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Abstract

B-systems are algebras (models) of an essentially algebraic theory that is expected to be
constructively equivalent to the essentially algebraic theory of C-systems which is, in turn,
constructively equivalent to the theory of contextual categories. The theory of B-systems is
closer in its form to the structures directly modeled by contexts and typing judgements of
(dependent) type theories and further away from categories than contextual categories and
C-systems.
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1 Lft-sets, pre-B-systems and B0-systems

1 Lft-sets

Let us start with the definition of lft-sets. For two natural numbers m,n define

m−N n = max(m− n, 0).
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Definition 1.1 [2016.01.27.def1] An lft-set is a collection of data of the following form:

1. a set B,

2. a function l : B → N,

3. a function ft : B → B

such that for all X ∈ B one has l(ft(X)) = l(X)−N 1.

An lft-set is called pointed if the set {X ∈ B, l(X) = 0} is a one element set. In this case the only
element of this set is usually denoted by pt.

Lemma 1.2 [2016.02.18.l2] Let B be an lft-set, X ∈ B and n ∈ N. Then

l(ftn(X)) = l(X)−N n

Proof: Obvious induction on n.

For an lft-set B, define the relation ≥ on B by the condition that Y ≥ X if and only if l(Y ) ≥ l(X)
and

X = ftl(Y )−l(X)(Y ).

Define the relation > on B by the condition that Y > X if and only if Y ≥ X and l(Y ) > l(X).

Lemma 1.3 [2016.01.27.l1] For any lft-set B one has:

1. the relation ≥ is a partial order relation, i.e., it is reflexive, transitive and antisymmetric,

2. the relation > is a strict partial order relation, i.e., it is transitive and asymmetric.

Proof: Straightforward using the corresponding properties of the relations ≥ and > on N and
properties of −N.

Lemma 1.4 [2016.02.22.l2] Let B be an lft-set. The following mixed transitivities hold:

1. if Z > Y and Y ≥ X then Z > X,

2. if Z ≥ Y and Y > X then Z > X.

Proof: Straightforward from the properties of −N and > and ≥ and > on N.

Lemma 1.5 [2016.02.22.l3] Let B be an lft-set, Y ≥ X in B and i ∈ N. Then one has:

1. if l(Y ) ≥ i+ l(X) then fti(Y ) ≥ X,

2. if l(Y ) > i+ l(X) then fti(Y ) > X.

3



Proof: Straightforward from the properties of −N and > and ≥ and > on N.

Lemma 1.6 [2016.01.27.l6] Let B be an lft-set and Y > X in B. Then ft(Y ) ≥ X.

Proof: Straightforward from the properties of −N and > and ≥ on N.

Lemma 1.7 [2016.01.29.l3] Let B be an lft-set, X ∈ B and n ∈ N. Then X ≥ ftn(X).

Proof: Straightforward from the properties of −N and > and ≥ on N.

Lemma 1.8 [2016.01.29.l2] Let B be an lft-set, X ∈ B, n > 0 and l(ftn(X)) > 0. Then
X > ftn(X).

Proof: From Lemma 1.7 we know that X ≥ ftn(X). It remains to show that l(X) > l(ftn(X)).
By Lemma 1.2, l(ftn(X)) = max(l(X)−n, 0) which implies that under the condition of the lemma
l(ftn(X)) = l(X)− n and since n > 0 we have that l(X) > l(ftn(X)).

Definition 1.9 [2016.01.27.def2] Let B,B′ be lft-sets. A morphism of lft-sets f : B → B′ is a
function f : B → B′ such that for all X ∈ B one has l(f(X)) = l(X) and l(ft(X)) = ft(l(X)).

We let Morlft(B,B
′) denote the set of morphisms of lft-sets from B to B′.

Lemma 1.10 [2016.03.15.l5] Let f : B → B′ be a morphism of lft-sets, X ∈ B and j ∈ N. Then
one has

f(ftj(X)) = ftj(f(X))

Proof: By induction on j.

Lemma 1.11 [2017.01.27.l3] Let f : B → B′ be a morphism of lft-sets and X,Y ∈ B. Then one
has:

1. if Y ≥ X then f(Y ) ≥ f(X),

2. if Y > X one has f(Y ) > f(X),

Proof: Straightforward from Lemma 1.10.

Lemma 1.12 [2016.01.27.l2] One has:

1. for any lft-set B the identity function IdB : B → B is a morphism of lft-sets,

2. for any lft sets B,B′, B′′ and morphisms f : B → B′, f ′ : B′ → B′′ the composition of
functions f ◦ f ′ is a morphism of lft-sets.

Proof: Straightforward using the properties of −N.

Let lft(U) be the set of lft-sets in the universe U .
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Problem 1.13 [2016.01.27.prob1] Let U be a universe. To construct a category LFT (U) with
the set of objects lft(U).

Construction 1.14 [2016.01.27.constr1a]We define

Ob(LFT (U)) = lft(U)

Mor(LFT (U)) = qB,B′∈lft(U)Morlft(B,B
′)

with the obvious domain and codomain functions and the identity function and the composition
function being defined from the identity and composition of functions between sets using Lemma
1.12.

The proofs of the associativity and the identity axioms of a category are straightforward.

We can not use ∪ in this definition instead of q because the sets Mor(B,B′) need not be disjoint
for different B, B′. For example, if B′ has one element of each length then the set Mor(B,B′)
depends on the set B and the length function l but is independent on the ft function on B.

Therefore there is no category with the set of objects lft(U) and the set of morphisms between any
two lft-sets being the set Morlft of Definition 1.9. Instead in our category the set of morphisms
from B to B′ is the set of iterated pairs of the form ((B,B′), f) where f is a function B → B′ that
satisfies the conditions of Definition 1.9. This set is in the obvious bijective correspondence with
the set of morphisms from B to B′ and we will use both directions of this bijection as coercions - if
an element of MorLFT (U)(B,B

′) occurs in a position where an element of Morlft(B,B
′) should be

it is replaced by its image in Morlft(B,B
′) under the corresponding function of the bijection and

vice versa.

This completes Construction 2.2.

In what follows we fix a universe and write LFT instead of LFT (U) and lft instead of lft(U).

2 Pre-B-systems

Definition 2.1 [2016.01.27.def7] A B-system carrier is a triple (B, B̃, ∂) where B is an lft-set,
B̃ is a set and ∂ : B̃ → B is a function such that for all r ∈ B̃ one has l(∂(r)) > 0.

Remark 2.2 [2016.03.31.rem2] Elements of a B-system carrier B = (B, B̃, ∂) and connecting
them relation ≤ can be shown diagrammatically as follows:

Yy
X

∂(r)y↑r
ft(∂(r))

where the first diagram shows a pair X,Y ∈ B such that X ≤ Y and the second one an element
r ∈ B̃.

Definition 2.3 [2016.01.27.def3] Let (B, B̃, ∂) be a B-system carrier. We set:

Tdom = {X,Y ∈ B, l(X) ≥ 1, ft(X) < Y } T̃dom = {X ∈ B, s ∈ B̃, (X, ∂(s)) ∈ Tdom}
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Sdom = {r ∈ B̃, Y ∈ B, ∂(r) < Y } S̃dom = {r, s ∈ B̃, (r, ∂(s)) ∈ Sdom}

δdom = {X ∈ B, l(X) ≥ 1}

Definition 2.4 [2014.10.10.def1] A non-unital pre-B-system is a B-system carrier together with
functions T, T̃ , S and S̃ of the form:

T : Tdom → B T̃ : T̃dom → B̃

S : Sdom → B S̃ : S̃dom → B̃

Definition 2.5 [2014.10.20.def1] A pre-B-system is a non-unital pre-B-system together with a
function

δ : δdom → B

Definition 2.6 [2016.27.def8] A morphism of B-system carriers f : (B, B̃, ∂)→ (B′, B̃′, ∂′) is a
pair (f̃ , f) where f̃ : B̃ → B̃′ is a function, f : B → B′ is a morphism of lft-sets and for any s ∈ B̃
one has

∂′(f̃(s)) = f(∂(s))

Problem 2.7 [2016.01.27.prob9] For a morphism of B-system carriers f : (B, B̃, ∂)→ (B′, B̃′, ∂′)
to construct functions

fT : Tdom → T ′dom f
T̃

: T̃dom → T̃ ′dom

fS : Sdom → S′dom f
S̃

: S̃dom → S̃′dom

fδ : δdom → δ′dom

Construction 2.8 [2016.01.27.constr8] For (X,Y ) ∈ Tdom we set fT (X,Y ) = (f(X), f(Y )).
The condition that fT (X,Y ) ∈ T ′dom follows immediately from the fact that f is an lft-set morphism
and Lemma 1.11.

For (X, s) ∈ T̃dom we set f
T̃

(X, s) = (f(X), f̃(s)). The condition that f
T̃

(X, s) ∈ T̃ ′dom follows

immediately from the fact that (f, f̃) is a morphism of B-system carriers and and Lemma 1.11.

The proofs for the remaining three subsets are equally easy corollaries of the definitions and Lemma
1.11.

Definition 2.9 [2016.01.27.def4] Let B,B′ be pre-B-systems. A homomorphism of non-unital
pre-B-systems f : B→ B′ is a morphism f = (f, f̃) of the B-system carriers such that one has

for (X,Y ) ∈ Tdom, f(T (X,Y )) = T ′(fT (X,Y )), for (X, s) ∈ T̃dom, f̃(T̃ (X, s)) = T̃ ′dom(f
T̃

(X, s))

for (r, Y ) ∈ Sdom, f(S(r, Y )) = S′(fS(r, Y )) for (r, s) ∈ S̃dom, f̃(S̃(r, s)) = S̃′(f
S̃

(r, s))

A homomorphism of pre-B-systems is a morphism f = (f, f̃) of B-system carriers that is a homo-
morphism of non-unital pre-B-systems and such that one has:

for X ∈ δdom, f̃(δ(X)) = δ′(f(X))
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Lemma 2.10 [2016.01.27.l5] One has:

1. Let B be a non unital pre-B-system (resp. pre-B-system) and (Id
B̃
, IdB) be the identity

morphism of the underlying pre-B-system carries. Then (Id
B̃
, IdB) is a homomorphism of

non-unital pre-B-systems (resp. pre-B-systems).

2. Let B,B′,B′′ be non-unital pre-B-systems (resp. pre-B-systems) and f : B → B′, f ′ : B′ →
B′′ be two homomorphism of non-unital pre-B-systems (resp. pre-B-systems). Then the
composition of the underlying homomorphisms of B-system carriers is a homomorphism of
non-unital pre-B-systems (resp. pre-B-systems).

Proof: The proof is straightforward but long since all five conditions of Definition 2.9 have to be
verified.

2.1 Construction of the sets Text,dom and operations Text

Let
Text,dom = {X,Y ∈ B, l(X) ≥ 1, Y ≥ ft(X)}

Given a function T : Tdom → B let us define the extended version of T as the function

Text : Text,dom → B

given by the rule:

1. if Y = ft(X) then Text(X,Y ) = X,

2. if Y > ft(X) then Text(X,Y ) = T (X,Y ).

2.2 Operations Text and homomorphisms of B-system carriers

Lemma 2.11 [2016.03.15.l1] Let f : B → B′ be a morphism of lft-sets. Then for (X,Y ) ∈
Text,dom one has (f(X), f(Y )) ∈ T ′ext,dom.

Proof: Immediate from definitions.

Lemma 2.12 [2016.03.15.l2] Let f : B → B′ be a homomorphism of pre-B-systems. Then for
(X,Y ) ∈ Text,dom one has

f(Text(X,Y )) = Text(f(X), f(Y ))

Proof: Straightforward by case.

2.3 Construction of the sets Sext,dom and operations Sext

Let
Sext,dom = {r ∈ B̃, Y ∈ B, ∂(r) ≤ Y }
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Given a function S : Sdom → B let us define the extended version of S as the function

Sext : Sext,dom → B

given by the rule:

1. if ∂(r) = Y then Sext(r, Y ) = ft(∂(r)),

2. if ∂(r) < Y then Sext(r, Y ) = S(r, Y ).

2.4 Operations Sext and homomorphisms of B-system carriers

Lemma 2.13 [2016.03.27.l3] Let f : B→ B′ be a homomorphism of pre-B-system carriers. Then
for (r, Y ) ∈ Sext,dom one has (f̃(r), f(Y )) ∈ S′ext,dom.

Proof: Immediate from definitions.

Lemma 2.14 [2016.03.27.l4] Let f : B → B′ be a homomorphism of pre-B-systems. Then for
(r, Y ) ∈ Sext,dom one has

f(Sext(r, Y )) = Sext(f̃(r), f(Y ))

Proof: Straightforward by case.

3 B0-systems

The complex of axioms that define B0-systems among all pre-B-systems is as follows:

Definition 3.1 [2014.10.16.def1.fromold] [2014.10.16.def1] [2016.01.29.def1] A non-unital
pre-B-system is called a non-unital B0-system if the following conditions hold:

1. For (X,Y ) ∈ Tdom one has:

(a) T (X,Y ) > X,

(b) if ft(Y ) > ft(X) then ft(T (X,Y )) = T (X, ft(Y )),

(c) l(T (X,Y )) = l(Y ) + 1.

2. For (X, s) ∈ T̃dom one has:

(a) ∂(T̃ (X, s)) = T (X, ∂(s)),

(b) l(∂(T̃ (X, s))) = l(∂(s)) + 1.

3. For (r, Y ) ∈ Sdom one has:

(a) S(r, Y ) > ft(∂(r)),

(b) if ft(Y ) > ∂(r) then ft(S(r, Y )) = S(r, ft(Y )),

(c) l(S(r, Y )) = l(Y )− 1.
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4. For (r, s) ∈ S̃dom one has

(a) ∂(S̃(r, s)) = S(r, ∂(s)),

(b) l(S̃(r, s)) = l(∂(s))− 1.

Remark 3.2 [2016.03.31.rem1] Elements participating in the operations T, T̃ , S and S̃ on a
B0-system can be shown by the following diagrams

T (X,Y ) Yy y
X −−−→ ft(X)

T (X, ∂(s)) ∂(s)

T̃ (X,s)↑
y y↑s

ft(T (X, ∂(s))) ft(∂(s))y y
X −−−→ ft(X)

S(r, Y ) Yy y
ft(∂(r))

r−→←−−− ∂(r)

S(r, ∂(s)) ∂(s)

S̃(r,s)↑
y y↑s

ft(S(r, ∂(s))) ft(∂(s))y y
ft(∂(r))

r−→←−−− ∂(r)

Remark 3.3 [2016.01.29.rem1] The axioms of a B0-system given in Definition 3.1 are not in-
dependent. If the axioms 1(a) and 2(b) hold then the axiom 2(a) holds and if the axioms 3(a)
and 4(b) hold then the axiom 4(a) holds. The axioms are presented there in this form to make it
possible to prove facts about various operations in B0-systems independently from each other.

