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Abstract

We introduce the notion of a (Π, λ)-structure on a C-system and construct a bi-
jection, for a given C-system, between the sets of (Π, λ)-structures and structures of
products of families of types introduced previously by Cartmell and Streicher.

We then define the notion of a P -structure on a universe in a locally cartesian closed
category category and construct a (Π, λ)-structure on the C-systems CC(C, p) from a
P -structure on p.

In the last section we define homomorphisms of C-systems with (Π, λ)-structures
and functors of universe categories with P -structures and show that the construction
of the previous section is functorial relative to these definitions.
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1 Introduction

The concept of a C-system in its present form was introduced in [10]. The type of the
C-systems is constructively equivalent to the type of contextual categories defined by Cart-
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mell in [1] and [2] but the definition of a C-system is slightly different from the Cartmell’s
foundational definition.

In this paper we consider what might be the most important structure on C-systems - the
structure that corresponds, for the syntactic C-systems, to the operations of dependent prod-
uct, λ-abstraction and application. A C-system formulation of this structure was introduced
by John Cartmell in [1, pp. 3.37 and 3.41] as a part of what he called a strong M.L. structure.
It was studied further by Thomas Streicher in [7, p.71] who called a C-system (contextual
category) together with such a structure a “contextual category with products of families of
types”.

The constructions and proofs of the main part of the paper require knowing many facts
about C-systems. These facts are established in Section ??. Many of these facts are new,
some have been stated by Cartmell [1] and Streicher [7], but without proper mathematical
proofs. Among notable new facts we can mention Lemma ?? that shows that the canonical
direct product in a C-system is strictly associative.

In Section ?? we construct on any C-system presheaves Obn and Õbn. These presheaves
play a major role in our approach to the C-system formulation of systems of operations
that correspond to systems of inference rules. The main result here is Construction ?? for
Problem ??. It is likely that constructions for various other variants of this problem involving
morphisms between presheaves Ob∗ and Õb∗ can be given. The full generality of this result
should involve as the source fiber products of Ob∗ and Õb∗ relative to morphisms satisfying
certain properties and as the target Ob∗ or Õb∗. We limit ourselves to Construction ?? here
because it is the only case that will be required later in the paper.

In Section ?? we first remind the definition of the product of families of types structure on a
C-system. Then, in Definition??, we give the first of the two main definitions of this paper,
the definition of a (Π, λ)-structure. In the rest of this section we work on constructing a
bijection between the sets of structures of products of families of types and (Π, λ)-structures
on a given C-system. This is probably the most technical part of the paper which is not
surprising considering how different Definitions ?? and ?? are.

This construction uses most of the results of Section ??.

The (Π, λ)-structures correspond to the (Π, λ, app, β, η)-system of inference rules. In Remark
?? we outline the definitions of classes of structures that correspond to the similar systems
but without the β- or η-rules. Such structures appear as natural variations of the (Π, λ)-
structures.

In Section 2 we consider the case of C-systems of the form CC(C, p) introduced in [9]. They

are defined, in a functorial way, by a category C with a final object and a morphism p : Ũ → U
together with the choice of pullbacks of p along all morphisms in C. A morphism with such
choices is called a universe in C. As a corollary of general functoriality we also obtain
a construction of an isomorphism that connects the C-systems CC(C, p) corresponding to
different choices of pullbacks and different choices of final objects. It makes it possible to
say that CC(C, p) is defined by C and p.

We provide several intermediate results about CC(C, p) when C is a locally cartesian closed
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category leading to the main result of this paper - Construction 2.2.3 that produces a (Π, λ)-
structure on CC(C, p) from a simple pullback square based on p. This construction was
first announced in [8]. It and the ideas that it is based on are among the most important
ingredients of the construction of the univalent model of the Martin-Lof type theory.

In the following sections we study the behavior of our construction with respect to universe
category functors and prove that it is functorial with respect to functors equipped with an
additional structure that reflects compatibility with the choice of the generating pullback
squares.

One may wonder how the construction of this paper relates to the earlier ideas of Seely [6]
and their refinement by Clairambault and Dybjer [3]. This question requires further study.

The methods of this paper are fully constructive. It is also written in the formalization-ready
style that is in such a way that no long arguments are hidden even when they are required
only to substantiate an assertion that may feel obvious to readers who are closely associated
with a particular tradition of mathematical thought.

The main result of this paper is not a theorem but a construction and so are many of
the intermediate results. Because of the importance of constructions for this paper we use a
special pair of names Problem-Construction for the specification of the goal of a construction
and the description of the particular solution.

In the case of a Theorem-Proof pair one usually refers (by name or number) to the theorem
when using the proof of this theorem. This is acceptable in the case of theorems because
the future use of their proofs is such that only the fact that there is a proof but not the
particulars of the proof matter.

In the case of a Problem-Construction pair the content of the construction often matters in
the future use. Because of this we have to refer to the construction and not to the problem
and we assign in this paper numbers both to Problems and to Constructions.

We use below the concept of a universe. In the Zermelo-Fraenkel set theory, the main
intended formalization base for this paper, a universe is simply a set U that is usually
assumed to satisfy some properties such as, for example, that it is closed under formation of
pairs - if two sets A and B are elements of U then the set representing the pair (A,B) is an
element of U . We do not provide a precise set of such conditions that we assume. To assume
the universes mentioned in the paper to be Grothendieck universes would certainly suffice
but in most cases we need a much weaker set of conditions. It is likely that the conditions
that we need are weak enough to be able to prove the existence of such universes inside the
“canonical” Zermelo-Fraenkel theory without any large cardinal axioms.

In this paper we continue to use the diagrammatic order of writing composition of morphisms,
i.e., for f : X → Y and g : Y → Z the composition of f and g is denoted by f ◦ g.

We denote by Φ◦ the functor PreShv(C ′)→ PreShv(C) given by the pre-composition with
a functor Φop : Cop → (C ′)op, that is,

Φ◦(F )(X) = F (Φ(X))

In the literature this functor is denoted both by Φ∗ and Φ∗ and we decided to use a new
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unambiguous notation instead.

Acknowledgements are at the end of the paper.

While abbreviated notations may be helpful for getting a general impression from a brief
scroll through the paper, long notations become indispensable when one seeks true under-
standing.

2 P -structures on universes and (Π, λ)-structures

2.1 More on the C-systems of the form CC(C, p)

Let us start by considering a general category C. Let p : Ũ → U be a morphism in C. Recall
from [9] that a universe structure on p is a choice of pullback squares of the form

(X;F )
Q(F )−−−→ Ũ

pX,F

y yp
X

F−−−→ U

for all X and all morphisms F : X → U . A universe in C is a morphism with a universe
structure on it and a universe category is a category with a universe and a choice of a final
object pt.

We may use the notation (X;F1, . . . , Fn) for (. . . (X;F1); . . . Fn).

For f : W → X and g : W → Ũ such that f ◦ F = g ◦ p we will denote by f ∗ g the unique
morphism such that

(f ∗ g) ◦ pX,F = f

(f ∗ g) ◦Q(F ) = g

For X ′
f→ X

F→ U we let Q(f, F ) denote the morphism

(pX′,f◦F ◦ f) ∗Q(f ◦ F ) : (X ′; f ◦ F )→ (X;F )

Observe that one has

[2016.08.24.eq4]Q(f ◦ F ) = Q(f, F ) ◦Q(F ) (2.1.1)

[2016.08.26.eq2]Q(IdX , F ) = Id(X;F ) (2.1.2)

[2016.08.26.eq3]Q(f ′ ◦ f, F ) = Q(f ′, f ◦ F ) ◦Q(f, F ) (2.1.3)
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Let S be a pullback square of the form

[2016.08.24.eq1]

Y ′
g−−−→ Y

p′

y yp
X ′

f−−−→ X

(2.1.4)

For F : X ′ → X and p : Y → X in a category C let T (F, p) be the set of morphisms
h : X ′ → Y such that h ◦ p = F . The proof of the following lemma is omitted because it
belongs to general category theory.

Lemma 2.1.1 [2016.08.24.l2] For a pullback square S of the form (2.1.4) the formula
o′ 7→ o′ ◦ g defines a bijection StMS : sec(p′)→ T (f, p).

Our next result is a corollary of this lemma in the case when p is a universe. For F : X → U
let S(F ) be the canonical pullback square based on F . By the previous lemma it defines a
bijection

StMS(F ) : sec(pF )→ T (F, p)

For H : X → Ũ let SH ∈ sec(pH◦p) be given by the formula

SH = StM−1
S(H◦p)(H)

Note that we have
SH = IdX ∗H

Lemma 2.1.2 [2016.08.26.l1] For a universe p in C and X ∈ C, the function

qF∈MorC(X,U)sec(pF )→Mor(X, Ũ)

given by the formula (F, s) 7→ s ◦ Q(F ) is a bijection with the inverse given by the formula
H 7→ (H ◦ p, SH).

Proof: Let us denote the first function by Φ and second one by Ψ. We have

Φ(Ψ(H)) = StM−1
S(H◦p)(H) ◦Q(H ◦ p) = StMS(H◦p)(StM

−1
S(H◦p)(H)) = H

and
Ψ(Φ(F, s)) = Ψ(s ◦Q(F )) = ((s ◦Q(F )) ◦ p, StM−1

S((s◦Q(F ))◦p)(s ◦Q(F ))) =

(F, StM−1
S(F )(s ◦Q(F ))) = (F, s)

where the third equation follows from the commutativity of S(F ) and the fourth one from
the definition of StMS(F ). This completes the proof of the lemma.

For an o ∈ sec(p) and S as above, define f ∗S(o) as the unique element of sec(p′) such that

[2016.08.24.eq2]f ∗S(o) ◦ g = f ◦ o (2.1.5)
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Such a morphism exists because IdX′ ◦ f = (f ◦ o) ◦ p.
The proofs of the following two lemmas are omitted because they belongs to general category
theory.

