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Abstract

B-systems are algebras (models) of an essentially algebraic theory that is expected to be
constructively equivalent to the essentially algebraic theory of C-systems which is, in turn,
constructively equivalent to the theory of contextual categories. The theory of B-systems is
closer in its form to the structures directly modeled by contexts and typing judgements of
(dependent) type theories and further away from categories than contextual categories and
C-systems.

1 Introduction

In [?, Def. 2.2] we introduced the concept of a C-system. The type of the C-systems is constructively
equivalent to the type of contextual categories defined by Cartmell in [?] and [?] but the definition
of a C-system is slightly different from the Cartmell’s foundational definition.

The concept of a B-system is introduced in this paper. It provides an abstract formulation of a
structure formed by contexts and “typing judgements” of a type theory relative to the operations
of context extensions, weakening and substitutions.

The important difference between B-systems and C-systems is that in B-systems there are no sorts
for morphisms between contexts. There are only sorts for contexts of each lengths and for typing
judgements, i.e., judgements whose meaning is that a given object has a given type in a given
context. This gives us two infinite families of sorts Bn, for contexts of length n, and B̃n+1, for
judgements of the form Γ ` o : T where l(Γ) = n.

The operations on these sorts correspond to the empty context (pt), truncation of contexts (ft),
taking extended context of a typing judgement (∂), weakening on contexts (T ), weakening on typing
judgements (T̃ ), substitution on contexts (S), substitution on typing judgements (S̃) and units,
also known as projections, (δ).

Of these operations pt, ft, ∂ and δ are everywhere defined while T, T̃ , S and S̃ are partially defined
with the domains of definition being given by equations that involve only everywhere defined
operations ft and ∂.

We may say that operations pt, ft, ∂ and δ are of depth 0 while operations T, T̃ , S and S̃ are of
depth 1.

We call the structures formed by these sorts and operations with no relations imposed on them
pre-B-systems. We distinguish between unital and non-unital pre-B-systems depending on whether
operations δ are considered or not. Pre-B-systems are models of an essentially algebraic theory
of depth 1 with two infinite families of sorts. The importance of this concept is that while it
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is sufficiently easy to define, categorically it provides a lot of information since homomorphisms
between models of essentially algebraic theories depend only on the operations of these theories
but not on relations between them.

We next show (Theorem 2.3) that the constructions of [?] define for every C-system a unital pre-B-
system and that the first main theorem of [?] can be restated by saying that this theorem establishes
a bijection between the C-subsystems of a C-system and sub-pre-B-systems of the corresponding
unital pre-B-system.

Theorem 2.4 is saying that the construction of a pre-B-system from a C-system extends to a functor
and that this functor is a full embedding. The sketch of a proof of this theorem that we give occupies
the rest of Section ??.

First we define the concept of a B0-system (Definition 2.5) that adds to the concept of a pre-B-
system the axioms that include compositions of operations T, T̃ , S, S̃ and δ with the everywhere
defined operations ft and ∂. We again distinguish between the unital and non-unital cases.

In ?? we show that the pre-B-system defined by a C-system is a B0-system.

We then construct, for any (unital) B0-system BB and any two objects X ∈ Bm, Y ∈ Bn a set
Mor(X,Y ) in such a way that when BB is the B0-system that is defined by a C-system the sets
Mor(X,Y ) are in natural bijection with the sets of morphisms in the C-system.

The construction of the Mor-sets is obviously functorial with respect to homomorphisms of B0-
systems.

On the other hand we prove Proposition ?? which shows that for C-systems CC1, CC2 and a pair
of functions FOb : Ob(CC1) → Ob(CC2) and FMor : Mor(CC1) → Mor(CC2) that commute with
the source and target maps ∂0, ∂1 the condition that F = (FOb, FMor) is a functor is equivalent
to the condition that F is compatible with a set of ??? operations, which does not include the
composition operation.

Finally we show that F as above that arises from a homomorphism of the B0-systems corresponding
to CC1 and CC2 commutes with operations from this list. This completes the proof of Theorem
2.4.

??? Remind that we are using the diagramatic ordering for compositions of morphisms and of maps
between sets.

We next start looking for the set of axioms on a pre-B-system that will characterize the image of
this functor. We introduce the candidate set of axioms in several layers.

These operations are subject to a number of axioms. We conjecture that the type of B-systems
is constructively equivalent to the type of C-systems. A conjecture formulated in more traditional
terms would say that the category of B-systems and their homomorphisms is equivalent to the
category of C-systems and their homomorphisms. While these two conjectures are not equivalent
the former expresses much of what the latter would be used for in practice.

Proving this conjecture is difficult because the definition of sets of morphisms between elements
X ∈ Bm, Y ∈ Bn of a B-system is based on an induction

We define B-systems in several steps. First we describe pre-B-systems that are models of an
essentially algebraic theory with countable families of sorts and operations but no relations.

Already at this stage we start to distinguish between unital and non-unital (pre-)B-systems. This
distinction continues throughout the paper. While non-unital B-systems have no direct connection
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to C-systems and therefore no direct connection to categories they have a definition with interesting
symmetries and we believe that they are quite interesting in there own right.

Following the ideas of [?] we show how to construct a unital pre-B-system from a C-system. This
construction is functorial with respect to homomorphisms of C-systems and unital pre-B-systems
and moreover defines a full embedding of the category of C-systems to the category of unital
pre-B-systems.

It is more or less clear from the proof of the full embedding theorem that the image of this full
embedding consists of unital pre-B-systems whose operations satisfy some algebraic conditions.
We suggest a form of these conditions in our definition of a non-unital and then unital B-system
(Definitions 3.5 and 3.6).

We conclude the first part of the paper with a problem (essentially a conjecture) that the image
of the full embedding from C-systems to unital pre-B-systems is precisely the class of unital B-
systems. A constructive solution to this problem would also provide an explicit construction of a
C-system from a unital B-system.

In the second part we describe an approach to the definition of non-unital B-systems that can be
conveniently formalized in Coq and that provide a possible step towards the definition of higher
B-systems that is B-systems whose component types are of higher h-levels.