Definition 3.4 [2014.10.20.def2] A pre-B-system is called a B0-system if the underlying non-
unital pre-B-system is a non-unital B0-system and for all X ∈ δdom one has

[2009.12.27.eq1]∂(δ(X)) = T (X,X) (1)

Lemma 3.5 [2016.03.11.l1] Let B be an lft-set, Tdom be the corresponding set of pairs (X,Y ) in
B and T : Tdom → B be a function satisfying the conditions of Definition 3.1(1). Let (X,Y ) ∈ Tdom
be such that ft(Y ) = ft(X). Then

ft(T (X,Y )) = X

Proof: We know that T (X,Y ) > X. In particular, ftl(T (X,Y ))−l(X)(T (X,Y )) = X. On the other
hand l(T (X,Y )) = l(Y )+1. Since Y > ft(X) we know that l(Y ) ≥ 1. Therefore l(ft(Y )) = l(Y )−1
and similarly from l(X) ≥ 1 we have l(ft(X)) = l(X) − 1. Therefore ft(Y ) = ft(X) implies that
l(Y ) = l(X) and

l(T (X,Y ))− l(X) = l(Y ) + 1− l(X) = l(X) + 1− l(X) = 1

We conclude that ft(T (X,Y )) = X.
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Lemma 3.6 [2016.03.19.l2] Let B be an lft-set, Tdom be the corresponding set of pairs (X,Y )
in B and T : Tdom → B be a function satisfying the conditions of Definition 3.1(1). Then if
(X,Y ), (X,Y ′) ∈ Tdom and Y ≤ Y ′ (resp. Y < Y ′) then T (X,Y ) ≤ T (X,Y ′) (resp. T (X,Y ) <
T (X,Y ′)).

Proof: Note first that by Definition 3.1(1a) we have l(T (X,Y )) ≤ l(T (X,Y ′)) if l(Y ) ≤ l(Y ′) and
l(T (X,Y )) < l(T (X,Y ′)) if l(Y ) < l(Y ′). In particular, it is sufficient to consider the Y ≤ Y ′ case.
Then we need to prove that

[2016.03.19.eq1]ftl(T (X,Y ′))−l(T (X,Y ))(T (X,Y ′)) = T (X,Y ) (2)

We have l(T (X,Y ′))− l(T (X,Y )) = (l(Y ′) + 1)− (l(Y ) + 1) = l(Y ′)− l(Y ). By an easy induction
one proves that fti(T (X,Y ′)) = T (X, fti(Y ′)) if (X, fti(Y ′)) ∈ Tdom. In our case

ftl(T (X,Y ′))−l(T (X,Y ))(Y ′) = ft(l(Y
′)+1)−(l(Y )+1)(Y ′) = ftl(Y

′)−l(Y )(Y ′) = Y

and since (X,Y ) ∈ Tdom by the assumption, (2) holds.

Lemma 3.7 [2016.03.21.l3] Let B be a B-system carrier and S : Sdom → B an operation satis-
fying the conditions of Definition 3.1(3). Let (r, Y ) ∈ Sdom be such that ∂(r) = ft(Y ). Then

ft(S(r, Y )) = ft(∂(r)).

Proof: We know that ft(∂(r)) < S(r, Y ). Therefore ftl(S(r,Y ))−l(ft(∂(r)))(S(r, Y )) = ft(∂(r)). From
the definition of a B-system carrier we know that l(∂(r)) > 0. Therefore l(ft(∂(r))) = l(∂(r))− 1.
We also have l(S(r, Y )) = l(Y ) − 1. We also have that l(ft(Y )) = l(∂(Y )) > 0 and therefore
l(∂(r)) = l(ft(Y )) = l(Y )− 1 > 0. Together this implies that

l(S(r, Y ))− l(ft(∂(r))) = (l(Y )− 1)− (l(∂(r))− 1) = (l(Y )− 1)− ((l(Y )− 1)− 1) = 1

We conclude that ft(S(r, Y )) = ft(∂(r)).

Lemma 3.8 [2016.03.19.l5] Let B be a B-system carrier and S : Sdom → B an operation satis-
fying the conditions of Definition 3.1(3). Let (r, Y ), (r, Y ′) ∈ Sdom and suppose that Y ≤ Y ′ (resp.
Y < Y ′). Then S(r, Y ) ≤ S(r, Y ′) (resp. S(r, Y ) < S(r, Y ′)).

Proof: Note first that l(S(r, Y ′))−l(S(r, Y )) = (l(Y ′)−1)−(l(Y )−1) = l(Y ′)−l(Y ). In particular,
if S(r, Y ) ≤ S(r, Y ′) and l(Y ) < l(Y ′) then S(r, Y ) < S(r, Y ′) and so it is sufficient to prove the
case of ≤. By an easy induction one proves that if ∂(r) < fti(Y ′) then fti(S(r, Y ′)) = S(r, fti(Y ′)).
In our case

ftl(S(r,Y ′))−l(S(r,Y ))(Y ′) = ftl(Y
′)−l(Y )(Y ′) = Y

and since ∂(r) < Y by the assumption we conclude that

ftl(S(r,Y ′))−l(S(r,Y ))(S(r, Y ′)) = S(r, Y )

that is S(r, Y ) ≤ S(r, Y ′).

10



3.1 Properties of Text when T satisfies the B0-system conditions

Lemma 3.9 [2016.03.09.l1] Let B be a B-system carrier and let T : Tdom → B be an operation
satisfying the conditions of Definition 3.1(1). Then the corresponding operation Text : Text,dom → B
satisfies the following, similar, conditions:

1. Text(X,Y ) ≥ X,

2. if ft(Y ) ≥ ft(X) and l(Y ) ≥ 1 then ft(Text(X,Y )) = Text(X, ft(Y )),

3. l(Text(X,Y )) = l(Y ) + 1.

Proof: Straightforward by case with the first branch being very easy to prove and the second
branch being exactly the conditions of Definition 3.1(1).

3.2 Properties of Sext when S satisfies the B0-system conditions

Lemma 3.10 [2016.03.27.l5] Let B be a B-system carrier and let S : Sdom → B be an operation
satisfying the conditions of Definition 3.1(3). Then the corresponding operation Sext : Sext,dom → B
satisfies the following, similar, conditions:

1. Sext(r, Y ) ≥ ft(∂(r)),

2. if ∂(r) ≤ ft(Y ) then ft(Sext(r, Y )) = Sext(r, ft(Y )),

3. l(Sext(r, Y )) = l(Y )− 1.

Proof: Straightforward by case with the first branch being very easy to prove and the second
branch being exactly the conditions of Definition 3.1(3).

3.3 Construction of sets T ∗dom and operations T ∗

Define the set T ∗dom by the formula:

T ∗dom = {X,Y, Z ∈ B,X ≥ Y, Z ≥ Y }.

Problem 3.11 [2016.02.18.prob3] Let B be an lft-set and T : Tdom → B a function satisfying
the conditions of Definition 3.1(1). To define a function

T ∗ : T ∗dom → B

such that:

1. T ∗(X,Y, Z) ≥ X,

2. if ft(Z) ≥ Y and l(Z) ≥ 1 then ft(T ∗(X,Y, Z)) = T ∗(X,Y, ft(Z)),
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3. l(T ∗(X,Y, Z))− l(X) = l(Z)− l(Y ).

Elements involved in operation T ∗ can be shown on a diagram as follows:

T ∗(X,Y, Z) Zy y
X −−−→ Y

Construction 3.12 [2016.02.18.constr3] We proceed by induction on j = l(X)− l(Y ).

For j = 0 we set T ∗(X,Y, Z) = Z. The proofs of the conditions are obvious.

For j = 1 we set T ∗(X,Y, Z) = Text(X,Z). The fact that (X,Z) ∈ Text,dom is easy to prove. The
conditions are the conditions proved in Lemma 3.9.

For the successor of j > 0 we set

[2016.02.20.eq2]T ∗(X,Y, Z) = Text(X,T
∗(ft(X), Y, Z)) (3)

For the formula (3) to be well defined we need to show that for (X,Y, Z) ∈ T ∗dom we have

[2016.02.20.eq4](ft(X), Y, Z) ∈ T ∗dom (4)

and
[2016.02.20.eq5](X,T ∗(ft(X), Y, Z)) ∈ Text,dom (5)

The condition (4) follows from Lemma 1.5(1).

The condition (5) is equivalent to l(X) ≥ 1 and

T ∗(ft(X), Y, Z) ≥ ft(X)

That l(X) ≥ 1 follows from l(X) ≥ j + 1.

That T ∗(ft(X), Y, Z) ≥ ft(X) follows from the inductive assumption.

Let us prove the conditions for j + 1. The first is immediate from Lemma 3.13

T ∗(X,Y, Z) = Text(X,T
∗(ft(X), Y, Z)) ≥ X

To prove the second condition let ft(Z) ≥ Y and l(Z) ≥ 1. Then, by the inductive assumption we
have

ft(T ∗(ft(X), Y, Z)) = T ∗(ft(X), Y, ft(Z))

Therefore,

ft(T ∗(X,Y, Z)) = ft(Text(X,T
∗(ft(X), Y, Z))) = Text(X, ft(T

∗(ft(X), Y, Z))) =

Text(X,T
∗(ft(X), Y, ft(Z))) = T ∗(X,Y, ft(Z))

where the second equality follows from Lemma 3.9(3) whose condition is satisfied because

ft(T ∗(ft(X), Y, Z)) = T ∗(ft(X), Y, ft(Z)) ≥ ft(X).
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For the last condition we have

l(T ∗(X,Y, Z))− l(X) = l(Text(X,T
∗(ft(X), Y, Z)))− l(X) = (l(T ∗(ft(X), Y, Z)) + 1)− l(X) =

(l(T ∗(ft(X), Y, Z)) + 1)− (l(ft(X)) + 1) = l(T ∗(ft(X), Y, Z))− l(ft(X)) = l(Z)− l(Y )

This completes Construction 3.12.

Lemma 3.13 [2016.03.09.l2][2016.04.08.l1] In the context of Problem 3.11 let X,Y, Z,W ∈ B
be such that X ≥ Y , Y ≤ Z ≤W . Then one has

1. T (X,Y, Z) ≤ T (X,Y,W ),

2. l(T (X,Y,W ))− l(T (X,Y, Z)) = l(W )− l(Z),

3. if Z < W then T (X,Y, Z) < T (X,Y,W ).

Proof: To prove the first assertion we proceed by induction on j = l(W )− l(Z).

For j = 0 we have W = Z and T (X,Y, Z) = T (X,Y,W ).

For the successor of j ≥ 0 we have l(W )− l(Z) > 0 and therefore Z ≤ ft(W ) and Y ≤ Z ≤ ft(W ).
Therefore T (X,Y, ft(W )) is defined and by property (2) of Problem 3.11 we have ft(T (X,Y,W )) =
T (X,Y, ft(W )).

By the inductive assumption we have T (X,Y, Z) ≤ T (X,Y, ft(W )) and since ft(T (X,Y,W )) ≤
T (X,Y,W ) we conclude that T (X,Y, Z) ≤ T (X,Y,W ).

For the second assertion consider that we have, from Problem 3.11(3), that

l(T ∗(X,Y,W )) = l(W ) + (l(X)− l(Y ))

l(T ∗(X,Y, Z)) = l(Z) + (l(X)− l(Y ))

subtracting we obtain the second assertion.

The third assertion follows easily from the first and the second ones.

3.4 Construction of sets T̃ ∗dom and operations T̃ ∗

We will also require a similar construction for T̃ . Let

T̃ ∗dom = {X,Y ∈ B, s ∈ B̃, (X,Y, ft(∂(s))) ∈ T ∗dom}

Problem 3.14 [2016.02.20.prob1] Let (B, B̃, ∂) be a B-system carrier and let

T : Tdom → B T̃ : T̃dom → B̃

be functions satisfying the conditions of Definition 3.1(1,2). For j ∈ N, define a function

T̃ ∗ : T̃ ∗dom → B̃

such that:
[2016.02.22.eq1]∂(T̃ ∗(X,Y, s)) = T ∗(X,Y, ∂(s)) (6)
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Elements involved in operation T̃ ∗ can be shown on a diagram as follows:

T ∗(X,Y, ∂(s)) ∂(s)

T̃ ∗(X,Y,s)↑
y y↑s

ft(T ∗(X,Y, ∂(s))) ft(∂(s))y y
X −−−→ Y

Construction 3.15 [2016.02.20.constr1] We proceed by induction on j = l(X)− l(Y ).

Observe first that the condition (X,Y, ft(∂(s))) ∈ T ∗dom is equivalent to the condition that X ≥ Y
and ft(∂(s)) ≥ Y and that since l(∂(s)) > 0 the latter condition is equivalent to ∂(s) > Y .

For j = 0 we set T̃ ∗(X,Y, s) = s. The proof of the conditions is obvious.

For j = 1 we set T̃ ∗(X,Y, s) = T̃ (X, s). For the right hand side to be defined we need ∂(s) > ft(X)
which is satisfied by the observation made above since ft(X) = Y . The condition (6) is the
condition of Definition 3.1(2a).

For the successor of j > 0 we set

[2016.02.20.eq3]T̃ ∗(X,Y, s) = T̃ (X, T̃ ∗(ft(X), Y, s)) (7)

For the formula (7) to be well defined we need to show that assuming (X,Y, ft(∂(s))) ∈ T ∗dom we
have:

[2016.02.20.eq7](ft(X), Y, s) ∈ T̃ ∗dom (8)

and
[2016.02.20.eq8](X, T̃ ∗(ft(X), Y, s)) ∈ T̃dom (9)

The condition (8) is equivalent to (ft(X), Y, ft(∂(s))) ∈ T ∗dom and its proof is identical to the proof
of (4) for Z = ft(∂(s)).

The condition (9) is equivalent to (X, ∂(T̃ ∗(ft(X), Y, s))) ∈ Tdom. By the inductive assumption we
have ∂(T̃ ∗(ft(X), Y, s)) = T ∗(ft(X), Y, ∂(s)). Therefore we need to show that

(X,T ∗(ft(X), Y, ∂(s))) ∈ Tdom

that is, that l(X) ≥ 1 and T ∗(ft(X), Y, ∂(s)) > ft(X). The first condition follows from the fact
that l(X) = l(Y ) + j + 1 ≥ 1. For the second condition we know that T ∗(ft(X), Y, ∂(s)) ≥ ft(X)
from the first condition of Problem 3.11. On the other hand

l(T ∗(ft(X), Y, ∂(s)))− l(ft(X)) = l(∂(s))− l(Y )

Since (ft(X), Y, ft(∂(s))) ∈ T ∗dom we have ft(∂(s)) ≥ Y and therefore l(ft(∂(s))) = l(∂(s)) − 1 ≥
l(Y ). This implies that l(∂(s))− l(Y ) > 0 and T ∗(ft(X), Y, ∂(s)) > ft(X).

Let us prove condition (6). We have

∂(T̃ ∗(X,Y, s)) = ∂(T̃ (X, T̃ ∗(ft(X), Y, s))) = T (X, ∂(T̃ ∗(ft(X), Y, s))) =

T (X,T ∗(ft(X), Y, ∂(s))) = T ∗(X,Y, ∂(s))

This completes Construction 3.15.
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3.5 Operations T ∗ and T̃ ∗ and homomorphisms of pre-B-systems

Lemma 3.16 [2016.03.15.l3] Let f : B→ B′ be a homomorphism of B0-systems. Then one has:

1. if (X,Y, Z) ∈ T ∗dom then (f(X), f(Y ), f(Z)) ∈ (T ′)∗dom and

f(T ∗(X,Y, Z)) = (T ′)∗(f(X), f(Y ), f(Z))

2. if (X,Y, s) ∈ T̃ ∗dom then (f(X), f(Y ), f̃(s)) ∈ (T̃ ′)∗dom and

f̃(T̃ ∗dom(X,Y, s)) = (T̃ ′)∗(f(X), f(Y ), f̃(s))

Proof: The first parts of both assertions follow immediately from Lemma 1.11.

