → G ′ we have

[2016.11.14.eq2]Dp(G)(f) ◦Dp(r)X = Dp(r)X′ ◦Dp(G ′)(f) (2.25)

that is, the family of functions Dp(r)X parametrized by X ∈ C is a morphism of presheaves.

For G ∈ PreShv(C) we have
Dp(IdG)X = IdDp(G)(X)

and for r : G → G ′ and r′ : G ′ → G ′′ we have

[2016.12.18.eq4]Dp(r ◦ r′)X = Dp(r)X ◦Dp(r
′)X (2.26)

These two equalities show that the functor data given by Dp on presheaves and Dp on
morphisms of presheaves is a functor that we also denote by

Dp : PreShv(C)→ PreShv(C)

Note that for the presheaves of the form Y o(A), where Y o is the Yoneda embedding, we
have

[2016.11.14.eq4]Dp(Y o(A))(X) = qF :X→UMorC((X;F ), A) (2.27)
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and for a morphism f : X → X ′,

[2016.11.14.eq4a]Dp(Y o(A))(f)(F1, F2) = (f ◦ F1, Q(f, F1) ◦ F2) (2.28)

For a morphism a : A′ → A we have

[2016.12.02.eq6]Dp(Y o(a))X(F1, F2) = (F1, F2 ◦ a) (2.29)

Define
[2016.12.24.eq1]Dn

p (X, Y ) = Dn
p (Y o(Y ))(X) (2.30)

such that in particular one has

D0
p(X, Y ) = MorC(X, Y )

Since Dn
p (Y o(Y )) is a presheaf we have, for any f : X ′ → X, the function

Dn
p (Y o(Y ))(f) : Dn

p (Y o(Y ))(X)→ Dn
p (Y o(Y ))(X ′)

that we denote by

[2016.12.24.eq2]Dn
p (f, Y ) : Dn

p (X, Y )→ Dn
p (X ′, Y ) (2.31)

Since Dn
p and Y o are functors we have, for any g : Y → Y ′, a function

Dn
p (Y o(g))X : Dn

p (Y o(Y ))(X)→ Dn
p (Y o(Y ′))(X)

that we denote by

[2016.12.24.eq3]Dn
p (X, g) : Dn

p (X, Y )→ Dn
p (X, Y ′) (2.32)

Let d ∈ Dn
p (X, Y ). For f : X ′ → X we let f ◦n d denote Dn

p (f, Y )(d). For g : Y → Y ′ we
let d n◦ g denote Dn

p (X, g)(d). When no confusion is possible we will abbreviate both ◦n and
n◦ to ◦.
Let us summarize, using this “◦-notation” some of the results proved above in the following
lemma.

Lemma 2.14 [2017.01.07.l1] For d ∈ Dn
p (X, Y ) we have the following formulas:

1. IdX ◦ d = d,

2. (f ′ ◦ f) ◦ d = f ′ ◦ (f ◦ d),

3. d ◦ IdY = d,

4. d ◦ (g ◦ g′) = (d ◦ g) ◦ g′,

5. f ◦ (d ◦ g) = (f ◦ d) ◦ g.
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Proof: The first two equalities follow from the axioms of presheaf for Dn
p (Y o(Y )), the second

two from the fact that Y o ◦Dn
p is a functor and the last one from the fact that the family of

functions Dp(Y o(g))− is a morphism of presheaves.

Lemma 2.15 [2016.12.24.l1] Let (C, p) be a universe category, n ≥ 1, X, Y ∈ C, and

(F, a) ∈ qF :X→UD
n−1
p ((X;F ), Y ) = Dp(D

n−1
p (Y o(Y )))(X) = Dn

p (X, Y )

Then one has

1. for f : X ′ → X
f ◦ (F, a) = (f ◦ F,Q(f, F ) ◦ a)

2. for g : Y → Y ′

(F, a) ◦ g = (F, a ◦ g)

Proof: In the first case we have
f ◦ (F, a) =

Dn
p (Y o(Y ))(f)((F, a)) = (f ◦ F,Dn−1

p (Y o(Y ))(Q(f, F ))(a)) =

(f ◦ F,Q(f, F ) ◦ a)

where the first equality is by the definition of Dn
p (f, Y ), the by (2.23) and the third by the

definition of Dn−1
p (Q(f, F ), Y ).

In the second case we have
(F, a) ◦ g =

Dn
p (Y o(g))X((F, a)) = (F,Dn−1

p (Y o(g))(X;F )(a)) =

(F, a ◦ g)

where the first equality is by the definition of Dn
p (X, g), the second by (2.23) and the third

by the definition of Dn−1
p ((X;F ), g). The lemma is proved.

Remark 2.16 [2015.07.29.rem2] It is likely that the functions (2.31) and (2.32) generalize
to composition functions

[2016.12.18.eq3]Dn
p (X, Y )×Dm

p (Y, Z)→ Dn+m
p (X,Z) (2.33)

The formulas 1.-5. suggest that these composition functions satisfy the unity and associa-
tivity axioms and therefore one obtains, from any universe category (C, p), a new category
(C, p)∗ with the same collection of objects and morphisms between two objects given by

Mor(C,p)∗(X, Y ) = qn≥0D
n
p (X, Y )

The study of the composition functions (2.33) and categories (C, p)∗ is deferred to a later
paper.

Remark 2.17 [2016.12.14.rem2] The observations of Remark 2.2 apply, with obvious
modifications, to the construction Dp as well.
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2.3 Isomorphisms of presheaves u1 and ũ1

[Sec.2.3]

We now consider a universe category, that is, a category C with a universe p and a choice
of a final object pt. We usually denote a universe category as (C, p) without mentioning the
final object. For any universe category we have constructed in [?, Section 2] a C-system
CC(C, p).
The main goal of this section is to provide constructions for Problems 2.19 and 2.22.

Let us first recall the construction of CC(C, p). One defines first, by induction on n, pairs
(Obn, intn : Obn → C) where Obn = Obn(C, p) is a set and intn is a function from Obn to
objects of C. The definition is as follows:

1. Ob0 is the standard one point set unit whose element we denote by tt. The function
int0 maps tt to the final object pt of the universe category structure on C,

2. Obn+1 = qA∈ObnMor(int(A), U) and intn+1(A,F ) = (int(A);F ).

We then define Ob(CC(C, p)) as qn≥0Obn such that elements of Ob(CC(C, p)) are pairs
Γ = (n,A) where A ∈ Obn(C, p). We define the function int : Ob(CC(C, p))→ C as the sum
of functions intn. Where no confusion between int and intn is likely we will omit the index
n at intn.

The morphisms in CC(C, p) are defined by

MorCC(C,p) = qΓ,Γ′∈Ob(CC)MorC(int(Γ), int(Γ′))

and the function int on morphisms maps a triple ((Γ,Γ′), a) to a. Note that the subset
in Mor that consists of f such that dom(f) = Γ and codom(f) = Γ′ is not equal to the
set MorC(int(Γ), int(Γ′)) but instead to the set of triples of the form f = ((Γ,Γ′), a) where
a ∈ MorC(int(Γ), int(Γ′)). The functor int maps ((Γ,Γ′), a) to a. This map is bijective
and therefore the functor is fully faithful but its morphism component is not the identity
function.

The length function is defined by l((n,A)) = n.

One defines pt as pt = (0, tt). It is the only object of length 0.

If Γ = (n,B) where n > 0 then, by construction, B = (A,F ) where F : int(A) → U . The
ft function is defined on such Γ by ft(Γ) = (n− 1, A) and on pt by ft(pt) = pt.

Lemma 2.18 [2016.08.22.l1] For Γ = (n,A) and T = (n′, B) ∈ Ob(CC(C, p)) one has
T ∈ Ob1(Γ) if and only if n′ = n+ 1 and there exists F : int(A)→ U such that B = (A,F ).

Proof: By definition of the length function l, we have l(Γ) = n and l(T ) = n′. By definition
of Ob1, T ∈ Ob1(Γ) if and only if n′ = n+ 1 and ft(T ) = Γ.

If T = (n+1, (A,F )) then n′ = n+1. In particular, l(T ) > 0 and therefore ft(T ) = (n,A) =
Γ. This proves the ”if” part.
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Assume that T = (n′, B) ∈ Ob1(Γ). Then n′ = n + 1. Since n′ > 0, B is a pair of the form
(A′, F ). Since ft(T ) = (n,A′) = (n,A) we have A′ = A. This proves the “only if” part.

The p-morphism for Γ = (n,A) where n > 0 and A = (B,F ) is given by ((Γ, ft(Γ)), pF )
where pF are the p-morphisms of the universe structure.

For f : (n,A′)→ (n,A) and T such that l(T ) = l(Γ) + 1 and ft(T ) = Γ one has, by Lemma
2.18, T = (n+ 1, (A,F )) and one defines

[2016.08.22.eq2]f ∗(T ) = (n+ 1, (A′, int(f) ◦ F )) (2.34)

and
[2016.08.22.eq3]q(f, T ) = ((f ∗(T ), T ), Q(int(f), F )) (2.35)

The C-system axioms are verified in [?].

Let us denote by
int◦ : PreShv(C)→ PreShv(CC)

is the functor of pre-composition with intop and by

Y o : C → PreShv(C)

the Yoneda embedding of C.

Problem 2.19 [2015.04.30.prob1a] To construct an isomorphism of presheaves

[2016.11.12.eq2]u1 : Ob1 → int◦(Y o(U)) (2.36)

such that for Γ = (n,A) and T = (n+ 1, (A,F )) one has

[2015.04.30.eq3a]u1,Γ(T ) = F (2.37)

Construction 2.20 [2016.08.22.constr1] By definition of int◦ and Y o and Lemma 2.4,
an isomorphism of presheaves of the form (2.36) is a family of functions of the form

u1,Γ : Ob1(Γ)→MorC(int(Γ), U)

parametrized by Γ ∈ Ob(CC(C, p)) such that for any f : Γ′ → Γ and any T ∈ Ob1(Γ) one
has

[2015.04.30.eq1a]u1,Γ′(f
∗(T )) = int(f) ◦ u1,Γ(T ) (2.38)

and for any Γ the function u1,Γ is a bijection.

By Lemma 2.18, the conditions (2.37) define our family completely and it remains to verify
(2.38) and the bijectivity condition.

For Γ = (n,A), T = (n+ 1, (A,F )), Γ′ = (n′, A′) and f : Γ′ → Γ we have, by (2.34),

f ∗(T ) = (n′ + 1, (A′, int(f) ◦ F ))
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Therefore,

u1,Γ′(f
∗(T )) = u1,Γ′((n

′ + 1, (A′, int(f) ◦ F ))) = int(f) ◦ F = int(f) ◦ u1,Γ(T )

which proves (2.38).

By Lemma 2.18, for Γ = (n,A), the formula F 7→ (n+ 1, (A,F )) defines a function

MorC(int(A), U)→ Ob1(Γ)

By the same lemma and (2.37) this function is inverse to u1,Γ. This proves the bijectivity
condition and completes Construction 2.20.

Using again Lemma 2.18 and (2.37) we see that for any Γ ∈ Ob(CC(C, p)) and T ∈ Ob1(Γ),

[2015.05.02.eq1a]int(T ) = (int(Γ);u1,Γ(T )) (2.39)

and
[2016.08.24.eq3]int(pT ) = pu1,Γ(T ) (2.40)

For f : Γ′ → Γ and T as above we have

[2016.08.30.eq3]int(q(f, T )) = Q(int(f), u1,Γ(T )) (2.41)

Lemma 2.21 [2016.08.22.l2] For Γ = (n,A) and o ∈ Õb1(Γ) one has

[2016.08.22.eq1]codom(int(o)) = (int(Γ);u1,Γ(∂(o))) (2.42)

Proof: We have codom(o) = ∂(o) ∈ Ob1(Γ). Therefore (2.42) follows from the equality
codom(int(f)) = int(codom(f)) and (2.39).

The second problem whose solution is constructed in this section is as follows.

Problem 2.22 [2015.04.30.prob1b] To construct an isomorphism of presheaves

[2016.11.12.eq3]ũ1 : Õb1 → int◦(Y o(Ũ)) (2.43)

such that for o ∈ Õb1(Γ) one has

[2015.04.30.eq4a]ũ1,Γ(o) = int(o) ◦Q(u1,Γ(∂(o))) (2.44)

where the right hand side is defined by (2.42) and the equality dom(Q(F )) = (dom(F );F ).

To construct a solution for this problem we will need the following two lemmas.
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Lemma 2.23 [2016.08.26.l1] For a universe p in C and X ∈ C, the function

qF∈Mor(X,U)sec(pF )→Mor(X, Ũ)

given by the formula (F, s) 7→ s ◦ Q(F ) is a bijection. The inverse bijection is given by the

formula F̃ 7→ (F̃ ◦ p, IdX ∗F̃◦p F̃ ) where IdX ∗F̃◦p F̃ is defined because IdX ◦ F̃ ◦ p = F̃ ◦ p.

Proof: Let us denote the first function by Φ and second one by Ψ. We have

Φ(Ψ(F̃ )) = Φ(F̃ ◦ p, IdX ∗F̃◦p F̃ ) = (IdX ∗F̃◦p F̃ ) ◦Q(F̃ ◦ p) = F̃

where the last equality is by the definition of ∗F̃◦p, and

Ψ(Φ(F, s)) = Ψ(s ◦Q(F )) = ((s ◦Q(F )) ◦ p, IdX ∗(s◦Q(F ))◦p (s ◦Q(F )))

Next we have
[2016.11.12.eq1]s ◦Q(F ) ◦ p = s ◦ pF ◦ F = F (2.45)

It remains to compare IdX ∗s◦Q(F )◦p (s ◦ Q(F )) with s. To do it we need to compare its
post-compositions with pF and Q(F ) with the same post-compositions for s.

By (2.45) we may replace s ◦Q(F ) ◦ p with F . We have

IdX ∗F (s ◦Q(F )) ◦ pF = IdX = s ◦ pF

IdX ∗F (s ◦Q(F )) ◦Q(F ) = s ◦Q(F ) = s ◦Q(F )

Therefore, IdX ∗F (s ◦Q(F )) = s and

Ψ(Φ(F, s)) = (F, s)

The lemma is proved.

Lemma 2.24 [2016.08.26.l4] Let p : Y → X be a morphism in C and Φ : C → C ′ a
functor. Then for s ∈ sec(p) one has Φ(s) ∈ sec(Φ(p)).

If Φ is fully faithful then the resulting function

Φsec,p : sec(p)→ sec(Φ(p))

is a bijection.

Proof: The first assertion follows immediately from the definition of sec and the axioms of
a functor.

Assume that Φ is fully faithful. To prove that Φsec,p is a bijection let

Φ−1
A,B : MorC′(Φ(A),Φ(B))→MorC(A,B)
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be the inverse to the function ΦA,B : MorC(A,B) → MorC′(Φ(B),Φ(B)) that we denoted
simply by Φ. One verifies easily that for any A,B,C ∈ C the functions Φ−1

A,B,Φ
−1
B,C and Φ−1

A,C

commute with the compositions and for any A ∈ C one has Φ−1
A,A(IdΦ(A)) = IdA.