The work on this paper, especially in the part where the axioms TT , SS, TS and ST of B-systems
are introduced was influenced and facilitated by recent discussions with Richard Garner and Egbert
Rijke. Many other ideas of this work go back to [?].

The subject of this paper is closely related to the subject of recent notes by John Cartmell [?]. The
most important difference between our exposition and that of Cartmell is that we are using the
formalism of essentially algebraic theories while Cartmell uses the formalism of generalized algebraic
theories. While there are important connections between these two kinds of theories there are also
important distinctions which we intend to discuss in a future paper.

I am grateful to The Centre for Quantum Mathematics and Computation (QMAC) and the Math-
ematical Institute of the University of Oxford for their hospitality during my work on this paper.

2 pre-B-systems

Let Bn, n ≥ 0 be a sequence of sets. Let fti : Bi+1 → Bi be a sequence of maps. We will
simplify our notations by writing ft instead of fti and writing ftn : Bi+n → Bi for the composition
fti+(n−1) ◦ . . . ◦ fti including writing ft0 for the identities of Bi.

Definition 2.1 [2014.10.10.def1] A non-unital pre-B-system a collection of data of the following
form:

1. for all n ∈ N two set Bn+1 and B̃n+1,

2. for all n ∈ N maps of the form:

(a) ft : Bn+1 → Bn,

(b) ∂ : B̃n+1 → Bn+1

3. for all m,n ∈ N such that m ≥ n maps of the form:
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(a) T : (X ∈ Bn+1, Y ∈ Bm+1, ft(X) = ftm+1−n(Y ))→ Bm+2,

(b) T̃ : (X ∈ Bn+1, r ∈ B̃m+1, ft(X) = ftm+1−n∂(r))→ B̃m+2,

(c) S : (s ∈ B̃n+1, Y ∈ Bm+2, ∂(s) = ftm+1−n(Y ))→ Bm+1,

(d) S̃ : (s ∈ B̃n+1, r ∈ B̃m+2, ∂(s) = ftm+1−n∂(r))→ B̃m+1,

Definition 2.2 [2014.10.20.def1] A unital pre-B-system is a non-unital pre-B-system together
with, for every n ≥ 0 of an operation

δ : Bn+1 → B̃n+2

For convenience we will sometimes use the notation B0 for a one point set {pt} and ft : B1 → B0

for the unique function to B0.

Homomorphisms of non-unital and unital pre-B-systems are defined in the obvious way giving us the
corresponding categories. Also in the obvious way one defines the concepts of sub-pre-B-systems.

Let CC be a C-system as defined in [?, Def. 2.2]. Recall the following notations. For Y such that
l(Y ) ≥ i and f : X → fti(Y ) denote by by f∗(Y, i) the objects and by q(f, Y, i) : f∗(Y, i)→ Y the
morphisms defined inductively by the rule

f∗(Y, 0) = X q(f, Y, 0) = f,

f∗(Y, i+ 1) = q(f, ft(Y ), i)∗(Y ) q(f, Y, i+ 1) = q(q(f, ft(Y ), i), Y ).

If l(Y ) < i, then q(f, Y, i) is undefined since q(−, Y ) is undefined for Y = pt and again, as in the
case of pY,i, all of the considerations involving q(f, Y, i) are modulo the qualification that l(Y ) ≥ i.

For i ≥ 1, (s : ft(Y )→ Y ) ∈ Õb such that l(Y ) ≥ i, and f : X → fti(Y ) let

f∗(s, i) : f∗(ft(Y ), i− 1)→ f (ft(Y ), i)

be the pull-back of the section ft(Y )→ Y along the morphism q(f, ft(Y ), i− 1). We again use the
agreement that always when f∗(s, i) is used the condition l(Y ) ≥ i is part of the assumptions.

One constructs a unital pre-B-system from CC as follows. The B-sets of CC are:

Bn(CC) = Obn(CC) = {X ∈ Ob(CC) | l(X) = n}

B̃n+1(CC) = Õbn(CC) = {(X, r) ∈ Õb(CC) | l(X) = n+ 1}

The definition of ft and ∂ is obvious. The operations T , T̃ , S, S̃, δ on the B-sets of a C-system
are as follows:

1. T sends (X,Y ) such that ft(X) = ftm+1−n(Y ) to p∗X(Y,m+ 1− n),

2. T̃ sends (X, r) such that ft(X) = ftm+1−n∂(r) to p∗X(r,m+ 1− n),

3. S sends (r,X) such that ∂(r) = ftm+1−n(X) to r∗(X,m+ 1− n),

4. S̃ sends (r, s) such that ∂(r) = ftm+1−n∂(s) to r∗(s,m+ 1− n).

5. δ sends X to the diagonal section of the projection p∗XX → X.
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The element pt ∈ B0 is the distinguished object of CC of length 0.

When we need to distinguish between the unital pre-B-system defined by CC and its non-unital
analog we will write uB(CC) for the unital version and nuB(CC) for the non-unital one.

One of the main results of [?], Proposition 4.3 can be reformulated as follows:

Theorem 2.3 [2014.06.26.th1] There is a natural bijection between C-subsystems of a C-system
CC and unital sub-pre-B-systems of uB(CC).