The second parts require proofs by induction using in the first case Lemma 2.12.

4 Sets B̃∗(X, Y ) and associated with them operations

4.1 Construction of the sets B̃∗(X,Y )

For a B-system carrier (B, B̃, ∂) and X ∈ B denote by B̃(X) the subset of B̃ of elements s such
that ∂(s) = X.

Problem 4.1 [2016.01.29.prob2] Let (B, B̃, ∂) be a B-system carrier and let S : Sdom → B be
a function satisfying the conditions of Definition 3.1(3). To construct, for any X,Y ∈ B such that
X ≤ Y a set B̃∗(X,Y ).

Construction 4.2 [2016.01.29.constr2] We proceed by induction on j = l(Y )− l(X) as follows:

1. for j = 0, X = Y and we set B̃∗(Y, Y ) = unit where unit is our chosen set with one element
tt,

2. for j = 1 we set B̃∗(ft(Y ), Y ) = B̃(Y ),

3. for the successor of j > 0 we need to define B̃∗(ftj+1(Y ), Y ). We let it to be the set of pairs
(r, s) where

r ∈ B̃(ftj(Y ))

and
s ∈ B̃∗(ftj+1(Y ), S(r, Y )).

By our condition we have l(S(r, Y )) = l(Y )−1 and S(r, Y ) ≥ ft(∂(r)) = ftj+1(Y ). Therefore
B̃∗(ftj+1(Y ), S(r, Y )) is defined by the inductive assumption.

This completes Construction 4.2.

We will use the same diagrammatic notation X
−→←−−− Y for elements of B̃∗(X,Y ) we have been

using for elements of B̃.

15



4.2 Sets S∗dom and operations S∗

Here we are going to construct the operations that in the B0-systems corresponding to C-systems
correspond to the pull-back of objects Z over Y along elements of B̃∗(X,Y ) and that generalize
S(r, Z) from elements r of B̃(Y ) to elements s of B̃∗(X,Y ).

Definition 4.3 [2016.03.29.def2] Let B be a B0-system. Define

S∗dom = {X ≤ Y ≤ Z ∈ B, s ∈ B̃∗(X,Y )}

We will often write elements (X,Y, s, Z) of S∗dom as (s, Z) because X and Y can be recovered from
the type of s.

Problem 4.4 [2016.03.27.prob1] Let B be a B0-system. For X,Y, Z ∈ B such that X ≤ Y ≤ Z
and s ∈ B̃∗(X,Y ). To construct an element S∗(s, Z) ∈ B such that one has:

1. X ≤ S∗(s, Z),

2. if Y ≤ ft(Z) then ft(S∗(s, Z)) = S∗(s, ft(Z)),

3. l(S∗(s, Z))− l(X) = l(Z)− l(Y ).

The digram for Problem 4.4 is as follows:

S∗(s, Z) Zy y
X

s−→←−−− Y

Construction 4.5 [2016.03.27.constr1]We proceed by induction on j = l(Y )− l(X).

If j = 0 then X = Y , s = tt and we set S∗(s, Z) = Z. Proofs of the conditions are straightforward.

If j = 1 then X = ft(Y ) and B̃∗(X,Y ) = B̃(Y ), i.e., s ∈ B̃ and ∂(s) = Y . In this case we set
S∗(s, Z) = Sext(s, Z). The conditions are the conditions of Lemma 3.10.

For the successor of j > 0 we have X = ftj+1(Y ) and s = (r1, s1) where r1 ∈ B̃(ftj(Y )) and
s1 ∈ B̃∗(ftj+1(Y ), S(r1, Y )). In this case we set

[2016.03.29.eq1]S∗(s, Z) = S∗(s1, S(r1, Z)) (10)

as can be seen on the diagram

[2016.04.04.eq1]

S∗(s1, S(r1, Z)) S(r1, Z) Zy y y
X

s1−→←−−− S(r1, Y ) Yy y
X

r1−→←−−− ftj(Y )

(11)
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Let us show that the right hand side of (10) is defined. Since l(Y ) − l(X) = j + 1 we have
l(Y ) ≥ j + 1. Since j > 0 we obtain that ∂(r1) = ftj(Y ) < Y and together with Y ≤ Z this gives
us that ∂(r1) < Z, i.e., S(r1, Z) is defined.

To prove that S∗(s1, S(r1, Z)) is defined by the inductive assumption we need to show that

l(S(r1, Y ))− l(ftj+1(Y )) ≤ j

and that S(r1, Y ) ≤ S(r1, Z). The first inequality follows from the B0-system axiom that l(S(r1, Y )) =
l(Y )− 1. The second one follows from the assumption Y ≤ Z and Lemma 3.8.

It remains to verify the conditions.

The first condition follows from the inequality S(r1, Y ) ≤ S(r1, Z) by the inductive assumption.

For the second condition, if Y ≤ ft(Z) then by Lemma 3.8, S(r1, Y ) ≤ S(r1, ft(Z)) and by the
B0-system axiom S(r1, ft(Z)) = ft(S(r1, Z)). Therefore by the inductive assumption we have

ft(S∗(s1, S(r1, Z))) = S∗(s1, ft(S(r1, Z))) = S∗(s1, S(r1, ft(Z)))

For the third condition we have

l(S∗(s1, S(r1, Z)))− l(X) = l(S(r1, Z))− l(S(r1, Y )) = (l(Z)− 1)− (l(Y )− 1) = l(Z)− 1(Y )

where the first equality is by the inductive assumption and the second by the axioms of B0-system.

This completes Construction 4.5.

Lemma 4.6 [2016.04.02.l1] Let B be a B0-system. Then for any X ≤ Y ≤ Z ≤ W and s ∈
B̃∗(X,Y ) one has

1. S(s, Z) ≤ S(s,W ),

2. l(S(s,W ))− l(S(s, Z)) = l(W )− l(Z),

3. if Z < W then S(s, Z) < S(s,W ).

Proof: Very similar to the proof of Lemma 3.13.

4.3 Sets S̃∗dom and operations S̃∗

Here we will construct operations S̃∗ that correspond, in the B0-systems of C-systems, to the
pull-back of elements of B̃ along elements of B̃∗.

Definition 4.7 [2016.04.04.def1] For a B0-system B define:

S̃∗dom = {X,Y, s, r |X,Y ∈ B,X ≤ Y, s ∈ B̃∗(X,Y ), r ∈ B̃, Y ≤ ft(∂(r))}

We will sometimes write elements of S̃∗dom as (s, r) because X and Y can be recovered from the
type of s.
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Problem 4.8 [2016.04.04.prob1] For a B0-system B and an element (X,Y, s, r) ∈ S̃∗dom to
construct an element

S̃∗(X,Y, s, r) ∈ B̃
such that

[2016.04.04.eq5]∂(S̃∗(X,Y, s, r)) = S∗(X,Y, s, ∂(r)) (12)

where the right hand side is defined by the assumption Y ≤ ft(∂(r)), the inequality ft(∂(r)) ≤ ∂(r)
and Lemma 1.3.

Construction 4.9 [2016.04.04.constr1] We proceed by induction on j = l(Y )− l(X).

If j = 0 then, since X ≤ Y , we have Y = X, s = tt and we set

S̃∗(X,Y, tt, r) = r

If j = 1. Then B̃∗(X,Y ) = B̃(Y ) and we set

S̃∗(X,Y, s, r) = S̃(s, r)

For the successor of j > 0 we have s = (r1, s1) and we define

[2016.04.04.eq3]S̃∗(X,Y, (r1, s1), r) = S̃∗(s1, S̃(r1, r)) (13)

The objects involved can be seen on the following diagram:

[2016.04.04.eq2]

S∗(s1, S(r1, ∂(r))) S(r1, ∂(r)) ∂(r)

S̃∗(s1,S̃(r1,r))↑
y S̃(r1,r)↑

y r↑
y

ft(S∗(s1, S(r1, ∂(r)))) ft(S(r1, ∂(r))) ft(∂(r))y y y
X

s1−→←−−− S(r1, Y ) Yy y
X

r1−→←−−− ftj(Y )

(14)

Let us show that the right hand side of (13) is defined and that

[2016.04.04.eq4]∂(S̃∗(s1, S̃(r1, r))) = S∗(s1, S̃(r1, ∂(r))) (15)

which will imply (12).

For S̃(r1, r) to be defined we need the inequality ftj(Y ) ≤ ft(∂(r)). Since Y ≤ ft(∂(r)) it follows
from the inequality ftj(Y ) ≤ Y and Lemma 1.3.

For S̃∗(s1, S̃(r1, r)) to be defined by the inductive assumption we need the inequality

S(r1, Y ) ≤ ft(∂(S̃(r1, r)))

We have ∂(S̃(r1, r)) = S(r1, ∂(r)) and, since Y ≤ ft(∂(r)), we have ft(S(r1, ∂(r))) = S(r1, ft(∂(r))).
The inequality

S(r1, Y ) ≤ S(r1, ft(∂(r)))

follows from the assumption Y ≤ ft(∂(r)) and Lemma 3.8.

The equality (15) follows from the inductive assumption, the equality ∂(S̃(r1, r)) = S(r1, ∂(r)).

This completes the construction of S̃∗(X,Y s, r).
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4.4 Sets B̃∗(X,Y ) and homomorphisms of B0-systems

Problem 4.10 [2016.03.15.prob1] Let f : B → B′ be a homomorphism of B0-systems. For
X ≤ Y in B to define a function

[2016.03.15.eq2]f
B̃∗(X,Y )

: B̃∗(X,Y )→ B̃′(f(X), f(Y )) (16)

Construction 4.11 [2016.03.15.constr1] Note first that f(X) ≤ f(Y ) by Lemma 1.11 and
therefore the right hand side of (16) is defined.

The construction of f
B̃∗(X,Y )

is by induction on j = l(Y ) − l(X). Since l(f(Z)) = l(Z) for any

Z ∈ B we have that j = l(f(Y ))− l(f(X)).

For j = 0 both sides are one point sets and there is a unique function f
B̃∗(X,Y )

.

For j = 1 we have B̃∗(X,Y ) = B̃(Y ) and f
B̃∗(X,Y )

(r) = f̃(r).

For the successor of j > 0 we have

B̃∗(X,Y ) = {(r, s) | r ∈ B̃(ftj(Y )) s ∈ B̃∗(ftj+1(Y ), S(r, Y ))}

We set
f
B̃∗(X,Y )

(r, s) = (f̃(r), f
B̃∗(ftj+1(Y ),S(r,Y ))

(s))

We have that f̃(r) ∈ B̃′(ftj(f(Y ))) from Lemma 1.10.

We have that f
B̃∗(ftj+1(Y ),S(r,Y ))

(s) is defined by the inductive assumption

f
B̃∗(ftj+1(Y ),S(r,Y ))

(s) ∈ B̃′(f(ftj+1(Y )), f(S(r, Y )))

By Lemma 1.10 we have that f(ftj+1(Y )) = ftj+1(f(Y )). Since f is a part of a homomorphism of
B-system carriers we have that f(S(r, Y )) = S(f̃(r), f(Y )). Therefore,

f
B̃∗(ftj+1(Y ),S(r,Y ))

(s) ∈ B̃′(ftj+1(f(Y )), S(f̃(r), f(Y )))

and f
B̃∗(X,Y )

(r, s) ∈ B̃∗(f(ftj+1(Y )), f(Y )).

2 B-systems

1 Preliminary lemmas

Lemma 1.1 [2016.03.19.l1] Let B be a B0-system. Let X,Y, Z ∈ B be such that l(X) ≥ 1,
ft(X) < Y and ft(Y ) < Z then one has:

1. (X,Y ), (X,Z), (Y,Z) ∈ Tdom,

2. (X,T (Y,Z)) ∈ Tdom,

3. (T (X,Y ), T (X,Z)) ∈ Tdom.

Proof: We have:
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1. The inclusion (X,Y ) ∈ Tdom follows from the definitions.

To show that (X,Z) ∈ Tdom we need to prove that ft(X) < Z. We have ft(X) < Y and
therefore ft(X) ≤ ft(Y ) by Lemma 1.6. Then ft(X) ≤ ft(Y ) < Z implies ft(X) < Z by
Lemma 1.4(1).

To show that (Y, Z) ∈ Tdom we need only to prove l(Y ) ≥ 1 which follows from Y > ft(X).

2. We have that l(X) ≥ 1. We need to prove that ft(X) < T (Y,Z). We have that ft(X) < Y
and Y < T (Y, Z) which implies ft(X) < T (Y,Z) by Lemma 1.3(2).

3. We have T (X,Y ) > X and therefore l(T (X,Y )) ≥ 1. Next we need to prove that ft(T (X,Y )) <
T (X,Z). Since ft(X) < Y by Lemma 1.6 we have ft(X) ≤ ft(Y ). Therefore one of the two
cases occurs. In the first case ft(X) < ft(Y ) in which case ft(T (X,Y )) = T (X, ft(Y )) and
since ft(Y ) < Z the inequality ft(T (X,Y )) < T (X,Z) follows from Lemma 3.6. In the
second case ft(X) = ft(Y ). Then ft(T (X,Y )) = X by Lemma 3.5 and X < T (X,Z) by
Definition 3.1(1b).

Lemma 1.2 [2016.03.19.l3] Let B be a B0-system. Let X,Y ∈ B, s ∈ B̃ be such that l(X) ≥ 1,
ft(X) < Y and ft(Y ) < ∂(s). Then one has:

1. (X,Y ) ∈ Tdom, (X, s), (Y, s) ∈ T̃dom,

2. (X, T̃ (Y, s)) ∈ T̃dom,

3. (T (X,Y ), T̃ (X, s)) ∈ T̃dom.

Proof: We have:

1. These assertions follow by applying Lemma 1.1(1) to X,Y, ∂(s).

2. Since we know that l(X) ≥ 1 we need to show that ft(X) < ∂(T̃ (Y, s)). We have ∂(T̃ (Y, s)) =
T (Y, ∂(s)). From ft(X) < Y and Y < T (Y, ∂(s)) we get that ft(X) < T (Y, ∂(s)) applying
Lemma 1.3(2).

3. We have l(T (X,Y )) ≥ 1 because T (X,Y ) > X. It remains to show that ft(T (X,Y )) <
∂(T̃ (X, s)). We have ∂(T̃ (X, s)) = T (X, ∂(s)) and the required inequality follows from Lemma
1.1(3) applied to X,Y, ∂(s).

Lemma 1.3 [2016.03.19.l4] Let B be a B0-system. Let r, s ∈ B̃, Y ∈ B be such that ∂(r) < ∂(s)
and ∂(s) < Y . Then one has

1. (r, s) ∈ S̃dom, (r, Y ), (s, Y ) ∈ Sdom,

2. (r, S(s, Y )) ∈ Sdom,

3. (S̃(r, s), S(r, Y )) ∈ Sdom.

Proof: We have:
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1. (r, s) ∈ S̃dom and (s, Y ) ∈ Sdom is immediate from the assumptions. To show that (r, Y ) ∈
Sdom we need to prove that ∂(r) < Y . From ∂(r) < ∂(s) and ∂(s) < Y we obtain ∂(r) < Y
by Lemma 1.3(2).