Therefore, for s′ ∈ sec(ΦY,X(p)) we have Φ−1
X,Y (s′) ∈ sec(p). Indeed,

ΦX,X(Φ−1
X,Y (s′) ◦ p) = ΦX,Y (Φ−1

X,Y (s′)) ◦ ΦY,X(p) = s′ ◦ ΦY,X(p) = IdΦ(X)

and since Φ−1
X,X(IdΦ(X)) = IdX we obtain that Φ−1

X,Y (s′) ◦ p = IdX . This implies that Φsec,p

and the restriction of Φ−1
X,Y to sec(Φ(p)) form a pair of functions between sec(p) and sec(Φ(p))

and one sees immediately that they are mutually inverse.

Construction 2.25 [2016.08.22.constr2] By definition of int◦ and Y o and Lemma 2.4,
an isomorphism of presheaves of the form (2.43) is a family of functions of the form

ũ1,Γ : Õb1(Γ)→MorC(int(Γ), Ũ)

parametrized by Γ ∈ Ob(CC(C, p)) such that for any f : Γ′ → Γ and any o ∈ Õb1(Γ) one has

[2015.04.30.eq1b]ũ1,Γ′(f
∗(o)) = int(f) ◦ ũ1,Γ(o) (2.46)

and for any Γ the function ũ1,Γ is a bijection.

The equalities (2.44) define our family completely and it remains to prove (2.46) and the
bijectivity condition.

For the proof of (2.46) we have the following, where we write u instead of u1,Γ and u1,Γ′ and
ũ instead of ũ1,Γ and ũ1,Γ′ ,

ũ(f ∗(o)) = int(f ∗(o)) ◦Q(u(∂(f ∗(o)))) = int(f ∗(o)) ◦Q(u(f ∗(∂(o)))) =

int(f ∗(o)) ◦Q(int(f) ◦ u(∂(o))) = int(f ∗(o)) ◦Q(int(f), u(∂(o))) ◦Q(u(∂(o))) =

int(f ∗(o)) ◦ int(q(f, ∂(o))) ◦Q(u(∂(o))) = int(f ∗(o) ◦ q(f, ∂(o))) ◦Q(u(∂(o))) =

int(q(f,Γ) ◦ o) ◦Q(u(∂(o))) = int(f ◦ o) ◦Q(u(∂(o))) =

int(f) ◦ int(o) ◦Q(u(∂(o))) = int(f) ◦ ũ(o)

where the first equality is by (2.44), second is by definition of f ∗(o), the third is by (2.38),
the fourth is by (2.19), the fifth is by (2.41), the sixth is because int is a functor, the seventh
is by [?, (2.19)], the eights is by definition of q(f,−), the ninth is because int is a functor
and the tenth is again by (2.44). This completes the proof of (2.46).

To prove that the function ũ1,Γ is a bijection we will represent it as the composition of
functions that we can show to be bijections. The functions are of the form

Õb1(Γ)→ qT∈Ob1(Γ)∂
−1(T )→ qF :int(Γ)→Usec(pF )→Mor(int(Γ), Ũ)

and are given by the formulas

o 7→ (∂(o), o) (T, o) 7→ (u(T ), int(o)) (F, s) 7→ s ◦Q(F )
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The first function is the function X → qy∈Y f−1(y), which is defined and is a bijection for
any function of sets f : X → Y . The second one is the total function of the function u
and the family of functions intsec,pT of Lemma 2.24. Since u and the functions intsec,pT are
bijections the total function is a bijection. The third function is the bijection of Lemma 2.23.

Let us show that the composition of these bijections equals ũ. Indeed, for o ∈ Õb1(Γ) we
have

o 7→ (∂(o), o) 7→ (u(∂(o)), int(o)) 7→ int(o) ◦Q(u(∂(o))) = ũ(o)

This completes Construction 2.25.

Remark 2.26 [2016.08.26.rem1] The inverse to ũ1,Γ can be expressed by the formula

ũ−1
1,Γ(H) = int−1

Γ,u−1
1,Γ(H◦p)(Idint(Γ) ∗H◦p H)

Note that while we can omit explicitly mentioning dom(f) and codom(f) when we write
int(f) we must specify them when we write int−1(f) because int is bijective only on the
subsets of morphisms with fixed domain and codomain. This makes the expression for ũ−1

1,Γ

longer than one would prefer.

The family of functions ∂Γ forms a morphism of presheaves Õbn → Obn that we usually
denote simply by ∂.

Lemma 2.27 [2016.12.02.l4] The square of morphisms of presheaves

[2016.08.20.eq1]

Õb1
ũ1−−−→ int◦(Y o(Ũ))

∂

y yint◦(Y o(p))
Ob1

u1−−−→ int◦(Y o(U))

(2.47)

commutes.

Proof: For Γ and o ∈ Õb1(Γ) we have

int◦(Y o(p))Γ(ũ1,Γ(o)) = (ũ1,Γ(o)) ◦ p = int(o) ◦Q(u1,Γ(∂(o))) ◦ p =

int(o) ◦ pu1,Γ(∂(o)) ◦ u1,Γ(∂(o)) = int(o ◦ p∂(o)) ◦ u1,Γ(∂(o)) = u1,Γ(∂(o))

where the first equality is by definition of int◦ and Y o, the second by (2.44), the third by

commutativity of (2.15), the fourth by (2.40) and the fifth by the definition Õb1(Γ) in (2.10)
and the fact that ∂(o) = codom(o). The lemma is proved.

2.4 Functor isomorphisms SDp

In this section we continue to consider a universe category (C, p). For any (C, p) we will
relate the functor Dp on PreShv(C) and the functor Sig on PreShv(CC(C, p)).
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Problem 2.28 [2016.08.28.prob1] For a universe category (C, p) to construct an isomor-
phism of functors PreShv(C)→ PreShv(CC) of the form

SDp : int◦ ◦ Sig → Dp ◦ int◦

Construction 2.29 [2016.08.28.constr1] In view of Lemma 2.4, we have to construct, for
any G ∈ PreShv(C), an isomorphism of presheaves on CC of the form

SDp,G : Sig(intop ◦ G)→ intop ◦Dp(G)

and to show that these isomorphisms are natural in G, that is, that for a morphism of
presheaves r : G → G ′ one has

SDp,G ◦ int◦(Dp(r)) = Sig(int◦(r)) ◦ SDp,G′

Applying Lemma 2.4 again, we see that we need to construct, for each G and Γ ∈ CC, a
bijection SDp,G,Γ, which we will denote φG,Γ for the duration of the proof, of the form

φG,Γ : Sig(intop ◦ G)(Γ)→ (intop ◦Dp(G))(Γ) = Dp(G)(int(Γ))

and to show that two conditions hold:

1. for any f : Γ′ → Γ we have

[2016.08.30.eq1]φG,Γ ◦Dp(G)(int(f)) = Sig(intop ◦ G)(f) ◦ φG,Γ′ (2.48)

that is, the square

[2016.11.19.eq1]

Sig(intop ◦ G)(Γ)
φG,Γ−−−→ Dp(G)(int(Γ))

Sig(intop◦G)(f)

y yDp(G)(int(f))

Sig(intop ◦ G)(Γ′)
φG,Γ′−−−→ Dp(G)(int(Γ′))

(2.49)

commutes.

2. for any r : G → G ′ and Γ ∈ CC we have

[2016.08.30.eq2]φG,Γ ◦Dp(r)int(Γ) = Sig(int◦(r))Γ ◦ φG′,Γ (2.50)

that is, the square

[2016.11.19.eq2]

Sig(intop ◦ G)(Γ)
φG,Γ−−−→ Dp(G)(int(Γ))

Sig(int◦(r))Γ

y yDp(r)int(Γ)

Sig(intop ◦ G ′)(Γ)
φG,Γ−−−→ Dp(G ′)(int(Γ))

(2.51)

commutes.
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To construct φG,Γ we first compute using (2.1)

Sig(intop ◦ G)(Γ) = qT∈Ob1(Γ)G(int(T ))

and using (2.22)
Dp(G)(int(Γ)) = qF :int(Γ)→UG((int(Γ);F ))

and define the function φG,Γ by the formula

[2016.09.01.eq3]φG,Γ((T, g)) = (u1,Γ(T ), g) (2.52)

where the right hand side is defined because of (2.39). The function φG,Γ is a bijection
as the total function of the bijection u1,Γ and the family of bijections, namely the identity
functions.

To prove equality (2.48) we compute using (2.2)

Sig(int ◦ G)(f)(T, g) = (f ∗(T ),G(int(q(f, T )))(int(T )))

and using (2.23)

Dp(G)(int(f))(F, g) = (int(f) ◦ F,G(Q(int(f), F ))(g))

Equality (2.48) follows now from (2.38) and (2.41).

To prove equality (2.50) we compute using (2.3)

Sig(int◦(r))Γ(T, g) = (T, rint(T )(g))

and using (2.24)
Dp(r)int(Γ)(F, g) = (F, r(int(Γ);F )(g))

and (2.50) follows from (2.39).

This completes Construction 2.29.

2.5 Isomorphisms of presheaves un and ũn for n ≥ 2

In this section we continue to consider a universe category (C, p). For any such (C, p) and
any n ≥ 1, we construct isomorphisms of presheaves on CC(C, p) of the form

[2016.11.22.eq1]un : Obn → int◦(Dn−1
p (Y o(U))) (2.53)

and
[2016.11.22.eq2]ũn : Õbn → int◦(Dn−1

p (Y o(Ũ))) (2.54)

where D0
p = IdPreShv(C), and u1 and ũ1 are the isomorphisms constructed in Section 2.3. We

show that
[2016.12.02.eq7]ũn ◦ int◦(Dn−1

p (Y o(p))) = ∂ ◦ ũn (2.55)

Let us fix a universe category (C, p).
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Problem 2.30 [2016.11.22.prob1] Let n ≥ 2. To construct an isomorphism of presheaves
on CC(C, p) of the form (2.53).

Construction 2.31 [2016.11.22.constr1] We proceed by induction on n starting with
n = 1. Observe that SDp,G is an isomorphism of the form

[2016.11.22.eq3]Sig(int◦(G))→ int◦(Dp(G)) (2.56)

The isomorphism u1 was constructed in Section 2.3. For the successor, define un+1 as the
following composition

Obn+1
SOb−1

n−−−−→ Sig(Obn)
Sig(un)−−−−→ Sig(int◦(Dn−1

p (Y o(U))))
SD

p,Dn−1
p (Y o(U))

−−−−−−−−−−→

int◦(Dp(D
n−1
p (Y o(U)))) int◦(Dn

p (Y o(U)))

The isomorphism un+1,Γ is of the form

[2016.12.22.eq1]T 7→ (ftn(T ), T ) 7→ (ftn(T ), un,ftn(T )(T )) 7→ (u1,Γ(ftn(T )), un,ftn(T )(T ))
(2.57)

where the form of the first map is by (2.8), the second by (2.3) and the third by (2.52). In
particular, for n = 1 we get

u2,Γ(T ) = (u1,Γ(ft(T )), u1,ft(T )(T ))

Problem 2.32 [2016.11.22.prob2] Let n ≥ 2. To construct an isomorphism of presheaves
on CC(C, p) of the form (2.54).

Construction 2.33 [2016.11.22.constr2] We proceed by induction on n starting with
n = 1. The isomorphism ũ1 was constructed in Section 2.3. For the successor, define ũn+1

as the following composition, where we use that SDp,G is of the form (2.56),

Õbn+1
SÕb

−1

n−−−−→ Sig(Õbn)
Sig(ũn)−−−−→ Sig(int◦(Dn−1

p (Y o(Ũ))))
SD

p,Dn−1
p (Y o(Ũ))

−−−−−−−−−−→

int◦(Dp(D
n−1
p (Y o(Ũ)))) int◦(Dn

p (Y o(Ũ)))

The isomorphism ũn+1,Γ is of the form

[2016.12.22.eq2]o 7→ (ftn(∂(o)), o) 7→ (ftn(∂(o)), ũn,ftn(∂(o))(o)) 7→ (u1,Γ(ftn(∂(o))), ũn,ftn(∂(o))(o))
(2.58)

where the form of the first map is by (2.12), the second by (2.3) and the third by (2.52). In
particular, for n = 1 we get

ũ2,Γ(o) = (u1,Γ(ft(∂(o))), ũ1,ft(∂(o))(o))
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Lemma 2.34 [2016.12.02.l3] For any n ≥ 1, (2.55) holds, that is, the square

Õbn
ũn−−−→ int◦(Dn−1

p (Y o(Ũ)))

∂

y yint◦(Dn−1
p (Y o(p)))

Obn
un−−−→ int◦(Dn−1

p (Y o(U)))

commutes.

Proof: We proceed by induction on n starting at n = 1. For n = 1 it is shown in Lemma
2.27.

For the successor of n we have the diagram

Õbn+1
SÕb

−1

n−−−−→ Sig(Õbn)
Sig(ũn)−−−−→ Sig(int◦(Dn

p (Y o(Ũ))))
SDp−−−→ int◦(Dp(D

n
p (Y o(Ũ))))

∂

y Sig(∂)

y Sig(int◦(Dnp (Y o(p))))

y int◦(Dp(Dnp (Y o(p))))

y
Obn+1

SOb−1
n−−−−→ Sig(Obn)

Sig(un)−−−−→ Sig(int◦(Dn
p (Y o(U))))

SDp−−−→ int◦(Dp(D
n
p (Y o(U))))

where the composition of the upper horizontal arrows is ũn and the composition of the lower
horizontal ones is un. To prove the lemma it is sufficient to show that the three squares of
the diagram commute.

The commutativity of the left square follows easily from Lemma 2.10. The middle square
commutes by the inductive assumption using the fact that Sig is a functor. The right square
commutes because SDp is an isomorphism of functors, that is, it is natural in morphisms of
presheaves.

2.6 The case of a locally cartesian closed C - isomorphisms ηn and
µn

[Sec.2.6] In this section C is a locally cartesian closed category (see Appendix 5.2) with a
binary product structure (see Appendix 5.1).

The main construction of this section is Construction 2.38 for Problem 2.37 that provides,
for a universe p in a category C as above, representations for the presheaves Dp(Y o(V )). As
a corollary we provide constructions for Problems 2.39 and 2.42.

For a morphism p : Ũ → U in C and an object V of C let

Ip(V ) := HomU((Ũ , p), (U × V, pr1))

and let
prIp(V ) = p4pr1 : Ip(V )→ U

be the canonical morphism.
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For a morphism f : V → V ′ let

Ip(f) = HomU((Ũ , p), U × f)

By (5.10),(5.11) and Definition 5.4(3) we have

Ip(IdV ) = IdIp(V )

and for f ′ : V ′ → V ′′ we have

Ip(f ◦ f ′) = Ip(f) ◦ Ip(f ′)

which shows that the mappings V 7→ Ip(V ) and f 7→ Ip(f) define a functor from C to itself.

The main goal of this section is to construct an isomorphism η between functors from C to
PreShv(C) of the form:

η : Y o ◦Dp → Ip ◦ Y o

This isomorphisms provides, in particular, a family, parametrized by V ∈ C, of representa-
tions for the functors Dp(Y o(V )).