Lemma 2.1.3 [2016.08.26.l4] Let p : Y → X be a morphism in C and Φ : C → C ′ a fully
faithful functor. Then for o ∈ sec(p) one has Φ(o) ∈ sec(Φ(p)) and the resulting function

s(Φ)p : sec(p)→ sec(Φ(p))

is a bijection.

Lemma 2.1.4 [2016.08.24.l1] Let Φ : C → C ′ be a fully faithful functor, S a pullback
square of the form (2.1.4) in C and o ∈ sec(p).

Then, Φ(S) is a pullback square in C ′, Φ(s) ∈ sec(Φ(p)) and

Φ(f ∗S(o)) = Φ(f)∗Φ(S)(Φ(o))

The construction of the C-system CC(C, p) presented in [9] can be described as follows. One
defines first, by induction on n, pairs (Obn, intn : Obn → C) where Obn = Obn(C, p) is a set
and intn is a function from Obn to objects of C. The definition is as follows:

1. Ob0 is the standard one point set unit whose element we denote by tt. The function
int0 maps tt to the final object pt of the universe category structure on C,

2. Obn+1 = qA∈ObnHom(int(A), U) and intn+1(A,F ) = (int(A);F ).

We then define Ob(CC(C, p)) as qn≥0Obn such that elements of Ob(CC(C, p)) are pairs
Γ = (n,A) where A ∈ Obn(C, p). We define the function int : Ob(CC(C, p))→ C as the sum
of functions intn.

The morphisms in CC(C, p) are defined by

MorCC(C,p) = qΓ,Γ′∈Ob(CC)HomC(int(Γ), int(Γ′))

and the function int on morphisms maps a triple ((Γ,Γ′), a) to a. Note that the subset in
Mor that consists of f such that dom(f) = Γ and codom(f) = Γ′ is not equal to the set
HomC(int(Γ), int(Γ′)) but instead to the set of triples of the form f = ((Γ,Γ′), a) where
a ∈ HomC(int(Γ), int(Γ′)).

The length function is defined by l((n,A)) = n.

One defines pt as pt = (0, tt). It is the only object of length 0.

If Γ = (n,A) where n > 0 then, by construction, A = (B,F ) where F : int(B) → U . The
ft function is defined on such Γ by ft(Γ) = (n− 1, B) and on pt by ft(pt) = pt.

Lemma 2.1.5 [2016.08.22.l1] For Γ = (n,A) and T = (n′, B) ∈ Ob(CC(C, p)) one has
T ∈ Ob1(Γ) if and only if n′ = n+ 1 and B = (A,F ).
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Proof: By definition, T ∈ Ob1(Γ) if and only if l(T ) = l(Γ) + 1 and ft(T ) = Γ.

To prove the ”if” part observe that if T = (n + 1, (A,F )) then l(T ) = n + 1 = l(Γ) + 1, in
particular, l(T ) > 0 and therefore ft(T ) = (n,A) = Γ.

To prove the ”only if” part assume that T ∈ Ob1(Γ). Then n′ = l(Γ) + 1 = n + 1. Since
n′ > 0, B is a pair of the form (A′, F ). Finally ft(T ) = (n,A′) = (n,A) and therefore
A′ = A.

The p-morphism for Γ = (n,A) where n > 0 and A = (B,F ) is given by ((Γ, ft(Γ)), pB,F )
where pB,F is a part of the universe structure on p.

For f : (n,A′)→ (n,A) and T such that l(T ) = l(Γ) + 1 and ft(T ) = Γ one has, by Lemma
2.1.5, T = (n+ 1, (A,F )) and one defines

[2016.08.22.eq2]f ∗(T ) = (n+ 1, (A′, int(f) ◦ F )) (2.1.6)

and
[2016.08.22.eq3]q(f, T ) = ((f ∗(T ), T ), Q(int(f), F )) (2.1.7)

The axioms of a C-system are verified in [9].

Let us denote by
int◦ : PreShv(C)→ PreShv(CC(C, p))

the functor of pre-composition with intop and by

Y o : C → PreShv(C)

the Yoneda embedding of C.

Problem 2.1.6 [2015.04.30.prob1a] To construct an isomorphism of presheaves

u1 : Ob1 → int◦(Y o(U))

such that for Γ = (n,A) ∈ Ob(CC(C, p)) and T = (n+ 1, (A,F )) ∈ Ob1(Γ) one has

[2015.04.30.eq3a]u1,Γ(T ) = F (2.1.8)

Construction 2.1.7 [2016.08.22.constr1] By definition of int◦ and Y o we need to con-
struct a family of functions of the form

u1,Γ : Ob1(Γ)→MorC(int(Γ), U)

parametrized by Γ ∈ Ob(CC(C, p)) such that such that (2.1.8) holds, for any f : Γ′ → Γ and
any T ∈ Ob1(Γ) one has

[2015.04.30.eq1a]u1,Γ′(f
∗(T )) = int(f) ◦ u1,Γ(T ) (2.1.9)

and for any Γ the function u1,Γ is a bijection.
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By Lemma 2.1.5, the conditions (2.1.8) define our family completely and it remains to verify
(2.1.9) and the bijectivity condition.

For Γ = (n,A), T = (n+ 1, (A,F )), Γ′ = (n′, A′) and f : Γ′ → Γ we have, by (2.1.6),

f ∗(T ) = (n′ + 1, (A′, int(f) ◦ F ))

Therefore,

u1,Γ′(f
∗(T )) = u1,Γ′((n

′ + 1, (A′, int(f) ◦ F ))) = int(f) ◦ F = int(f) ◦ u1,Γ(T )

which proves (2.1.9).

The bijectivity condition also follows from Lemma 2.1.5 which implies that for Γ = (n,A)
the function F 7→ (n+ 1, (A,F )) is a well defined inverse to u1,Γ.

This completes Construction 2.1.7.

Observe that by (2.1.8) and Lemma 2.1.5, for any Γ ∈ Ob(CC(C, p)) and T ∈ Ob1(Γ) we
have

[2015.05.02.eq1a]int(T ) = (int(Γ);u1,Γ(T )) (2.1.10)

and
[2016.08.24.eq3]int(pT ) = pu1,Γ(T ) (2.1.11)

We also have, for f : Γ′ → Γ and T as above

[2016.08.30.eq3]int(q(f, T )) = Q(int(f), u1,Γ(T )) (2.1.12)

Lemma 2.1.8 [2016.08.22.l2] For Γ = (n,A) ∈ Ob(CC(C, p)) and o ∈ Õb1(Γ) one has

[2016.08.22.eq1]codom(int(o)) = (int(Γ);u1,Γ(∂(o))) (2.1.13)

Proof: We have codom(o) = ∂(o) ∈ Ob1(Γ). Therefore (2.1.13) follows from the equality
codom(int(f)) = int(codom(f)) and (2.1.10).

Problem 2.1.9 [2015.04.30.prob1b] To construct an isomorphism of presheaves

ũ1 : Õb1 → int◦(Y o(Ũ))

such that for o ∈ Õb1(Γ) one has

[2015.04.30.eq4a]ũ1,Γ(o) = int(o) ◦Q(u1,Γ(∂(o))) (2.1.14)

where the right hand side is defined by (2.1.13) and the equality dom(Q(F )) = (dom(F );F ).
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Construction 2.1.10 [2016.08.22.constr2] By definition of int◦ and Y o we need to con-
struct a family of functions of the form

ũ1,Γ : Õb1(Γ)→MorC(int(Γ), Ũ)

parametrized by Γ ∈ Ob(CC(C, p)) such that (2.1.14) holds, for any f : Γ′ → Γ and any

o ∈ Õb1(Γ) one has

[2015.04.30.eq1b]ũ1,Γ′(f
∗(o)) = int(f) ◦ ũ1,Γ(o) (2.1.15)

and for any Γ the function ũ1,Γ is a bijection.

The equalities (2.1.14) define our double family completely and it remains only to prove
(2.1.15) and the bijectivity condition.

To prove (2.1.15) let S be the pullback square

[2016.08.24.eq2b]

f ∗(∂(o))
q(f,∂(o))−−−−−→ ∂(o)

pf∗(∂(o))

y p∂(o)

y
Γ′

f−−−→ Γ

(2.1.16)

in CC(C, p). By (2.1.5), (??) and the definition of a morphism over Γ′ we have

[2016.08.24.eq5]f ∗S(o) = f ∗(o) (2.1.17)

where on the left is the morphism defined above in the context of all categories and on the
right is the morphism defined in Lemma ?? in the context of C-systems.

We now have, where we write u instead of u1,Γ and u1,Γ′ and ũ instead of ũ1,Γ and ũ1,Γ′ ,

ũ(f ∗(o)) = int(f ∗(o)) ◦Q(u(∂(f ∗(o)))) = int(f ∗(o)) ◦Q(u(f ∗(∂(o)))) =

int(f ∗(o)) ◦Q(int(f) ◦ u(∂(o))) = int(f ∗(o)) ◦Q(int(f), u(∂(o))) ◦Q(u(∂(o))) =

int(f ∗(o)) ◦ int(q(f, ∂(o))) ◦Q(u(∂(o))) = int(f ∗S(o)) ◦ int(q(f, ∂(o))) ◦Q(u(∂(o))) =

int(f)∗int(S)(int(o))◦ int(q(f, ∂(o)))◦Q(u(∂(o))) = int(f)◦ int(o)◦Q(u(∂(o))) = int(f)◦ ũ(o)

where the first equality is by (2.1.14), second is by definition of f ∗(o), the third is by (2.1.9),
the fourth is by (2.1.1), the fifth is by (2.1.7) since (2.1.10) holds for T = ∂(o), the sixth is
by (2.1.12), the seventh is by Lemma 2.1.4, the eighth is by (2.1.5) and the ninth again by
(2.1.14). This completes the proof of (2.1.15).