Another way to construct a pre-B-system is from a pair (R,LM) where R is a monad on sets and
LM a left module over R with values in sets as in [?] . For the pre-B-system B(R,LM) we have

Bn(R,LM) = LM(∅)× . . .× LM({1, . . . , n− 1})

B̃n+1(R,LM) = Bn+1(R,LM)×R({1, . . . , n})

The operations ft and ∂ are the obvious projections. The rest of the operations are defined as
follows. For E ∈ LM({1, . . . ,m}) or E ∈ R({1, . . . ,m}) and n ≥ 1 we set:

tn(E) = E[n+ 1/n, n+ 2/n+ 1, . . . ,m+ 1/m]

sn(E) = E[n/n+ 1, n+ 1/n+ 2, . . . ,m− 1/m]

1. Operations T :
T ((E1, . . . , En, F ), (E1, . . . , En, En+1, . . . , Em+1)) =

(E1, . . . , En, F, tn+1En+1, . . . , tn+1Em+1)

2. Operations T̃ :
T̃ ((E1, . . . , En, F ), (E1, . . . , En, En+1, . . . , Em+1, r)) =

(E1, . . . , En, F, tn+1En+1, . . . , tn+1Em+1, tn+1r)

3. Operations S:

S((E1, . . . , En, F, s), (E1, . . . , En, F, En+1, . . . , Em+1)) =

(E1, . . . , En, sn(En+1[s/n]), . . . , sn(Em+1[s/n]))

4. Operation S̃:

S((E1, . . . , En, F, s), (E1, . . . , En, F, En+1, . . . , Em+1, r)) =

(E1, . . . , En, sn(En+1[s/n]), . . . , sn(Em+1[s/n]), sn(r[s/n]))

5. Operations δ:
δ(E1, . . . , En, En+1) = (E1, . . . , En, En+1, ηR(n+ 1))

where ηR is the unit of the monad R.
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Note that the unit of R also participates in the definition of operations S and S̃ since the explicit
form of the substitution E 7→ E[s/n] involves ηR.

We can form non-unital pre-B-systems using this construction by considering non-unital sub-pre-
B-systems in uB(R,LM) (cf. Example 3.7 below).

For this pre-B-system as well as for its subsystems and regular quotients we can use notations such
as Γ ` o : T directly since in this case Γ ∈ Bn, T ∈ LM({1, . . . , n}) and o ∈ R({1, . . . , n}) are
elements of types or sets that do not depend on elements of other types or sets and the substitution
is defined on the level of these sets.

If CC(R,LM) is the C-system corresponding to (R,LM) then there is a constructive isomorphism

B(CC(R,LM)) ∼= B(R,LM)

The construction CC 7→ B(CC) is clearly compatible with homomorphisms and defines a functor
from the category of C-systems to the category of unital pre-B-systems.

Theorem 2.4 [2014.10.10.th1] The functor CC 7→ uB(CC) is a full embedding.

The proof of the theorem is completed at the end of this section. We start preparing for the proof
by introducing intermediate concepts of B0-systems.

Definition 2.5 [2014.10.16.def1.fromold] [2014.10.16.def1] A non-unital pre-B-system is called
a non-unital B0-system if the following conditions hold:

1. for X ∈ Bn+1, Y ∈ Bm+1 such that ft(X) = ftm+1−n(Y ) and m ≥ n ≥ 0 one has:

[oldeq1]ft(T (X,Y )) =

{
T (X, ft(Y )) if m > n
X if m = n

(1)

2. for X ∈ Bn+1, r ∈ B̃m+1 such that ft(X) = ftm+1−n∂(r) and m ≥ n ≥ 0 one has:

∂(T̃ (X, r)) = T (X, ∂(r)) (2)

3. for s ∈ B̃n+1, X ∈ Bm+2 such that ∂(s) = ftm+1−n(X) and m ≥ n ≥ 0 one has:

ft(S(s,X)) =

{
S(s, ft(X)) if m > n
ft(∂(s)) if m = n

(3)

4. for s ∈ B̃n+1, r ∈ B̃m+2 such that ∂(s) = ftm+1−n∂(r) and m ≥ n ≥ 0 one has:

∂(S̃(s, r)) = S(s, ∂(r)) (4)

Definition 2.6 [2014.10.20.def2] A unital pre-B-system is called a unital B0-system if the un-
derlying non-unital pre-B-system is a non-unital B0-system and for all i ≥ 0, X ∈ Bn+1 one
has

[2009.12.27.eq1]∂(δ(X)) = T (X,X) (5)

Lemma 2.7 [2014.12.17.l1] Let BB be a non-unital pre-B-system. Then one has:

6



1. for X ∈ Bn+1, Y ∈ Bm+1 such that ft(X) = ftm+1−n(Y ) and m ≥ n ≥ 0 one has:

ftk(T (X,Y )) =

{
T (X, ftk(Y )) if m− n ≥ k
ft(k−1)−(m−n)X if m− n < k

(6)

2. for s ∈ B̃n+1, X ∈ Bm+2 such that ∂(s) = ftm+1−n(X) and m ≥ n ≥ 0 one has:

ftk(S(s,X)) =

{
S(s, ftk(X)) if m− n ≥ k
ftk−(m−n)(∂(s)) if m− n < k

(7)

Proof: See T l1 and S l1 in [?].

In a B0-system let us denote by

Tj : (Bn+j)ftj ×ftm+1−n (Bm+1)→ Bm+1+j

T̃j : (Bn+j)ftj ×ftm+1−n∂ (B̃m+1)→ B̃m+1+j

the maps which are defined inductively by

Tj(X,Y ) =

{
Y if j = 0
T (X,Tj−1(ft(X), Y )) if j > 0

(8)

T̃j(X, s) =

{
s if j = 0

T̃ (X, T̃j−1(ft(X), s)) if j > 0
(9)

Note that for any i = 0, . . . , j we have

Tj(X,Y ) = Ti(X,Tj−i(ft
i(X), Y ))

and
T̃j(X, s) = T̃i(X, T̃j−i(ft

i(X), s))

Lemma 2.8 [Tnft] One has
Tj(X, ft(Y )) = ft(Tj(X,Y ))

Proof: For j = 0 the statement is obvious. For j > 0 we have by induction on j

Tj(X, ft(Y )) = T (X,Tj−1(ft(X), ft(Y ))) = T (X, ft(Tj−1(ft(X), Y ))) =

= ft(T (X,Tj−1(ft(X), Y ))) = ft(Tj(X,Y )).

Lemma 2.9 [l2014.10.10.l1] Let B be a unital pre-B-system of the form uB(CC). Then B is a
unital B0-system.
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Proof: Straightforward.

Given a sequence of sets and maps such as (Bi, fti) and two elements X ∈ Bm, Y ∈ Bn let us write
X ≤ Y if m ≤ n and X = ftn−mY . This defines a reflexive transitive relation on qn≥0Bn.

Let us also denote by B̃(Y ) the subset in B̃ of elements r such that ∂(r) = Y .