Note that Ip depends on the choice of both the locally cartesian closed and the binary
product structures on C, but does not depend on the universe structure. On the other hand,
the construction of the functors Dp(F ) requires a universe structure on p but does not require
either the locally cartesian closed or the binary product structure on C.
The computations below are required because we have to deal with this fact. In particular,
we have to take into the account that for F : X → U the fiber product (X,F )×U (Ũ , p) that
we have from the structure of a category with pullbacks on C need not be equal to (X;F )
that we have from the universe structure on p.

Let p : Ũ → U be a universe and V an object of C. We assume that C is equipped with a
locally cartesian closed and a binary product structures. For F : X → U there is a unique
morphism

ιF : (X;F )→ (X,F )×U (Ũ , p)

such that

[2016.12.02.eq3]
ιF ◦ pr1 = pF

ιF ◦ pr2 = Q(F )
(2.59)

which is a particular case of the morphisms ι of Lemma 5.3.

The evaluation morphism in the case of Ip(V ) is a morphism in C/U of the form

evIp : (Ip(V ), prIp(V ))×U (U × V, pr1)→ (U × V, pr1)

Define a morphism
stp(V ) : (Ip(V ); prIp(V ))→ V

as the composition:

[2016.12.02.eq2]stp(V ) := ιprIp(V ) ◦ evIp(V ) ◦ pr2 (2.60)

We will need to use some properties of these morphisms.
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Lemma 2.35 [2015.04.14.l2a] Let f : V → V ′ be a morphism, then one has

Q(Ip(f), prIp(V
′)) ◦ stp(V ′) = stp(V ) ◦ f

Proof: Let pr = prIp(V ), pr′ = prIp(V
′), ι = ιpr, ι

′ = ιpr′ , ev = evIp(V ) and ev′ = evIp(V
′).

Then we have to verify that the outer square of the following diagram commutes:

(Ip(V ); pr)
ι−−−→ (Ip(V ), pr)×U (Ũ , p)

ev−−−→ U × V pr2−−−→ V

Q(Ip(f),pr′)

y Ip(f)×Id
Ũ

y IdU×f
y yf

(Ip(V
′); pr′)

ι′−−−→ (Ip(V
′), pr′)×U (Ũ , p)

ev′−−−→ U × V ′ pr2−−−→ V ′

The commutativity of the left square is a particular case of Lemma 5.3. The commutativity
of the right square is an immediate corollary of the definition of IdU×f . The commutativity
of the middle square is a particular case of (5.7).

Remark 2.36 [2016.04.23.rem1] In [?] generalized polynomial functors are defined as
functors isomorphic to functors of the form Ip.

Problem 2.37 [2015.03.29.prob1] Let C be a locally cartesian closed category with a bi-
nary product structure and p a universe in C. To construct, for all V ∈ C, isomorphisms of
presheaves

ηV : Dp(Y o(V ))→ Y o(Ip(V ))

that are natural in V , i.e., such that for all f : V → V ′ the square

Dp(Y o(V ))
Dp(Y o(f))−−−−−−→ Dp(Y o(V

′))

ηV

y yηV ′
Y o(Ip(V ))

Y o(Ip(f))−−−−−→ Y o(Ip(V
′))

commutes.

Construction 2.38 [2015.03.29.constr1] We will use the notation introduced before Re-
mark 2.16. We need to construct bijections

ηV,X : Dp(X, V )→MorC(X, Ip(V ))

such that for all f : V → V ′, X ∈ C and d ∈ Dp(X, V ) one has

[2016.09.11.eq1]ηV,X(d) ◦ Ip(f) = ηV ′,X(d ◦ f) (2.61)

and for any f : X ′ → X and d ∈ Dp(Y o(V ))(X) one has

[2016.09.11.eq2]f ◦ ηV,X(d) = ηV,X′(f ◦ d) (2.62)

We will construct bijections

η!
V,X : Mor(X, Ip(V ))→ Dp(X, V )

such that for all g : X → Ip(V ) one has:
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1. for all f : V → V ′ one has

[2016.09.11.eq3]η!(g) ◦ f = η!(g ◦ Ip(f)) (2.63)

2. for all f : X ′ → X one has

[2016.09.11.eq4]f ◦ η!(g) = η!(f ◦ g) (2.64)

and then define ηV,X as the inverse to η!
V,X . One proves easily that (2.61) implies (2.63) and

(2.62) implies (2.64).

By (2.27) we have
Dp(X, V ) = qF :X→UMorC((X;F ), V )

For g : X → Ip(V ) we set

[2016.12.02.eq5]η!
V,X(g) := (g ◦ prIp(V ), Q(g, prIp(V )) ◦ stp(V )) (2.65)

as can be seen on the diagram

Vxstp(V )

(X; g ◦ prIp(V ))
Q(g,prIp(V ))−−−−−−−→ (Ip(V ); prIp(V ))

Q(prIp(V ))−−−−−−→ Ũy y yp
X

g−−−→ Ip(V )
prIp(V )−−−−→ U

To see that this is a bijection observe first that it equals to the composition

Mor(X, Ip(V ))→ qF :X→UMorU((X,F ), (Ip(V ), prIp(V )))→ qF :X→UMor((X;F ), V )

where the first function is given by the formula g 7→ (g ◦ prIp(V ), g) and the second is the
sum over all F : X → U of functions g 7→ Q(g, prIp(V )) ◦ stp(V ).

The first function is a function of the form A → qb∈Bh−1(b), which is defined and is a
bijection for any function of sets h : A → B. It remains to show that the second one is a
bijection for every F .

By definition of the HomU structure we know that for each F the function

adj : MorU((X,F ), (Ip(V ), prIp(V )))→MorU((X,F )×U (Ũ , p), (U × V, pr1))

given by g 7→ (g ×U Id(Ũ ,p)) ◦ evIp(V ) is a bijection.

By definition of the binary product, the function of post-composition with pr2,

MorU((X,F )×U (Ũ , p), (U × V, pr1))→Mor((X,F )×U (Ũ , p), V )
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is a bijection. By Lemma 5.2, ιF is an isomorphism and therefore the pre-composition with
it is a bijection. Now we have two functions

MorU((X,F ), (Ip(V ), prIp(V )))→Mor((X;F ), V )

given by g 7→ ιF ◦ (g ×U IdŨ) ◦ evIp(V ) ◦ pr2 and g 7→ Q(g, prIp(V )) ◦ stp(V ) of which the
first one is the bijection. It remains to show that these functions are equal. In view of (2.60)
it is sufficient to show that

ιF ◦ (g ×U IdŨ) = Q(g, prIp(V )) ◦ ιprIp(V )

To do it we have to to show that the compositions of the left and right hand sides with pr1

(to Ip(V )) and pr2 (to Ũ) are equal.

For pr1 we have
ιF ◦ (g ×U IdŨ) ◦ pr1 = ιF ◦ pr1 ◦ g = pF ◦ g

Q(g, prIp(V )) ◦ ιprIp(V ) ◦ pr1 = Q(g, prIp(V )) ◦ pprIp(V ) = pg◦prIp(V ) ◦ g = pF ◦ g

where we used the defining equations (2.59) of ι, the definition (2.18) of Q(−,−) and the
fact that g is a morphism over U .

For pr2 we have

ιF ◦ (g ×U IdŨ) ◦ pr2 = ιF ◦ pr2 ◦ IdŨ = ιF ◦ pr2 = Q(F )

Q(g, prIp(V )) ◦ ιprIp(V ) ◦ pr2 = Q(g, prIp(V )) ◦Q(prIp(V )) = Q(g ◦ prIp(V )) = Q(F )

where we used the defining equations (2.59) of ι, (2.19) and the fact that g is a morphism
over U .

We now have to check the behavior of η! with respect to morphisms in V (equality (2.63))
and X (equality (2.64).

Let pr = prIp(V ) and pr′ = prIp(V
′). Let g : X → Ip(V ) be as above. For f : V → V ′ we

have

η!(g) ◦ f = Dp(Y o(f))X(g ◦ pr,Q(g, pr) ◦ stp(V )) = (g ◦ pr,Q(g, pr) ◦ stp(V ) ◦ f)

where the first equality is by (2.65) and the second by (2.29) and

η!(g ◦ Ip(f)) = (g ◦ Ip(f) ◦ pr′, Q(g ◦ Ip(f), pr′) ◦ stp(V ′))

where the equality is by (2.65). We have pr = Ip(f) ◦ pr′ because Ip(f) is a morphism over
U . It remains to check that

Q(g, pr) ◦ stp(V ) ◦ f = Q(g ◦ Ip(f), pr′) ◦ stp(V ′)

By [?, Lemma 2.5] we have

Q(g ◦ Ip(f), pr′) = Q(g, pr) ◦Q(Ip(f), pr′)
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and the remaining equality

Q(g, pr) ◦ stp(V ) ◦ f = Q(g, pr) ◦Q(Ip(f), pr′) ◦ stp(V ′)

follows from Lemma 2.35.

Consider now f : X ′ → X. Then

f ◦ η!(g) = Dp(Y o(V ))(f)(g ◦ pr,Q(g, pr) ◦ stp(V )) =

(f ◦ g ◦ pr,Q(f, g ◦ pr) ◦Q(g, pr) ◦ stp(V ))

and
η!(f ◦ g) = (f ◦ g ◦ pr,Q(f ◦ g, pr) ◦ stp(V ))

where we used (2.65) and (2.28) and the required equality follows from [?, Lemma 2.5].

Problem 2.39 [2016.12.02.prob1] For a locally cartesian closed category C with a binary
product structure and a universe p in C to construct, for all n ≥ 0 and V ∈ C, isomorphisms
of presheaves

ηn,V : Dn
p (Y o(V ))→ Y o(Inp (V ))

that are natural in V , i.e., such that for all f : V → V ′ the square

[2017.01.03.eq1]

Dn
p (Y o(V ))

Dnp (Y o(f))
−−−−−−→ Dn

p (Y o(V ′))

ηn,V

y yηn,V ′
Y o(Inp (V ))

Y o(Inp (f))
−−−−−−→ Y o(Inp (V ′))

(2.66)

commutes.

Construction 2.40 [2016.12.02.constr1]Proceed by induction on n starting with n = 0.
By our convention, D0

p = IdPreShv(C) and I0
p = IdC. We set η0,V = IdY o(V ). For the successor

we define ηn+1,V as the composition

Dn+1
p (Y o(V )) =

Dp(D
n
p (Y o(V )))

Dp(ηn,V )
−−−−−→ Dp(Y o(I

n
p (V )))

η1,Inp (V )

−−−−→ Y o(Ip(I
n
p (V ))) =

Y o(In+1
p (V ))

The naturality in V is easily proved by induction.

Note that we can write ηn,Y,X as a function of the form

Dn
p (X, Y )→MorC(X, I

n
p (Y ))

Let us spell out the formulas expressing the fact that ηn,V is a morphism of presheaves and
the naturality of ηn,Y in Y in the ◦-notation. Let d ∈ Dn

p (X, Y ). Then for f : X ′ → X one
has

[2017.01.03.eq2]ηn(f ◦ d) = f ◦ ηn(d) (2.67)
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and for g : Y → Y ′ one has

[2017.01.03.eq3]ηn(d ◦ g) = ηn(d) ◦ Inp (g) (2.68)

Indeed, the first formula is an expression of the fact that the family of functions ηn,Y,− is a
morphism of presheaves and the second formula an expression of the commutativity of the
square (2.66).

We let η!
n,Y denote the isomorphism inverse to ηn,Y . For m : X → Inp (Y ) we have the

following formulas that follow from (2.67) and (2.68). For f : X → X ′ one has

[2016.09.11.eq4n]f ◦ η!
n(m) = η!

n(f ◦m) (2.69)

and for g : Y → Y ′ one has

[2016.09.11.eq3n]η!
n(m) ◦ g = η!

n(m ◦ Inp (g)) (2.70)

Let us also introduce the following notation that will be useful below. For Y ∈ C let

[2017.01.07.eq1]IdnY = η!
n(IdInp (Y )) ∈ Dn

p (Inp (Y ), Y ) (2.71)

We have the following formulas.

Lemma 2.41 [2017.01.07.l2] In the notations introduced above one has:

1. for m : X → Inp (Y ) one has

[2017.01.07.eq3]m ◦ IdnY = η!
n(m) (2.72)

2. for g : Y → Y ′ one has

[2017.01.07.eq4]IdnY ◦ g = η!
n(Inp (g)) (2.73)

Proof: For the first formula we have

m ◦ IdnY = m ◦ η!
n(IdInp (Y )) = η!

n(m ◦ IdInp (Y )) = η!
n(m)

where the first equality is by the definition of IdnY , the second by (2.69) and the third by the
identity axiom of C.
For the second formula we have

IdYn ◦ g = η!
n(IdInp (Y )) ◦ g = η!

n(IdInp (Y ) ◦ Inp (g)) = η!
n(Inp (g))

where the first equality is by the definition of IdnY , the second by (2.70) and the third by the
identity axiom of C. The lemma is proved.

Note that (2.72) implies in particular that we have

[2017.01.07.eq5]ηn(d) ◦ IdnY = η!
n(ηn(d)) = d (2.74)
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Problem 2.42 [2015.03.17.prob3] For C as above, a universe p : Ũ → U in C and n ≥ 1
to construct isomorphisms of presheaves

µn : Obn → int◦(Y o(In−1
p (U)))

and
µ̃n : Õbn → int◦(Y o(In−1

p (Ũ)))

such that the square

[2016.12.04.eq2]

Õbn
µ̃n−−−→ int◦(Y o(In−1

p (Ũ)))

∂

y yint◦(Y o(In−1
p (p)))

Obn
µn−−−→ int◦(Y o(In−1

p (U)))

(2.75)

commutes.

Construction 2.43 [2015.03.17.constr2]Compose isomorphism un of Construction 2.31
(resp. isomorphism ũn of Construction 2.33) with the isomorphism int◦(ηn−1,U) (resp.
int◦(ηn−1,Ũ)) where ηn−1,U (resp. ηn−1,Ũ) is the isomorphism of Construction 2.40.

To prove the commutativity of (2.75) consider the diagram

Õbn
ũn−−−→ int◦(Dn−1

p (Y o(Ũ)))
int◦(η

n−1,Ũ
)

−−−−−−−→ int◦(Y o(In−1
p (Ũ)))

∂

y int◦(Dn−1
p (Y o(p)))

y yint◦(Y o(In−1
p (p)))

Obn
un−−−→ int◦(Dn−1

p (Y o(U)))
int◦(ηn−1,U )
−−−−−−−→ int◦(Y o(In−1

p (U)))

The composition of the upper arrows is µ̃n and the composition of the lower ones is µn. It
remains to show that the two squares commute. The left square commutes by Lemma 2.34.
The right square commutes because int◦ is a functor and ηn−1,V is natural in V .

Observe that for Γ ∈ CC(C, p), T ∈ Obn(Γ) and o ∈ Õbn(Γ) one has:

[2017.01.03.eq4]µn,Γ(T ) = ηn−1,U,int(Γ)(un,Γ(T )) ∈ int◦(Y o(In−1
p (U)))(Γ) = MorC(int(Γ), In−1

p (U))
(2.76)

and

[2017.01.03.eq5]µ̃n,Γ(o) = ηn−1,Ũ ,int(Γ)(ũn,Γ(o)) ∈ int◦(Y o(In−1
p (Ũ)))(Γ) = MorC(int(Γ), In−1

p (Ũ))

(2.77)
and the commutativity of (2.75) is equivalent to the assertion that for all Γ and o as above

one has
[2017.01.03.eq6]µn,Γ(∂(o)) = µ̃n,Γ(o) ◦ Inp (p) (2.78)
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3 Functoriality

3.1 Universe category functors and the Dp construction

Let (C, p, pt) and (C ′, p′, pt′) be two universe categories. Recall from [?] the following defini-
tion.