2. We need to show that ∂(r) < S(s, Y ). We have ft(∂(s)) < S(s, Y ) and from ∂(r) < ∂(s) we
have that ∂(r) ≤ ft(∂(s)) by Lemma 1.6. Using Lemma 1.4(1) we get ∂(r) < S(s, Y ).

3. We need to show that ∂(S̃(r, s)) < S(r, Y ). We have ∂(S̃(r, s)) = S(r, ∂(s)). It remains to
show that S(r, ∂(s)) < S(r, Y ). It follows from our assumption ∂(s) < Y and Lemma 3.8.

Lemma 1.4 [2016.03.21.l1] Let B be a B0-system. Let r, s, t ∈ B̃ be such that ∂(r) < ∂(s) and
∂(s) < ∂(t). Then one has

1. (r, s), (r, t), (s, t) ∈ S̃dom,

2. (r, S̃(s, t)) ∈ S̃dom,

3. (S̃(r, s), S̃(r, t)) ∈ S̃dom.

Proof: We have:

1. This follows by applying Lemma 1.3(1) to r, s, ∂(t).

2. We need to show that ∂(r) < ∂(S̃(s, t)). We have ∂(S̃(s, t)) = S(s, ∂(t)). We can now apply
the proof of Lemma 1.3(2) to r, s, ∂(t).

3. We need to show that ∂(S̃(r, s)) < ∂(S̃(r, t)). We have ∂(S̃(r, t)) = S̃(r, ∂(t)) and can now
apply the proof of Lemma 1.3(3) to r, s, ∂(t).

Lemma 1.5 [2016.03.21.l2] For any r ∈ B̃, Y,Z ∈ B such that ∂(r) < Y and ft(Y ) < Z one
has:

1. (r, Y ), (r, Z) ∈ Sdom and (Y, Z) ∈ Tdom,

2. (r, T (Y, Z)) ∈ Sdom,

3. (S(r, Y ), S(r, Z)) ∈ Tdom.

Proof: We have:

1. The inclusions (r, Y ) ∈ Sdom and (Y, Z) ∈ Tdom are immediate from the definitions. It remains
to show that (r, Z) ∈ Sdom, that is, ∂(r) < Z. We have ∂(r) < Y and therefore by Lemma
1.6 we have ∂(r) ≤ ft(Y ). Together with ft(Y ) < Z, Lemma 1.4(1) gives us ∂(r) < Z.

2. We need to show that ∂(r) < T (Y,Z). We have that Y < T (Z, Y ) and ∂(r) < Y and applying
Lemma 1.3(2) we obtain that ∂(r) < T (Z, Y ).
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3. We need to show that l(S(r, Y )) ≥ 1 and ft(S(r, Y )) < S(r, Z). We have l(S(r, Y )) = l(Y )−1.
We also have that l(∂(r)) > 0 and l(Y ) > l(∂(r)). Therefore l(Y ) ≥ 2 and l(Y ) − 1 ≥ 1.
Next we have, ∂(r) < Y and therefore ∂(r) ≤ ft(Y ) by Lemma 1.6. We have two cases. If
∂(r) < ft(Y ) then ft(S(r, Y )) = S(r, ft(Y )) and since ft(Y ) < Z we have that S(r, ft(Y )) <
S(r, Z) by Lemma 3.8. If ∂(r) = ft(Y ) then ft(S(r, Y )) = ft(∂(r)) by Lemma 3.7 and we
know that ft(∂(r)) < S(r, Z).

Lemma 1.6 [2016.03.21.l4] For any r, s ∈ B̃, Y ∈ B such that ∂(r) < Y and ft(Y ) < ∂(s) one
has:

1. (r, Y ) ∈ Sdom, (r, s) ∈ S̃dom and (Y, s) ∈ T̃dom,

2. (r, T̃ (Y, s)) ∈ S̃dom,

3. (S(r, Y ), S̃(r, s)) ∈ T̃dom.

Proof: We have:

1. This follows by applying Lemma 3.7(1) to r, Y, ∂(s).

2. We need to show that ∂(r) < ∂(T̃ (Y, s)). We have that ∂(T̃ (Y, s)) = T (Y, ∂(s)) and the rest
of the proof is the same as the proof of Lemma 3.7(2) for r, Y, ∂(s).

3. We need to show that l(S(r, Y )) ≥ 1 and ft(S(r, Y )) < ∂(S̃(r, s)). We have ∂(S̃(r, s)) =
S(r, ∂(s)) and the rest of the proof is the same as the proof of Lemma 3.7(3) for r, Y, ∂(s).

Lemma 1.7 [2016.03.21.l5a] Let B be a B0-system. Then for any X,Y ∈ B, r ∈ B̃ such that
l(X) ≥ 1, ft(X) < ∂(r), ∂(r) < Y one has:

1. (X, r) ∈ T̃dom, (X,Y ) ∈ Tdom, (r, Y ) ∈ Sdom,

2. (X,S(r, Y )) ∈ Tdom,

3. (T̃ (X, r), T (X,Y )) ∈ Sdom.

Proof: We have:

1. The inclusions (X, r) ∈ T̃ and (r, Y ) ∈ Sdom are immediate from the definitions. It remains
to show that (X,Y ) ∈ Tdom. We know that l(X) ≥ 1 and need to prove that ft(X) < Y . We
have ft(X) < ∂(r) and ∂(r) < Y and applying Lemma 1.3(2) we get ft(X) < Y .

2. We know that l(X) ≥ 1. We need to show that ft(X) < S(r, Y ). We have ft(X) < ∂(r). By
Lemma 1.6 we get that ft(X) ≤ ft(∂(r)). We also have that ft(∂(r)) < S(r, Y ). Combining
these two inequalities and applying Lemma 1.4(1) we get that ft(X) < S(r, Y ).

3. We need to show that ∂(T̃ (X, r)) < T (X,Y ). We have ∂(T̃ (X, r)) = T (X, ∂(r)) and ∂(r) < Y .
By Lemma 3.6 we conclude that T (X, ∂(r)) < T (X,Y ).
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Lemma 1.8 [2016.03.21.l5] Let B be a B0-system. Then for any X ∈ B, r, s ∈ B̃ such that
l(X) ≥ 1, ft(X) < ∂(r), ∂(r) < ∂(s) one has:

1. (X, r), (X, s) ∈ T̃dom, (r, s) ∈ S̃dom,

2. (X, S̃(r, s)) ∈ T̃dom,

3. (T̃ (X, r), T̃ (X, s)) ∈ S̃dom.

Proof: We have:

1. The inclusions (X, r) ∈ T̃ and (r, s) ∈ S̃dom are immediate from the definitions. It remains to
show that (X, s) ∈ T̃dom. This follows by applying Lemma 1.6(1) to X, ∂(s), r.

2. We need to show that (X, ∂(S̃(r, s))) ∈ Tdom. We have ∂(S̃(r, s)) = S(s, ∂(s)) and the
required inclusion follows from Lemma 1.6(2) applied to X, ∂(s), r.

3. We need to show that ∂(T̃ (X, r)) < ∂(T̃ (X, s)). We have ∂(T̃ (X, s)) = T (X, ∂(s)) and the
required inclusion follows from Lemma 1.6(3) applied to X, ∂(s), r.

Lemma 1.9 [2016.03.21.l6] Let B be a B0-system. Then for any r ∈ B̃ and Y ∈ B such that
ft(∂(r)) < Y one has

1. (∂(r), Y ) ∈ Tdom,

2. (r, T (∂(r), Y )) ∈ Sdom.

Proof: The first inclusion follows immediately from the definitions since l(∂(r)) ≥ 1 by the defini-
tion of a B-system carrier.

To prove the second inclusion we need to show that ∂(r) < T (∂(r), Y ) which is immediate from
the definition of a B0-system.

Lemma 1.10 [2016.03.21.l7] Let B be a B0-system. Then for any r, s ∈ B̃ such that ft(∂(r)) <
∂(s) one has

1. (∂(r), s) ∈ T̃dom,

2. (r, T̃ (∂(r), s)) ∈ S̃dom.

Proof: The first inclusion follows immediately from the definitions since l(∂(r)) ≥ 1 by the defini-
tion of a B-system carrier.

To prove the second inclusion we need to show that ∂(r) < ∂(T̃ (∂(r), s)). We have ∂(T̃ (∂(r), s)) =
T (∂(r), ∂(s)) and ∂(r) < T (∂(r), ∂(s)) by the definition of a B0-system.

Lemma 1.11 [2016.03.21.l8] Let B be a (unital) B0-system. Then for any X,Y ∈ B such that
l(X) ≥ 1 and ft(X) < Y one has:
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1. Y ∈ δdom,

2. (X, δ(Y )) ∈ T̃dom,

3. (X,Y ) ∈ Tdom,

4. T (X,Y ) ∈ δdom.

Proof: We have:

1. Since ft(X) < Y we have l(Y ) ≥ 1, i.e., Y ∈ δdom.

2. l(X) ≥ 1 as one of our conditions. It remains to show that ft(X) < ∂(δ(Y )). We have
∂(δ(Y )) = T (Y, Y ). Next, we have ft(X) < Y and Y < T (Y, Y ) and by Lemma 1.3(2) we
conclude that ft(X) < T (Y, Y ).

3. This inclusion follows immediately from our conditions l(X) ≥ 1 and ft(X) < Y .

4. We have l(T (X,Y )) = l(Y ) + 1 ≥ 1.

Lemma 1.12 [2016.03.21.l9] Let B be a (unital) B0-system. Then for any r ∈ B̃, Y ∈ B such
that ∂(r) < Y one has:

1. Y ∈ δdom,

2. (r, δ(Y )) ∈ S̃dom,

3. (r, Y ) ∈ Sdom,

4. S(r, Y ) ∈ δdom.

Proof: We have:

1. Since Y > ∂(s) we have l(Y ) ≥ 1.

2. We need to check that ∂(r) < ∂(δ(Y )). We have ∂(δ(Y )) = T (Y, Y ) and Y < T (Y, Y ). We
have ∂(r) < Y and Y < T (Y, Y ) and by Lemma 1.3(2) we get ∂(r) < T (Y, Y ).

3. We need to check that ∂(r) < Y which is one of our conditions.

4. We need to check that l(S(r, Y )) ≥ 1. We have l(S(r, Y )) = l(Y ) − 1. Since Y > ∂(r) and
l(∂(r)) ≥ 1 we have l(Y ) ≥ 2 and l(Y )− 1 ≥ 1.

Lemma 1.13 [2016.03.23.l1] Let B be a B0-system. Then for any r ∈ B̃ one has:

1. ∂(r) ∈ δdom,

2. (r, δ(∂(r))) ∈ S̃dom.

Proof: We have:
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1. l(∂(r)) ≥ 1 by the definition of a B-system carrier and therefore ∂(r) ∈ δdom.

2. We have to show that ∂(r) < ∂(δ(∂(r))). By the definition of a B0-system we have ∂(δ(∂(r))) =
T (∂(r), ∂(r)) and ∂(r) < T (∂(r), ∂(r)) by another part of the same definition.

Lemma 1.14 [2016.03.23.l2] Let B be a B0-system. Then for any X,Y ∈ B such that l(X) ≥ 1
and X < Y one has:

1. X ∈ δdom,

2. (X,Y ) ∈ Tdom,

3. (δ(X), T (X,Y )) ∈ Sdom.

Proof: We have:

1. The inclusion X ∈ δdom follows directly from the assumption.

2. Tor (X,Y ) ∈ Tdom we need to show that l(X) ≥ 1 and ft(X) < Y . The first inequality is an
assumption. For the second inequality we have ft(X) ≤ X by Lemma 1.7 and together with
X < Y , Lemma 1.4(1) gives us ft(X) < Y .

3. We need to show that ∂(δ(X)) < T (X,Y ). We have ∂(δ(X)) = T (X,X) and T (X,X) <
T (X,Y ) by Lemma 3.6.

Lemma 1.15 [2016.03.23.l3] Let B be a B0-system. Then for any X ∈ B, s ∈ B̃ such that
l(X) ≥ 1 and X < ∂(s) one has:

1. X ∈ δdom,

2. (X, s) ∈ T̃dom,

3. (δ(X), T̃ (X, s)) ∈ S̃dom.

Proof: Using the fact that ∂(T̃ (X, s)) = T (X, ∂(s)) this lemma follows from Lemma 1.14 applied
to X and ∂(s).

2 Definition of B-systems

Definition 2.1 [2014.10.16.def2] [was.2014.06.18.eq2.to.eq11] Let B be a non-unital B0-
system. Define the following conditions on B:

1. The TT-condition. For all X,Y ∈ B such that l(X) ≥ 1 and ft(X) < Y one has

(a) for all Z ∈ B such that ft(Y ) < Z one has

T (T (X,Y ), T (X,Z)) = T (X,T (Y,Z))

where the left and the right hand sides are defined in view of Lemma 1.1.
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(b) for all s ∈ B̃ such that ft(Y ) < ∂(s) one has

T̃ (T (X,Y ), T̃ (X, s)) = T̃ (X, T̃ (Y, s))

where the left and the right hand sides are defined in view of Lemma 1.2.

2. The SS-condition. For all r, s ∈ B̃ such that ∂(r) < ∂(s) one has

(a) for all Y ∈ B such that ∂(s) < Y

S(S̃(r, s), S(r, Y )) = S(r, S(s, Y ))

where the left and the right hand sides are defined in view of Lemma 1.3.

(b) for all t ∈ B̃ such that ∂(s) < ∂(t) one has

S̃(S̃(r, s), S̃(r, t)) = S̃(r, S̃(s, t))

where the left and the right hand sides are defined in view of Lemma 1.4.

3. The TS-condition. For any r ∈ B̃ and Y ∈ B such that ∂(r) < Y one has

(a) for all Z ∈ B such that ft(Y ) < Z

T (S(r, Y ), S(r, Z)) = S(r, T (Y, Z))

where the left and the right hand sides are defined in view of Lemma 1.5.

(b) for all r ∈ B̃ such that ft(Y ) < ∂(r)

T̃ (S(r, Y ), S̃(r, s)) = S̃(r, T̃ (Y, s))

where the left and the right hand sides are defined in view of Lemma 1.6.

4. The ST-condition. For any X ∈ B and r ∈ B̃ such that l(X) ≥ 1 and ft(X) < ∂(r) one has

(a) for all Y ∈ B such that ∂(r) < Y one has

S(T̃ (X, r), T (X,Y )) = T (X,S(r, Y ))

where the left and the right hand sides are defined in view of Lemma 1.7.

(b) for all s ∈ B̃ such that ∂(r) < ∂(s) one has

S̃(T̃ (X, r), T̃ (X, s)) = T̃ (X, S̃(r, s))

where the left and the right hand sides are defined in view of Lemma 1.8.

5. The STid-condition. For any r ∈ B̃ one has

(a) for all Y ∈ B such that ft(∂(r)) < Y one has

S(r, T (∂(r), Y )) = Y

where the left and the right hand sides are defined in view of Lemma 1.9.
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(b) for all s ∈ B̃ such that ft(∂(r)) < ∂(s) one has

S̃(r, T̃ (∂(r), s)) = s

where the left and the right hand sides are defined in view of Lemma 1.10.

Definition 2.2 [2014.10.20.def3] Let B be a unital B0-system. Define the following conditions
on B:

1. The δT-condition. For any X,Y ∈ B such that l(X) ≥ 1 and ft(X) < Y one has

T̃ (X, δ(Y )) = δ(T (X,Y ))

where the left and the right hand sides are defined in view of Lemma 1.11.