Given a B0-system and two elements X ∈ Bm, Y ∈ Bn let us define a set that we will denote later
Mor(X,Y ). For the purpose of this construction we fix X and proceed to construct for each n and
each Y ∈ Bn a pair

1. a set MX(Y ),

2. for any f ∈MX(Y ), i ≥ 0 and Y ′ ∈ Bn+i such that Y ′ ≥ Y , an element f∗(Y ′, i) ∈ Bm+i,

such that:

1. for any f ∈MX(Y ) one has f∗(Y, 0) = X,

2. for any f ∈ MX(Y ), i, j ≥ 0, Y ′ ∈ Bn+i such that Y ′ ≥ Y and Y ′′ ∈ Bn+i+j such that
Y ′′ ≥ Y ′ one has f∗(Y ′′, i+ j) ≥ f∗(Y ′, i).

The construction will proceed by induction on n. For n = 0 we set MX(Y ) = {p} and for Y ′ ∈ Bi:

p∗(Y ′) =

{
X if i = 0
Tm(X,Y ′) if i > 0

The second condition follows from Lemma 2.8.

Suppose now that n > 0. Then we set

MX(Y ) =
∑

f∈MX(ft(Y ))

B̃(f∗(Y, 1))

For Y ′ ∈ Bn+i, Y
′ ≥ Y and g = (f, r) ∈MX(Y ) we define

f∗(Y ′, i) := S(r, f∗(Y, i+ 1))

The conditions are easily verified from the axioms of a B0-system.

Consider the unital B0-system uB(CC) of a C-system CC.

Let f : X → Y be a morphism such that X ∈ Bn and Y ∈ Bm. Define a sequence (s1(f), . . . , sm(f))
of elements of B̃n+1 inductively by the rule

(s1(f), . . . , sm(f)) = (s1(ft(f)), . . . , sm−1(ft(f)), sf ) = (sftm−1(f), . . . , sft(f), sf )

where ft(f) = pY f and sf is the s-operation of [?, Def. 2.2]. For m = 0 we start with the empty
sequence. This construction can be illustrated by the following diagram for f : X → Y where

8



Y ∈ B4:

X
s4(f)−−−→ Z4,3 −−−→ Z4,2 −−−→ Z4,1 −−−→ Tn(X,Y ) −−−→ Yy y y y y

X
s3(f)−−−→ Z3,2 −−−→ Z3,1 −−−→ Tn(X, ft(Y )) −−−→ ft(Y )y y y y

X
s2(f)−−−→ Z2,1 −−−→ Tn(X, ft2(Y )) −−−→ ft2(Y )y y y

X
s1(f)−−−→ Tn(X, ft3(Y )) −−−→ ft3(Y )y y

X −−−→ pt

(10)

which is completely determined by the condition that the squares are the canonical ones and the
composition of morphisms in the i-th arrow from the top is fti(f). For the objects Zji we have:

Z4,1 = S(s1(f), Tn(X,Y )) Z4,2 = S(s2(f), Z4,1) Z4,3 = S(s3(f), Z4,2)

Z3,1 = S(s1(f), Tn(X, ft(Y ))) Z3,2 = S(s2(f), Z3,1)

Z2,1 = S(s1(f), Tn(X, ft2(Y )))

(11)

A simple inductive argument similar to the one in the proof of [?, Lemma 4.1] show that if f, f ′ :
X → Y are two morphisms such that Y ∈ Bm and si(f) = si(f

′) for i = 1, . . . ,m then f = f ′.
Therefore, we may consider the set Mor(CC) of morphisms of CC as a subset in qn,m≥0Bn×Bm×
B̃m
n+1.

Let us show how to describe this subset in terms of the operations introduced above.

Lemma 2.10 [2009.11.07.l1] An element (X,Y, s1, . . . , sm) of Bn × Bm × B̃m
n+1 corresponds to

a morphism if and only if the element (X, ft(Y ), s1, . . . , sm−1) corresponds to a morphism and
∂(sm) = Zm,m−1 where Zm,i is defined inductively by the rule:

Zm,0 = Tn(X,Y ) Zm,i+1 = S(si+1, Zm,i)

Proof: Straightforward from the example considered above.

Let us show now how to identify the canonical morphisms pX,i : X → fti(X) and in particular the
identity morphisms.

Lemma 2.11 [2009.11.10.l1] Let X ∈ Bm and 0 ≤ i ≤ m. Let pX,i : X → fti(X) be the
canonical morphism. Then one has:

sj(pX,i) = T̃m−j(X, δftm−j(X)) j = 1, . . . ,m− i
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Proof: Let us proceed by induction on m− i. For i = m the assertion is trivial. Assume the lemma
proved for i+ 1. Since ft(pX,i) = pX,i+1 we have sj(pX,i) = sj(pX,i+1) for j = 1, . . . ,m− i− 1. It
remains to show that

[2009.11.10.eq1]sm−i(pX,i) = T̃i(X, δfti(X)) (12)

By definition sm−i(pX,i) = spX,i and (12) follows from the commutative diagram:

X −−−→ fti(X)

sp

y yδfti(X)

p∗X,i+1(fti(X)) −−−→ p∗
fti(X)

(fti(X)) −−−→ fti(X)y y ypfti(X)

X −−−→ fti(X) −−−→ fti+1(X)

where p = pX,i.

Lemma 2.12 [2009.11.10.l2] Let (X, s) ∈ B̃m+1, X ∈ Bn and f : X → ft(Y ). Define inductively
(f, i)∗(s) ∈ B̃n+m+1−i by the rule

(f, 0)∗(s) = T̃n(X, s)

(f, i+ 1)∗(s) = S̃(si+1(f), (f, i)∗(s))

Then f∗(s) = (f,m)∗(s).