Definition 3.1 [2016.12.09.def1] A universe category functor from (C, p, pt) to (C ′, p′, pt′)
is a triple Φ = (Φ, φ, φ̃) where Φ is a functor C → C ′ and φ : Φ(U) → U ′, φ̃ : Φ(Ũ) → Ũ ′

are two morphisms such that one has:

1. Φ takes the pt to a final object,

2. Φ takes the canonical pullbacks based on p to pullbacks,

3. the square

[2015.03.21.sq1]

Φ(Ũ)
φ̃−−−→ Ũ ′

Φ(p)

y yp′
Φ(U)

φ−−−→ U ′

(3.1)

is a pullback.

Problem 3.2 [2016.12.14.prob1] Let Φ = (Φ, φ, φ̃) be a universe category functor (C, p)→
(C ′, p′). To construct a functor morphism

[2016.12.14.eq3]ΦD : Φ◦ ◦Dp → Dp′ ◦ Φ◦ (3.2)

Construction 3.3 [2016.12.14.constr1] Both the left and the right hand side of (3.2) are
functors of the form

PreShv(C ′)→ PreShv(C)

Therefore, we need, for any presheaf G ′ on C ′ and any X ∈ C, to construct a function

[2016.12.14.eq4]ΦDG′,X : Dp(Φ
◦(G ′))(X)→ Φ◦(Dp′(G ′))(X) (3.3)

and to prove that

1. the family ΦDG′,− is a morphism of presheaves, that is, for any a : X → Y in C, the
square

[2016.12.16.eq2]

Dp(Φ
◦(G ′))(Y )

ΦDG′,Y−−−−→ Φ◦(Dp′(G ′))(Y )

Dp(Φ◦(G′))(a)

y yΦ◦(Dp′ (G′))(a)

Dp(Φ
◦(G ′))(X)

ΦDG′,X−−−−→ Φ◦(Dp′(G ′))(X)

(3.4)

commutes,
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2. ΦD is a natural transformation of functors to presheaves, that is, for any f ′ : F ′ → G ′
and any X ∈ C the square

[2016.12.16.eq3]

Dp(Φ
◦(F ′))(X)

ΦDF′,X−−−−→ Φ◦(Dp′(F ′))(X)

Dp(Φ◦(f ′))X

y yΦ◦(Dp′ (f
′))X

Dp(Φ
◦(G ′))(X)

ΦDG′,X−−−−→ Φ◦(Dp′(G ′))(X)

(3.5)

commutes.

Computing the left and right hand side of (3.3) we see that ΦDG′,X should be a function of
the form ∐

F :X→U

G ′(Φ((X;F )))→
∐

F ′:Φ(X)→U ′
G ′((Φ(X);F ′))

Let F : X → U . Consider (Φ(X); Φ(F ) ◦ φ). Since (3.1) is a pullback there is a unique

morphism q such that q ◦ φ̃ = Q(Φ(F ) ◦ φ) and q ◦ Φ(p) = pΦ(X),Φ(F )◦φ ◦ Φ(F ). Then the
external square in the diagram

(Φ(X); Φ(F ) ◦ φ)
q−−−→ Φ(Ũ)

φ̃−−−→ Ũ ′ypΦ(X),Φ(F )◦φ Φ(p)

y yp′
Φ(X)

Φ(F )−−−→ Φ(U)
φ−−−→ U ′

is a pullback and since the right hand side square is a pullback, the left hand side square
is a pullback as well. Together with the fact that Φ takes pullback squares based on p to
pullback squares this implies that we obtain two pullbacks based on Φ(F ) ad Φ(p).

By Lemma 5.8 and Lemma 5.2 we have a unique morphism, which is an isomorphism,

ιX,FΦ : (Φ(X); Φ(F ) ◦ φ)→ Φ((X;F ))

such that
[2015.04.08.eq1]ιX,FΦ ◦ Φ(pX,F ) = pΦ(X),Φ(F )◦φ (3.6)

[2015.04.08.eq2]ιX,FΦ ◦ Φ(Q(F )) ◦ φ̃ = Q(Φ(F ) ◦ φ) (3.7)

and we define:

[2016.12.16.eq4]ΦDG′,X(F, γ′) = (Φ(F ) ◦ φ,G ′(ιX,FΦ )(γ′)) (3.8)

When no confusion is likely, we will omit the indexes at ι.

To prove that (3.4) commutes let

(F : Y → U, γ′ ∈ G ′(Φ((Y ;F )))) ∈ Dp(Φ
◦(G ′))(Y )

Then one path in the square gives us

(Φ◦(Dp′(G ′))(a))(ΦDF ′,X((F, γ′))) =
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(Φ◦(Dp′(G ′))(a))((Φ(F ) ◦ φ,G ′(ι)(γ′)) = Dp′(G ′)(Φ(a))((Φ(F ) ◦ φ,G ′(ι)(γ′))) =

(Φ(a) ◦ Φ(F ) ◦ φ,G ′(Q(Φ(a),Φ(F ) ◦ φ))(G ′(ι)(γ′))) =

(Φ(a ◦ F ) ◦ φ,G ′(Q(Φ(a),Φ(F ) ◦ φ) ◦ ι)(γ′))
where the first equality is by (3.8), the second by the definition of Φ◦, the third by (2.23)
and the fourth by the composition axiom of Φ and G ′.
The other path gives us

ΦDG′,X(Dp(Φ
◦(G ′))(a)((F, γ′)) =

ΦDG′,X((a ◦ F,Φ◦(G ′)(Q(a, F ))(γ′))) = ΦDG′,X((a ◦ F,G ′(Φ(Q(a, F )))(γ′))) =

(Φ(a ◦ F ) ◦ φ,G ′(ι)(G ′(Φ(Q(a, F )))(γ′))) =

(Φ(a ◦ F ) ◦ φ,G ′(ι ◦ Φ(Q(a, F )))(γ′))

where the first equality is by (2.23), the second by the definition of Φ◦, the third by (3.8)
and the fourth by the composition axiom of G ′.
It remains to show that

[2016.12.16.eq7]Q(Φ(a),Φ(F ) ◦ φ) ◦ ι = ι ◦ Φ(Q(a, F )) (3.9)

We have four pullbacks

(Φ(X); Φ(a ◦ F ) ◦ φ)
Q(Φ(a◦F )◦φ)−−−−−−−→ Ũ ′

pΦ(X),Φ(a◦F )◦φ

y yp′
Φ(X)

Φ(a◦F )◦φ−−−−−→ U ′

(Φ(Y ); Φ(F ) ◦ φ)
Q(Φ(F )◦φ)−−−−−−→ Ũ ′

pΦ(Y ),Φ(F )◦φ

y yp′
Φ(Y )

Φ(F )◦φ−−−−→ U ′

and

Φ((X; a ◦ F ))
Φ(Q(a◦F ))◦φ̃−−−−−−−→ Ũ ′

Φ(pX,a◦F )

y yp′
Φ(X)

Φ(a◦F )◦φ−−−−−→ U ′

Φ((Y ;F ))
Φ(Q(F ))◦φ̃−−−−−−→ Ũ ′

Φ(pY,F )

y yp′
Φ(Y )

Φ(F )◦φ−−−−→ U ′

and a morphism Φ(a) : Φ(X)→ Φ(Y ) such that Φ(a ◦F ) ◦φ = Φ(a) ◦Φ(F ) ◦φ. Applying to
these pullbacks Lemma 5.8 and then applying Lemma 5.3 we obtain a commutative square

(Φ(X); Φ(a ◦ F ) ◦ φ)
c1(Φ(a),Id

Ũ′ )−−−−−−−−→ (Φ(Y ); Φ(F ) ◦ φ)

ι

y yι
Φ((X; a ◦ F ))

c2(Φ(a),Id
Ũ′ )−−−−−−−−→ Φ((Y ;F ))

To prove (3.9) it remains to show that

[2016.12.16.eq5]c1(Φ(a), Id′
Ũ

) = Q(Φ(a),Φ(F ) ◦ φ) (3.10)

and
[2016.12.16.eq6]c2(Φ(a), Id′

Ũ
) = Φ(Q(a, F )) (3.11)
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In view of the definition of the morphisms c1, c2 given in Lemma 5.3 to prove (3.10) we need
to show that

Q(Φ(a),Φ(F ) ◦ φ) ◦ pΦ(Y ),Φ(F )◦φ = pΦ(X),Φ(a◦F )◦φ ◦ Φ(a)

Q(Φ(a),Φ(F ) ◦ φ) ◦Q(Φ(F ) ◦ φ) = Q(Φ(a ◦ F ) ◦ φ)

The first equality follows from (2.18). The second equality follows from (2.19). In both cases
we need also to use that Φ(a ◦ F ) = Φ(a) ◦ Φ(F ).

To prove (3.11) we need to show that

Φ(Q(a, F )) ◦ Φ(pY,F ) = Φ(pX,a◦F ) ◦ Φ(a)

Φ(Q(a, F )) ◦ Φ(Q(F )) ◦ φ̃ = Φ(Q(a ◦ F )) ◦ φ̃
The first equality again follows from (2.18) and the composition axiom for Φ and the second
equality follows from (2.19) and the composition axiom for Φ. This completes the proof of
commutativity of (3.4).

To prove that (3.5) commutes let

(F : X → U, β′ ∈ F ′(Φ((X;F )))) ∈ Dp(Φ
◦(F ′))(X)

Then one path in the square gives us

Φ◦(Dp′(f
′))X(ΦDF ′,X((F, β′)) =

Φ◦(Dp′(f
′))X((Φ(F ) ◦ φ,F ′(ι)(β′))) = Dp′(f

′)Φ(X)((Φ(F ) ◦ φ,F ′(ι)(β′))) =

(Φ(F ) ◦ φ, f ′(Φ(X);Φ(F )◦f)(F ′(ι)(β′)))
where the first equality is by (3.8), the second by the definition of Φ◦ and the third by (2.24).

The other path gives us
ΦDG′,X(Dp(Φ

◦(f ′))X((F, β′))) =

ΦDG′,X((F, (Φ◦(f ′))(X;F )(β
′))) = ΦDG′,X((F, f ′Φ((X;F ))(β

′))) =

(Φ(F ) ◦ φ,G ′(ι)(f ′Φ((X;F ))(β
′)))

where the first equality is by (2.24), the second by the definition of Φ◦ and the third by (3.8).

It remains to show that

f ′(Φ(X);Φ(F )◦f)(F ′(ι)(β′)) = G ′(ι)(f ′Φ((X;F ))(β
′))

which follows from the axiom of compatibility with morphisms of the natural transformation
f ′ : F ′ → G ′. This completes the proof of commutativity of (3.5) and with it Construction
3.3.

Problem 3.4 [2016.12.18.prob1] Let Φ : (C,p)→ (C ′,p′) be a universe category functor.
Let F ∈ PreShv(C), F ′ ∈ PreShv(C ′) and let

m : F → Φ◦(F ′)

be a morphism of presheaves. Let n ∈ N. To construct a morphism of presheaves

Dn
Φ(m) : Dn

p (F)→ Φ◦(Dn
p′(F ′))
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Construction 3.5 [2016.12.18.constr1] We proceed by induction on n.

For n = 0 we set D0
Φ(m) = m.

For the successor of n we need to construct a morphism

Dn+1
Φ (m) : Dp(D

n
p (F))→ Φ◦(Dp′(D

n
p′(F ′)))

We define it as the composition

Dp(D
n
p (F))

Dp(DnΦ(m))
−−−−−−−→ Dp(Φ

◦(Dn
p′(F ′)))

ΦDDn
p′

(F′)

−−−−−−→ Φ◦(Dp′(D
n
p′(F ′)))

The explicit form of the morphism Dn
p (m) when n ≥ 1 is given by the following lemma.

Lemma 3.6 [2016.12.22.l1] In the context of Problem 3.4, let n ≥ 1, X ∈ C, and

(F, a) ∈ qF :X→UD
n−1
p (F)((X;F )) = Dn

p (F)(X)

Then one has

Dn
Φ(m)X((F, a)) = (Φ(F ) ◦ φ;Dn−1

p′ (F ′)(ι)(Dn−1
Φ (m)(X;F )(a)))

where
ι = ιX,FΦ : (Φ(X); Φ(F ) ◦ φ)→ Φ((X;F ))

is the morphism defined by (3.6) and (3.7).

Proof: We have
Dn

Φ(m)X((F, a)) =

ΦDDn−1
p′ (F ′),X(Dp(D

n−1
Φ (m))X((F, a))) = ΦDDn−1

p′ (F ′),X((F,Dn−1
Φ (m)(X;F )(a))) =

(Φ(F ) ◦ φ;Dn−1
p′ (F ′)(ι)(Dn−1

Φ (m)(X;F )(a)))

where the first equality is by definition of Dn
Φ(m), the second by (2.24) and the third by

(3.8). The lemma is proved.

Lemma 3.7 [2016.12.18.l1] In the assumptions of Problem 3.4 consider a commutative
square in PreShv(C) of the form

[2016.12.18.eq1]

F1
m1−−−→ Φ◦(F ′1)

v

y yΦ◦(v′)

F2
m2−−−→ Φ◦(F ′2)

(3.12)

Then, for any n ∈ N, the square

[2016.12.18.eq2]

Dn
p (F1)

DnΦ(m1)
−−−−−→ Φ◦(Dn

p′(F ′1))

Dnp (v)

y yΦ◦(Dn
p′ (v

′))

Dn
p (F2)

DnΦ(m2)
−−−−−→ Φ◦(Dn

p′(F ′2))

(3.13)

commutes.
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Proof: We proceed by induction on n.

For n = 0 the square (3.13) coincides with the square (3.12).

For the successor of n, (3.13) is the external square of the diagram

Dp(D
n
p (F1))

Dp(DnΦ(m1))
−−−−−−−→ Dp(Φ

◦(Dn
p′(F ′1)))

ΦDDn
p′

(F′1)

−−−−−−→ Φ◦(Dp′(D
n
p′(F ′1)))

Dp(Dnp (v))

y Dp(Φ◦(Dn
p′ (v

′)))

y yΦ◦(Dp′ (D
n
p′ (v

′)))

Dp(D
n
p (F2))

Dp(DnΦ(m2))
−−−−−−−→ Dp(Φ

◦(Dn
p′(F ′2)))

ΦDDn
p′

(F′2)

−−−−−−→ Φ◦(Dp′(D
n
p′(F ′2)))

The left hand side square in this diagram is obtained by applying Dp to the square (3.13)
for n. It is commutative because Dp is a functor and in particular satisfies the composition
axiom (2.26).

The right hand side square is commutative because ΦD is a natural transformation of func-
tors that satisfies the axiom of compatibility with morphisms of presheaves. In our particular
case this axiom is applied to the morphism of presheaves Dn

p′(v
′).

This completes the proof of the lemma.

The following problem and construction are the only ones in this section where we change
our context from considering a universe category functor to simply a functor between two
categories.