To prove that the function ũ is a bijection we will represent it as the composition of functions
that we can show to be bijections. The functions are of the form

Õb1(Γ)→ qT∈Ob1(Γ)∂
−1(T )→ qF :int(Γ)→Usec(pF )→Mor(int(Γ), Ũ)

and are given by the formulas

o 7→ (∂(o), o) (T, o) 7→ (u(T ), int(o)) (F, s) 7→ s ◦Q(F )
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The first function is the function X → qy∈Y f−1(y), which is defined and is a bijection for
any function of sets f : X → Y . The second one is the total function of the function u
and the family of functions s(int)pT of Lemma 2.1.3, since u and the functions s(int)pT are
bijections so is the total function. The third function is the bijection of Lemma 2.1.2.

Let us show that the composition of these bijections equals ũ. Indeed, for o ∈ Õb1(Γ) we
have

o 7→ (∂(o), o) 7→ (u(∂(o)), int(o)) 7→ int(o) ◦Q(u(∂(o))) = ũ(o)

This completes Construction 2.1.10.

Remark 2.1.11 [2016.08.26.rem1] The inverse to ũ1,Γ can be defined by the formula

ũ−1
1,Γ(H) = int−1

Γ,u−1
1,Γ(H◦p)(SH)

Note that while we can omit explicitly mentioning dom(f) and codom(f) when we write
int(f) we must specify them when we write int−1(f) because int is bijective only on the
subsets of morphisms with fixed domain and codomain. This makes the expression for ũ−1

1,Γ

longer than one would prefer.

It is easy to see from (2.1.8) and (2.1.14) that the square of morphisms of presheaves

[2016.08.20.eq1]

Õb1
ũ1−−−→ int◦(Y o(Ũ))

∂

y yint◦(Y o(p))
Ob1

u1−−−→ int◦(Y o(U))

(2.1.18)

commutes.

We will now construct isomorphisms u2,Γ and ũ2,Γ similar to the isomorphisms u1,Γ and ũ1,Γ

but having as sources the presheaves Ob2 and Õb2.

For any V ∈ C we define functor data Dp(−, V ) given on objects by

Dp(X, V ) := qF :X→UHom((X;F ), V )

and on morphisms by

Dp(f, V ) : (F1, F2) 7→ (f ◦ F1, Q(f, F1) ◦ F2)

Lemma 2.1.12 [2016.09.07.l1] The functor data Dp(−, V ) specified above is a functor,
i.e., one has

1. for X ∈ C we have Dp(IdX , V ) = IdDp(X,V ),

2. for f : X → Y , g : Y → Z in C one has

Dp(f ◦ g, V ) = Dp(g, V ) ◦Dp(f, V )
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Proof: For the first property we have

Dp(IdX , V )((F1, F2)) = (IdX ◦ F1, Q(IdX , F1) ◦ F2) = (F1, F2)

where the second equality is by (2.1.2).

For the second one we have

Dp(f ◦g, V )(F1, F2) = (f ◦g◦F1, Q(f ◦g, F1)◦F2) = (f ◦(g◦F1), Q(f, g◦F1)◦(Q(g, F1)◦F2)) =

Dp(f, V )(Dp(g, V )(F1, F2)) = (Dp(g, V ) ◦Dp(f, V ))(F1, F2)

where the second equality is by (2.1.3).

The sets Dp(X, V ) are also functorial in V according to the formula

Dp(X, r)(F1, F2) = (F1, F2 ◦ r)

The fact that Dp(X, IdV ) = IdDp(X,V ) and Dp(X, r ◦ r′) = Dp(X, r) ◦Dp(X, r
′) are obvious.

It is also immediate from the definitions that for and for f : X → X ′, g : V → V ′ we have

Dp(f, V ) ◦Dp(X, g) = Dp(X
′, g) ◦Dp(f, V

′)

The latter equality shows that Dp(−, r) are morphisms of presheaves and the former that
our construction defines a functor

Dp : C → PreShv(C)

Let Γ be as above and T ∈ Ob2(Γ). Then, by (2.1.10), we have int(ft(T )) = (int(Γ);u1,Γ(ft(T )))
and therefore the pair

u2,Γ(T ) = (u1,Γ(ft(T )), u1,ft(T )(T ))

is an element of Dp(int(Γ), U). This defines a family of functions

u2,Γ : Ob2(Γ)→ Dp(int(Γ), U)

parametrized by Γ ∈ Ob(CC(C, p)).

Lemma 2.1.13 [2015.05.02.prob2a] [2015.05.02.constr2a] The family u2,Γ is an iso-
morphism of presheaves

u2 : Ob2 → int◦(Dp(−, U))

Proof: We can write u2,Γ as a composition of the bijection

Ob2(Γ)→ qΓ′∈Ob1(Γ)Ob1(Γ′)

that sends T to (ft(T ), T ) with the function

qΓ′∈Ob1(Γ)Ob1(Γ′)→ qF∈Hom(int(Γ),U)Hom((int(Γ);F ), U)
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that is the total function of the function u1,Γ and the family of functions u1,Γ′ given for all
Γ′ ∈ Ob1(Γ). Since u1,Γ is a bijection and for each Γ′, u1,Γ′ is a bijection, the total function
is a bijection. This proves that u2,Γ are bijections.

It remains to prove that u2,Γ form a morphism of presheaves, that is, that for any f : Γ′ → Γ
and T ∈ Ob2(Γ) we have

u2,Γ′(f
∗(T )) = (int(f) ◦ u1,Γ(ft(T )), Q(int(f), u1,Γ(ft(T ))) ◦ u1,ft(T )(T ))

We have
u2(f ∗(T )) = (u1,Γ′(ft(f

∗(T ))), u1,ft(f∗(T ))(f
∗(T )))

Since ft(f ∗(T )) = f ∗(ft(T )) we have

u1,Γ′(ft(f
∗(T ))) = int(f) ◦ u1,Γ(ft(T ))

by (2.1.15).

Next we have f ∗(T ) = q(f, ft(T ))∗(T ) where q(f, ft(T )) : f ∗(ft(T )) → ft(T ) by (??) and
therefore

u1,ft(f∗(T ))(f
∗(T )) = u1,f∗(ft(T ))(q(f, ft(T ))∗(T )) = int(q(f, ft(T )) ◦ u1,ft(T )(T ) =

Q(int(f), u1,Γ(ft(T ))) ◦ u1,ft(T )(T )

where the first equality is by (??), the second by (2.1.15) and the third by (2.1.7). This
completes the proof of Lemma 2.1.13.

Let Γ be as above and o ∈ Õb2(Γ). Then, by (2.1.10), we have

int(ft(∂(o))) = (int(Γ);u1,Γ(ft(∂(o))))

and therefore the pair
ũ2,Γ(o) = (u1,Γ(ft(∂(o))), ũ1,ft(∂(o))(o))

is an element of Dp(int(Γ), Ũ). This defines a family of functions

ũ2,Γ : Õb2(Γ)→ Dp(int(Γ), Ũ)

parametrized by Γ ∈ Ob(CC(C, p)).

Lemma 2.1.14 [2015.05.02.prob2b] [2015.05.02.constr2b] The family ũ2,Γ is an iso-
morphism of presheaves

ũ2 : Õb2 → int◦(Dp(−, Ũ))

Proof: We can write ũ2,Γ as a composition of the bijection

Õb2(Γ)→ qΓ′∈Ob1(Γ)Õb1(Γ′)
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that sends o to (ft(∂(o)), o) with the function

qΓ′∈Ob1(Γ)Õb1(Γ′)→ qF∈Hom(int(Γ),U)Hom((int(Γ);F ), Ũ)

that is the total function of the function u1,Γ and the family of functions ũ1,Γ′ given for all
Γ′ ∈ Ob1(Γ). Since u1,Γ is a bijection and for each Γ′, ũ1,Γ′ is a bijection, the total function
is a bijection.

It remains to prove that u2,Γ form a morphism of presheaves, that is, that for any f : Γ′ → Γ
and T ∈ Ob2(Γ) we have

u2,Γ′(f
∗(T )) = (int(f) ◦ u1,Γ(ft(T )), Q(int(f), u1,Γ(ft(T ))) ◦ u1,ft(T )(T ))

We have
u2(f ∗(T )) = (u1,Γ′(ft(f

∗(T ))), u1,ft(f∗(T ))(f
∗(T )))

Since ft(f ∗(T )) = f ∗(ft(T )) we have

u1,Γ′(ft(f
∗(T ))) = int(f) ◦ u1,Γ(ft(T ))

by (2.1.15).

Next we have f ∗(T ) = q(f, ft(T ))∗(T ) where q(f, ft(T )) : f ∗(ft(T )) → ft(T ) by (??) and
therefore

u1,ft(f∗(T ))(f
∗(T )) = u1,f∗(ft(T ))(q(f, ft(T ))∗(T )) = int(q(f, ft(T )) ◦ u1,ft(T )(T ) =

Q(int(f), u1,Γ(ft(T ))) ◦ u1,ft(T )(T )

where the first equality is by (??), the second by (2.1.15) and the third by (2.1.7). This
completes the proof of Lemma 2.1.13.

Lemma 2.1.15 [2016.08.26.l3] The square of morphisms presheaves

Õb2
ũ2−−−→ int◦(Dp(−, Ũ))

∂

y yint◦(Dp(−,p))

Ob2
u2−−−→ int◦(Dp(−, U))

commutes.

Proof: For Γ ∈ CC and o ∈ Õb2(Γ) we have

(int◦(Dp(−, p)))(ũ2(o)) = (int◦(Dp(−, p)))(u1,Γ(ft(∂(o))), ũ1,ft(∂(o))(o)) =

(u1,Γ(ft(∂(o))), ũ1,ft(∂(o))(o) ◦ p) = (u1,Γ(ft(∂(o))), u1,ft(∂(o))(∂(o)))

where the third equality is by the commutativity of (2.1.18) and

u2,Γ(∂(o)) = (u1,Γ(ft(∂(o))), u1,ft(∂(o))(∂(o)))

This completes the proof of the lemma.
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Remark 2.1.16 [2015.07.29.rem2] Isomorphisms ui, ũi for i = 1, 2 generalize easily to all
i > 0 if one defines, inductively,

Y on+1(V )(X) = qF :X→UY on(V )((X;F ))

Moreover, if we define Homn(X, Y ) as Y on(Y )(X) then there are composition functions

Homn(X, Y )×Homm(Y, Z)→ Homn+m(X,Z)

that are likely to satisfy the unity and associativity axioms such that one obtains, from
any universe category (C, p), a new category (C, p)∗ with the same collection of objects and
morphisms between two objects given by

Hom(C,p)∗(X, Y ) = qn≥1Homm(X, Y )

In this paper we will not need Y on for n > 2 and we defer the study of this structure until
the future papers.