Proof: It follows from the diagram:

X
sm(f)−−−→ ∗ −−−→ . . . −−−→ ∗ −−−→ ∗ −−−→ ft(Y )

f∗(s)

y y(f,m−1)∗(s)

y(f,1)∗(s)

y(f,0)∗(s)

ys
∗ −−−→ ∗ −−−→ . . . −−−→ ∗ −−−→ ∗ −−−→ Yy y y y y
X

sm(f)−−−→ ∗ −−−→ . . . −−−→ ∗ −−−→ ∗ −−−→ ft(Y )y y y y
X

sm−1(f)−−−−−→ . . . −−−→ ∗ −−−→ ∗ −−−→ ft2(Y )y y y
. . . . . . . . .y y y
X

s1(f)−−−→ ∗ −−−→ ftm−1(Y )y y
X −−−→ pt
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Lemma 2.13 Let g : Z → X, f : X → Y and Y ∈ Bm. Then si(fg) = g∗si(f).

Proof: It follows immediately from the equations sfg = g∗sf and ft(fg) = ft(f)g.

Lemma 2.14 [2009.11.10.l4a] Let f : X → ft(Y ) be a morphism, X ∈ Bn and Y ∈ Bm+1.
Define (f, i)∗(Y ) inductively by the rule:

(f, 0)∗(Y ) = Tn(X,Y )

(f, i+ 1)∗(Y ) = S(si+1(f), (f, i)∗(Y ))

Then f∗(Y ) = (f,m)∗(Y ).

Proof: Similar to the proof of Lemma 2.12.

Lemma 2.15 [2009.11.10.l4b] Let f : X → ft(Y ) be a morphism, X ∈ Bn and Y ∈ Bm+1.
Then

si(q(f, Y )) =


T̃ (f∗Y, si(f)) if i ≤ m

T̃ (f∗Y, δY ) if i = m+ 1

Proof: We have si(q(f, Y )) = sftm+1−i(q(f,Y )). For i ≤ m we have

ftm+1−i(q(f, Y )) = ftm−i(f)pf∗Y

Therefore,
sftm+1−i(q(f,Y )) = sftm−i(f)pf∗Y

= p∗f∗Y sftm−i(f) = T̃ (f∗Y, si(f))

and for i = m+ 1 we have

si(q(f, Y )) = sq(f,Y ) = p∗f∗Y (δY ) = T̃ (f∗Y, δY ).

The lemmas proved above show that a C-system can be reconstructed from the sets Bn, B̃n+1 and
operations ft, ∂, T , T̃ , S, S̃ and δ. This completes our proof of Theorem 2.4.

3 B-systems

The next question that we want to address is the description of the image of the functor CC 7→
uB(CC). To make this question more precise we introduce below the concepts of non-unital and
unital B-systems and formulate a problem whose solution would imply that the functor CC 7→
uB(CC) defines an equivalence between the category of C-systems and the full subcategory of the
category of unital pre-B-systems that consists of unital B-systems.

For X ∈ Bi let B(X)j denote the subset of Bi+j that consists of Y such that ftj(Y ) = X. In

particular B(X)0 is the one point subset {X}. Let also B̃(X)j denote the subset of B̃i+j that

consists of r such that ftj(∂(r)) = X.
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Then the operations T , T̃ , S and S̃ can be seen as follows:

T (X,−) : B(ft(X))∗ → B(X)∗

T̃ (X,−) : B̃(ft(X))∗ → B̃(X)∗

S(s,−) : B(∂(s))∗ → B(ft(∂(s)))∗

S̃(s,−) : B̃(∂(s))∗ → B̃(ft(∂(s)))∗

Definition 3.1 [2014.10.16.def2] [was.2014.06.18.eq2.to.eq11] Let B be a non-unital B0-
system. Define the following conditions on B:

1. The TT-condition. For all GT ∈ Bi+1, GDT ′ ∈ B(ft(GT ))j+1 one has

(a) for all R ∈ B(ft(GDT ′))∗+1

T (T (GT,GDT ′), T (GT,R)) = T (GT, T (GDT ′, R))

(b) for all r ∈ B̃(ft(GDT ′))∗+1

T̃ (T (GT,GDT ′), T̃ (GT, r)) = T̃ (GT, T̃ (GDT ′, r))

2. The SS-condition. For all s ∈ B̃i+1, s′ ∈ B̃(∂(s))j+1 one has

(a) for all R ∈ B(∂(s′))∗
S(S̃(s, s′), S(s,R)) = S(s, S(s′, R))

(b) for all r ∈ B̃(∂(s′))∗
S̃(S̃(s, s′), S̃(s, r)) = S̃(s, S̃(s′, r))

3. The TS-condition. For any s ∈ B̃i+1 and GTDT ′ ∈ B̃(∂(s))j+1 one has

(a) for all R ∈ B(ft(GTDT ′))∗

T (S(s,GTDT ′), S(s,R)) = S(s, T (GTDT ′, R))

(b) for all r ∈ B̃(ft(GTDT ′))∗

T̃ (S(s,GTDT ′), S̃(s, r)) = S̃(s, T̃ (GTDT ′, r))

4. The ST-condition. For any GT ∈ Bi+1 and s′ ∈ ˜B(ft(GT ))j+1 one has

(a) for all R ∈ B(∂(s′))∗

S(T̃ (GT, s′), T (GT,R)) = T (GT, S(s′, R))

(b) for all r ∈ B̃(∂(s′))∗

S̃(T̃ (GT, s′), T̃ (GT, r)) = T̃ (GT, S̃(s′, r))

5. The STid-condition. For any s ∈ B̃i+1 one has

12



(a) for all R ∈ B(ft(∂(s)))∗
S(s, T (∂(s), R)) = R

(b) for all r ∈ B̃(ft(∂(s)))∗
S̃(s, T̃ (∂(s), r)) = r

Definition 3.2 [2014.10.20.def3] Let B be a unital B0-system. Define the following conditions
on B:

1. The δT-condition. For any GT ∈ Bi+1 and GDT ′ ∈ B(ft(GT ))j+1 one has

T̃ (GT, δ(GDT ′)) = δ(T (GT,GDT ′))

2. The δS-condition. For any s ∈ B̃i+1 and GTDT ′ ∈ B(∂(s))j+1 one has

S̃(s, δ(GTDT ′)) = δ(S(s,GTDT ′))