Problem 3.8 [2016.12.18.prob3] Given a functor Φ : C → C ′ between two categories to
construct, for each Y ∈ C, a morphism of presheaves

yoΦ,Y : Y o(Y )→ Φ◦(Y o(Φ(Y )))

and to show that for a morphism g : Y → Y ′ the square

[2016.12.18.eq8]

Y o(Y )
yoΦ,Y

−−−→ Φ◦(Y o(Φ(Y )))

Y o(g)

y yΦ◦(Y o(Φ(g)))

Y o(Y ′)
yoΦ,Y ′

−−−−→ Φ◦(Y o(Φ(Y ′)))

(3.14)

commutes.

Construction 3.9 [2016.12.18.constr3] We need to define, for all X ∈ C, functions

Y o(Y )(X) = MorC(X, Y )→MorC′(Φ(X),Φ(Y )) = Φ◦(Y o(Φ(Y )))(X)

which we define as the restriction of ΦMor to MorC(X, Y ):

[2016.12.18.eq7]yoΦ,Y
X (f) = Φ(f) (3.15)
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Let us show that this family is a morphism of presheaves, i.e., that for any a : X ′ → X the
square

[2016.12.18.eq5]

Y o(Y )(X)
yoΦ,Y
X−−−→ Φ◦(Y o(Φ(Y )))(X)

Y o(Y )(a)

y yΦ◦(Y o(Φ(Y )))(a)

Y o(Y )(X ′)
yoΦ,Y

X′−−−→ Φ◦(Y o(Φ(Y )))(X ′)

(3.16)

commutes. Note that for an element f ′ : Φ(X)→ Φ(Y ) of Φ◦(Y o(Φ(Y )))(X) we have

[2016.12.18.eq6]Φ◦(Y o(Φ(Y )))(a)(f ′) = Φ(a) ◦ f ′ (3.17)

Let f : X → Y be an element of Y o(Y )(X).

Applying one path in (3.16) to f we get

Φ◦(Y o(Φ(Y )))(a)(yoΦ,Y
X (f)) = Φ◦(Y o(Φ(Y )))(a)(Φ(f)) = Φ(a) ◦ Φ(f)

where the first equality is by (3.15) and the second is by (3.17).

Applying another path we get

yoΦ,Y
X′ (Y o(Y )(a)(f)) = ΦY o(Y )X′(a ◦ f) = Φ(a ◦ f)

where the first equality is by definition of Y o(Y ) and the second by (3.15).

We conclude that (3.16) commutes by the composition axiom of Φ.

Let g : Y → Y ′ be a morphism. Note that for an element f ′ : Φ(X) → Φ(Y ) of
Φ◦(Y o(Φ(Y )))(X) we have

[2016.12.18.eq9]Φ◦(Y o(Φ(g)))(f ′) = f ′ ◦ Φ(g) (3.18)

Let us show that the square (3.14) commutes. Let X ∈ C and f ∈ Y o(Y )(X).

Applying one path in (3.14) to f we get

Φ◦(Y o(Φ(g)))(yoΦ,Y (f)) = Φ◦(Y o(Φ(g)))(Φ(f)) = Φ(f) ◦ Φ(g)

where the first equality is by (3.15) and the second by (3.18).

Applying another path we get

yoΦ,Y ′(Y o(g)(f)) = yoΦ,Y ′(f ◦ g) = Φ(f ◦ g)

where the first equality is by the definition of Y o(g) and the second by (3.15). We conclude
that (3.14) commutes by the composition axiom of Φ.

This completes the construction.

Recall that for X, Y ∈ C and n ≥ 0 we have defined in (2.30) the set Dn
p (X, Y ) as follows:

Dn
p (X, Y ) = Dn

p (Y o(Y ))(X)

We also introduced before Remark 2.16 the ◦-notation that we will use below.
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Problem 3.10 [2016.12.18.prob2] In the assumptions as above, to define, for all X, Y ∈ C
and n ≥ 0, functions

Φn
X,Y : Dn

p (X, Y )→ Dn
p′(Φ(X),Φ(Y ))

Construction 3.11 [2016.12.18.constr2] Applying Construction 3.5 to the morphism of
presheaves yoΦ,Y of Construction 3.9 we obtain morphisms of presheaves

Dn
Φ(yoΦ,Y ) : Dn

p (Y o(Y ))→ Φ◦(Dn
p′(Y o(Φ(Y ))))

Evaluating this morphism on X we obtain a function

[2016.12.20.eq3]Dn
p (X, Y ) = Dn

p (Y o(Y ))(X)→ Φ◦(Dn
p (Y o(Φ(Y ))))(X) = Dn

p′(Φ(X),Φ(Y ))
(3.19)

For n = 0 we have
D0
p(X, Y ) = Y o(Y )(X) = MorC(X, Y )

and Φ0
X,Y is the function ΦX,Y , that is, the restriction of ΦMor to the subset MorC(X, Y ) of

Mor(C).
The explicit form of the function Φn

X,Y when n ≥ 1 is given by the following lemma.

Lemma 3.12 [2016.12.22.l2] In the context of Problem 3.10, let n ≥ 1, X, Y ∈ C and

(F, a) ∈ qF :X→UD
n−1
p ((X;F ), Y ) = Dp(D

n−1
p (Y o(Y )))(X) = Dn

p (X, Y )

Then one has
Φn
X,Y ((F, a)) = (Φ(F ) ◦ φ, ι ◦Φn−1

(X;F ),Y (a))

where ι : (Φ(X),Φ(F ) ◦ φ)→ Φ((X;F )) is the morphism defined by (3.6) and (3.7).

Proof: By construction we have Φn
X,Y = Dn

Φ(yoΦ,Y )X . By Lemma 3.6 we have

Dn
Φ(yoΦ,Y )X((F, a)) = (Φ(F ) ◦ φ,Dn−1

p′ (Y o(Φ(Y )))(ι)(Dn−1
Φ (yoΦ,Y )(X;F )(a)))

Again by construction we have Φn−1
(X;F ),Y = Dn−1

Φ (yoΦ,Y )(X;F ) and Dn−1
p′ (Y o(Φ(Y )))(ι) =

Dn−1
p′ (ι, Y ) = ι ◦ −. The lemma is proved.

Lemma 3.13 [2016.12.20.l1] In the context of Construction 3.11 one has:

1. let f : X ′ → X be a morphism, then the square

[2016.12.20.eq1]

Dn
p (X, Y )

ΦnX,Y−−−→ Dn
p′(Φ(X),Φ(Y ))

Dnp (f,Y )

y yDnp′ (Φ(f),Φ(Y ))

Dn
p (X ′, Y )

Φn
X′,Y−−−−→ Dn

p′(Φ(X ′),Φ(Y ))

(3.20)
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2. let g : Y → Y ′ be a morphism, then the square

[2016.12.20.eq2]

Dn
p (X, Y )

ΦnX,Y−−−→ Dn
p′(Φ(X),Φ(Y ))

Dnp (X,g)

y yDnp′ (Φ(X),Φ(g))

Dn
p (X, Y ′)

Φn
X,Y ′−−−→ Dn

p′(Φ(X),Φ(Y ′))

(3.21)

commutes.

Proof: Commutativity of (3.20) follows from (3.19) and the fact that Dn
Φ(yoΦ,Y ) is a mor-

phism of presheaves.

Commutativity of (3.21) follows from (3.19), the commutativity of (3.14) and Lemma 3.7.

In the ◦-notation the assertion of Lemma 3.13 looks as follows. Let d ∈ Dn
p (X, Y ). Then for

f : X ′ → X one has

[2017.01.05.eq1]Φ(f) ◦Φn(d) = Φn(f ◦ d) (3.22)

and for g : Y → Y ′ one has

[2017.01.05.eq2]Φn(d) ◦ Φ(g) = Φn(d ◦ g) (3.23)

3.2 Universe category functors and isomorphisms un and ũn

By [?, Construction 4.7] any universe category functor Φ = (Φ, φ, φ̃) from (C, p) to (C ′, p)
defines a homomorphism of C-systems

H : CC(C, p)→ CC(C ′, p′)

Let ψ0 : pt′ → Φ(pt) be the unique morphism. To define H on objects, one uses the fact that

Ob(CC(C, p)) = qn≥0Obn(C, p)

and defines H(n,A) as (n,Hn(A)) where

Hn : Obn(C, p)→ Obn(C ′, p′)

To obtain Hn one defines by induction on n, pairs (Hn, ψn) where Hn is as above and ψn is
a family of isomorphisms

ψn(A) : intn(Hn(A))→ Φ(intn(A))

as follows:
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1. for n = 0, H0 is the unique function from a one point set to a one point set and
ψ0(A) = ψ0,

2. for the successor of n one has

[2016.12.10.eq1]Hn+1(A,F ) = (Hn(A), ψn(A) ◦ Φ(F ) ◦ φ) (3.24)

and ψn+1(A,F ) is the unique morphism int(H(A,F ))→ Φ(int(A,F )) such that

[2016.12.10.eq2]ψn+1(A,F ) ◦ Φ(Q(F )) ◦ φ̃ = Q(ψn(A) ◦ Φ(F ) ◦ φ) (3.25)

and
[2016.12.10.eq3]ψn+1(A,F ) ◦ Φ(pF ) = pψn(A)◦Φ(F )◦φ ◦ ψn(A) (3.26)

The function H : Ob(CC(C, p))→ Ob(CC(C ′, p′)) is the sum of functions Hn. For Γ = (n,A)
in Ob(CC(C, p)) we let ψ(Γ) = ψn(A) such that ψ is the sum of families ψn:

ψ(Γ) : int(H(Γ))→ Φ(int(Γ))

The action of H on morphisms is given by the condition that for f : Γ′ → Γ, H(f) is a
unique morphism of the form H(Γ′)→ H(Γ) such that

[2016.12.10.eq4]int(H(f)) = ψ(Γ′) ◦ Φ(int(f)) ◦ ψ(Γ)−1 (3.27)

We will often write H also for the functions Hn and ψ for the functions ψn.

Lemma 3.14 [2015.03.21.l4] Let (Φ, φ, φ̃) be universe category functor. Then:

1. for T ∈ Ob1(Γ) one has

u1,H(Γ)(H(T )) = ψ(Γ) ◦ Φ(u1,Γ(T )) ◦ φ

2. for o ∈ Õb1(Γ) one has

ũ1,H(Γ)(H(o)) = ψ(Γ) ◦ Φ(ũ1,Γ(o)) ◦ φ̃

Proof: Let Γ = (n,A).

In the case of T ∈ Ob1(Γ), if T = (n+ 1, (A,F )) then

u1(H(T )) = u1(n+ 1, H(A,F )) = u1(n+ 1, (H(A), ψ(Γ) ◦ Φ(F ) ◦ φ)) = ψ(Γ) ◦ Φ(F ) ◦ φ

where the last equality is by (2.37).

In the case of o ∈ Õb1(Γ), if ∂(o) = (n + 1, (A,F )) then ∂(H(o)) = (n + 1, H(A,F )). Since
o : Γ→ ∂(o) we have

[2016.12.10.eq6]H(o) = ψ(Γ) ◦ Φ(int(o)) ◦ ψ(A,F )−1 (3.28)
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and

ũ1(H(o)) = H(o) ◦Q(u1(n+ 1, H(A,F ))) = H(o) ◦Q(ψ(A) ◦ Φ(F ) ◦ φ) =

H(o) ◦ ψ(A,F ) ◦ Φ(Q(F )) ◦ φ̃ = ψ(Γ) ◦ Φ(int(o)) ◦ ψ(A,F )−1 ◦ ψ(A,F ) ◦ Φ(Q(F )) ◦ φ̃ =

ψ(Γ) ◦ Φ(int(o)) ◦ Φ(Q(F )) ◦ φ̃ = ψ(Γ) ◦ Φ(int(o) ◦Q(F )) ◦ φ̃ =

ψ(Γ) ◦ Φ(ũ1(o)) ◦ φ̃

Where the first equality is by (2.44), the second by (3.24) and (2.37), the third by (3.25),
the fourth by (3.28) and the seventh again by (2.44).

We now want to express the assertion of Lemma 3.14 in terms of the commutativity of a
diagram of natural transformations of presheaves on CC(C, p).

Lemma 3.15 [2016.12.20.l2] The family of morphisms

ψ(Γ) : int(H(Γ))→ Φ(int(Γ))

is a natural isomorphism of functors

ψ : H ◦ int→ int ◦ Φ

Proof: By construction, ψ(Γ) is a family of morphisms of the form (H ◦ int)(Γ) → (int ◦
Φ)(Γ). It remains to verify that for f : Γ′ → Γ one has

ψ(Γ) ◦ (int ◦ Φ)(f) = (H ◦ int)(f) ◦ ψ(Γ′)

This equality is equivalent to (3.27).

We will use the natural transformation ψ◦ that ψ defines on the corresponding functors
between the categories of presheaves. Note that for a natural transformation a : Φ1 → Φ2 of
functors of the form C → C ′ and a presheaf F ′ on C ′ we have

Φ◦2(F ′)(X) = F ′(Φ2(X))→ F ′(Φ1(X)) = Φ◦1(F ′)(X)

that is, for a : Φ1 → Φ2 we have a◦ : Φ◦2 → Φ◦1. In particular, in the case of ψ we have:

ψ◦ : Φ◦ ◦ int◦ = (int ◦ Φ)◦ → (H ◦ int)◦ = int◦ ◦H◦
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Lemma 3.16 [2016.12.20.l3] In the context of Lemma 3.14 the following two diagrams of
natural transformations of presheaves on CC(C, p) commute:

Ob1
u1−−−→ int◦(Y o(U))yint◦(yoΦ,U )

int◦(Φ◦(Y o(Φ(U))))yHOb1 yint◦(Φ◦(Y o(φ)))

int◦(Φ◦(Y o(U ′)))yψ◦Y o(U′)
H◦(Ob1)

H◦(u1)−−−−→ H◦(int◦(Y o(U ′))

Õb1
ũ1−−−→ int◦(Y o(Ũ))yint◦(yoΦ,Ũ )

int◦(Φ◦(Y o(Φ(Ũ))))yHÕb1 yint◦(Φ◦(Y o(φ̃)))

int◦(Φ◦(Y o(Ũ ′)))yψ◦Y o(Ũ′)
H◦(Õb1)

H◦(ũ1)−−−−→ H◦(int◦(Y o(Ũ ′))

Proof: Consider the first diagram. For Γ and T ∈ Ob1(Γ) one path in the diagram applied
to T gives us

ψ◦(int◦(Φ◦(Y o(φ)))(int◦(yoΦ,U(u1,Γ(T ))))) = ψ◦(int◦(Φ◦(Y o(φ)))(Φ(u1,Γ(T )))) =

ψ◦(Φ(u1,Γ(T )) ◦ φ) = ψ(Γ) ◦ Φ(u1,Γ(T )) ◦ φ

while the other path gives

H◦(u1)(HOb1(T )) = u1,H(Γ)(H(T ))

The equality of these two expressions is the statement of Lemma 3.14(1).

The case of the second diagram is strictly parallel. The lemma is proved.

Consider now isomorphisms un and ũn for general n ≥ 1.