When C is a locally cartesian closed category (see appendix), the functors Dp(−, V ) become
representable providing us with a way to describe operations such as Π and λ on CC(C, p)
in terms of morphisms between objects in C.
For a morphism p : Ũ → U in a locally cartesian closed category and an object V of this
category let

Ip(V ) := HomU((Ũ , p), (U × V, pr1))

and let
prIp(V ) = p4pr1 : Ip(V )→ U

be the morphism that defines Ip(V ) as an object over U .

Remark 2.1.17 [2016.04.23.rem1] In [4] generalized polynomial functors are defined as
functors isomorphic to functors of the form Ip.

Note that Ip depends on the choice of a locally cartesian closed structure on C. On the other
hand, the construction of the functors Dp(X, V ) requires a universe structure on p but does
not require a locally cartesian closed structure on C.
The computations below are required in order to establish the connections between the
constructions that use the locally cartesian closed structure and the constructions that use
universe structures. In particular, we have to deal with the fact that for F : X → U the fiber
product (X,F )×U (Ũ , p) that we have from the structure of a category with fiber products
on C need not be equal to (X;F ) that we have from the universe structure on p.

Let p : Ũ → U be a universe and V an object of C. We assume that C is equipped with a
locally cartesian closed structure. For F : X → U there is a unique morphism

ιF : (X;F )→ (X,F )×U (Ũ , p)
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such that ιF ◦ pr1 = pX,F and ιF ◦ pr2 = Q(F ) which is a particular case of the morphisms
ι, ι′ of Lemma 3.4.1.

The evaluation morphism in the case of Ip(V ) is of the form

evIp : (Ip(V ), prIp(V ))×U (U × V, pr1)→ U × V

Define a morphism
stp(V ) : (Ip(V ); prIp(V ))→ V

as the composition:
stp(V ) := ιprIp(V ) ◦ evIp(V ) ◦ pr2

We will need to use some properties of these morphisms.

Lemma 2.1.18 [2015.04.14.l2a] Let f : V → V ′ be a morphism, then one has

Q(Ip(f), prIp(V
′)) ◦ stp(V ′) = stp(V ) ◦ f

Proof: Let pr = prIp(V ), pr′ = prIp(V
′), ι = ιpr, ι

′ = ιpr′ , ev = evIp(V ) and ev′ = evIp(V
′).

Then we have to verify that the outer square of the following diagram commutes:

(Ip(V ); pr)
ι−−−→ (Ip(V ), pr)×U (Ũ , p)

ev−−−→ U × V pr2−−−→ V

Q(Ip(f),pr′)

y Ip(f)×Id
Ũ

y IdU×f
y yf

(Ip(V
′); pr′)

ι′−−−→ (Ip(V
′), pr′)×U (Ũ , p)

ev′−−−→ U × V ′ pr2−−−→ V ′

The commutativity of the left square is a particular case of Lemma 3.4.1. The commutativity
of the right square is an immediate corollary of the definition of IdU×f . The commutativity
of the middle square is a particular case of the axiom of locally cartesian closed structure
that says that morphisms evXY are natural in Y .

Problem 2.1.19 [2015.03.29.prob1] Let (C, p, pt) be a locally cartesian closed universe
category. To construct, for all V ∈ C, isomorphisms of presheaves

ηV : Dp(−, V )→ Y o(Ip(V ))

that are natural in V , i.e., such that for all r : V → V ′, X ∈ C and d ∈ Dp(X, V ) one has

[2016.09.11.eq1]ηV,X(d) ◦ Ip(r) = ηV ′,X(Dp(X, r)(d)) (2.1.19)

Construction 2.1.20 [2015.03.29.constr1] We need to construct bijections

ηV,X : Dp(X, V )→ Hom(X, Ip(V ))

such that (2.1.19) holds and for any f : X ′ → X and d ∈ Dp(X, V ) one has

[2016.09.11.eq2]f ◦ ηV,X(d) = ηV,X′(Dp(f, V )(d)) (2.1.20)

We will construct bijections

η!
V,X : Hom(X, Ip(V ))→ Dp(X, V )

such that for all g : X → Ip(V ) one has:
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1. for all r : V → V ′ one has

[2016.09.11.eq3]Dp(X, r)(η
!(g)) = η!(g ◦ Ip(r)) (2.1.21)

2. for all f : X ′ → X one has

[2016.09.11.eq4]Dp(f, V )(η!(g)) = η!(f ◦ g) (2.1.22)

and then define ηV,X as the inverse to η!
V,X . One proves easily that (2.1.19) implies (2.1.21)

and (2.1.20) implies (2.1.22).

For g : X → Ip(V ) we set

η!
V,X(g) := (g ◦ prIp(V ), Q(g, prIp(V )) ◦ stp(V ))

To see that this is a bijection observe first that it equals to the composition

Hom(X, Ip(V ))→ qF :X→UHomU((X,F ), (Ip(V ), prIp(V )))→ qF :X→UHom((X;F ), V )

where the first function is of the form g 7→ (g ◦prIp(V ), g) and the second is the sum over all
F : X → U of functions g 7→ Q(g, prIp(V )) ◦ stp(V ). The first function is a function of the
form A→ qb∈Bh−1(b), which is defined and is a bijection for any function of sets h : A→ B.
It remains to show that the second one is a bijection for every F .

By definition of the Hom structure we know that for each F the function

HomU((X,F ), (Ip(V ), prIp(V )))→ HomU(((X,F )×U (Ũ , p),−), (U × V, pr1))

given by g 7→ (g × IdŨ) ◦ evIp(V ) is a bijection. We also know that the function

HomU(((X,F )×U (Ũ , p), F � p), (U × V, pr1))→ Hom((X,F )×U (Ũ , p), V )

is a bijection. Since ιF is an isomorphism the composition with it is a bijection. Now we
have two functions

HomU((X,F ), (Ip(V ), prIp(V )))→ Hom((X;F ), V )

given by g 7→ ιF ◦ (g × IdŨ) ◦ evIp(V ) ◦ pV and g 7→ Q(g, prIp(V )) ◦ stp(V ) of which the
first one is the bijection. It remains to show that these functions are equal. For this it is
sufficient to show that

Q(g, prIp(V )) ◦ ιprIp(V ) = ιF ◦ (g × IdŨ)

which follows easily from computing compositions with the projections pr1 to Ip(V ) and pr2

to Ũ .

We now have to check the behavior of η! with respect to morphisms in X and V .

Let pr = prIp(V ) and pr′ = prIp(V
′). For f : V ′ → V and f : X → Ip(V ) we have

Dp(X, f)(η!(g)) = Dp(X, f)(g ◦ pr,Q(g, pr) ◦ stp(V )) = (g ◦ pr,Q(g, pr) ◦ stp(V ) ◦ f)
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and
η!(g ◦ Ip(f)) = (g ◦ Ip(f) ◦ pr′, Q(g ◦ Ip(f), pr′) ◦ stp(V ′))

We have pr = Ip(f) ◦ pr′ because Ip(f) is a morphism over U . It remains to check that

Q(g, pr) ◦ stp(V ) ◦ f = Q(g ◦ Ip(f), pr′) ◦ stp(V ′)
By [9, Lemma 2.5] we have

Q(g ◦ Ip(f), pr′) = Q(g, pr) ◦Q(Ip(f), pr′)

and the remaining equality

Q(g, pr) ◦ stp(V ) ◦ f = Q(g, pr) ◦Q(Ip(f), pr′) ◦ stp(V ′)
follows from Lemma 2.1.18.

Consider now f : X ′ → X. Then

Dp(f, V )(η!(g)) = Dp(f, V )(g◦pr,Q(g, pr)◦stp(V )) = (f◦g◦pr,Q(f, g◦pr)◦Q(g, pr)◦stp(V ))

η!(f ◦ g) = (f ◦ g ◦ pr,Q(f ◦ g, pr) ◦ stp(V ))

and the required equality follows from [9, Lemma 2.5].

Problem 2.1.21 [2015.03.17.prob3] For a locally cartesian closed closed C and a universe

p : Ũ → U in C to construct isomorphisms of presheaves

µ2 : Ob2 → int◦(Y o(Ip(U)))

and
µ̃2 : Õb2 → int◦(Y o(Ip(Ũ)))

such that the square

Õb2
µ̃2−−−→ int◦(Y o(Ip(Ũ)))

∂

y yint◦(Y o(Ip(p)))

Ob2
µ2−−−→ int◦(Y o(Ip(U)))

commutes.

Construction 2.1.22 [2015.03.17.constr2]Compose isomorphism u2 (resp. ũ2) with the
isomorphism int◦(ηU) (resp. int◦(ηŨ)). The explicit formulas for µ2 and µ̃2 are

µ2(T ) = η(u2(T ))

µ̃2(o) = η(ũ(o))

Remark 2.1.23 [2015.03.29.rem2] The previous constructions related to Ob2 and Õb2

can be generalized to Obn and Õbn for all n > 0. For example, there are isomorphisms

µn+1 : Obn+1 → int◦(Inp (U))

µ̃n+1 : Õbn+1 → int◦(Inp (Ũ))

where Inp is the n-th iteration of the functor Ip and µ1 = u1 and µ̃1 = ũ1. The functors
Y on(V ) of Remark 2.1.16 in the case of a locally cartesian closed universe category (C, p)
are representable by objects Inp (V ).
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2.2 (Π, λ)-structures on the C-systems CC(C, p)

We will show now how to construct (Π, λ)-structures on C-systems of the form CC(C, p) for
a locally cartesian closed universe category (C, p).