3. The δSid-condition. For any s ∈ B̃i+1 one has

S̃(s, δ(∂(s))) = s

4. The SδT-condition. For any GT ∈ Bi+1 one has

(a) for R ∈ B(GT )∗+1 one has:

S(δ(GT ), T (GT,R)) = R

(b) for r ∈ B̃(GT )∗+1 one has

S̃(δ(GT ), T̃ (GT, r)) = r

Remark 3.3 [2014.06.14.rem2] The conditions defined above can be shown as follows:

1. The TT-condition:
Γ, T . Γ,∆, T ′ . Γ,∆ ` J

Γ,T. Γ,∆,T ′`J
Γ,T,∆,T ′`J

Γ,T,∆,T ′. Γ,T,∆`J
Γ,T,∆,T ′`J

2. The SS-condition:

Γ ` s : T Γ, T,∆ ` s′ : T ′ Γ, T,∆, T ′ ` J
Γ`s:T Γ,T,∆`J [s]

Γ,∆[s]`J [s′][s]
Γ,∆[s]`s′[s]:T ′[s] Γ,∆[s],T ′[s]`J [s]

Γ,∆[s]`J [s][s′]

3. The TS-condition:
Γ, T . Γ,∆ ` s′ : T ′ Γ,∆, T ′ ` J

Γ,T. Γ,∆`J [s′]
Γ,T,∆`J [s′]

Γ,T,∆`s′:T ′ Γ,T,∆,T ′`J
Γ,T,∆`J [s′]

4. The ST-condition:
Γ ` s : T Γ, T,∆, T ′ . Γ, T,∆ ` J

Γ`s:T Γ,T,∆,T ′`J [s]
Γ,∆[s],T ′[s]`J [s]

Γ,∆[s],T ′[s]. Γ,∆[s]`J [s]
Γ,∆[s],T ′[s]`J [s]
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5. The STid-condition:
Γ ` s : T Γ, T . Γ ` J

Γ`s:T Γ,T`J
Γ`J [s]

6. The δT-condition:
Γ, T . Γ,∆, x : T ′.

Γ,T. Γ,∆,x:T ′`x:T ′

Γ,T,∆,x:T ′`x:T ′
Γ,T,∆,x:T ′.

Γ,T,∆,x:T ′`x:T ′

7. The δS-condition:
Γ ` s : T Γ, T,∆, x : T ′.

Γ`s:T Γ,T,∆,x:T ′`x:T ′

Γ,∆[s],x:T ′[s]`x:T ′[s]
Γ,∆[s],x:T [s]′.

Γ,∆[s],x:T ′[s]`x:T ′[s]

8. The δSid-condition:
Γ ` s : T Γ, x : T.

Γ`s:T Γ,x:T`x:T
Γ`s:T

9. The SδT-condition:
Γ, y : X,∆ ` J

Γ,y1:X,y:X,∆`J Γ,y1:X`y1:X
Γ,y1:X,∆[y1/y]`J [y1/y]

Lemma 3.4 [2014.10.20.l1] [2014.10.16.l1] Let B be a unital B0-system and let δ1, δ2 be two
families of operations as in Definition 2.2. Suppose that both δ1 and δ2 satisfy the δT , δSid and
SδT conditions. Then δ1 = δ2.

Proof: We have:

δ1(GT ) = S̃(δ2(GT ), T̃ (GT, δ1(GT ))) = S̃(δ2(GT ), δ1(T (GT,GT ))) = δ2(GT )

where the first equality is the SδT -condition for δ2, the second equality is the δT -condition for δ1

and the third equality is the δSid-condition for δ1.

Definition 3.5 [2014.10.10.def2a] [2014.10.20.def4] A non-unital B-system is a non-unital
B0-system that satisfy the conditions TT , SS, TS, ST and STid of Definition 3.1.

Definition 3.6 [2014.10.10.def2b] [2014.10.20.def5] A unital B-system is a unital B0-system
that satisfy the conditions TT , SS, TS, ST , STid of Definition 3.1 and the conditions δT , δS,
δSid and SδT of Definition 3.2.

Equivalently, a unital B-system is non-unital B-system such that there exists a family of operations
δ satisfying the conditions δT , δS, δSid and SδT of Definition 3.2.

Example 3.7 [2014.10.20.eX] While being unital is a property of non-unital B-systems not any
homomorphism of non-unital B-systems preserves units. Here is a sketch of an example of a
homomorphism that does not preserve units.

Consider the following pairs of a monad and a left module over it. In both cases pt is the constant
functor corresponding to the one point set {T} that has a unique left module structure over any
monad.
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1. (R1, pt) where R1 is the monad corresponding to one unary operation s1(x) and the relation

s1(s1(x)) = s1(x)

2. (R2, pt) where R2 is the monad corresponding to two unary operations s1(x) and s2(x) and
relations:

s1(s1(x)) = s1(x) s1(s2(x)) = s1(x) s2(s1(x)) = s1(x) s2(s2(x)) = s2(x)

Consider the unital B-systems uB(R1, pt) and uB(R2, pt). In uB(R1, pt) consider the non-unital
sub-B-system nuB1 generated by (T ` s1(1) : T ). In uB(R2, pt) consider the non-unital sub-B-
system nuB2 generated by (T ` s1(1) : T ) and (T ` s2(1) : T ).

Observe that both nuB1 and nuB2 are in fact unital with the unit in the first one given by
(T, . . . , T ` s1(n) : T ) and unit in the second one is given by (T, . . . , T ` s2(n) : T ) where n is the
number of T ’s before the turnstile ` symbol.

We also have an obvious (unital) homomorphism from uB(R1, pt) to uB(R2, pt) that defines a
homomorphism nuB1 → nuB2 and that latter homomorphism is not unital.

Remark 3.8 For a unital B-systems operations S and T can be expressed as follows.

[2014.10.14.eq1]T (X,Y ) =

{
X if l(Y ) = l(X)− 1

ft(∂(T̃ (X, δ(Y )))) if l(Y ) ≥ l(X)
(13)

[2014.10.14.eq2]S(s,X) =

{
ft(∂(s)) if l(X) = l(∂(s))

ft(∂(S̃(s, δ(X)))) if l(X) > l(∂(s))
(14)

I would like to end this section with the formulation of the following problem. I am reasonably
sure that it has a straightforward solution.