2. The δS-condition. For any r ∈ B̃ and Y ∈ B such that ∂(r) < Y one has

S̃(r, δ(Y )) = δ(S(r, Y ))

where the left and the right hand sides are defined in view of Lemma 1.12.

3. The δSid-condition. For any r ∈ B̃ one has

S̃(r, δ(∂(r))) = r

where the left hand sides is defined in view of Lemma 1.13.

4. The SδT-condition. For any X ∈ B such that l(X) ≥ 1 one has

(a) for Y ∈ B such that X < Y one has:

S(δ(X), T (X,Y )) = R

where the left hand sides is defined in view of Lemma 1.14.

(b) for s ∈ B̃ such that X < ∂(s) one has

S̃(δ(X), T̃ (X, r)) = r

where the left hand sides is defined in view of Lemma 1.15.

Remark 2.3 [2014.06.14.rem2] In the case of a syntactic B0-system, the conditions defined
above can be shown as follows:

1. The TT-condition:
Γ, T . Γ,∆, T ′ . Γ,∆ B J

Γ,T. Γ,∆,T ′BJ
Γ,T,∆,T ′BJ

Γ,T,∆,T ′. Γ,T,∆BJ
Γ,T,∆,T ′BJ

2. The SS-condition:

Γ B s : T Γ, T,∆ B s′ : T ′ Γ, T,∆, T ′ B J
ΓBs:T Γ,T,∆BJ [s]

Γ,∆[s]BJ [s′][s]
Γ,∆[s]Bs′[s]:T ′[s] Γ,∆[s],T ′[s]BJ [s]

Γ,∆[s]BJ [s][s′]
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3. The TS-condition:
Γ, T . Γ,∆ B s′ : T ′ Γ,∆, T ′ B J

Γ,T. Γ,∆BJ [s′]
Γ,T,∆BJ [s′]

Γ,T,∆Bs′:T ′ Γ,T,∆,T ′BJ
Γ,T,∆BJ [s′]

4. The ST-condition:
Γ B s : T Γ, T,∆, T ′ . Γ, T,∆ B J

ΓBs:T Γ,T,∆,T ′BJ [s]
Γ,∆[s],T ′[s]BJ [s]

Γ,∆[s],T ′[s]. Γ,∆[s]BJ [s]
Γ,∆[s],T ′[s]BJ [s]

5. The STid-condition:
Γ B s : T Γ, T . Γ B J

ΓBs:T Γ,TBJ
ΓBJ [s]

6. The δT-condition:
Γ, T . Γ,∆, x : T ′.

Γ,T. Γ,∆,x:T ′Bx:T ′

Γ,T,∆,x:T ′Bx:T ′
Γ,T,∆,x:T ′.

Γ,T,∆,x:T ′Bx:T ′

7. The δS-condition:
Γ B s : T Γ, T,∆, x : T ′.

ΓBs:T Γ,T,∆,x:T ′Bx:T ′

Γ,∆[s],x:T ′[s]Bx:T ′[s]
Γ,∆[s],x:T [s]′.

Γ,∆[s],x:T ′[s]Bx:T ′[s]

8. The δSid-condition:
Γ B s : T Γ, x : T.

ΓBs:T Γ,x:TBx:T
ΓBs:T

9. The SδT-condition:
Γ, y : X,∆ B J

Γ,y1:X,y:X,∆BJ Γ,y1:XBy1:X
Γ,y1:X,∆[y1/y]BJ [y1/y]

Definition 2.4 [2014.10.10.def2a] [2014.10.20.def4] A non-unital B-system is a non-unital
B0-system that satisfy the conditions TT , SS, TS, ST and STid of Definition 2.1.

Definition 2.5 [2014.10.10.def2b] [2014.10.20.def5] A unital B-system is a unital B0-system
that satisfy the conditions TT , SS, TS, ST , STid of Definition 2.1 and the conditions δT , δS,
δSid and SδT of Definition 2.2.

Equivalently, a unital B-system is non-unital B-system such that there exists a family of operations
δ satisfying the conditions δT , δS, δSid and SδT of Definition 2.2.

3 Elementary properties of B-systems

Remark 3.1 In unital B-systems operations S and T can be expressed as follows.

[2014.10.14.eq1]T (X,Y ) =

{
X if l(Y ) = l(X)− 1

ft(∂(T̃ (X, δ(Y )))) if l(Y ) ≥ l(X)
(17)

[2014.10.14.eq2]S(s,X) =

{
ft(∂(s)) if l(X) = l(∂(s))

ft(∂(S̃(s, δ(X)))) if l(X) > l(∂(s))
(18)
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Lemma 3.2 [2014.10.20.l1] [2014.10.16.l1] Let B be a non-unital B0-system and let δ1, δ2 be
two operations of the form δdom → B̃ satisfying the condition of Definition 3.4 and conditions δT ,
δSid and SδT conditions. Then δ1 = δ2.

Proof: We have:

δ1(X) = S̃(δ2(X), T̃ (X, δ1(X))) = S̃(δ2(X), δ1(T (X,X))) = δ2(X)

where the first equality is the SδT -condition for δ2, the second equality is the δT -condition for δ1

and the third equality is the δSid-condition for δ1.

Example 3.3 [2014.10.20.eX] While being unital is a property of non-unital B-systems not every
homomorphism of non-unital B-systems preserves units. Here is a sketch of an example of a
homomorphism that does not preserve units.

Consider the following pairs of a monad and a left module over it. In both cases pt is the constant
functor corresponding to the one point set {T} that has a unique left module structure over any
monad.

1. (R1, pt) where R1 is the monad corresponding to one unary operation s1(x) and the relation

s1(s1(x)) = s1(x)

2. (R2, pt) where R2 is the monad corresponding to two unary operations s1(x) and s2(x) and
relations:

s1(s1(x)) = s1(x) s1(s2(x)) = s1(x) s2(s1(x)) = s1(x) s2(s2(x)) = s2(x)

Consider the unital B-systems uB(R1, pt) and uB(R2, pt). In uB(R1, pt) consider the non-unital
sub-B-system nuB1 generated by (T B s1(1) : T ). In uB(R2, pt) consider the non-unital sub-B-
system nuB2 generated by (T B s1(1) : T ) and (T B s2(1) : T ).

Observe that both nuB1 and nuB2 are in fact unital with the unit in the first one given by
(T, . . . , T B s1(n) : T ) and unit in the second one is given by (T, . . . , T B s2(n) : T ) where n is the
number of T ’s before the turnstile B symbol.

We also have an obvious (unital) homomorphism from uB(R1, pt) to uB(R2, pt) that defines a
homomorphism nuB1 → nuB2 and that latter homomorphism is not unital.

4 Operations T̃ ∗∗ and S̃∗∗

4.1 The ST ∗(a)-property

Lemma 4.1 [2016.04.10.l1] Let B be a B0-system. Then for any X,Y,W ∈ B, r ∈ B̃ such that
X ≥ Y , Y ≤ ft(∂(r)) and ∂(r) < W one has:

1. (X,Y, r) ∈ T̃ ∗dom,

2. (X,Y,W ) ∈ T ∗dom,
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3. (T̃ ∗(X,Y, r), T ∗(X,Y,W )) ∈ Sdom,

4. (r,W ) ∈ Sdom,

5. (X,Y, S(r,W )) ∈ T ∗dom.

Proof: We have:

1. The required conditions are X ≥ Y , Y ≤ ft(∂(r)). Both are among our assumptions.

2. The required conditions are X ≥ Y , Y ≤ W . The first one is among our assumptions.
To show the second one we first have ft(∂(r)) ≤ ∂(r) and then Y ≤ W follows from Y ≤
ft(∂(r)) ≤ ∂(r) < W by Lemmas 1.3 and 1.4.

3. The required condition is ∂(T̃ ∗(X,Y, r)) < T ∗(X,Y,W ). By (6) we have ∂(T̃ ∗(X,Y, r)) =
T̃ ∗(X,Y, ∂(r)) and the condition follows from the assumption ∂(r) < W by Lemma 3.13.

4. The required condition is ∂(r) < W and is among our assumptions.

5. The required conditions are X ≤ Y , Y ≤ S(r,W ). The first one is among our assumptions.
By the axioms of a B0-system we have ft(∂(r)) < S(r,W ) and the second condition follows
this inequality and our assumption Y ≤ ft(∂(r)) by Lemma 1.4.

Lemma 4.2 [2016.03.27.l1] Let B be a B0-system that satisfies the ST(a)-condition of Definition
2.1. Then for any X,Y,W ∈ B, r ∈ B̃ such that X ≥ Y , Y ≤ ft(∂(r)) and ∂(r) < W one has:

S(T̃ ∗(X,Y, r), T ∗(X,Y,W )) = T ∗(X,Y, S(r,W ))

where both sides are defined by Lemma 4.1.

Proof: We proceed by induction on j = l(X)− l(Y ) using Constructions 3.12 and 3.15.

For j = 0 we have
S(T̃ ∗(X,Y, r), T ∗(X,Y,W )) = S(r,W )

and
T ∗(X,Y, S(r,W )) = S(r,W )

For j = 1 we need to show

S(T̃ (X, r), Text(X,W )) = Text(X,S(r,W ))

if l(X) ≥ 1, ft(X) ≤ ft(∂(r)), ∂(r) < W . We have ft(X) < ∂(r) < W and in particular
ft(X) < W . Therefore Text(X,W ) = T (X,W ). We also have ft(X) < S(r,W ). Indeed, ft(X) ≤
ft(∂(r)) < S(r,W ). Therefore

Text(X,S(r,W )) = T (X,S(r,W ))

It remains to show that
S(T̃ (X, r), T (X,W )) = T (X,S(r,W ))
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The objects (X,W, r) are in the domain of definition of the ST(a)-condition and the equality is the
equality of the condition. This completes the proof of the j = 1 case.

For the successor of j ≥ 1 we need to show that

[2016.03.21.eq2]S(T̃ (X, T̃ ∗(ft(X), Y, r)), Text(X,T
∗(ft(X), Y,W ))) = Text(X,T

∗(ft(X), Y, S(r,W )))
(19)

assuming that ft(X) > Y , Y ≤ ft(∂(r)), ∂(r) < W . By the inductive assumption we may assume
that

[2016.03.27.eq1]S(T̃ (ft(X), Y, r), T (ft(X), Y,W )) = T (ft(X), Y, S(r,W )) (20)

Let us first show that two Text in (19) can be replaced by T .

For the first one we need to show that ft(X) < T ∗(ft(X), Y,W ). We have ft(X) ≤ T ∗(ft(X), Y,W )
by Problem 3.11(1). Next we have

l(T ∗(ft(X), Y,W ))− l(ft(X)) = l(W )− l(Y )

Since Y < ∂(r) and ∂(r) < W we have l(W )− l(Y ) ≥ 2 and l(T ∗(ft(X), Y,W )) > l(ft(X)). This
shows that

Text(X,T
∗(ft(X), Y,W )) = T (X,T ∗(ft(X), Y,W ))

Next we need to show that ft(X) < T ∗(ft(X), Y, S(r, Y )). Again we use that by Problem 3.11(1)
we have ft(X) ≤ T ∗(ft(X), Y, S(r, Y )) . Next we have

l(T ∗(ft(X), Y, S(r, Y )))− l(ft(X)) = l(S(r, Y ))− l(Y ) = (l(W )− 1)− l(Y )

Here we use again that Y < ∂(r) and ∂(r) < W and therefore (l(W )− 1)− l(Y ) ≥ 1. This shows
that

Text(X,T
∗(ft(X), Y, S(r,W ))) = T (X,T ∗(ft(X), Y, S(r,W )))

It remains to prove that

[2016.03.27.eq3]S(T̃ (X, T̃ ∗(ft(X), Y, r)), T (X,T ∗(ft(X), Y,W ))) = T (X,T ∗(ft(X), Y, S(r,W )))
(21)

assuming that ft(X) > Y , Y ≤ ft(∂(r)), ∂(r) < W .

Let us show that we can apply ST(a)-condition to the left hand side of (21).

We have l(X) ≥ 1 because X ≥ ft(X) > Y .

We have ft(X) < ∂(T̃ (ft(X), Y, r)) since

∂(T̃ ∗(ft(X), Y, r)) = T ∗(ft(X), Y, ∂(r)) ≥ ft(X)

and
l(T ∗(ft(X), Y, ∂(r)))− l(ft(X)) = l(∂(r))− l(Y )

and since Y < ∂(r), l(∂(r))− l(Y ) ≥ 1.

Last, we need that
∂(T̃ ∗(ft(X), Y, r)) < T ∗(ft(X), Y,W )

Since ∂(T̃ ∗(ft(X), Y, r)) = T ∗(ft(X), Y, ∂(r)) and ∂(r) < W it follows from Lemma 3.13.
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Applying the ST(a)-condition to the left hand side of (21) and then applying (20) we get

S(T̃ (X, T̃ ∗(ft(X), Y, r)), T (X,T ∗(ft(X), Y,W ))) = T (X,S(T̃ ∗(ft(X), Y, r), T ∗(ft(X), Y,W ))) =

T (X,T ∗(ft(X), Y, S(r,W )))

Finally, by Construction 3.12 we have

T (X,T ∗(ft(X), Y, S(r,W ))) = T ∗(X,Y, S(r,W ))

This completes the proof of Lemma 4.2.

4.2 Sets T̃ ∗∗dom and operations T̃ ∗∗

We will now construct the operations that correspond, in the B0-systems that correspond to C-
systems, to the pull-back of sections of morphisms pY,ftn(Y ) by morphisms pX,ftl(X).

Definition 4.3 [2016.04.02.def1] Let B be a B0-system. Define:

T̃ ∗∗dom = {X,Y, Z,W, s |X ≥ Y ≤ Z ≤W, s ∈ B̃∗(Z,W )}

We will sometimes write elements of T̃ ∗∗dom as (X,Y, s) because Z and W can be recovered from the
type of s.

Problem 4.4 [2016.02.22.prob1] Let B be a B0-system carrier such that the operations S, T̃ and
T satisfy the ST(a)-condition of Definition 2.1.

For each (X,Y, Z,W, s) ∈ T̃ ∗∗dom to define an element

T̃ ∗∗(X,Y, Z,W, s) ∈ B̃∗(T (X,Y, Z), T (X,Y,W ))

where the right hand side is well defined by Lemma 3.13.

The diagram for Problem 4.4 is as follows:

T ∗(X,Y,W ) W

T̃ ∗∗(X,Y,s)↑
y s↑

y
T ∗(X,Y, Z) Zy y

X −−−→ Y

Construction 4.5 [2016.02.22.constr1] Proceed now by induction on j = l(W )− l(Z).