Definition 2.2.1 [2015.03.29.def1] Let C be a locally cartesian closed universe category,

pt be the final object of C and p : Ũ → U the universe. A P -structure on p is a pair of
morphisms

P̃ : Ip(Ũ)→ Ũ

P : Ip(U)→ U

such that the square

[2009.prod.square]

Ip(Ũ)
P̃−−−→ ŨyIp(p)

yp
Ip(U)

P−−−→ U

(2.2.1)

is pullback square.

Problem 2.2.2 [2015.03.17.prob0] Let C be a locally cartesian closed category, pt be a

final object in C and p : Ũ → U a universe. Let (P̃ , P ) be a P -structure on p. To construct
a (Π, λ)-structure on CC(C, p).

Construction 2.2.3 [2015.03.17.constr3]The diagram

Õb2
µ̃2−−−→ int◦(Y o(Ip(Ũ)))

int◦(Y o(P̃ ))−−−−−−−→ int◦(Y o(Ũ))
µ−1

1−−−→ Õb1

∂

y yint◦(Y o(Ip(p)))

yint◦(Y o(p)) y∂
Ob2

µ2−−−→ int◦(Y o(Ip(U)))
int◦(Y o(P ))−−−−−−−→ int◦(Y o(U))

µ−1
1−−−→ Ob1

shows that for a P -structure (P̃ , P ) the pair of morphisms

Π = µ̃2 ◦ int◦(Y o(P̃ )) ◦ µ̃−1
1

λ = µ−1
2 ◦ int◦(Y o(P )) ◦ µ−1

1

is a (Π, λ)-structure on CC(C, p).

There is an important class of cases when the function from P -structures on p to (Π, λ)-
structures on CC(C, p) is a bijection.

Lemma 2.2.4 [2016.09.09.l1] Let (C, p) be a universe category such that the functor

Y o ◦ int◦ : C → PreShv(CC(C, p))

is fully faithful. Then the function from the P -structures on p to the (Π, λ)-structures on
CC(C, p) defined by Construction 2.2.3 is a bijection.
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Proof: Let φ̃ be the inverse to (Y o ◦ int◦)Ip(Ũ),Ũ and φ be the inverse to (Y o ◦ int◦)Ip(U),U .

Given a (Π, λ)-structure (Π, λ) let

[2016.09.09.eq1]
P̃ = φ̃(µ̃−1

2 ◦ Π ◦ µ̃1)

P = φ(µ−1
2 ◦ λ ◦ µ1)

(2.2.2)

Then P̃ : Ip(Ũ) → Ũ and P : Ip(U) → U . Let S be the square that P̃ and P form with
Ip(p) and p. One verifies that (Y o ◦ int◦)(S) is isomorphic to the square formed by Π and λ
and as a square isomorphic to a pullback square is a pullback square.

The functor Y o ◦ int◦ is assumed to be fully faithful and if the image of a square under a
fully faithful functor is a pullback then the square itself is a pullback. We conclude that
formulas (2.2.2) define a function from (Π, λ)-structures to P -structures.

It remains to verify that this function is inverse on both sides to the function of Construction
2.2.3 which is straightforward from its definition. The lemma is proved.

3 Functoriality of P -structures and (Π, λ)-structures

3.1 Universe category functors and the Dp and Ip constructions

Let (C, p, pt) and (C ′, p′, pt′) be two universe categories. Recall from [9] that a functor of

universe categories from (C, p, pt) to (C ′, p′, pt′) is a triple Φ = (Φ, φ, φ̃) where Φ is a functor

C → C ′ and φ : Φ(U) → U ′, φ̃ : Φ(Ũ) → Ũ ′ are two morphisms such that Φ takes the final
object to a final object, pullback squares based on p to pullback squares and such that the
square

[2015.03.21.sq1]

Φ(Ũ)
φ̃−−−→ Ũ ′

Φ(p)

y yp′
Φ(U)

φ−−−→ U ′

(3.1.1)

is a pullback square.

For X, V in C we have the functoriality function

Φ : Hom(X, V )→ Hom(Φ(X),Φ(V ))

Problem 3.1.1 [2015.04.12.prob1] For a universe category functor Φ = (Φ, φ, φ̃), to de-
fine, for all X, V ∈ C, functions

Φ2
V,X : Dp(X, V )→ Dp′(Φ(X),Φ(V ))
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Construction 3.1.2 [2015.04.12.constr1] Let (F1 : X → U, F2 : (X;F1) → V ) be an
element in Dp(X, V ). Consider (Φ(X); Φ(F1) ◦ φ). Since the square (3.1.1) is a pullback

square there is a unique morphism q such that q◦φ̃ = Q(Φ(F1)◦φ) and q◦Φ(p) = pΦ(X),Φ(F1)◦φ◦
Φ(F1) and then the left hand side square in the diagram

(Φ(X); Φ(F1) ◦ φ)
q−−−→ Φ(Ũ)

φ̃−−−→ Ũ ′ypΦ(X),Φ(F1)◦φ Φ(p)

y yp′
Φ(X)

Φ(F1)−−−→ Φ(U)
φ−−−→ U ′

is a pullback square. Together with the fact that Φ takes pullback squares based on p to
pullback squares we obtain a unique morphism, which is an isomorphism,

ι : (Φ(X); Φ(F1) ◦ φ)→ Φ(X;F1)

such that
[2015.04.08.eq1]ι ◦ Φ(pX,F1) = pΦ(X),Φ(F1)◦φ (3.1.2)

[2015.04.08.eq2]ι ◦ Φ(Q(F1)) ◦ φ̃ = Q(Φ(F1) ◦ φ) (3.1.3)

and we define:
Φ2
V,X(F1, F2) := (Φ(F1) ◦ φ, ι ◦ Φ(F2))

The following lemma proves that the family of functions Φ2
V,X parametrized by X ∈ C is a

morphism of presheaves of the form

Φ2
V : Dp(−, V )→ Φ◦(Dp′(−,Φ(V )))

Lemma 3.1.3 [2015.03.23.l1] Let Φ be as above, f : X ′ → X be a morphism and V be an
object of C. Then the square

Dp(X, V )
Dp(f,V )−−−−−→ Dp(X

′, V )

Φ2
V,X

y Φ2
V,X′

y
Dp′(Φ(X),Φ(V ))

Dp′ (Φ(f),Φ(V ))
−−−−−−−−−→ Dp′(Φ(X ′),Φ(V ))

commutes.

Proof: We will omit the indexes at Φ2. We have to show that for any d ∈ Dp(X, V ) one
has

Dp′(Φ(f),Φ(V ))(Φ2(d)) = Φ2(Dp(f, V )(d))

Let d = (F1, F2). Then

Dp′(Φ(f),Φ(V ))(Φ2(d)) = Dp′(Φ(f),Φ(V ))(Φ(F1) ◦ φ, ι ◦ Φ(F2)) =
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(Φ(f) ◦ Φ(F1) ◦ φ, q′ ◦ ι ◦ Φ(F2))

and
Φ2(Dp(f, V )(F1, F2)) = Φ2(f ◦ F1, q ◦ F2) =

(Φ(f ◦ F1) ◦ φ, ι′ ◦ Φ(q ◦ F2))

where

ι : (Φ(X); Φ(F1) ◦ φ)→ Φ(X;F1) ι′ : (Φ(X ′); Φ(f ◦ F1) ◦ φ)→ Φ(X ′; f ◦ F1)

q : (X ′; f ◦ F1)→ (X;F1) q′ : (Φ(X ′); Φ(f) ◦ Φ(F1) ◦ φ)→ (Φ(X); Φ(F1) ◦ φ)

are the morphisms defined in Construction 3.1.2. We have

Φ(f) ◦ Φ(F1) ◦ φ = Φ(f ◦ F1) ◦ φ

and it remains to check that

q′ ◦ ι ◦ Φ(F2) = ι′ ◦ Φ(q ◦ F2)

or that q′◦ι = ι′◦Φ(q). The codomain of both morphisms is Φ(X;F1) that by our assumption
on Φ is a pullback of p′ and Φ(F1)◦φ. Therefore it is sufficient to verify that the compositions

of these two morphisms with the projections to Ũ ′ and Φ(X) coincide.

This is done by a direct computation from definitions.

If we consider Dp as a functor C → PreShv(C) then the following lemma shows that the
family of functor morphisms Φ2

V parametrized by V ∈ C form a functor morphism of the
form

Φ2 : Dp → Φ ◦Dp′ ◦ Φ◦

Lemma 3.1.4 [2015.04.10.l3] Let Φ be as above, X an object of C and f : V → V ′ a
morphism. Then the square

Dp(X, V )
Dp(X,f)−−−−−→ Dp(X, V

′)

Φ2
V,X

y yΦ2
V ′,X

Dp′(Φ(X),Φ(V ))
Dp(Φ(X),Φ(f))−−−−−−−−−→ Dp′(Φ(X),Φ(V ′))

commutes.

Proof: We will omit the indexes at Φ2. Let d = (F1, F2) ∈ Dp(X, V ). We have to show that

Φ2(Dp(X, f)(F1, F2)) = Dp(Φ(X),Φ(f))(Φ2(F1, F2))

We have:

Φ2(Dp(X, f)(F1, F2)) = Φ2((F1, F2 ◦ f)) = (Φ(F1) ◦ φ, ι ◦ Φ(F2 ◦ f)) =
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(Φ(F1) ◦ φ, ι ◦ Φ(F2) ◦ Φ(f)) = Dp(Φ(X),Φ(f))(Φ2(F1, F2))

Note that in the problem below no assumption is made about the compatibility of Φ with
the locally cartesian closed structures on C and C ′.