Problem 3.9 [2014.10.10.prob2] To show that a unital B0-system is isomorphic to a unital
B0-system of the form uB(CC) if and only if it is a unital B-system.

4 B-systems in Coq

While our main interest is in pre-B-systems and B-systems in sets we would like to be able to
formalize their definitions in Coq without assuming that Bn and B̃n+1 are of h-level 2.

This suggests the following reformulation of our definitions. In what follows we give a presentation
of non-unital B-systems in “functional terms”. The presentation of the axioms related to the δ-
operations is more complex as can be see already in the case of the δT -axiom and we leave it for
the future.

Let us define a tower as a sequence of functions T := (. . .→ Ti+1
pi→ Ti → . . .→ T0).

For a tower T and i, j ≥ 0 define ftji : Ti+j → Ti as the composition of the functions pk for

k = i, . . . , i+ j− 1. When no ambiguity can arise we will write ftj instead of ftji and we will write
ft instead of ft1.
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For a tower T , i ≥ 0 and G ∈ Ti define a new tower T (G) setting:

T (G)j = {GD ∈ Ti+j |ftji (x) = G}

and defining the functions T (G)j+1 → T (G)j in the obvious way. More categorically this can
expressed by saying that T (G)j is defined by the standard (homotopy) pull-back square

T (G)j −−−→ Ti+jy yftji
pt

G−−−→ Ti

For G ∈ Ti+j we let φj(G) ∈ T (fti+j(G))j denote the obvious element.

For towers T and T ′ define a function or morphism of towers F : T → T ′ as a sequence of morphisms
Fi : Ti → T ′i which commute in the obvious sense with the functions pi and p′i.

The identity function of towers idT and the composition of functions of towers are defined in the
obvious way.

For T , i, j, k ≥ 0, G ∈ Ti and GD ∈ Tj(G) we have the digrams:

T (G)(GD)k −−−→ T (G)j+k −−−→ Ti+(j+k)y yftkT (G),j

y
pt

GD−−−→ T (G)j
uG,j−−−→ Ti+jy yftjT,i

pt
G−−−→ Ti

T (uG,i(GD))k −−−→ T(i+j)+ky y
pt −−−−−−→

uG,j(GD)
Ti+j

which shows that we have natural equivalences (isomorphisms)

[2014.06.12]T (G)(GD)k ∼= T (uG,j(GD))k (15)

The equivalences (15) commute with the functions p(G)(GD)i and p(uG,j(GD)) in the obvious
sense and define an equivalence of towers

[2014.06.14.eq2]T (G)(GD) ∼= T (uG,j(GD)) (16)

Remark 4.1 In the case when standard pull-backs are pull-backs in a category, the functions uG,j
from Tj(G) to Ti+j are pull-backs of (split) monomorphisms and therefore are monomorphisms. In
this case Tk(G)(GD) is a sub-object of Ti+(j+k) and Tk(uG,j(GD)) is a sub-object of T(i+j)+k which
are canonically equal. Then we can say that

[2014.06.14.eq1]T (G)(GD)k = T (uG,j(GD))k (17)

where the equality is the equality of sub-objects of T(i+j)+k.

More generally, if Ti are objects of h-level 2, the functions uG,j are of h-level 1 (monic inclusions)
and we again can say that the equality (17) holds as the unique equality of monic sub-objects of
T(i+j)+k.
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For a function F : T → T ′ andG ∈ Ti we obtain a function F (G) : T (G)→ T ′(G) using functoriality
of standard pull-backs.

Define a B-system carrier or a B-carrier as a pair B = (B, B̃) where B is a tower such that B0 = {pt}
and B̃ is a family B̃i+1, i ≥ 0 together with functions ∂i : B̃i+1 → Bi+1. The B-system carriers in
sets are the same as the “type-and-term structures” of [?].

We will denote the standard fiber of ∂i over GT ∈ Bi+1 by B̃GT .

For a B-carrier B, i ≥ 0 and G ∈ Bi, define a B-carrier B(G) as the pair (B(G), B̃(G)) where

B̃(G)j+1 = {s ∈ B̃i+j+1|∂(s) ∈ B(G)j+1}

or, categorically, B̃(G)j+1 is defined by the standard pull-back square

B̃(G)j+1

ũG,j+1−−−−→ B̃i+(j+1)

∂(G)

y y∂
B(G)j+1

uG,j+1−−−−→ Bi+(j+1)

For a B-carrier B, i, j ≥ 0, G ∈ Bi and GD ∈ Bi+j the equivalence (16) clearly extends to an
equivalence

[2014.06.14.eq3]B(G)(GD) ∼= B(uG(GD)) (18)

For B-carriers B and B′ define a function of B-carriers F : B → B′ as a pair F = (F, F̃ ) where
F : B → B′ is a function of towers and for every i ≥ 0, F̃i+1 is a function B̃i+1 → B̃′i+1 which
commutes in the obvious sense with the functions ∂′, Fi+1 and ∂.

The identity function of B-carriers idB and the composition of functions of B-carriers are defined
in the obvious way.

For a function of B-carriers F : B → B′ and G ∈ Bi we obtain a function of B-carriers F(G) :
B(G)→ B′(F (G)) using functoriality of standard pull-backs.

Definition 4.2 [Bdata] Non-unital B-system data is given by the following:

1. a B-system carrier B ,

2. for every m ≥ 0, X ∈ Bn+1 a B-carrier function TX : B(pn(X))→ B(X),

3. for every m ≥ 0, s ∈ B̃n+1, a B-carrier function Ss : B(∂(s))→ B(pn(∂(s))),

Problem 4.3 [2014.10.10.prob1] Construct an equivalence between the type of non-unital B0-
systems and the type of non-unital B-system data such that the types B∗ and B̃ are sets.