For j = 0 we set
T̃ ∗∗(X,Y, Z, Z, tt) = tt

where tt is the only element of B̃∗(Z,Z) = B̃∗(T (X,Y, Z), T (X,Y, Z)) = unit.
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For j = 1 we set
T̃ ∗∗(X,Y, ft(W ),W, s) = T̃ ∗(X,Y, s)

For the successor of j > 0 we define T̃ ∗∗(X,Y, ftj+1(W ),W, s) as follows. Recall that for j > 0 we
have

B̃∗(ftj+1(W ),W ) = {(r, s) | r ∈ B̃(ftj(W )), s ∈ B̃∗(ftj+1(W ), S(r,W ))}

We set

[2016.03.09.eq1]T̃ ∗∗(X,Y, ftj+1(W ),W, (r, s)) = (T̃ ∗(X,Y, r), T̃ ∗∗(X,Y, ftj+1(W ), S(r,W ), s)
(22)

The part of the diagram for this case that is over Y is as follows:

S(r,W ) W

s↑
y y

ftj+1(W )
r−→←−−− ftj(W )y

ftj+1(W )y
Y

and the part that is over X is as follows:

T ∗(X,Y, S(r,W )) T ∗(X,Y,W )y↑T̃ ∗∗(X,Y,ftj+1(W ),S(r,W ),s)

y
T ∗(X,Y, ftj+1(W )) ft(T ∗(X,Y, ftj(W )))

T̃∗(X,Y,r)−→←−−−−− T ∗(X,Y, ftj(W ))y
ft(T ∗(X,Y, ftj(W )))y

X

Let us check that the right hand side of (22) is well defined.

For T̃ ∗(X,Y, r) to be defined we need X ≥ Y and ft(∂(r)) ≥ Y . We know that X ≥ Y . Next, we
have ft(∂(r)) = ftj+1(W ) and ftj+1(W ) ≥ Y . This proves that T̃ ∗(X,Y, r) is defined.

For T̃ ∗∗(X,Y, ftj+1(W ), S(r,W ), s) to be defined we need s ∈ B̃∗(ftj+1(W ), S(r,W )), X ≤ Y and
Y ≤ ftj+1(W ) ≤ S(r,W ). The first two conditions as well as the condition that Y ≤ ftj+1(W )
are parts of our assumptions. To see that ftj+1(W ) ≤ S(r,W ) we use the fact that ftj+1(W ) =
ft(∂(r)) and that S(r,W ) > ft(∂(r)) according to Definition 3.1(3).

It remains to show that

(T̃ ∗(X,Y, r), T̃ ∗∗(X,Y, ftj+1(W ), S(r,W ), s)) ∈ B̃∗(T (X,Y, ftj+1(W )), T (X,Y,W ))
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To know what are the elements of the right hand side set we need to know l(T ∗(X,Y, ftj+1(W ))−
l(T ∗(X,Y,W )). By Lemma 3.13 we have

l(T ∗(X,Y,W )− l(T ∗(X,Y, ftj+1(W ))) = l(W )− l(ftj+1(W )) = l(W )− l(Z) = j + 1

and by the same lemma T ∗(X,Y, ftj+1(W )) ≤ T ∗(X,Y,W ). Therefore, by definition of ≤

T ∗(X,Y, ftj+1(W )) = ftj+1(T ∗(X,Y,W ))

and elements of this set are pairs (r′, s′) where

r′ ∈ B̃(ftj(T ∗(X,Y,W )))

s′ ∈ B̃∗(ftj+1(T ∗(X,Y,W )), S(r′, T ∗(X,Y,W )))

Therefore, we need to prove that

[2016.04.06.eq1]T̃ ∗(X,Y, r) ∈ B̃(ftj(T ∗(X,Y,W ))) (23)

and

[2016.04.06.eq2]T̃ ∗∗(X,Y, ftj+1(W ), S(r,W ), s) ∈ B̃∗(ftj+1(T (X,Y,W )), S(T̃ ∗(X,Y, r), T ∗(X,Y,W )))
(24)

We already know that ftj+1(T ∗(X,Y,W )) = T ∗(X,Y, ftj+1(W )). Similar reasoning shows that
ftj(T ∗(X,Y,W )) = T ∗(X,Y, ftj(W )). Together with (6) it gives us (23).

For (24) we have, by definition, that

T̃ ∗∗(X,Y, ftj+1(W ), S(r,W ), s) ∈ B̃∗(T ∗(X,Y, ftj+1(W )), T ∗(X,Y, S(r,W )))

Since we know that ftj+1(T ∗(X,Y,W )) = T ∗(X,Y, ftj+1(W )) it remains to show that

[2016.03.27.eq4]S(T̃ ∗(X,Y, r), T ∗(X,Y,W )) = T ∗(X,Y, S(r,W )) (25)

Let us show that X,Y,W, r satisfy the conditions that allow us to apply Lemma 4.2. That X ≥ Y
is one of our assumptions. We have shown that Y ≤ ft(∂(r)). We have ∂(r) = ftj(W ), j ≥ 1 and
l(W ) ≥ j ≥ 1. Therefore, ∂(r) < W . These conditions imply that Lemma 4.2 is applicable and
(25) holds.

This completes Construction 4.5.

4.3 The SS∗(a)-property

Lemma 4.6 [2016.04.08.l3] Let B be a B0-system. Then for any X,Y, s, r, Z where X,Y, Z ∈ B,
X ≤ Y , s ∈ B̃∗(X,Y ), r ∈ B̃ and Y < ∂(r) < Z one has

1. (s, r) ∈ S̃∗dom,

2. (s, Z) ∈ S∗dom,

3. (S̃∗(s, r), S∗(s, Z)) ∈ Sdom,

4. (r, Z) ∈ Sdom,
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5. (s, S(r, Z)) ∈ S∗dom.

Proof: We have:

1. the required condition is that Y ≤ ft(∂(r)) that follows by Lemma 1.6 from our assumption
Y < ∂(r),

2. the required condition is Y ≤ Z which follows from our assumptions by Lemma 1.3,

3. the required condition is ∂(S̃∗(s, r)) < S∗(s, Z) which follows by (12) and Lemma 4.6 from
our assumption ∂(r) < Z,

4. the required condition is our assumption ∂(r) < Z,

5. the required condition is Y ≤ S(r, Z). By the definition of a B0-system we have ft(∂(r)) <
S(r, Z). On the other hand, by part (1) we have Y ≤ ft(∂(r)) and by Lemma 1.4 we conclude
that Y < S(r, Z).

Lemma 4.7 [2016.04.08.l2] Let B be a B0-system that satisfies the SS(a)-condition of Definition
2.1. Then for any X,Y, s, r, Z where X,Y, Z ∈ B, X ≤ Y , s ∈ B̃∗(X,Y ), r ∈ B̃ and Y < ∂(r) < Z
one has

S(S̃∗(s, r), S∗(s, Z)) = S∗(s, S(r, Z))

Proof: We proceed by induction on j = l(Y )− l(X).

For j = 0, B̃∗(X,Y ) = unit and S̃∗(s, r) = r, S∗(s, Z) = Z, S∗(s, S(r, Z)) = S(r, Z). The required
equality therefore becomes

S(r, Z) = S(r, Z)

For j = 1, B̃∗(X,Y ) = B̃(Y ) and S̃∗(s, r) = S̃(s, r),S∗(s, Z) = Sext(s, Z), S∗(s, S(r, Z)) =
Sext(s, S(r, Z)). Since ∂(s) = Y we have ∂(s) < ∂(r) < Z which implies that ∂(s) < Z and
Sext(s, Z) = S(s, Z). Moreover, since ∂(s) < ∂(r) by Lemma 1.6 we have that ∂(s) ≤ ft(∂(r)) which
together with ft(∂(r)) < S(r, Z) by a B0-systems axiom and Lemma 1.4 implies that ∂(s) < S(r, Z)
and Sext(s, S(r, Z)) = S(s, S(r, Z)). Therefore the required equality becomes

S(S̃(s, r), S(s, Z)) = S(s, S(r, Z))

which has the form of the SS(a)-condition for s, r, Z. Since ∂(s) = Y we have ∂(s) < ∂(r) < Z
which implies that this condition is applicable.

For the successor of j > 0 one has X = ftj+1(Y ) and elements of B̃(X,Y ) are pairs of the form
(r1, s1) where r1 ∈ B̃(ftj(Y )), s1 ∈ B̃(ftj+1(Y ), S(r1, Y )).

Next we have:
S̃((r1, s1), r) = S̃∗(s1, S̃(r1, r))

S∗((r1, s1), Z) = S∗(s1, S(r1, Z))

S∗((r1, s1), S(r, Z)) = S∗(s1, S(r1, S(r, Z)))

and the required equality becomes

S(S̃∗(s1, S̃(r1, r)), S
∗(s1, S(r1, Z))) = S∗(s1, S(r1, S(r, Z)))
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Let us show that the inductive assumption for ftj+1(Y ), S(r1, Y ), s1, S̃(r1, r), S(r1, Z) can be ap-
plied to the left hand side. We have ftj+1(Y ) = ft(ftj(Y )) = ft(∂(r1)) < S(r1, Y ). Next,
∂(S̃(r1, r)) = S(r1, ∂(r)) by the axiom of a B0-system and S(r1, Y ) < S(r1, ∂(r)) < S(r1, Z) by our
assumptions Y < ∂(r) < Z and Lemma 3.8. Therefore the inductive assumption is applicable and
we have

S(S̃∗(s1, S̃(r1, r)), S
∗(s1, S(r1, Z))) = S∗(s1, S(S̃(r1, r), S(r1, Z)))

It remains to show that S(S̃(r1, r), S(r1, Z)) = S(r1, S(r, Z)). This has the form of the SS(a)-
condition for r1, r, Z. Since ∂(r1) = ftj(Y ) we have ∂(r1) ≤ Y < ∂(r) and therefore ∂(r1) < ∂(r)
by Lemma 1.4 and ∂(r) < Z be one of our assumptions. We conclude that SS(a)-condition is
applicable to r1, r, Z.

This completes the proof of Lemma 4.7.

4.4 Sets S̃∗∗dom and operations S̃∗∗

Here we will construct operations S̃∗∗ that correspond, in the B-systems of C-systems, to the
pull-back of elements of B̃∗ along elements of B̃∗.

Definition 4.8 [2016.03.29.def1] Let B be a B0-system. Define

S̃∗∗dom = {X,Y, Z,W, s1, s2 |X ≤ Y ≤ Z ≤W, s1 ∈ B̃∗(X,Y ), s2 ∈ B̃∗(Z,W )}

We will sometimes write elements (X,Y, Z,W, s1, s2) of S̃∗∗dom as (s1, s2) because X,Y, Z,W can be
recovered from the type of s1 and s2.

Problem 4.9 [2016.03.29.prob1] Let (X,Y, Z,W, s, s′) ∈ S̃∗∗dom. To construct an element

S̃∗∗(X,Y, Z,W, s1, s2) ∈ B̃∗(S∗(s1, Z), S∗(s1,W ))

where the right hand side is defined by Lemma 4.6.

The diagram for Problem 4.9 looks as follows:

S∗(s1,W ) W

S̃∗∗(s1,s2)↑
y s2↑

y
S∗(s1, Z) Zy y

X
s1−→←−−− Y

Construction 4.10 [2016.03.29.constr1] We will proceed by induction on j′ = l(W )− l(Z).

If j′ = 0 then W = Z and S∗(s1, Z) = S∗(s1,W ). Therefore

B̃∗(S∗(s1, Z), S∗(s1,W )) = unit
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and we define
S̃∗(X,Y, Z,W, s1, s2) = tt

where, let us recall, tt is the notation for the unique element of the one element set unit.

If j′ = 1 then l(W ) ≥ 1, Z = ft(W ) and B̃∗(Z,W ) = B̃(W ).

Then we set
S̃∗∗(X,Y, Z,W, s1, s2) = S̃∗(X,Y, s1, s2)

It is easy to prove that the right hand side is defined based on Definition 4.7.

For the successor of j′ > 0 we have Z = ftj+1(W ) and, by Construction 4.2,

B̃∗(ftj+1(W ),W ) = {(r2, s2) | r2 ∈ B̃(ftj(W )), s2 ∈ B̃∗(ftj+1(W ), S(r,W ))}

We set
[2016.04.06.eq3]S̃∗∗(s1, (r2, s2)) = (S̃∗(s1, r2), S̃∗∗(s1, s2)) (26)

The diagram for this case is as follows. Its part over Y is of the same form as in the construction
of T̃ ∗∗:

S(r2,W ) W

s2↑
y y

ftj+1(W )
r2−→←−−− ftj(W )y

ftj+1(W )y
Y

and the part that is over X is as follows:

S∗(s1, S(r2,W )) S∗(s1,W )y↑S̃∗∗(s1,ftj+1(W ),S(r2,W ),s2)

y
S∗(s1, ft

j+1(W )) ft(S∗(s1, ft
j(W )))

S̃∗(s1,r2)−→←−−−−− S∗(s1, ft
j(W ))y

ft(S∗(s1, ft
j(W )))y

X

Let us check that the right hand side of (26) is defined and belongs to B̃(S∗(s1, ft
j+1(W )), S∗(s1,W )).

For S̃∗(s1, r2) to be defined we need to know that Y ≤ ft(∂(r2)). This follows from:

ft(∂(r2)) = ft(ftj(W )) = ftj+1(W ) = Z ≥ Y

For S̃∗∗(s1, s2) to be defined we need to know that Y ≤ ftj+1(W ) which again follows from the
equality ftj+1(W ) = Z and the assumption Y ≤ Z.
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To check that the pair on the right hand side of (26) belongs to B̃∗(S∗(s1, ft
j+1(W )), S∗(s1,W ))

we need to know what are the elements of the latter set. By Lemma 4.6 we have

l(S∗(s1,W ))− l(S∗(s1, ft
j+1(W )) = l(W )− l(ftj+1(W )) = l(W )− l(Z) = j + 1

Therefore,
B̃∗(S∗(s1, ft

j+1(W )), S∗(s1,W )) =

{(r′, s′) | r′ ∈ B̃(ftj(S∗(s1,W ))), s′ ∈ B̃∗(ftj+1(S∗(s1,W )), S(r′, S∗(s1,W )))}

Therefore, we have to prove that

[2016.04.08.eq1]S̃∗(s1, r2) ∈ B̃(ftj(S∗(s1,W ))) (27)

and
[2016.04.08.eq2]S̃∗∗(s1, s2) ∈ B̃∗(ftj+1(S∗(s1,W )), S(S̃∗(s1, r2), S∗(s1,W ))) (28)

By (12) we have
∂(S̃∗(s1, r2)) ∈ S∗(s1, ∂(r2)) = S∗(s1, ft

j(W ))

and by construction

S̃∗∗(s1, s2) ∈ B̃∗(S∗(s1, ft
j+1(W )), S∗(s1, S(r2,W )))

Using Lemma 4.6 it is easy to prove that

ftj(S∗(s1,W )) = S∗(s1, ft
j(W ))

which implies (27). From the same lemma it follows that

ftj+1(S∗(s1,W )) = S∗(s1, ft
j+1(W ))

which reduces (28) to the proof of the equality

[2016.04.10.eq2]S(S̃∗(s1, r2), S∗(s1,W )) = S∗(s1, S(r2,W )) (29)

Let us show that it follows by application of Lemma 4.7 to X,Y, s1, r2,W .

For this we need to verify the conditions X ≤ Y , Y < ∂(r2) and ∂(r2) < W . The first condition
is a part of our assumptions. Since ∂(r2) = ftj(W ) we have Z = ft(ftj(W )) = ft(∂(r2)) <
∂(r2) and together with Y ≤ Z, Lemma 1.4 gives us that Y < ∂(r2). Finally, since j > 0 and
l(∂(r2)) = l(ftj(W )) > 0 we have ∂(r2) < W . These conditions imply that Lemma 4.7 is applicable
to X,Y, s1, r2,W and gives (29).

This completes Construction 4.10.