Problem 3.1.5 [2015.03.21.prob1] Assume that C and C ′ are locally cartesian closed uni-
verse categories. For Φ as above and V ∈ C to construct a morphism

χΦ(V ) : Φ(Ip(V ))→ Ip′(Φ(V ))

Construction 3.1.6 [2015.03.21.constr1] Consider the sequence of functions

Dp(Ip(V ), V )
Φ2
Ip(V ),V−−−−−→ Dp′(Φ(Ip(V )),Φ(V ))

η!
V,Ip(V )

x ηΦ(Ip(V )),Φ(V )

y
Hom(Ip(V ), Ip(V )) Hom(Φ(Ip(V )), Ip′(Φ(V )))

where η and its inverse η! are the bijections of Construction 2.1.20. Applying it to IdIp(V )

we obtain
χΦ(V ) = ηΦ(Ip(V )),Φ(V )(Φ

2
Ip(V ),V (η!

V,Ip(V )(IdIp(V ))))

Let us show that χΦ are natural in V .

Lemma 3.1.7 [2015.04.10.l4] For Φ as above let f : V1 → V2 be a morphism. Then the
square

Φ(Ip(V1))
χΦ(V1)−−−−→ Ip′(Φ(V1))

Φ(Ip(f))

y yIp′ (Φ(f))

Φ(Ip(V2))
χΦ(V2)−−−−→ Ip′(Φ(V2))

commutes.

Proof: Let Xi = Ip(Vi) for i = 1, 2. In the following computations we often omit the indexes
that can be recovered from the context. We have:

χ(V1) ◦ Ip′(Φ(V1)) = η(Φ2(η!(IdX1))) ◦ Ip′(Φ(f)) = η′(Dp′(Φ(X1),Φ(f))(Φ2(η!(IdX1))))

where the second equality is by (2.1.20) with respect to Φ(f). Then

η(Dp(X1,Φ(f))(Φ2(η!(IdX1)))) = η(Φ2(Dp(X1, f)(η!(IdX1)))) =

η(Φ2(η!(IdX1 ◦ Ip(f))) = η(Φ2(η!(Ip(f))))

where the first equality holds by Lemma 3.1.4 and the second by (2.1.21) with respect to f .
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On the other hand:

Φ(Ip(f)) ◦ χ(V2) = Φ(Ip(f)) ◦ η(Φ2(η!(IdX2))) =

η′(Dp′(Φ(Ip(f)),Φ(X2))(Φ2(η!(IdX2))))

where the second equality is by (2.1.20) with respect to Φ(Ip(f)). Then

η(Dp′(Φ(Ip(f)),Φ(X2))(Φ2(η!(IdX2)))) = η(Φ2(Dp(Ip(f), X2)(η!(IdX2)))) =

η(Φ2(η!(Ip(f) ◦ IdX2))) = η(Φ2(η!(Ip(f))))

where the first equality holds by Lemma 3.1.4 and the second by (2.1.22) with respect to
the Ip(f). This completes the proof of Lemma 3.1.7.

Lemma 3.1.8 [2015.05.06.l1] For all X, V ∈ C the pentagon

Dp(X, V )
ηV,X−−−→ Hom(X, Ip(V ))

Φ2
V,X

y yΦ

Dp′(Φ(X),Φ(V )) Hom(Φ(X),Φ(Ip(V )))

ηΦ(V ),Φ(X)

y y−◦χΦ(V )

Hom(Φ(X), Ip′(Φ(V ))) Hom(Φ(X), Ip′(Φ(V )))

commutes, that is, for all a ∈ Dp(X, V ) one has

Φ(η(a)) ◦ χΦ(V ) = η(Φ2(a))

Proof: By definition of χΦ and (2.1.20) with respect to Φ(η(a)) we have

Φ(η(a)) ◦ χΦ(V ) = Φ(η(a)) ◦ η(Φ2(η!(Id))) = η(Dp′(Φ(η(a)),Φ(V ))(Φ2(η!(IdIp(V )))))

By Lemma 3.1.3 we further have:

η(Dp′(Φ(η(a)),Φ(V ))(Φ2(η!(Id)))) = η(Φ2(Dp(η(a), V )(η!(Id))))

It remains to show that Dp(η(a), V )(η!(Id)) = a. Since η is a bijection we may apply it on
both sides and by (2.1.22) with respect to η(a) we get

η(Dp(η(a), V )(η!(Id))) = η(η!(η(a) ◦ Id)) = η(a) ◦ Id = η(a)
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3.2 More on universe category functors

By [9, Construction 4.7] any universe category functor Φ = (Φ, φ, φ̃) from (C, p) to (C ′, p)
defines a homomorphism of C-systems

H : CC(C, p)→ CC(C ′, p′)

Let ψ0 : pt′ → Φ(pt) be the unique morphism. To define H on objects, one uses the fact that

Ob(CC(C, p)) = qn≥0Obn(C, p)

and defines H(n,A) as (n,Hn(A)) where

Hn : Obn(C, p)→ Obn(C ′, p′)

To obtain Hn one defines by induction on n, pairs (Hn, ψn) where Hn is as above and ψn is
a family of isomorphisms

ψn(A) : intn(Hn(A))→ Φ(intn(A))

as follows:

1. for n = 0, H0 is the unique function from one point set to one point set and ψ0(A) = ψ0,

2. for the successor of n one has

Hn+1(A,F ) = (Hn(A), ψn(A) ◦ Φ(F ) ◦ φ)

and ψn+1(A,F ) is the unique morphism int(H(A,F ))→ Φ(int(A,F )) such that

ψn+1(A,F ) ◦ Φ(Q(F )) ◦ φ̃ = Q(ψn(A) ◦ Φ(F ) ◦ φ)

and
ψn+1(A,F ) ◦ Φ(pintn(A),F ) = pHn(A),ψn(A)◦Φ(F )◦φ ◦ ψn(A)

The function H : Ob(CC(C, p))→ Ob(CC(C ′, p′)) is the sum of functions Hn. For Γ = (m,A)
in Ob(CC(C, p)) we let ψ(Γ) = ψm(A) such that ψ is the sum of families ψn.

The action of H on morphisms is given, for f : Γ′ → Γ, by

H(f) = ψ(Γ′) ◦ Φ(int(f)) ◦ ψ(Γ)−1

We will often write H also for the functions Hn and ψ for the functions ψn.

Lemma 3.2.1 [2015.03.21.l4] Let (Φ, φ, φ̃) be universe category functor. Then:

1. for T ∈ Ob1(Γ) one has

u1,H(Γ)(H(T )) = ψ(Γ) ◦ Φ(u1,Γ(T )) ◦ φ
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2. for o ∈ Õb1(Γ) one has

ũ1,H(Γ)(H(o)) = ψ(Γ) ◦ Φ(ũ1,Γ(o)) ◦ φ̃

3. for T ∈ Ob2(Γ) one has

u2,H(Γ)(H(T )) = Dp′(ψ(Γ), U ′)(Dp′(int(H(Γ)), φ)(Φ2(u2,Γ(T ))))

4. for o ∈ Õb2(Γ) one has

ũ2,H(Γ)(H(o)) = Dp′(ψ(Γ), Ũ ′)(Dp′(int(H(Γ)), φ̃)(Φ2(ũ2,Γ(o))))

Proof: Let Γ = (n,A).

In the case of T ∈ Ob1(Γ), if T = (n+ 1, (A,F )) then

u1(H(T )) = u1(n+ 1, H(A,F )) = u1(n+ 1, (H(A), ψ(Γ) ◦ Φ(F ) ◦ φ)) = ψ(Γ) ◦ Φ(F ) ◦ φ

In the case of s ∈ Õb1(Γ), if F = u1(∂(s)) then

ũ1(H(s)) = H(s) ◦Q(u1(n+ 1, H(A,F ))) = ψ(A) ◦Φ(s) ◦ψ(A,F )−1 ◦Q(ψ(A) ◦Φ(F ) ◦ φ) =

ψ(A) ◦ Φ(s) ◦ Φ(Q(F )) ◦ φ̃ = ψ(A) ◦ Φ(s ◦Q(F )) ◦ φ̃ = ψ(A) ◦ Φ(ũ1(s)) ◦ φ̃
Where the second equality is by definition of ψ(A,F ).

In the case T ∈ Ob2(Γ), if T = (n+ 2, ((A,F1), F2)) then

u2(H(T )) = u2(n+ 2, H(((A,F1), F2))) = u2(n+ 2, (H(A,F1), ψ(A,F1) ◦ Φ(F2) ◦ φ)) =

u2(n+ 2, ((H(A), ψ(A) ◦ Φ(F1) ◦ φ), ψ(A,F1) ◦ Φ(F2) ◦ φ)) =

(ψ(A) ◦ Φ(F1) ◦ φ, ψ(A,F1) ◦ Φ(F2) ◦ φ)

On the other hand

Dp′(ψ(A),−)Dp′(−, φ)(Φ2(u2(T ))) = Dp′(ψ(A),−)Dp′(−, φ)(Φ2(u2(n+ 2, ((A,F1), F2)))) =

Dp′(ψ(A),−)Dp′(−, φ)(Φ2(F1, F2)) = Dp′(ψ(A),−)Dp′(−, φ)(Φ(F1) ◦ φ, ι ◦ Φ(F2)) =

Dp′(ψ(A),−)(Φ(F1) ◦φ, ι ◦Φ(F2) ◦φ) = (ψ(A) ◦Φ(F1) ◦φ,Q(ψ(A),Φ(F1) ◦φ) ◦ ι ◦Φ(F2) ◦φ)

therefore we need to show that

[2015.04.12.eq1]ψ(A,F1) ◦ Φ(F2) ◦ φ = Q(ψ(A),Φ(F1) ◦ φ) ◦ ι ◦ Φ(F2) ◦ φ (3.2.1)

which we reduce to ψ(A,F1) = Q(ψ(A),Φ(F1) ◦ φ) ◦ ι. The codomain of both sides is
Φ(int(A,F1)). Using the fact that the external square of the diagram

Φ(int(A,F1))
Φ(Q(F1))−−−−−→ Φ(Ũ)

φ̃−−−→ Ũ ′

Φ(p(A,F1))

y yΦ(p)

yp′
Φ(int(A))

Φ(F1)−−−→ Φ(U)
φ−−−→ U ′
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is a pullback square we see that equality (3.2.1) would follow from the following two equalities:

ψ(A,F1) ◦ Φ(Q(F1)) ◦ φ̃ = Q(ψ(A),Φ(F1) ◦ φ) ◦ ι ◦ Φ(Q(F1)) ◦ φ̃

and
ψ(A,F1) ◦ Φ(p(A,F1)) = Q(ψ(A),Φ(F1) ◦ φ) ◦ ι ◦ Φ(p(A,F1))

For the first equality we have

ψ(A,F1) ◦ Φ(Q(F1)) ◦ φ̃ = Q(ψ(A) ◦ Φ(F1) ◦ φ)

by definition of ψ(Γ, F1) and

Q(ψ(A),Φ(F1)◦φ)◦ι◦Φ(Q(F1))◦φ̃ = Q(ψ(A),Φ(F1)◦φ)◦Q(Φ(F1)◦φ) = Q(ψ(A)◦Φ(F1)◦φ)

where the first equality holds by definition of ι and second by the definition of Q(−,−).