Lemma 3.17 [2016.12.20.l4] Let Φ = (Φ, φ, φ̃) be a universe category functor and n ≥ 1.
Then

1. for T ∈ Obn(Γ) one has

[2016.12.20.eq5]un,H(Γ)(H(T )) = ψ(Γ) ◦ (Φn−1
int(Γ),U(un,Γ(T )) ◦ φ) (3.29)

2. for o ∈ Õbn(Γ) one has

[2016.12.20.eq6]ũn,H(Γ)(H(o)) = ψ(Γ) ◦ (Φn−1

int(Γ),Ũ
(ũn,Γ(o)) ◦ φ̃) (3.30)

Proof: Let us verify first that the right hand side of (3.29) is defined and belongs to the
same set as the left hand side.
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By (2.36) and (2.53), we have un,Γ(T ) ∈ Dn−1
p (int(Γ), U). Therefore,

Φn−1
int(Γ),U(un,Γ(T )) ∈ Dn−1

p′ (Φ(int(Γ)),Φ(U))

Since φ : Φ(U)→ U ′ and ψ(Γ) : int(H(Γ))→ Φ(int(Γ)) we have

ψ(Γ) ◦ (Φn−1
int(Γ),U(un,Γ(T )) ◦ φ) ∈ Dn−1

p′ (int(H(Γ)), U ′)

on the other hand un,H(Γ)(H(T )) is an element of Dn−1
p′ (int(H(Γ)), U ′) as well. Therefore,

(3.29) is an equality between two elements of the same set.

To prove (3.29) we proceed by induction on n. For n = 1 this equality is the same as the
equality of Lemma 3.14(1).

For the successor of n ≥ 1 we reason as follows. Let T ′ = ftn(T ) ∈ Ob1(Γ) and let us
abbreviate ui,− to ui. By (2.57) and since H commutes with ft we have

[2016.12.24.eq4]un+1(H(T )) = (u1(ftn(H(T ))), un(H(T ))) = (u1(H(T ′)), un(H(T )))
(3.31)

By the inductive assumption we have

[2016.12.24.eq5]un(H(T )) = ψ(T ′) ◦ (Φn−1
int(T ′),U(un(T )) ◦ φ) (3.32)

On the other hand, by (2.57), Lemma 3.12 and (2.39) we have

Φn
int(Γ),U(un+1(T )) = Φn

int(Γ),U((u1(T ′), un(T ))) =

(Φ(u1(T ′)) ◦ φ, ι ◦Φn−1
(int(Γ);u1(T ′)),U(un(T ))) = (Φ(u1(T ′)) ◦ φ, ι ◦Φn−1

int(T ′),U(un(T )))

where

ι = ι
int(Γ),u1(T ′)
Φ : (Φ(int(Γ)); Φ(u1(T ′)) ◦ φ)→ Φ((int(Γ);u1(T ′))) = Φ(int(T ′))

is defined by the obvious analogs of (3.6) and (3.7).

By Lemma 2.15(2) we have

(Φ(u1(T ′)) ◦ φ, ι ◦ (Φn−1
int(T ′),U(un(T )))) ◦ φ = (Φ(u1(T ′)) ◦ φ, (ι ◦Φn−1

int(T ′),U(un(T ))) ◦ φ)

Next, by Lemma 2.15(1) we have

ψ(Γ) ◦ (Φ(u1(T ′)) ◦ φ, (ι ◦Φn−1
int(T ′),U(un(T ))) ◦ φ) =

(ψ(Γ) ◦ Φ(u1(T ′)) ◦ φ,Q(ψ(Γ),Φ(u1(T ′)) ◦ φ) ◦ ((ι ◦Φn−1
int(T ′),U(un(T ))) ◦ φ))

It remains to compare the last expression with (3.31). Both expressions are pairs. The first
components of these pairs are equal by Lemma 3.14(1). To show that the second components
are equal we need, in view of (3.32), to show that

Q(ψ(Γ),Φ(u1(T ′)) ◦ φ) ◦ ((ι ◦Φn−1
int(T ′),U(un(T ))) ◦ φ) = ψ(T ′) ◦ (Φn−1

int(T ′),U(un(T )) ◦ φ)
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In view of the “associativities” of Lemma 2.14 it is sufficient to show that

[2016.12.24.eq7]Q(ψ(Γ),Φ(u1(T ′)) ◦ φ) ◦ ι = ψ(T ′) (3.33)

where
ι = ι

int(Γ),u1(T ′)
Φ : (Φ(int(Γ)); Φ(u1(T ′)) ◦ φ)→ Φ((int(Γ);u1(T ′)))

Let Γ = (m,A) and F = u1,Γ(T ′) such that T ′ = (m + 1, (A,F )). Then, ψ(T ′) = ψ((A,F ))
is the unique morphism that satisfies the equations (3.25) and (3.26). Therefore, to prove
(3.33) we need to show that the following equalities hold:

[2016.12.24.eq8]Q(ψ(A),Φ(F ) ◦ φ) ◦ ιint(A),F
Φ ◦ Φ(Q(F )) ◦ φ̃ = Q(ψ(A) ◦ Φ(F ) ◦ φ) (3.34)

[2016.12.24.eq9]Q(ψ(A),Φ(F ) ◦ φ) ◦ ιint(A),F
Φ ◦ Φ(pF ) = pψ(A)◦Φ(F )◦φ ◦ ψ(A) (3.35)

For (3.34) we have

Q(ψ(A),Φ(F )◦φ)◦ ι◦Φ(Q(F ))◦ φ̃ = Q(ψ(A),Φ(F )◦φ)◦Q(Φ(F )◦φ) = Q(ψ(A)◦Φ(F )◦φ)

where the first equality is by (3.7) and the second one by (2.19).

For (3.35) we have

Q(ψ(A),Φ(F ) ◦ φ) ◦ ι ◦ Φ(pF ) = Q(ψ(A),Φ(F ) ◦ φ) ◦ pΦ(F )◦φ = pψ(A)◦Φ(F )◦φ ◦ ψ(A)

where the first equality is by (3.6) and the second one by (2.18) and (2.16).

A strictly parallel reasoning applies to the proof of (3.30).

This completes the proof of Lemma 3.17.

3.3 Universe category functors and the Ip construcion

Let (C, p) and (C ′, p′) be locally cartesian closed universe categories with binary product
structure as considered in Section 2.6. Let Φ : (C, p) → (C ′, p′) be a universe category
functor. No assumption is made about the compatibility of Φ with the locally cartesian
closed or binary product structures.

In what follows we omit the indexes at ηn, η!
n and Φn where no confusion is possible.

Problem 3.18 [2015.03.21.prob1] In the context introduced above to construct, for any
n ≥ 0 and Y ∈ C, a morphism

χΦ,n(Y ) : Φ(Inp (Y ))→ Inp′(Φ(Y ))

such that for any g : Y → Y ′ the square

[2016.12.30.eq1]

Φ(Inp (Y ))
χΦ,n(Y )
−−−−−→ Inp′(Φ(Y ))

Φ(Inp (g))

y yInp′ (Φ(g))

Φ(Inp (Y ′))
χΦ,n(Y ′)
−−−−−→ Inp′(Φ(Y ′))

(3.36)

commutes.
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Construction 3.19 [2015.03.21.constr1] We set

χΦ,n(Y ) = ηn(Φn(IdnY ))

where IdnY is defined in (2.71). In what follows we often omit the index Φ at χ. Let
g : Y → Y ′. Let us show that the square (3.36) commutes. We have

χn(Y ) ◦ Inp′(Φ(g)) =

ηn(Φn(IdnY )) ◦ Inp′(Φ(g)) = ηn(Φn(IdnY ) ◦ Φ(g)) = ηn(Φn(IdnY ◦ g)) =

ηn(Φn(η!
n(Inp (g))))

where the first equality is by the definition of χn, the second by (2.68), the third by (3.23),
and the fourth by (2.73).

On the other hand we have,
Φ(Inp (g)) ◦ χn(Y ′) =

Φ(Inp (g)) ◦ ηn(Φn(IdnY ′)) = ηn(Φ(Inp (g)) ◦Φn(IdnY ′)) = ηn(Φn(Inp (g) ◦ IdnY ′)) =

ηn(Φn(η!
n(Inp (g))))

where the first equality is by the definition of χn, the second by (2.67), the third by (3.22),
and the fourth by (2.72).

This shows that the square (3.36) commutes and completes the construction.

We will use the following formula.

Lemma 3.20 [2017.01.07.l3] In the notation introduced above and d ∈ Dn
p (X, Y ) one has

ηn(Φn(d)) = Φ(ηn(d)) ◦ χn(Y )

Proof: We have
Φ(ηn(d)) ◦ χn(Y ) =

Φ(ηn(d)) ◦ ηn(Φn(IdnY )) = ηn(Φ(ηn(d)) ◦Φn(IdnY )) = ηn(Φn(ηn(d) ◦ IdnY )) =

ηn(Φn(d))

where the first equality is by the definition of χn, the second by (2.67), the third by (3.22),
and the fourth by (2.74).
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3.4 Universe category functors and the isomorphisms µn and µ̃n

For a universe category functor (Φ, φ, φ̃) and n ≥ 0 let us denote by

ξΦ,n : Φ(Inp (U))→ Inp′(U
′)

the composition χΦ,n(U) ◦ Inp′(φ) and by

ξ̃Φ,n : Φ(Inp (Ũ))→ Inp′(Ũ
′)

the composition χΦ,n(Ũ) ◦ Inp′(φ̃).

In view of the commutativity of the squares (3.36) and (3.1) and the composition axiom for
the functor Inp′ the squares

[2017.01.01.eq6]

Φ(Inp (Ũ))
ξ̃Φ,n−−−→ Inp′(Ũ

′)

Φ(Inp (∂))

y yInp′ (∂)

Φ(Inp (U))
ξΦ,n−−−→ Inp′(U

′)

(3.37)

commute.

Lemma 3.21 [2015.05.06.l2] Let (Φ, φ, φ̃) be a universe category functor, Γ ∈ Ob(CC(C, p))
and n ≥ 1. Then one has:

1. for T ∈ Obn(Γ)

[2017.01.01.eq7]µn,H(Γ)(H(T )) = ψ(Γ) ◦ Φ(µn,Γ(T )) ◦ ξΦ,n−1 (3.38)

2. for o ∈ Õbn(Γ)

[2017.01.01.eq8]µ̃n,H(Γ)(H(o)) = ψ(Γ) ◦ Φ(µ̃n,Γ(o)) ◦ ξ̃Φ,n−1 (3.39)

Proof: Let us show first that the right hand sides of (3.38) and (3.39) are defined and belong
to the same sets as the left hand sides.

Indeed, by (2.76), µn,Γ(T ) is an element of MorC(int(Γ), In−1
p (U)) and therefore Φ(µn,Γ(T ))

is an element of MorC′(Φ(int(Γ)),Φ(In−1
p (U))).

The morphism ψ(Γ) is of the form int(H(Γ))→ Φ(int(Γ)) and the morphism ξΦ,n−1 is of the
form Φ(In−1

p (U))→ In−1
p′ (U ′). Therefore, the composition on the right hand side of (3.38) is

defined and belongs to the same set MorC′(int(H(Γ)), In−1
p′ (U ′)) as µn,H(Γ)(H(T )).

A parallel reasoning shows that the right hand side of (3.39) is defined and both sides are

elements of the set MorC′(int(H(Γ)), In−1
p′ (Ũ ′)).

Next, we have

µn,H(Γ)(H(T )) = int◦(ηn−1,U ′)H(Γ)(un(H(T ))) = ηn−1,U ′,int(H(Γ))(un(H(T ))) =
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ηn−1,U ′,int(H(Γ))(ψ(Γ) ◦ (Φn−1(un(T )) ◦ φ)) = ψ(Γ) ◦ ηn−1,U ′,Φ(int(Γ))(Φ
n−1(un(T )) ◦ φ) =

ψ(Γ) ◦ ηn−1,Φ(U),Φ(int(Γ))(Φ
n−1(un(T ))) ◦ In−1

p′ (φ)

where the first equality is by the definition of µn (cf. Construction 2.43), the second by the
definition of int◦, the third by (3.29), the fourth by (2.67) and the fifth by (2.68).

Next
ηn−1(Φn−1(un(T ))) ◦ In−1

p′ (φ) =

Φ(ηn−1(un(T ))) ◦ χn−1(U) ◦ In−1
p′ (φ) = Φ(ηn−1(un(T ))) ◦ ξn−1 =

Φ(µn(T )) ◦ ξn−1

where the first equality holds by Lemma 3.20, the second one by the definition of ξn and the
third one by the definition of µn. This reasoning proves (3.38).

The proof of (3.39) is strictly parallel to the proof of (3.38).

The lemma is proved.

4 P -structures on universes and (Π, λ)-structures

4.1 Construction of (Π, λ)-structures on the C-systems CC(C, p)

We will show now how to construct (Π, λ)-structures on C-systems of the form CC(C, p) for
locally cartesian closed universe categories (C, p) with a binary product structure.

That construction for Problem 4.7, without the part that concerns the bijection, exists was
originally stated in [?, Proposition 2] with a sketch of a proof given in the 2009 version of
[?].

Let us recall the following definition from [?]:

Definition 4.1 [2015.03.09.def1] Let CC be a C-system. A pre-(Π, λ)-structure on CC
is a pair of morphisms of presheaves

Π : Ob2 → Ob1

λ : Õb2 → Õb1

such that the square

[2015.03.09.eq1]

Õb2
λ−−−→ Õb1

∂

y y∂
Ob2

Π−−−→ Ob1

(4.1)

commutes.

A pre-(Π, λ)-structure is called a (Π, λ)-structure if the square (4.1) is a pullback.
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Definition 4.2 [2015.03.29.def1] Let C be a locally cartesian closed category with a binary

product structure and p : Ũ → U a universe in C. A pre-P -structure on p is a pair of
morphisms

P̃ : Ip(Ũ)→ Ũ

P : Ip(U)→ U

such that the square

[2009.prod.square]

Ip(Ũ)
P̃−−−→ Ũ

Ip(p)

y yp
Ip(U)

P−−−→ U

(4.2)

is a commutes.

A pre-P -structure is called a P -structure if the square (4.2) is a pullback.

Problem 4.3 [2015.03.17.prob0] Let (C, p) be a locally cartesian closed universe category

with a binary product structure. Let (P, P̃ ) be a pre-P -structure on p. To construct a (Π, λ)-
structure on CC(C, p).

Construction 4.4 [2015.03.17.constr3]Consider the diagram:

[2016.12.09.eq1]

Õb2
µ̃2−−−→ int◦(Y o(Ip(Ũ)))

int◦(Y o(P̃ ))−−−−−−−→ int◦(Y o(Ũ))
µ−1

1−−−→ Õb1

∂

y yint◦(Y o(Ip(p)))

yint◦(Y o(p)) y∂
Ob2

µ2−−−→ int◦(Y o(Ip(U)))
int◦(Y o(P ))−−−−−−−→ int◦(Y o(U))

µ−1
1−−−→ Ob1

(4.3)

Since the squares (2.75) commute, the square (4.2) commutes and both Y o and int◦ are
functors, the external square of this diagram commutes and therefore defines a pre-(Π, λ)
structure.