5 Sets BMor(X, Y ), composition operations and the identity elements

5.1 Construction of the set BMor(X,Y )

Problem 5.1 [2016.02.28.prob1] For a pointed B0-system (B, B̃, ∂) and X,Y ∈ B to define a
set that will be denoted BMor(X,Y ).

38



Construction 5.2 [2016.02.28.constr1][2016.02.20.def1] We define this set by the formula:

BMor(X,Y ) = B̃∗(X,T ∗(X, pt, Y ))

Let us show that the right hand side is well defined. For that we need T ∗(X, pt, Y ) to be well
defined, i.e., to have X ≥ pt and Y ≥ pt. This is immediate from the definition of a pointed
B0-system. We also need that T ∗(X, pt, Y ) ≥ X which is condition (1) of Problem 3.11.

Remark 5.3 [2016.02.28.rem1] To define BMor(X,Y ) we need less than the full set of B0-
system structures and axioms. All we need is a B-system carrier with operations T and S such
that T satisfies conditions of Definition 3.1(1) and S the conditions of Definition 3.1(3).

In the next section we will construct for any C-system CC a B0-system B(CC) and for any
X,Y ∈ CC a bijection between BMorB(CC)(X,Y ) and MorCC(X,Y ).

5.2 Sets BMor(X,Y ) and homomorphisms of pointed B0-systems

Problem 5.4 [2016.03.15.prob2] Let f : B → B′ be a homomorphism of pointed B0-systems.
For X,Y ∈ B to define a function

fBMor,X,Y : BMor(X,Y )→ BMor′(f(X), f(Y ))

Construction 5.5 [2016.03.15.constr3] By Construction 5.2 we have

BMor(X,Y ) = B̃∗(X,T ∗(X, pt, Y ))

Applying Construction 4.11 we obtain the function

f
B̃∗(X,T ∗(X,pt,Y ))

: B̃∗(X,T ∗(X, pt, Y ))→ B̃′(f(X), f(T ∗(X, pt, Y )))

Applying Lemma 3.16(1) we get that f(T ∗(X, pt, Y )) = (T ′)∗(f(X), f(pt), f(Y )). Since B′ is
pointed we have f(pt) = pt′ and

B̃′(f(X), (T ′)∗(f(X), f(pt′), f(Y ))) = BMor′(f(X), f(Y ))

This completes the construction.

5.3 Composition operation

To construct the operations on the BMor sets that will be related to the composition of morphisms
and the identity morphisms in the case of the B0-systems of the form CB(CC) we need the
underlying B0-system to satisfy some of the axioms of a B-system.

Everywhere below when we say that an equality involving partially defined operations holds for
certain values of the arguments we mean that the left and the right hand side expressions are
defined and equal.
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3 B-systems and C-systems

1 Some general results on C-systems

Let us recall (cf. [?]) that for a C-system CC an object Y is said to be an object over X if Y ≥ X.

In this case the composition of the canonical projections Y
pY→ ft(Y )

pft(Y )→ . . . → X is denoted by
pY,X . For a morphism f : X ′ → X one defines f∗(Y ) by induction using the f∗ structure of the
C-system. One also defines by induction a morphism q(f, Y ) : f∗(Y )→ Y . For more detail see [?,
Section 2].

Lemma 1.1 [2016.02.18.l4] In the context introduced above one has f∗(Y ) ≥ X ′,

[2016.02.18.eq3]l(f∗(Y ))− l(X ′) = l(Y )− l(X) (30)

and the square

[2016.02.18.eq2]

f∗(Y )
q(f,Y )−−−−→ Y

pf∗(Y ),X′

y ypY,X

X ′
f−−−→ X

(31)

is a pull-back square.

Proof: By induction on l(Y )− l(X) using the fact that vertical composition of pull-back squares
is a pull-back square.

For Y, Y ′ ≥ X a morphism g : Y → Y ′ is said to be a morphism over X if pY,X = g◦pY ′,X . For such
a morphism g and a morphism f : X ′ → X there is a unique morphism f∗(g) : f∗(Y ) → f∗(Y ′)
over X ′ such that the square

[2016.02.18.eq1]

f∗(Y )
q(f,Y )−−−−→ Y

f∗(g)

y yg
f∗(Y ′)

q(f,Y ′)−−−−→ Y ′

(32)

commutes (see [?, Lemma 2.1]).

We will also need the following lemmas.

Lemma 1.2 [2016.03.15.l11] Let Y be an object over X and f ′ : X ′′ → X ′, f : X ′ → X two
morphisms. Then one has:

[2016.03.15.eq4](f ′)∗(f∗(Y )) = (f ′ ◦ f)∗(Y ) (33)

and
[2016.03.15.eq5]q(f ′ ◦ f, Y ) = q(f ′, f∗(Y )) ◦ q(f, Y ) (34)

Proof: By induction on j = l(Y )− l(X) using the definition given in [?, Section 2] and one of the
axioms of the definition of a C-system, see [?, Definition 2.1(axiom 7)].
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Lemma 1.3 [2016.03.15.l10] Let g : Y → Y ′ be a morphism over X and f ′ : X ′′ → X ′, f : X ′ →
X two morphisms. Then one has:

[2016.03.15.eq4mor](f ′)∗(f∗(g)) = (f ′ ◦ f)∗(g) (35)

Proof: Note first that both the right and the left hand sides of (1.3) are morphisms over X. The
domains of the left and the right hand sides of (1.3) are (f ′)∗(f∗(Y )) and (f ′ ◦ f)∗(Y ) coincide by
Lemma 1.2. The codomains (f ′)∗(f∗(Y ′)) and (f ′ ◦ f)∗(Y ′) coincide by the same lemma. In view
of the uniqueness part of [?, Lemma 2.1] it remains to show that

(f ′)∗(f∗(g)) ◦ q(f ′ ◦ f, Y ′) = q(f ′ ◦ f, Y ) ◦ g

This follows from the equalities

q(f ′ ◦ f, Y ′) = q(f ′, f∗(Y ′)) ◦ q(f, Y ′)

and
q(f ′ ◦ f, Y ) = q(f ′, f∗(Y )) ◦ q(f, Y )

proved in Lemma 1.2 and the definition of (f ′)∗(f∗(g)).

Lemma 1.4 [2016.01.27.l8] Let CC be a C-system, X an object over X ′ and X ′ an object over
X ′′ then one has pX,X′′ = pX,X′ ◦ pX′,X′′.

Proof: By induction on l(X ′)− l(X).

Lemma 1.5 [2016.01.27.l7] Let CC be a C-system, f : Y → Y ′ be a morphism over X and X
be an object over W . Then f is a morphism over W .

Proof: Follows easily from Lemma 1.4.

Lemma 1.6 [2016.02.20.l9] Let Y > X and f : X ′ → X. Then one has

ft(f∗(Y )) = f∗(ft(Y ))

Proof: It follows from the inductive definition of f∗ since for l(Y ) − l(X) > 0 we have f∗(Y ) =
q(f, ft(Y ))∗(Y ) where q(f, ft(Y )) : f∗(ft(Y )) → ft(Y ) and q(f, ft(Y ))∗(Y ) is given by the C-
system structure that satisfies the axiom ft(a∗(Y )) = dom(a).

2 The B0-systems of C-systems

2.1 Construction of the pre-B-system CB(CC)

Problem 2.1 [2016.01,27.prob2] Let CC be a C-system. To construct a pre-B-system

CB(CC) = (B(CC), B̃(CC), l, ft, ∂, T, T̃ , S, S̃)
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Construction 2.2 [2016.01.27.constr1]Let B(CC) = Ob(CC) and

B̃(CC) = {s ∈Mor(CC) | dom(s) = ft(codom(s)) and s ◦ pcodom(s) = Iddom(s)}

(this set was previously denoted by Õb(CC)). The triple (B(CC), l, ft) is an lft-set and we have
the function of sets

∂ = codom : B̃(CC)→ B(CC)

obtaining a B-system carrier.

Starting with these data we can define the sets Tdom, T̃dom, Sdom, S̃dom and δdom.

Next, we define operations T, T̃ , S, S̃, δ as follows:

T (X,Y ) = p∗X(Y ) T̃ (X, s) = p∗X(s)

S(r, Y ) = r∗(Y ) S̃(r, s) = r∗(s)

δ(X) = sIdX

The first of these operations is defined because Y > ft(X) and therefore Y is over ft(X).

The second one is defined because s : ft(∂(s)) → ∂(s) is a morphism over ft(∂(s)) and since
∂(s) > ft(X) we have that ft(∂(s)) ≥ ft(X) by Lemma 1.6 and therefore ft(∂(s)) is an object
over ft(X) and so the morphism s is a morphism over ft(X) by Lemma 1.5.

The third of one is defined because Y is over ∂(r).

The fourth one is defined because s : ft(∂(s)) → ∂(s) is a morphism over ft(∂(s)) while r is of
the form ft(∂(r)) → ∂(r) and since ∂(s) > ∂(r) we have that ft(∂(s)) ≥ ∂(r) by Lemma 1.6 and
therefore s is a morphism over ∂(r) by Lemma 1.5. . Finally δ is defined because sf is defined for
any morphism of the form f : X → Y where l(Y ) > 0 (cf. [?, Definition 2.3]).

This completes Construction 2.2.

2.2 Pre-B-systems CB(CC) are B0-systems

Lemma 2.3 [2016.02.18.l6] Let CC be a C-system. Then CB(CC) is a B0-system.

Proof:

1. Let (X,Y ) ∈ Tdom. Then one has:

(a) We have l(T (X,Y )) = l(p∗X(Y )). To define p∗X(Y ) we consider Y as an object over
ft(X). Therefore by Lemma 1.1 we have

l(p∗X(Y )) = l(X) + (l(Y )− l(ft(X))) = (l(X)− l(ft(X))) + l(Y )

Since l(X) ≥ 1 we have l(X)− l(ft(X)) = 1. Therefore

l(T (X,Y )) = l(Y ) + 1

(b) By Lemma 1.1 we have T (X,Y ) ≥ X and

l(T (X,Y ))− l(X) = l(Y )− l(ft(X)) > 0

therefore T (X,Y ) > X.
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(c) It follows from Lemma 1.6.

2. Let (X, s) ∈ T̃dom. The first condition follows from the second one and condition 1(a). The
second condition follows immediately from the definitions.

3. Let (r, Y ) ∈ Sdom. Then one has:

(a) l(S(r, Y )) = l(r∗(Y )) were Y is considered as an object over X = ∂(r). By Lemma 1.1
we have

l(r∗(Y )) = l(ft(X)) + (l(Y )− l(X)) = l(Y ) + (l(ft(X))− l(X)) = l(Y )− 1

where the last equality follows from the fact that l(ft(X)) − l(X) = −1 since l(X) =
l(∂(r)) > 0.

(b) By Lemma 1.1 we have r∗(Y ) ≥ ft(X) and since Y > X the same lemma implies that
r∗(Y ) > X.

(c) It follows from Lemma 1.6.

4. The first condition follows from the second one and condition 2(a). The second condition
follows immediately from the definitions.

2.3 Functoriality of the CB-construction

Problem 2.4 [2016.01.27.prob3] Let f : CC → CC ′ be a homomorphism of C-systems. To
construct a homomorphism of pre-B-systems CB(f) : CB(CC)→ CB(CC ′).

Construction 2.5 [2016.01.27.constr3] We need to construct a morphism of B-system carriers
and show that it is a homomorphism of pre-B-systems.

We already have the function f : B(CC) → B(CC ′) and by the definition of a homomorphism of
C-systems (cf. [?, Definition 3.1]) it is a morphism of lft-sets.

By definition B̃(CC) is a subset of Mor(CC). Therefore, by the morphism part of the functor
f it is mapped to a subset of Mor(CC ′). We need to verify that the image of B̃(CC) lies in
B̃(CC ′). The subset B̃(CC) is the subset of elements s such that dom(s) = ft(codom(s)) and
s◦pcodom(s) = Iddom(s). It follows that it will be mapped to the subset defined by the same conditions
by any functor that maps the p-morphisms of CC to p-morphisms of CC ′ and in particular by any
homomorphism of C-systems. We obtain a function B̃ → B̃′ that we denote by f̃ .

It is immediate from the construction that the pair f = (f, f̃) is a morphism of B-system carriers.

By Construction 2.8 we obtain functions fT , fT̃ , fS , fS̃ , fδ.

The fact that these functions commute, in the sense of Definition 2.9, with the pre-B-system
operations follows from [?, Lemma 2.3(3,4,5)].

Lemma 2.6 [2016.01.29.l1] Let U be a universe. Then Constructions 2.2 and 2.5 define a functor
CBU from the category of C-systems in U to the category of pre-B-systems in U .
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Proof: Since two homomorphisms of pre-B-systems are equal if and only if the underlying mor-
phisms of the B-system carriers are equal it is sufficient to prove the identity and composition
axioms of a functor for the mappings from C-systems and their homomorphisms to the carriers of
pre-B-systems and their morphisms. These axioms follow immediately from the fact that B̃(CC)
is a subset of Mor(CC) and the definition of composition of C-system homomorphisms.

We will sometimes call the functor CB defined by Constructions 2.2, 2.5 and Lemma 2.6, the B-sets
functor.

2.4 Operations Text for B0-systems of the form CB(CC)

Lemma 2.7 [2016.03.15.l8] Let CC be a C-system and X,Y ∈ B(CC) be such that l(X) ≥ 1,
l(Y ) ≥ 1 and ft(X) ≤ Y . Then one has

Text(X,Y ) = p∗X,ft(X)(Y )

Proof: Straightforward by case analysis from the definition of the operation T in the B0-systems
of the form B(CC).

2.5 Operations T ∗ in the B0-systems of the form CB(CC)

Lemma 2.8 [2016.02.20.l10] Let CC be a C-system. Let (X,Y, Z) ∈ T ∗dom, where the pre-B-
system concepts refer to CB(CC), then one has

T ∗(X,Y, Z) = p∗X,Y (Z)

and in particular we have a pull-back square of the form

T ∗(X,Y, Z)
q(pX,Y ,Z)
−−−−−−→ Z

pT∗(X,Y,Z),X

y ypZ,Y

X
pX,Y−−−→ Y

Proof: By induction on j = l(X)−l(Y ), from Lemma 2.7, Lemma 1.2, the definition of T ∗(X,Y, Z)
and the definition of pX,Y .

The objects involved in the construction for the successor can be seen on the diagram:

[2016.02.20.eq1]

Text(X,T
∗(ft(X), Y, Z)) −−−→ T ∗(ft(X), Y, Z) −−−→ Zy y ypZ,Y

X
pX,ft(X)−−−−−→ ft(X)

pft(X),Y−−−−−→ Y

(36)

and one has to use the fact that

p∗X,ft(X)(p
∗
ft(X),Y (Z)) = (pX,ft(X) ◦ pft(X),Y )∗(Z) = p∗X,Y (Z)

which follows from Lemma 1.2.
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2.6 Operations T̃ ∗ in the B0-systems of the form CB(CC)

Lemma 2.9 [2016.03.15.l9] Let CC be a C-system. Let (X,Y, s) ∈ T̃ ∗dom, where the B0-system
concepts refer to CB(CC), then one has

T̃ ∗(X,Y, s) = p∗X,Y (s)

and in particular we have a pull-back square of the form

T ∗ext(X,Y, ft(∂(s)))
q(pX,Y ,ft(∂(s)))
−−−−−−−−−−→ ft(∂(s))yp∗X,Y (s)

ys
T ∗(X,Y, ∂(s))

q(pX,Y ,∂(s))
−−−−−−−→ ∂(s)

pT∗(X,Y,∂(s)),X

y yp∂(s),Y
X

pX,Y−−−→ Y

Proof: By induction on j = l(X) − l(Y ), from Lemma 2.7, Lemma 1.3, the definition of T̃ , the
definition of T̃ ∗(X,Y, Z) and the definition of pX,Y .