For the second equality we have

ψ(A,F1) ◦ Φ(p(A,F1)) = pH(A,F1) ◦ ψ(A)

by definition of ψ(A,F1) and

Q(ψ(A),Φ(F1) ◦ φ) ◦ ι ◦ Φ(p(A,F1)) = Q(ψ(A),Φ(F1) ◦ φ) ◦ pΦ(int(A)),Φ(F1)◦φ = pH(A,F1) ◦ ψΓ

by definitions of Q and ι.

The case of o ∈ Õb2(Γ) is strictly parallel to the case of T ∈ Ob2(Γ) with Φ(F2) ◦ φ at the

end of the formulas replaced by Φ(F̃2) ◦ φ̃ where instead of F2 : int(A,F1) → U one has

F̃2 : int(A,F1)→ Ũ with F̃2 = ũ1,ft(∂(o))(o).

For (Φ, φ, φ̃) as above let us denote by

ξΦ : Φ(Ip(U))→ Ip′(U
′)

the composition χΦ(U) ◦ Ip′(φ) and by

ξ̃Φ : Φ(Ip(Ũ))→ Ip′(Ũ
′)

the composition χΦ(Ũ) ◦ Ip(φ̃).

Lemma 3.2.2 [2015.05.06.l2] Let (Φ, φ, φ̃) be a universe category functor and Γ ∈ Ob(CC(C, p)).
Then one has:

1. for T ∈ Ob2(Γ)
µ2(H(T )) = ψ(Γ) ◦ Φ(µ2(T )) ◦ ξΦ

2. for o ∈ Õb2(Γ)

µ̃2(H(o)) = ψ(Γ) ◦ Φ(µ̃2(o)) ◦ ξ̃Φ
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Proof: We have

µ2(H(T )) = η(u2(H(T ))) = η(Dp′(ψ(Γ), )(Dp′( , φ)(Φ2(u2(T ))))) =

ψ(Γ) ◦ η(Φ2(u2(T ))) ◦ Ip′(φ)

where the first equality holds by the definition of µ2 (cf. Construction 2.1.22), the second
equality holds by Lemma 3.2.1(3) and the third by the naturality of η. Next

η(Φ2(u2(T ))) ◦ Ip′(φ) = Φ(η(u2(T ))) ◦ χΦ(U) ◦ Ip′(φ) = Φ(η(u2(T ))) ◦ ξΦ = Φ(µ2(T )) ◦ ξΦ

where the first equality holds by Lemma 3.1.8, the second one by the definition of ξΦ and
the third one by the definition of µ2.

The proof of the second part of the lemma is strictly parallel to the proof of the first part.

3.3 Functoriality properties of the (Π, λ)-structures constructed
from P -structures

Let us show the functoriality properties of the (Π, λ) structures of Construction 2.2.3.

Definition 3.3.1 [2016.09.13.def1] Let H : CC → CC ′ be a homomorphism of C-systems.
Let (Π, λ) and (Π′, λ′) be pre-(Π, λ)-structures on CC and CC ′ respectively.

The H is called a homomorphism of C-systems with pre-(Π, λ) and (Π′, λ′) if the following
two squares commute

Ob2
Π−−−→ Ob1

HOb2

y yHOb1
H◦(Ob2)

H◦(Π′)−−−−→ H◦(Ob1)

Õb2
λ−−−→ Õb1

HÕb2

y yHÕb1
H◦(Õb2)

H◦(λ′)−−−−→ H◦(Õb1)

If (Π, λ) and (Π′, λ′) are (Π, λ)-structures then H is called a homomorphism of C-systems
with (Π, λ)-structures if it is a homomorphism of C-systems with the corresponding pre-
(Π, λ)-structures.

Unfolding the definition of HObi and HÕbi in Definition 3.3.1 we see that H is a homomor-
phism of C-systems with pre-(Π, λ)-structures if and only if for all Γ ∈ CC one has

1. for all T ∈ Ob2(Γ) one has

[2016.09.13.eq1]H(ΠΓ(T )) = Π′H(Γ)(H(T )) (3.3.1)

2. for all o ∈ Õb2(Γ) one has

[2016.09.13.eq2]H(λΓ(o)) = λ′H′(Γ)(H(o)) (3.3.2)

27



Theorem 3.3.2 [2015.03.21.th1] Let (Φ, φ, φ̃) be as above and let (P, P̃ ), (P ′, P̃ ′) be as in
Problem 2.2.2 for C and C ′ respectively.

Assume that the squares

[2015.03.23.sq1]

Φ(Ip(U))
ξΦ−−−→ Ip′(U

′)

Φ(P )

y yP ′
Φ(U)

φ−−−→ U

Φ(Ip(Ũ))
ξ̃Φ−−−→ Ip′(Ũ

′)

Φ(P̃ )

y yP̃ ′
Φ(Ũ)

φ̃−−−→ Ũ

(3.3.3)

commute. Then the homomorphism

H(Φ, φ, φ̃) : CC(C, p)→ CC(C ′, p′)

is a homomorphism of C-systems with (Π, λ)-structures.

Proof: We have to show that for all Γ ∈ Ob(CC(C, p)), T ∈ Ob2(Γ) and o ∈ Õb2(Γ) the
equalities (3.3.1) and (3.3.2) hold. We will prove the first equality. The proof of the second
is strictly parallel to the proof of the first.

By definition we have:

H(Π(T )) = H(u−1
1 (η(u2(T )) ◦ P )) = (u1)−1(ψ(Γ) ◦ Φ(η(u2(T )) ◦ P ) ◦ φ) =

(u1)−1(ψ(Γ) ◦ Φ(η(u2(T ))) ◦ Φ(P ) ◦ φ)

where the second equality holds by Lemma 3.2.1(1) and

Π′(H(T )) = (u1)−1(u2(H(T )) ◦ P ′) = (u1)−1(η′(u2(H(T ))) ◦ P ′)

Let us show that

η′(u2(H(T ))) ◦ P ′ = ψ(Γ) ◦ Φ(η(u2(T ))) ◦ Φ(P ) ◦ φ

By Lemma 3.2.2(1) we have

η′(u2(H(T ))) ◦ P ′ = ψ(Γ) ◦ Φ(η(u2(T ))) ◦ ξΦ ◦ P ′

It remains to show that
ξΦ ◦ P ′ = Φ(P ) ◦ φ

which is our assumption about the commutativity of the square first square in (3.3.3).

28



3.4 Appendix. Categories with pullbacks and locally cartesian
closed categories

Lemma 3.4.1 [2015.04.16.l1] Let C be a category. Consider four pullback squares

pbi
prY,i−−−→ Y

prX,i

y yg
X

f−−−→ Z

pb′i
prY ′,i−−−→ Y ′

prX,i

y yg′
X ′

f ′−−−→ Z

where i = 1, 2. Let a : X ′ → X and b : Y ′ → Y be such that a ◦ f = f ′ and b ◦ g = g′.
Let ι : pb1 → pb2 be the unique morphism such that ι ◦ prX2 = prX,1 and ι ◦ prY,1 = prY,2
and similarly for ι′ : pb′1 → pb′2. Let ci(a, b) : pb′i → pbi be the unique morphisms such that
ci(a, b) ◦ prX,i = prX′,i ◦ a and ci(a, b) ◦ prY,i = b ◦ prY ′,i. Then the square

pb′1
c1(a,b)−−−−→ pb1

ι′

y yι
pb′2

c2(a,b)−−−−→ pb2

commutes, i.e., c1(a, b) ◦ ι = ι′ ◦ c2(a, b).

Proof: Since pb2 is a pullback it is sufficient to prove that

c1(a, b) ◦ ι ◦ prX,2 = ι′ ◦ c2(a, b) ◦ prX,2

and
c1(a, b) ◦ ι ◦ prY,2 = ι′ ◦ c2(a, b) ◦ prY,2

For the first one we have:

c1(a, b) ◦ ι ◦ prX,2 = c1(a, b) ◦ prX,1 = prX′,1 ◦ a

and
ι′ ◦ c2(a, b) ◦ prX,2 = ι′ ◦ prX′,2 ◦ a = prX′,1 ◦ a

The verification of the second equality is similar.

Definition 3.4.2 [2015.04.22.def1] A category with pullbacks or a category with fiber prod-
ucts is a category together with, for all pairs of morphisms of the form f : X → Z, g : Y → Z,
pullback squares

(X, f)×Z (Y, g)
pr

(X,f),(Y,g)
2−−−−−−−→ Y

pr
(X,f),(Y,g)
1

y yg
X

f−−−→ Z
We will often abbreviate these main notations in various ways. The morphism pr2◦g = pr1◦f
from (X, f)× (Y, g) to Z is denoted by f � g.
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Given a category with pullbacks, morphisms gi : Yi → Z, i = 1, 2 and morphisms a : X1 →
Y1, b : X2 → Y2 denote by

(a× b)g1,g2 : ((X1, a ◦ g1)×Z (X2, b ◦ g2), (a ◦ g1) � (b ◦ g2))→ ((Y1, g1)×Z (Y2, g2), g1 � g2)

the unique morphism over Z such that

(a× b)g1,g2 ◦ pr1 = pr1 ◦ a

and
(a× b)g1,g2 ◦ pr2 = pr2 ◦ b

To show that (a× b)g1,g2 exists we need to check that

pr1 ◦ a ◦ g1 = pr2 ◦ b ◦ g2

which is immediate from the definition of the pullback.