We conclude that for a pre-P -structure (P, P̃ ) the pair of morphisms

[2016.12.09.eq3]
λ = µ̃2 ◦ int◦(Y o(P̃ )) ◦ µ̃−1

1

Π = µ2 ◦ int◦(Y o(P )) ◦ µ−1
1

(4.4)

is a pre-(Π, λ)-structure on CC(C, p).

Lemma 4.5 [2017.01.07.l4] In the context of Construction 4.4, if (P, P̃ ) is a P -structure
then the pre-(Π, λ)-structure constructed there is a (Π, λ)-structure.

Proof: We need to show that the external square of the diagram (4.3) square is a pullback.

Horizontal composition of pullbacks is a pullback. The left hand side square is a pullback
because it is a commutative square with two parallel sides being isomorphisms. The right
hand side square is a pullback for the same reason.
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It remains to show that the middle square is pullback. This square is obtained by applying
first the functor Y o and then the functor int◦ to the pullback square (4.2).

Our claim follows now from two facts:

1. the Yoneda functor Y o : C → PreShv(C) takes pullbacks to pullbacks,

2. for any functor F : C ′ → C, the functor

F ◦ : PreShv(C)→ PreShv(C ′)

of pre-composition with F op, takes pullbacks to pullbacks.

We assume that these two facts are known.

There is an important class of cases when the function from P -structures on p to (Π, λ)-
structures on CC(C, p) is a bijection.

Lemma 4.6 [2016.09.09.l1] Let (C, p) be a universe category such that the functor

Y o ◦ int◦ : C → PreShv(CC(C, p))

is fully faithful. Then the function from the pre-P -structures on p to the pre-(Π, λ)-structures
on CC(C, p) defined by Construction 4.4 is a bijection.

Moreover, the restriction of this function to the function from P -structures to (Π, λ)-structures,
which is defined in view of Lemma 4.5, is a bijection as well.

Proof: Let α̃ be the inverse to (Y o ◦ int◦)Ip(Ũ),Ũ and α be the inverse to (Y o ◦ int◦)Ip(U),U .

Given a pre-(Π, λ)-structure (Π, λ) let

[2016.09.09.eq1]
P̃ = α̃(µ̃−1

2 ◦ λ ◦ µ̃1)

P = α(µ−1
2 ◦ Π ◦ µ1)

(4.5)

Then P̃ : Ip(Ũ) → Ũ and P : Ip(U) → U . Let S be the square that P̃ and P form with
Ip(p) and p. Then the square (Y o ◦ int◦)(S) is of the form

[2017.01.07.eq7]

int◦(Y o(Ip(Ũ)))
µ̃−1

2 ◦λ◦µ̃1−−−−−→ int◦(Y o(Ũ))

int◦(Y o(Ip(p)))

y yint◦(Y o(p))
int◦(Y o(Ip(U)))

µ−1
2 ◦Π◦µ1−−−−−−→ int◦(Y o(U))

(4.6)

Since the left and right squares of (4.3) commute and their horizontal arrows are isomor-
phisms, the square (Y o ◦ int◦)(S) is isomorphic to the original square formed by Π and λ
and as a square isomorphic to a commutative square is commutative.
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One verifies immediately that the function from pre-(Π, λ)-structures to pre-P -structures
that this construction defines is both left and right inverse to the function of Construction
4.4.

Assume now that we started with a (Π, λ)-structure. Then the square (Y o ◦ int◦)(S) is
isomorphic to a pullback and therefore is a pullback. The functor Y o is fully-faithful and
by our assumption so is int◦. Therefore, Y o ◦ int◦ is fully-faithful. Fully-faithful functors
reflect pullbacks, that is, if the image of a square under a fully-faithful functor is a pullback
than the original square is a pullback. We conclude that both the direct and the inverse
bijection map the subsets of P -structures and (Π, λ)-structures to each other. Therefore, by
[?, Lemma 5.1], the restrictions of the total bijections to these subsets are bijections as well.

The lemma is proved.

Problem 4.7 [2016.12.09.prob2] Let (C, p) be a universe category.

To construct a function from the set of P -structures on p to the set of structures of products
of families of types on CC(C, p).

To show that if the functor Y o ◦ int◦ is fully faithful than this function is a bijection.

Construction 4.8 [2016.12.09.constr2] The required function is the composition of the
function of Construction 4.4 with the construction for [?, Problem 4.5] described in that
paper.

Remark 4.9 [2017.01.07.rem1] One can define a mixed P -structure (or pre-P -structure)
as follows:

Definition 4.10 [2009.10.27.def1] Let C be an lcc category and let pi : Ũi → Ui, i = 1, 2, 3
be three morphisms in C. A P -structure on (p1, p2, p3) is a pullback of the form

[Pisq1]

Ip1(Ũ2)
P̃−−−→ Ũ3

Ip1 (p2)

y yp3

Ip1(U2)
P−−−→ U3

(4.7)

Then a P -structure on p is a P -structure on (p, p, p). This concept can be used to construct
universes in C-systems that participate in impredicative (Π, λ)-structures.

4.2 Functoriality properties of the (Π, λ)-structures constructed
from P -structures

Recall that in [?, pp. 1067-68] we have constructed, for any homomorphism H : CC → CC ′

of C-systems, and any n ≥ 0, natural transformations

HObn : Obi → H◦(Obi)
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where for Γ ∈ CC and T ∈ Obi(Γ) one has

HObn(T ) = HOb(T )

and
HÕbn : Õbi → H◦(Õbi)

where for Γ ∈ CC and o ∈ Õbn(Γ) one has

HÕbn(o) = HMor(o)

Definition 4.11 [2016.09.13.def1] Let H : CC → CC ′ be a homomorphism of C-systems.
Let (Π, λ) and (Π′, λ′) be pre-(Π, λ)-structures on CC and CC ′ respectively.

Then H is called a (Π, λ)-homomorphism if the following two squares commute

Ob2
Π−−−→ Ob1

HOb2

y yHOb1
H◦(Ob2)

H◦(Π′)−−−−→ H◦(Ob1)

Õb2
λ−−−→ Õb1

HÕb2

y yHÕb1
H◦(Õb2)

H◦(λ′)−−−−→ H◦(Õb1)

If (Π, λ) and (Π′, λ′) are (Π, λ)-structures then H is called a (Π, λ)-homomorphism if it is a
(Π, λ)-homomorphism with respect to the corresponding pre-(Π, λ)-structures.

Unfolding the definition of HObi and HÕbi we see that H is a (Π, λ)-homomorphism if and
only if for all Γ ∈ CC one has

1. for all T ∈ Ob2(Γ) one has

[2016.09.13.eq1]H(ΠΓ(T )) = Π′H(Γ)(H(T )) (4.8)

2. for all o ∈ Õb2(Γ) one has

[2016.09.13.eq2]H(λΓ(o)) = λ′H′(Γ)(H(o)) (4.9)

Theorem 4.12 [2015.03.21.th1] Let (C, p) and (C ′, p′) be universe categories with locally

cartesian closed and binary product structures. Let (Φ, φ, φ̃) be a universe category functor

above and let (P, P̃ ), (P ′, P̃ ′) be pre-P -structures on p and p′ respectively.

Assume that the squares

[2015.03.23.sq1]

Φ(Ip(U))
Φ(P )−−−→ Φ(U)

ξΦ

y yφ
Ip′(U

′)
P ′−−−→ U ′

Φ(Ip(Ũ))
Φ(P̃ )−−−→ Φ(Ũ)

ξ̃Φ

y yφ̃
Ip′(Ũ

′)
P̃ ′−−−→ Ũ ′

(4.10)
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commute. Then the homomorphism

H(Φ, φ, φ̃) : CC(C, p)→ CC(C ′, p′)

is a homomorphism of C-systems with pre-(Π, λ)-structures relative to the pre-(Π, λ)-structures

obtained from (P, P̃ ) and (P ′, P̃ ′) by Construction 4.4.

Proof: We have to show that for all Γ ∈ Ob(CC(C, p)), T ∈ Ob2(Γ) and o ∈ Õb2(Γ) the
equalities (4.8) and (4.9) hold. We will prove the first equality. The proof of the second is
strictly parallel to the proof of the first.

By definition we have:

H(Π(T )) = H(u−1
1 (η1(u2(T )) ◦ P )) = (u1)−1(ψ(Γ) ◦ Φ(η(u2(T )) ◦ P ) ◦ φ) =

(u1)−1(ψ(Γ) ◦ Φ(η(u2(T ))) ◦ Φ(P ) ◦ φ)

where the second equality holds by Lemma 3.14(1) and

Π′(H(T )) = (u1)−1(u2(H(T )) ◦ P ′) = (u1)−1(η′(u2(H(T ))) ◦ P ′)

Let us show that

η′(u2(H(T ))) ◦ P ′ = ψ(Γ) ◦ Φ(η(u2(T ))) ◦ Φ(P ) ◦ φ

By Lemma 3.21(1) we have

η′(u2(H(T ))) ◦ P ′ = ψ(Γ) ◦ Φ(η(u2(T ))) ◦ ξΦ ◦ P ′

It remains to show that
ξΦ ◦ P ′ = Φ(P ) ◦ φ

which is our assumption about the commutativity of the square first square in (4.10).

5 Appendices

The facts discussed and proved in the following appendices are certainly well known. We
had to repeat them here because we need to fix notations and because there is a number of
facts whose proves I could not find in the literature.

5.1 Appendix A. Categories with binary products and binary carte-
sian closed categories

Let C be a category.
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Definition 5.1 [2016.12.02.def1] A binary product diagram is a pair of morphisms of the
form (pr1 : bp→ X, pr2 : bp→ Y ) such that for all A ∈ C the function

[2016.12.02.eq2a]MorC(A, bp)→MorC(A,X)×MorC(A, Y ) (5.1)

given by a 7→ (a ◦ pr1, a ◦ pr2) is a bijection.

The structure of binary products on C is a family, parametrized by pairs of objects (X, Y ) ∈
C × C, of binary product diagrams (pr1(X, Y ) : bp(X, Y )→ X, pr2(X, Y ) : bp(X, Y )→ Y ).

Unless another notation is given, as for the binary products in the slice categories considered
below, the object bp(X, Y ) is denoted by X × Y and the structural morphisms from X × Y
to X and Y by prX,Y1 and prX,Y2 respectively. We will often abbreviate the notation prX,Yi

to pri.

The following lemma expresses the well know “uniqueness” property of the binary products.
We need its explicit form because in the next lemma we will need to state and prove that
the corresponding “canonical” isomorphisms are natural.

Lemma 5.2 [2016.12.02.l1] Let (pr1,i : bpi → X, pr2,i : bpi → Y ), where i = 1, 2, be two
binary product diagrams. Let ι1,2 : bp1 → bp2 be the morphism such that ι1,2 ◦ pr1,2 = pr1,1

and ι1,2 ◦pr2,2 = pr2,1 and ι2,1 : bp2 → bp1 be the morphism given by the symmetric condition.
Then ι1,2 and ι2,1 are mutually inverse isomorphisms.

Proof: To show that ι1,2 ◦ ι2,1 = Idbp1 we need to compare two morphisms whose codomain
is a binary product. To do it it is sufficient, because of the injectivity of (5.1), to prove that
their compositions with the two projections are equal. This follows by simple rewriting. The
same applies to the second composition.

Lemma 5.3 [2015.04.16.l1] Let C be a category. Consider four binary product diagrams
(pr1,i : bpi → X, pr2,i : bpi → Y ) and (pr′1,i : bp′i → X ′, pr′2,i : bp′i → Y ′) where i = 1, 2. Let
ι = ι1,2 : pb1 → pb2 be as in Lemma 5.2 and similarly ι′ : pb′1 → pb′2. Let a : X ′ → X and
b : Y ′ → Y .

Let ci(a, b) : pb′i → pbi be the unique morphisms such that ci(a, b) ◦ pr1,i = pr′1,i ◦ a and
ci(a, b) ◦ pr2,i = b ◦ pr′2,i. Then the square

pb′1
c1(a,b)−−−−→ pb1

ι′

y yι
pb′2

c2(a,b)−−−−→ pb2

commutes, i.e., c1(a, b) ◦ ι = ι′ ◦ c2(a, b).

Proof: Since (pr1,2, pr2,2) is a binary product digagram it is sufficient to prove that

c1(a, b) ◦ ι ◦ pr1,2 = ι′ ◦ c2(a, b) ◦ pr1,2
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and
c1(a, b) ◦ ι ◦ pr2,2 = ι′ ◦ c2(a, b) ◦ pr2,2

For the first one we have:

c1(a, b) ◦ ι ◦ pr1,2 = c1(a, b) ◦ pr1,1 = pr′1,1 ◦ a

and
ι′ ◦ c2(a, b) ◦ pr1,2 = ι′ ◦ pr′1,2 ◦ a = pr′1,1 ◦ a

The verification of the second equality is similar.

Given a category with binary products and morphisms a : X → X ′, b : Y → Y ′ denote
by a × b : X × Y → X ′ × Y ′ the unique morphism such that (a × b) ◦ pr1 = pr1 ◦ a and
(a× b) ◦ pr2 = pr2 ◦ b.
One has

[2016.11.26.eq1]IdX×Y = IdX × IdY (5.2)

and for a, b as above and a′ : X ′ → X ′′, b′ : X ′ → X” one has

[2016.11.26.eq2](a× b) ◦ (a′ × b′) = (a ◦ a′)× (b ◦ b′) (5.3)

One proves these two equalities by composing both sides with pr1 and pr2 and using the
uniqueness part of the binary product axiom.

From (5.3) one derives

[2016.11.28.eq3](a× IdY ) ◦ (a′ × IdY ) = (a ◦ a′)× IdY (5.4)

and
[2016.11.28.eq4](IdX × b) ◦ (IdX × b′) = IdX × (b ◦ b′) (5.5)

The definition of a binary cartesian closed structure given below differs slightly from the
definition of the cartesian closed structure given in [?, IV.6] in that, that we do not require
the specification of a finite object but only of binary products. The rest of the definition is
identical to the one in [?], but written more explicitly in order to introduce the notations
that are used in proofs in the main part of the paper.

Since we never use the definition of [?, IV.6] we will often write “cartesian closed” instead
of “binary cartesian closed”.

Definition 5.4 [2016.11.28.def1] The (binary) cartesian closed structure on a category C
is a collection of data of the form:

1. the structure of a category with binary products on C,

2. for all X, Y ∈ C an object Hom(X, Y ),
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3. for all X and b : Y → Y ′ a morphism

Hom(X, b) : Hom(X, Y )→ Hom(X, Y ′)

such that for all Y one has

Hom(X, IdY ) = IdHom(X,Y )

and for all b : Y → Y ′, b′ : Y ′ → Y ′′ one has

Hom(X, b ◦ b′) = Hom(X, b) ◦Hom(X, b′)

4. For all X, Y a morphism

evXY : Hom(X, Y )×X → Y

such that for all W the function

adjW,XY : Mor(W,Hom(X, Y ))→Mor(W ×X, Y )

given by
[2016.11.28.eq2]u 7→ (u× IdX) ◦ evXY (5.6)

is a bijection and such that for all b : Y → Y ′ the square

[2016.11.28.eq1]

Hom(X, Y )×X
evXY−−−→ Y

Hom(X,b)×IdX

y yb
Hom(X, Y ′)×X

evX
Y ′−−−→ Y ′

(5.7)

commutes.