The objects involved in the construction for the successor can be seen on the diagram:

T ∗ext(X,Y, ft(∂(s))) −−−→ T ∗ext(ft(X), Y, ft(∂(s))) −−−→ ft(∂(s))y yp∗ft(X),Y
(s)

ys
Text(X,T

∗(ft(X), Y, ∂(s))) −−−→ T ∗(ft(X), Y, ∂(s)) −−−→ ∂(s)y y yp∂(s),Y
X

pX,ft(X)−−−−−→ ft(X)
pft(X),Y−−−−−→ Y

(37)

2.7 Sets B̃∗(X,Y ) for B0-systems of the form CB(CC)

Let CC be a C-system. Let X < Y in B(CC). Set

Sec(X,Y ) = {f ∈Mor(CC) | dom(f) = X, codom(f) = Y, f ◦ pY,X = IdX}

that is, elements of Sec(X,Y ) are sections of the canonical morphism pY,X : Y → X.

Problem 2.10 [2016.02.18.prob1] Let CC be a C-system, X,Y ∈ B(CC) and X ≤ Y . To
construct a bijection

[2016.03.11.eq2]nt(X,Y ) : B̃∗(X,Y )→ Sec(X,Y ) (38)

To provide a construction for this problem we need the following general lemma.
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Lemma 2.11 [2016.02.18.l3] Let C be a category and X
a→ Y

b→ Z be a composable pair of
morphisms in C. Assume further that for any r : Z → Y such that r ◦ b = IdZ we are given a
pull-back square of the form:

r∗(X)
prrX−−−→ X

prrZ

y ya
Z

r−−−→ Y

Let R(a, b) be the set of pairs (r, s) where r : Z → Y is such that r ◦ b = IdZ and s : Z → r∗(X) is
such that s ◦ prrZ = IdZ .

Then the function (r, s) 7→ s ◦ prrX is a bijection from R to the set of morphisms t : Z → X such
that t ◦ a ◦ b = IdZ .

Proof: Note first that

s ◦ prrX ◦ a ◦ b = s ◦ prrZ ◦ r ◦ b = IdZ ◦ IdZ = IdZ

Let us show that our function is surjective. Let f : Z → X be a morphism such that f ◦a◦b = IdZ .
Let r = f ◦a. Then r◦b = IdZ and on the other hand f = s◦prrX for some s such that s◦prrZ = IdZ
by the universal property of the pull-backs.

Let us show that our function is injective. Let (r, s), (r′, s′) be two elements of R(a, b) such that
s ◦ prrX = s′ ◦ prr′X . We have

s ◦ prrX ◦ a = s ◦ prrZ ◦ r = r

We conclude that r = r′. Then if s ◦ prrX = s′ ◦ prrX and s ◦ prrZ = IdZ = s′ ◦ prrZ we have that
s = s′ by the universal property of the pull-backs.

The lemma is proved.

We can now provide a construction for Problem 2.10.

Construction 2.12 [2016.02.18.constr1]We proceed by induction on j = l(Y )− l(X).

If j = 0 then pY,X = IdX and both sides are one element sets.

If j = 1 then we can define nt(X,Y ) as the identity function because by definition of B̃(X) and
B̃(CC) the left and the right hand sides of (38) are equal.

For the successor of j > 0 we have that l(Y ) ≥ j+1 andX = ftj+1(Y ). By the inductive assumption
nt(X ′, Y ′) is already constructed for all pairs X ′, Y ′ such that X ′ ≤ Y ′ and l(Y ′)− l(X ′) ≤ j.

By Construction 4.2 the set B̃∗(ftj+1(Y ), Y ) is the set of pairs (r, s) where r ∈ B̃(ftj(Y )) and
s ∈ B̃∗(ftj+1(Y ), S(r, Y )).

Since r is a morphism of the form r : ftj+1(Y ) → ftj(Y ), by Lemma 1.1 we have that S(r, Y ) is
over ftj+1(Y ) and that the square

[2016.02.18.eq4]

S(r, Y )
q(r,Y )−−−−→ Y

p
S(r,Y ),ftj+1(Y )

y ypY,ftj(Y )

ftj+1(Y )
r−−−→ ftj(Y )

(39)
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is a pull-back square. Since l(Y ) ≥ j + 1 we have that

l(Y )− l(ftj(Y )) = j

and therefore by the equation (30) of the same lemma we have that

ftj(S(r, Y )) = ftj+1(Y )

Consider the set R(pY,ftj(Y ), pftj(Y ),ftj+1(Y )) where R is as in Lemma 2.11 relative to the pull-back

squares (39). Then the function (r, s) 7→ (r, nt(ftj+1(Y ), S(r, Y ))(s)) is a bijection of the form

B̃∗(ftj+1(Y ), Y )→ R(pY,ftj(Y ), pftj(Y ),ftj+1(Y )).

Composing this bijection with the bijection of Lemma 2.11 and using the fact that

pY,ftj(Y ) ◦ pftj(Y ),ftj+1(Y ) = pY,ftj+1(Y )

we obtain the bijection that is the goal of the construction.

This completes Construction 2.12.

2.8 Sets Sec(X,Y ) and homomorphisms of C-systems

Problem 2.13 [2016.03.17.prob1] Let F : CC → CC ′ be a homomorphism of C-systems. To
construct a function

[2016.03.17.eq1]FSec(X,Y ) : Sec(X,Y )→ Sec(F (X), F (Y )) (40)

Construction 2.14 [2016.03.17.constr1] Note first that the right hand side of (40) is well de-
fined by Lemma 1.11. By definition, Sec(X,Y ) is a subset of Mor(X,Y ) therefore it is sufficient
to show that for s ∈ Sec(X,Y ) we have FMor(s) ∈ Sec(F (X), F (Y )). This follows immediately
from the fact that F commutes with compositions and identities and takes p-morphisms of CC to
p-morphisms of CC ′.

2.9 Functions B̃∗(X,Y )→ Sec(X,Y ) and homomorphisms of C-systems

Lemma 2.15 [2016.03.17.l1] Let F : CC → CC ′ be a homomorphism of C-systems. Let X ≤ Y
in B(CC). Let

CB(F )
B̃∗(X,Y )

: B̃∗(X,Y )→ B̃∗(F (X), F (Y ))

be the function of Construction 4.11 and

FSec(X,Y ) : Sec(X,Y )→ Sec(F (X), F (Y ))

the function of Construction 2.14.

Let
nt(X,Y ) : B̃∗(X,Y )→ Sec(X,Y )

nt(F (X), F (Y )) : B̃∗(F (X), F (Y ))→ Sec(F (X), F (Y ))
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be the functions of Construction 2.12. Then the square

B̃∗(X,Y )
nt(X,Y )−−−−−→ Sec(X,Y )

CB(F )
B̃∗(X,Y )

y yFSec(X,Y )

B̃∗(F (X), F (Y ))
nt(F (X),F (Y ))−−−−−−−−−→ Sec(F (X), F (Y ))

commutes.

Proof: Since the construction of B̃∗(X,Y ) is by induction on j = l(Y ) − l(X) so is the proof of
the lemma. Note that l(F (Y )) − l(F (X)) = l(Y ) − l(X) because homomorphisms of C-systems
preserve the lengths of objects.

For j = 0 the target set is a one element set and any two functions to a one element set with the
same domain coincide.

For j = 1 we have

B̃∗(X,Y ) = B̃(Y ) = {s ∈Mor(CC) | dom(s) = X, codom(s) = Y, s ◦ pY,X = Id}

and nt(X,Y ) is in this case the identity function. The same is true for nt(F (X), F (Y )) and it
remains to check that the definitions of CB(F )

B̃∗(X,Y )
and FSec(X,Y ) in this case agree, which they

do.

For the successor of j > 0 we have

B̃∗(X,Y ) = {(r, s) | r ∈ B̃(ftj(Y )) s ∈ B̃∗(ftj+1(Y ), S(r, Y ))}

and
CB(F )

B̃∗(X,Y )
(r, s) = (FMor(r), CB(F )

B̃∗(ftj+1(Y ),S(r,Y ))
(s))

The function nt(X,Y ) is of the form

nt(X,Y )(r, s) = (r, nt(ftj+1(Y ), S(r, Y ))(s)) = nt(ftj+1(Y ), S(r, Y ))(s) ◦ q(r, Y )

where nt(ftj+1(Y ), S(r, Y )) ∈ Sec(ftj+1(Y ), S(r, Y )) and q(r, Y ) is a part of the pull-back square

S(r, Y )
q(r,Y )−−−−→ Y

p
S(r,Y ),ftj+1(Y )

y p
Y,ftj(Y )

y
ftj+1(Y )

r−−−→ ftj(Y )

When we apply FSec(X,Y ), which is just the restriction of FMor to the subset Sec(X,Y ) of Mor(CC),
to nt(X,Y )(r, s) we get

FMor(nt(X,Y )(r, s)) = FMor(nt(ft
j+1(Y ), S(r, Y ))(s) ◦ q(r, Y )) =

FMor(nt(ft
j+1(Y ), S(r, Y ))(s)) ◦ FMor(q(r, Y )) =

nt(F (ftj+1(Y )), F (S(r, Y )))(CB(F )
B̃∗(nt(ftj+1(Y ),S(r,Y ))

(s)) ◦ FMor(q(r, Y )) =

nt(ftj+1(F (Y )), S(FMor(r), F (Y )))(CB(F )
B̃∗(nt(ftj+1(Y ),S(r,Y ))

(s))) ◦ q(FMor(r), F (Y )) =
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nt(F (X), F (Y ))(FMor(r), CB(F )
B̃∗(nt(ftj+1(Y ),S(r,Y ))

(s))) =

nt(F (X), F (Y ))(CB(F )
B̃∗(F (X),F (Y ))

(r, s)).

where the third equality is by the inductive assumption, the fourth by [?, Lemma 2.3(3)] that implies
that for a homomorphism of C-systems F one has F (r∗(Y )) = FMor(r)

∗(F (Y )) and FMor(q(r, Y )) =
q(FMor(r), F (Y )).

This completes proof of Lemma 2.15.

2.10 Bijections bmor(X,Y ) : BMorCB(CC)(X,Y )→MorCC(X,Y )

Problem 2.16 [2016.02.20.prob3] For a C-system CC and X,Y ∈ CC to construct a bijection

bmor(X,Y ) : BMor(X,Y )→MorCC(X,Y )

Construction 2.17 [2016.02.20.constr3] By Construction 2.12 to Problem 2.10 we have a bi-
jection

[2016.02.20.eq5b]nt(X,T ∗(X, pt, Y )) : BMor(X,Y )→ Sec(X,T ∗(X, pt, Y )) (41)

By Lemma 2.8 we have a pull-back square

[2016.03.17.eq2]

T ∗(X, pt, Y )
q(pX,pt,Y )
−−−−−−→ Y

pT∗(X,pt,Y ),X

y ypY,pt

X
pX,pt−−−→ pt

(42)

Therefore, the function s 7→ s ◦ q(pX,pt, Y ) is a bijection between Sec(X,T ∗(X, pt, Y )) and
MorCC(X,Y ). Composing this bijection with nt(X,T ∗(X, pt, Y )) we obtain a bijection

BMor(X,Y )→MorCC(X,Y )

This completes Construction 2.17.

2.11 Bijections bmor(X,Y ) and homomorphisms of C-systems

Theorem 2.18 [2016.03.15.th1] Let F = (FOb, FMor) : CC → CC ′ be a homomorphism of
C-systems. Then for any X,Y ∈ B(CC) the square

[2016.03.17.eq3]

BMor(X,Y )
CB(F )BMor,X,Y−−−−−−−−−−→ BMor(F (X), F (Y ))

bmor(X,Y )

y ybmor(FOb(X),FOb(Y ))

MorCC(X,Y )
FMor,X,Y−−−−−−→ MorCC′(FOb(X), FOb(Y ))

(43)

commutes.
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Proof: By definition
BMor(X,Y ) = B̃∗(X,T ∗(X, pt, Y )).

The function bmor(X,Y ) is the composition of two functions:

bmor(X,Y ) = nt(X,T ∗(X, pt, Y )) ◦ Φ(X,Y )

where for s ∈ Sec(X,T ∗(X, pt, Y )), Φ(X,Y )(s) = s ◦ q(pX,pt, Y ), see the square (42).

Therefore the square (43) is the vertical composition of two squares:

BMor(X,Y )
CB(F )BMor,X,Y−−−−−−−−−−→ BMor(F (X), F (Y ))

nt(X,T ∗(X,pt,Y ))

y ynt(F (X),T ∗(F (X),pt,F (Y )))

Sec(X,T ∗(X, pt, Y ))
FSec(X,T∗(X,pt,Y ))−−−−−−−−−−−→ Sec(F (X), T ∗(F (X), pt, F (Y )))

where we used Lemma 3.16 to identify F (T ∗(X, pt, Y )) with T ∗(F (X), pt, F (Y )), and the square

Sec(X,T ∗(X, pt, Y ))
FSec(X,T∗(X,pt,Y ))−−−−−−−−−−−→ Sec(F (X), T ∗(F (X), pt, F (Y )))

Φ(X,Y )

y yΦ(F (X),F (Y ))

Mor(X,Y )
FMor,X,Y−−−−−−→ Mor(F (X), F (Y ))

The commutativity of the first square follows from Lemma 2.15.

For the commutativity of the second square we have:

FMor,X,Y (Φ(X,Y )(s)) = FMor(s ◦ q(pX,pt, Y )) = FMor(s) ◦ FMor(q(pX,pt, Y )) =

FMor(s) ◦ q(FMor(pX,pt), F (Y )) = FMor(s) ◦ q(pF (X),pt, F (Y )) = Φ(F (X), F (Y ))(FMor(s)) =

Φ(F (X), F (Y ))(FSec(X,T ∗(X,pt,Y ))(s))

where the third equality is by [?, Lemma 2.3(3)] and the fourth equality is by [?, Lemma 2.3(1)]
and the fact that F (ptCC) = ptCC′ .

Corollary 2.19 [2016.03.11.cor1] For any universe U the functor

CBU : CSys(U)→ BSys(U)

is faithful.

Proof: Let F1, F2 : CC → CC ′ be two homomorphisms of C-systems such that CB(F1) = CB(F2).
Since CB(CC) = (B(CC), B̃(CC), ∂) where B(CC) is the set of objects of CC and similarly for
CC ′ we know that the object components of F1 and F2 coincide. To show that F1 = F2 it remains
to show that their morphism components coincide.

In the diagrams (43) for the functors F1 and F2 the upper horizontal arrows coincide because of the
assumptions that CB(F1) = CB(F2). The vertical arrows coincide because they depend only on
the domain and codomain of F1 and F2. Since the vertical arrows are bijections we conclude that
the lower horizontal arrows coincide. Since they coincide for all pairs of objects X,Y we conclude
that F1,Mor = F2,Mor.
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