Lemma 3.4.3 [2015.05.14.l1] In the setting introduced above suppose that we have in ad-
dition a′ : X ′1 → X1 and b′ : X ′2 → X2. Then one has

((a′ ◦ a)× (b′ ◦ b))g1,g2 = (a′ × b′)a◦g1,b◦g2 ◦ (a× b)g1,g2

Proof: Straightforward rewriting to compute the compositions of both sides with prg1,g2

1 and
prg1,g2

2 .

Definition 3.4.4 [2015.03.27.def1] A locally cartesian closed structure on a (pre-)category
C is a collection of data of the form:

1. A structure of a category with pullbacks on C.

2. For all f , g of the form f : X → Z, g : Y → Z, an object HomZ((X, f), (Y, g)) and a
morphism

f4g : HomZ((X, f), (Y, g))→ Z

together with morphisms of the form

Hom((X, f), a) : Hom((X, f), (Y, g))→ Hom((X, f), (Y ′, g′))

for all a : (Y, g)→ (Y ′, g′) over Z, that make Hom((X, f),−) into a functor from C/Z
to C.

3. For all f , g as above a morphism

ev
(X,f)
(Y,g) : (HomZ((X, f), (Y, g)), f4g)× (X, f)→ (Y, g)

over Z such that for all h : W → Z the function

adj
(W,h),(X,f)
(Y,g) : HomZ((W,h), (HomZ((X, f), (Y, g)), f4g))→

HomZ(((W,h)× (X, f), h � f), (Y, g))

given by
u 7→ (u× IdX)f4g,f ◦ ev(X,f)

(Y,g)

is a bijection and such that the morphisms ev
(X,f)
(Y,g) are natural in Y .
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A locally cartesian closed (pre-)category is a (pre-)category together with a locally cartesian
closed structure on it.

If a locally cartesian closed category is given with a final object pt we will write X × Y for
(X, πX)×pt (Y, πY ) where πX and πY are the unique morphisms from X and Y respectively
to pt.

By definition the objects (Hom((X, f), (Y, g)), f4g) of C/Z are functorial only in (Y, g).
Their functoriality in (X, f) is a consequence of a lemma. For f : X → Z, f ′ : X ′ → Z,
g : Y → Z and h : X ′ → X such that h ◦ f = f ′ let

HomZ(h, (Y, g)) : HomZ((X, f), (Y, g))→ HomZ((X ′, f ′), (Y, g))

be the unique function whose adjoint

adj(HomZ(h, (Y, g))) : (HomZ((X, f), (Y, g)), f4g)×Z (X ′, f ′)→ (Y, g)

equals (IdHomZ((X,f),(Y,g)) × h)f4g,f ◦ evXY . Then one has:

Lemma 3.4.5 [2015.04.10.l1] The morphisms HomZ(h, (Y, g)) satisfy the equations

HomZ(h, (Y, g)) ◦ (f ′4g) = f4g

and the equations

HomZ(h1 ◦ h2, (Y, g)) = Hom(h2, (Y, g)) ◦Hom(h1, (Y, g))

HomZ(Id, (Y, g)) = Id

making HomZ(−, (Y, g)) into a contravariant functor from C/Z to itself. In addition, for
each h′ : (Y, g)→ (Y, g′) the square

HomZ((X ′, f ′), (Y, g))
HomZ((X′,f ′),h′)−−−−−−−−−−→ HomZ((X ′, f ′), (Y ′, g′))

HomZ(h,(Y,g))

y yHomZ(h,(Y ′,g′))

HomZ((X, f), (Y, g))
HomZ((X,f),h′)−−−−−−−−−→ HomZ((X, f), (Y ′, g′))

commutes.

Proof: It is a particular case of [5, Theorem 3, p.100]. The commutativity of the square is
a part of the ”bifunctor” claim of the theorem.

Lemma 3.4.6 [2015.04.20.l2] In a locally cartesian closed category let f : X → Z, f ′ :
X ′ → Z, g : Y → Z be objects over Z and let a : X ′ → X be a morphism over Z. Then the
square

(Hom((X, f), (Y, g)), f4g)×Z (X ′, f ′)
1−−−→ (Hom((X, f), (Y, g)), f4g)×Z (X, f)

2

y yev
(HomZ((X ′, f ′), (Y, g)), f ′4g)×Z (X ′, f ′)

ev′−−−→ Y

where 1 is (IdHom((X,f),(Y,g)) × a)f4g,f and 2 is (Hom(a, (Y, g))× IdX′)f
′4g,f ′, commutes.
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Proof: Let us show that both paths in the square are adjoints to Hom(a, (Y, g)). For the
path that goes through the upper right corner it follows from the definition of Hom(a, (Y, g))
as the morphism whose adjoint is (Id × a) ◦ ev. For the path that goes through the lower
left corner it follows from the definition of adjoint applied to Hom(a, (Y, g)). Indeed, the
adjoint to this morphism is

adj(Hom(a, (Y, g))) = (Hom(a, (Y, g))× IdX′) ◦ ev′

Lemma 3.4.7 [2015.05.12.l2] Let C be a locally cartesian closed category. Let Z, (X, f), (Y, g), (W,h)
be as above.

1. Let (Y ′, g′) be an object over Z and a : (Y, g)→ (Y ′, g′) a morphism over Z. Then for
any b ∈ HomZ((W,h), HomU((X, f), (Y, g))) one has

adj(b ◦HomZ((X, f), a)) = adj(b) ◦ a

2. Let (X ′, f ′) be an object over Z and a : (X ′, f ′) → (X, f) a morphism over Z. Then
for any b ∈ HomZ((W,h), HomU((X, f), (Y, g))) one has

adj(b ◦HomZ(a, (Y, g))) = (IdW × a)h,f ◦ adj(b)

3. Let (W ′, h′) be an object over Z and a : (W ′, h′) → (W,h) a morphism over Z. Then
for any b ∈ HomZ((W,h), HomU((X, f), (Y, g))) one has

adj(a ◦ b) = (a× IdX)h,f ◦ adj(b)

Proof: The proof of the first case is given by

adj(b ◦HomZ((X, f), a)) = ((b ◦HomZ((X, f), a))× IdX)f4g
′,f ◦ ev(X,f)

(Y ′,g′) =

(b× IdX)f4g,f ◦ (HomZ((X, f), a))× IdX)f4g
′,f ◦ ev(X,f)

(Y ′,g′) =

(b× IdX)f4g,f ◦ ev(X,f)
(Y,g) ◦ a = adj(b) ◦ a

where the second equality holds by Lemma 3.4.3 and the third equality by the naturality
axiom for morphisms ev

(X,f)
(Y,g) in (Y, g).

The proof of the second case is given by the following sequence of equalities where we use
the notation Hm for HomZ(a, (Y, g)) as well as a number of other abbreviations:

adj(b ◦Hm) = ((b ◦Hm)× Id) ◦ ev = (b× Id) ◦ (Hm× Id) ◦ ev = (b× Id) ◦ adj(Hm) =

(b× Id) ◦ (Id× a) ◦ ev = (b× a) ◦ ev = (Id× a) ◦ (b× Id) ◦ ev = (Id× a) ◦ adj(b)
The proof of the third case is given by

adj(a ◦ b) = ((a ◦ b)× IdX) ◦ ev(X,f)
(Y,g) = (a× IdX) ◦ (b× IdX) ◦ ev(X,f)

(Y,g) =

(a× IdX) ◦ adj(b)
where the second equality holds by Lemma 3.4.3.

Lemma is proved.
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Example 3.4.8 [2015.05.20.ex1] The following example shows that there can be many
different structures of a category with pullbacks on a (pre-)category and also many locally
cartesian closed structures.

Let us take as our (pre-)category the (pre-)category preStn whose objects are natural num-
bers and Hom(n,m) = Hom({0, . . . , n− 1}, {0, . . . ,m− 1}).
Since every isomorphism class contains exactly one object every auto-equivalence of this
category is an automorphism. Let Φ be such an automorphism. It is easy to see that it
must be identity on the set of objects. Let X = {0, 1}. Consider Φ on End(X). Since Φ
must respect identities and compositions, Φ must take Aut(X) to itself and must act on
it by identity. If 1 and σ are the two elements of Aut(X) we conclude that Φ(1) = 1 and
Φ(σ) = σ.

Let us choose now any structure str0 of a category with pullbacks on preStn and let us
consider two structures str1 and strσ that are obtained by choosing all the pullbacks as in
str0 except for the square for the pair (IdX , IdX) which we choose to be, correspondingly,
as follows:

[2015.05.20.sq1]

X
IdX−−−→ X

IdX

y yIdX
X

IdX−−−→ X

for str1 and

X
σ−−−→ X

σ

y yIdX
X

IdX−−−→ X

for strσ. (3.4.1)

The preceding discussion of the auto-equivalences of preStn shows that there is no auto-
equivalence which would transform str1 into strσ.

The (pre-)category preStn also has a locally cartesian closed structure that can be modified
so that its underlying pullback structures are str1 and strσ. This shows that preStn has at
least two locally cartesian closed structures that are not interchanged by auto-equivalences
of preStn.

Remark 3.4.9 [2015.05.20.rem1] The previous example has a continuation in the univa-
lent foundations where there is a notion of a category and pre-category. There one expects
it to be true that the type of pullback structures and the type of locally cartesian closed
structures on a category (as opposed to those on a general pre-category) are of h-level 1, i.e.,
classically speaking are either empty or contain only one element.

In addition any such structure on a pre-category should define a structure of the same kind
on the Rezk completion of this pre-category with all the different structures on the pre-
category becoming equal on the Rezk completion. In the case of the previous example the
Rezk completion of preStn is the category FSets of finite sets and in view of the univalence
axiom for finite sets the two pullback squares of 3.4.1 will become equal in FSets.
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