A cartesian closed category is a category together with a cartesian closed structure on it.

By definition the objects Hom(X, Y ) are functorial only in Y . Their functoriality in X is a
consequence of a lemma. For X,X ′, Y and a : X → X ′ let

Hom(a, Y ) : Hom(X ′, Y )→ Hom(X, Y )

be the unique morphism such that

[2016.11.28.eq5]adj(Hom(a, Y )) = (IdHom(X′,Y ) × a) ◦ evXY (5.8)

Then one has:
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Lemma 5.5 [2015.04.10.l1] The morphisms Hom(−, Y ) satisfy the equalites

Hom(a ◦ a′, Y ) = Hom(a′, Y ) ◦Hom(a, Y )

Hom(IdX , Y ) = IdHom(X,Y )

making Hom(−, Y ) into a contravariant functor from C to itself.

In addition, for all b : Y → Y ′ the square

Hom(X ′, Y )
Hom(X,b)−−−−−−→ Hom(X ′, Y ′)

Hom(a,Y ))

y yHom(a,Y ′)

Hom(X, Y )
Hom(X′,b)−−−−−−→ Hom(X, Y ′)

commutes.

Proof: It is a particular case of [?, Theorem 3, p.100]. The commutativity of the square is
a part of the ”bifunctor” claim of the theorem.

Lemma 5.6 [2015.04.20.l2] In a cartesian closed category let X,X ′, Y be objects and let
a : X → X ′ be a morphism. Then the square

Hom(X ′, Y )×X
IdHom(X′,Y )×a−−−−−−−−−→ Hom(X ′, Y )×X ′

Hom(a,Y )×IdX

y yevX′Y
Hom(X, Y )×X

evXY−−−→ Y

commutes.

Proof: Let us show that both paths in the square are adjoints to Hom(a, Y ). For the path
that goes through the upper right corner it follows from the definition of Hom(a, Y ) as the
morphism whose adjoint is (Id×a)◦ev. For the path that goes through the lower left corner
it follows from the definition of adjoint applied to Hom(a, Y ). Indeed, the adjoint to this
morphism is

adj(Hom(a, Y )) = (Hom(a, Y )× IdX) ◦ evXY

Lemma 5.7 [2015.05.12.l2] Let C be a cartesian closed category. Let X, Y,W ∈ C, then
one has:

1. Let Y ′ be an object and b : Y → Y ′ a morphism. Then for any r ∈Mor(W,Hom(X, Y ′))
one has

adj(r ◦Hom(X, b)) = adj(r) ◦ b

2. Let X ′ be an object a : X → X ′ a morphism. Then for any r ∈Mor(W,Hom(X ′, Y ))
one has

adj(r ◦Hom(a, Y )) = (IdW × a) ◦ adj(r)
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3. Let W ′ be an object c : W → W ′ a morphism. Then for any r ∈Mor(W ′, Hom(X, Y ))
one has

adj(c ◦ r) = (c× IdX) ◦ adj(r)

Proof: The proof of the first case is given by

adj(r ◦Hom(X, b)) = ((r ◦Hom(X, b))× IdX) ◦ evXY =

(r × IdX) ◦ (Hom(X, b))× IdX) ◦ evXY =

(r × IdX) ◦ evXY ′ ◦ b = adj(r) ◦ b

where the first equality is by (5.6), second equality by Lemma 5.9, the third equality by the
commutativity of (5.7) and the fourth equality again by (5.6).

The proof of the second case is given by the following sequence of equalities where we use
the notation Hm for Hom(a, Y ) as well as a number of other abbreviations:

adj(r ◦Hm) = ((r ◦Hm)× Id) ◦ ev = (r × Id) ◦ (Hm× Id) ◦ ev = (r × Id) ◦ adj(Hm) =

(r × Id) ◦ (Id× a) ◦ ev = (r × a) ◦ ev = (Id× a) ◦ (r × Id) ◦ ev = (Id× a) ◦ adj(r)

where the first equality is by (5.6), the second by (5.4), the third by (5.6), the fourth by
(5.8), the fifth by (5.3), the sixth by (5.3) and the seventh by (5.6).

The proof of the third case is given by

adj(c ◦ r) = ((c ◦ r)× IdX) ◦ evXY = (c× IdX) ◦ (r × IdX) ◦ evXY =

(c× IdX) ◦ adj(r)

where the first equality is by (5.6), second equality by (5.4) and the third equality by (5.6).

Lemma is proved.

5.2 Appendix B. Slice categories, pullbacks and locally cartesian
closed categories

For a category C and Z ∈ C one denotes by C/Z the slice category of C over Z. When
one works in the set theory one has to choose one of the several possible definitions of C/Z.
Indeed, the set of objects of C/Z can be defined as the set of pairs (X, f) where X ∈ C and
f : X → Z or as the set of morphisms f ∈ Mor(C) such that codom(f) = Z. There is an
obvious bijection between these two sets but they are not equal. We define Ob(C/Z) as the
set of pairs (X, f). Even more choices exist in the definition of the set of morphisms of C/Z.
One definition is the set of triples (((X, f), (Y, g)), a) where (X, f), (Y, g) ∈ Ob(C/Z) and
a : X → Y is such that f = a ◦ g. Another one is the set of pairs (a, g) where a, g ∈Mor(C)
are such that codom(a) = dom(g) and codom(f) = Z. Again, these sets are obviously
isomorphic but not equal. Various other choices are possible. We will use the second option.
We denote the pair (a, g) by ag.
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The mappings (X, f) 7→ X and ag 7→ a define a functor C/Z → C that we denote by πZ,#.
We will rarely write the functions (πZ,#)Ob and (πZ,#)Mor explicitly using them instead as
“coercions”. Formally speaking, we will assume that (πZ,#)Ob (resp. (πZ,#)Mor) is inserted
in our notation whenever an object (resp. a morphism) of C/Z is specified where an object
(resp. a morphism) of C is required.

We will say that a : X → Y is a morphism over Z if a ◦ g = f . For given (X, f) and (Y, g),
the function

[2016.11.26.eq3]ag 7→ a (5.9)

defines a bijection between morphisms (X, f)→ (Y, g) in C/Z and morphisms X → Y over
Z in C.
In a category with binary products the morphism IdZ × b satisfies the equality

(IdZ × b) ◦ pr1 = pr1

and therefore defines a morphism from (Z × Y, pr1) to (Z × Y ′, pr1) in C/Z. We will denote
this morphism in the slice category by Z× b. Since (5.9) is injective, the equalities (5.2) and
(5.3) imply that

[2016.11.30.eq1]Z × IdY = Id(Z×Y,pr1) (5.10)

and
[2016.11.30.eq2]Z × (b ◦ b′) = (Z × b) ◦ (Z × b′) (5.11)

that is, that the mappings X 7→ (Z × Y, pr1), b 7→ Z × b define a functor Z ×− from C to
C/Z.

The same holds for morphisms of the form a : X → X ′. We denote the morphism in C/Z
corresponding to the morphism a × IdZ by a × Z and the resulting functor C → C/Z by
−× Z.

Lemma 5.8 [2016.12.16.l1] Let

[2016.12.16.eq1]

X
a−−−→ Y

a′

y yg
Y ′

g′−−−→ Z

(5.12)

be a commutative square of morphisms in C and f = a ◦ g = a′ ◦ g′. Then

[2016.12.16.eq2b]

(X, f)
ag−−−→ (Y, g)

(a′)g
′
y

(Y, g′)

(5.13)

is a binary product diagram in C/Z if and only if (5.12) is a pullback in C.
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Proof: Assume that (5.13) is a binary product diagram. Let W ∈ C and let d : W → Y ,
d′ : W → Y ′ be such that d ◦ g = d′ ◦ g′. Let e = d ◦ g. Then dg : (W, e) → (Y, g) and
(d′)g

′
: (W, e)→ (Y ′, g′) are morphisms in C/Z and therefore there exists cf : (W, e)→ (X, f)

such that cf ◦ ag = dg and cf ◦ (a′)g
′

= (d′)g
′

in C/G, that is, c ◦ a = d and c ◦ a′ = d′ in
C. Let c′ : W → X be another morphism in C such that c′ ◦ a = d and c′ ◦ a′ = d′. Then
e = d ◦ g = c′ ◦a ◦ g = c′ ◦ f and therefore (c′)f is a morphism (W, e)→ (X, f) in C/Z. Next,
(c′)f ◦ ag = (c′ ◦ a)g = dg and (c′)f ◦ (a′)g

′
= (c′ ◦ a′)g′ = (d′)g

′
. Therefore (c′)f = cf , that is,

c = c′. This shows that (5.12) is a pullback in C.
Similar reasoning shows that if (5.12) is a pullback in C then (5.13) is a binary product
diagram in C/Z.

Lemma 5.8, combined with a related statement about commutative squares, implies that a
choice of binary product structures on all the slice categories C/Z is “the same as” the choice
of pullbacks for all pairs of morphisms with the common codomain in C.
To be precise we have to say that how to construct a bijection between the set of families of
binary product structures on the categories C/Z for all Z and the set of pullback structures
on C.
We usually denote the distinguished binary product of (X, f) and (Y, g) in C/Z by (X, f)×Z
(Y, g) and the canonical morphism from (X, f)×Z (Y, g) to Z by f � g.

For f : X → Z and g : Y → Z, the two commutative triangles formed by pr1 : (X, f) ×Z
(Y, g)→ (X, f), f , f � g and pr2 : (X, f)×Z (Y, g)→ (Y, g), g, f � g are adjacent and define
the familiar commutative square of the pullback of f and g.

This defines a function in one direction.

For f : X → Z and g : Y → Z, the diagonal of the pullback square based on f and g is an
object over Z and the two projections define morphisms from this object to (X, f) and (Y, g)
respectively. The corresponding pair of morphisms in C/Z is a binary product diagram. This
defines a morphism in the other direction.

The fact that these morphisms are inverse to each other follows readily from the construction.

Given a binary products structure on C/Z, morphisms f : X → Z, g : Y → Z and morphisms
a : X ′ → X, b : Y ′ → Y we have a morphism af ×Z bg which is the unique morphism in C/Z
of the form

af ×Z bg : (X ′, a ◦ f)×Z (Y ′, b ◦ g)→ (X, f)×Z (Y, g)

such that
[2016.11.24.eq1](af ×Z bg) ◦ pr1 = pr1 ◦ af (5.14)

and
[2016.11.24.eq2](af ×Z bg) ◦ pr2 = pr2 ◦ bg (5.15)

Lemma 5.9 [2015.05.14.l1] In the setting introduced above one has:
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1. Id(X,f)×Z(Y,g) = Id(X,f) ×Z Id(Y,g),

2. suppose that we have in addition morphisms a′ : X ′′ → X ′ and b′ : Y ′′ → Y ′. Then

((a′)a◦f ×Z (b′)b◦g) ◦ (af ×Z bg) = (a′ ◦ a)f ×Z (b′ ◦ b)g

Proof: It is a particular case of (5.2) and (5.3).

Following the general case considered in Appendix 5.1 we will write (X, f) ×Z bg (resp.
af ×Z (Y, g)) for the morphism in C/X (resp. C/Y ) corresponding to Id(X,f) ×Z bg (resp.
af ×Z Id(Y,g)).

In view of Lemma 5.9 and (5.14), for any (X, f : X → Z), the functions

(Y, g) 7→ ((X, f)×Z (Y, g), pr1)

(bg : (Y ′, g′)→ (Y, g)) 7→ (X, f)×Z bg

form a functor from C/Z to C/X and similarly by Lemma 5.9 and (5.15), for any (Y, g : Y →
Z) the functions

(X, f) 7→ ((X, f)×Z (Y, g), pr2)

(af : (X ′, f ′)→ (X, f)) 7→ af ×Z (Y, g)f

form a functor from C/Z to C/Y .

Definition 5.10 [2015.03.27.def1] A locally cartesian closed structure on a category C is
a family of (binary) cartesian closed structures on the categories C/Z for all Z ∈ C.

We usually denote the binary product on C/Z as above.

We usually denote the internal-hom objects in C/Z by HomZ((X, f), (Y, g)) and the canonical
morphisms from HomZ((X, f), (Y, g)) to Z by f4g.

The rest of the notations (HomZ((X, f), bg), ev
(X,f)
(Y,g) , adj

(W,h),(X,f)
(Y,g) , HomZ(af , (Y, g))) imme-

diately follow from the ones introduced previously.

A locally cartesian closed category is a category together with a locally cartesian closed struc-
ture on it.

The name “locally cartesian closed” follows naturally from this definition and the intuition
based on the example of the category of open sets of a topological space or a Grothendieck
site. If only the subsets of the open sets of a particular covering are known then one sometimes
says that the space is known only locally, but the global structure that arises from gluing of
all these subsets together is not known. Hence the “local” structure of a category is given
by the structure of its slice categories.

Example 5.11 [2015.05.20.ex1] The following example shows that there can be many
different structures of a category with pullbacks on a category and also many locally cartesian
closed structures.
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Let us take as our category the category F whose objects are natural numbers and

Mor(n,m) = Fun({0, . . . , n− 1}, {0, . . . ,m− 1})

Since every isomorphism class contains exactly one object every auto-equivalence of this
category is an automorphism. Let Φ be such an automorphism. It is easy to see that it
must be identity on the set of objects. Let X = {0, 1}. Consider Φ on End(X). Since Φ
must respect identities and compositions, Φ must take Aut(X) to itself and must act on
it by identity. If 1 and σ are the two elements of Aut(X) we conclude that Φ(1) = 1 and
Φ(σ) = σ.

Let us choose now any structure of a category with pullbacks on F and let us consider two
new structures str1 and strσ that are obtained by modifying pullbacks as follows. In both
structures we set all pullbacks to be as they were except for the pullback of the pair of
morphisms (IdX , IdX). For this pair we set the pullbacks to be as follows:

[2015.05.20.sq1]

X
IdX−−−→ X

IdX

y yIdX
X

IdX−−−→ X

for str1 and

X
σ−−−→ X

σ

y yIdX
X

IdX−−−→ X

for strσ. (5.16)

The preceding discussion of the auto-equivalences of F shows that there is no auto-equivalence
which would transform str1 into strσ.

The category F also has a locally cartesian closed structure and it can be shown that it can
be modified so that its pullback components are str1 and strσ. This shows that F has at least
two locally cartesian closed structures that are not equivalent modulo the auto-equivalences
of F .

The solution to this seeming paradox is that there is a category structure on the set of pull-
back structures (resp. locally cartesian closed structures) on a category. Any two pullback
structures (resp. lcc structures) are isomorphic in this category and in this sense pullbacks
on a category are “unique”.

Remark 5.12 [2015.05.20.rem1] The previous example has a continuation in the univa-
lent foundations where there is a notion of a category and pre-category. There the types of
pullback structures and of locally cartesian closed structures on a category (as opposed to
those on a general pre-category) are of h-level 1, i.e., classically speaking are either empty
or contain only one element.

In addition any such structure on a pre-category should define a structure of the same kind
on the Rezk completion of this pre-category with all the different structures on the pre-
category becoming equal on the Rezk completion. In the case of the previous example the
Rezk completion of F is the category FSets of finite sets and in view of the univalence axiom
for finite sets the two pullbacks of 5.16 will become equal in FSets.
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