Construction 4.4 [2014.10.10.constr1] A non-unital B-system carrier is the same as two fami-

lies of sets Bn, B̃n+1 together with maps pn : Bn+1 → Bn and ∂ : B̃n+1 → Bn+1.

For a given X ∈ Bn+1 a B-carrier function TX : B(ft(X))→ B(X) is the same as:
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1. for all i ≥ 0, Y ∈ Bn+i such that fti(Y ) = ft(X), an element T (X,Y ) ∈ Bn+i+1 such that
fti(T (X,Y )) = X,

2. for all i ≥ 0, r ∈ B̃n+i+1 such that fti+1(∂(r)) = ft(X), an element T̃ (X, r) such that
fti+1(∂(r)) = ft(X).

For i = 0, the operation T is uniquely determined by the condition fti(T (X,Y )) = X which leaves
us with the operations T and T̃ as in Definition 2.1 satisfying the conditions of Lemma 2.9.

The same reasoning applies to S, S̃.

From this point on everything is assumed to be non-unital. Let BD = (B,T,S, δ) be B-data and
G ∈ Bi. Define B-data BD(G) over G as follows. The B-carrier of BD(G) is B(G).

For GDT ∈ B(G)i+1 we need to define a B-carrier function

T(G)GDT : B(G)(pi(GDT ))→ B(G)(GDT )

We define it through the condition of commutativity of the pentagon:

[2014.06.14.eq4]

B(G)(pi(GDT ))
T(G)GDT−−−−−−→ B(G)(GDT )

∼=
y y∼=

B(uG(pi(GDT ))) ∼= B(pi(uG(GDT )))
T−−−→ B(uG(GDT ))

(19)

where the vertical equivalences are from (18).

Similarly for s ∈ B̃(G)j+1 we define a B-carrier function

S(G)s : B(G)(∂(s))→ B(G)(pj(∂(s)))

by the diagram:

[2014.06.14.eq5]

B(G)(∂(s))
S(G)s−−−→ B(G)(pj(∂(s)))y y

B(uG(∂(s))) ∼= B(∂(ũG(s)))
S(ũG(s))−−−−−→ B(pj(∂(ũG(s)))) ∼= B(uG(pj(∂(s))))

(20)

We can now give formulations for the conditions TT, SS, TS, ST and STid.

Definition 4.5 [2014.10.16.def3.fromold] Let us define the following conditions on a B-system
data (B,T,S, δ):

1. The TT-condition. For any GT ∈ Bi+1, GDT ′ ∈ Bj+1(pi(GT )) the pentagon of B-carrier
functions

B(pi(GT ))(pj(GDT
′))

T(pi(GT ))GDT ′−−−−−−−−−−→ B(pi(GT ))(GDT ′)

TGT (pj(GDT ′))

y
B(GT )(TGT (pj(GDT

′)))
yTGT (GDT ′)

∼=
y

B(GT )(pj(TGT (GDT ′)))
TTGT (GDT ′)(GT )
−−−−−−−−−−−→ B(GT )(TGT (GDT ′))

(21)
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commutes.

2. The SS-condition. For any s ∈ B̃i+1, s′ ∈ B̃j+1(∂(s)) the diagram of B-carrier functions

B(∂(s))(∂(s′))
S(∂(s))s′−−−−−→ B(∂(s))(pj(∂(s′)))

Ss(∂(s′))

y ySs(pj(∂(s′)))

B(pi(∂(s)))(Ss(∂(s′))) B(pi(∂(s))(Ss(pj(∂(s′))))

∼=
y y∼=

B(pi(∂(s)))(∂(S̃s(s
′)))

S(pi(∂(s)))
S̃s(s′)−−−−−−−−−−→ B(pi(∂(s)))(pj(∂(S̃s(s

′))))

(22)

commutes.

3. The TS-condition. For any GT ∈ Bi+1, s′ ∈ B̃j+1(pi(GT )) the diagram of B-carrier functions

B(pi(GT ))(∂(s′))
S(pi(GT ))s′−−−−−−−→ B(pi(GT ))(pj(∂(s′)))

TGT (∂(s′))

y yTGT (pj(∂(s′)))

B(GT )(TGT (∂(s′))) B(GT )(TGT (pj(∂(s′))))

∼=
y y∼=

B(GT )(∂(T̃TG(s′)))
S(GT )

T̃GT (s′)−−−−−−−−→ B(GT )(pj(∂(T̃GT (s′))))

(23)

4. The ST-condition. For any s ∈ B̃i+1, GTDT ′ ∈ Bj+1(∂(s)) the diagram of B-carrier func-
tions

B(∂(s))(pj(GTDT
′))

T(∂(s))GTDT ′−−−−−−−−−→ B(∂(s))(GTDT ′)

Ss(pj(GTDT ′))

y
B(pi(∂(s)))(Ss(pj(GTDT

′)))
ySs(GTDT ′)

∼=
y

B(pi(∂(s)))(pj(Ss(GTDT
′)))

T(pi(∂(s)))Ss(GTDT ′)−−−−−−−−−−−−−→ B(pi(∂(s)))(Ss(GTDT
′))

(24)

5. The STid-condition. For any s ∈ B̃i+1 one has

(B(pi(∂(s)))
T∂(s)→ B(∂(s))

Ss→ B(pi(∂(s)))) = idB(pi(∂(s))

Formulation of the remaining four conditions that involve δ is more difficult since their formulation
using this approach leads to conditions that depend on the conditions from the first group. We
leave their study for the future.
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5 An approach to B-systems using the length function.

In formalization of B-systems (as well as C-systems) in Coq one of the main technical difficulties
that arises is the need to work with a family of types Bn which are dependent on n ∈ N. Due to
the absence of strong substitutional equality in Coq types such as Bn+(m+1) and B(n+m)+1 do not
have same elements and can only be dealt with as being connected by an equivalence. Eventually
we hope that this issue will be resolved but at the moment an alternative approach to formalization
where the families of types Bn and B̃n are replaced by their total spaces together with the functions
from these total spaces to N may be useful.

In this approach we will have only two sorts B and B̃ but the presentation will cease to be essentially
algebraic.

Instead we consider the following:

Definition 5.1 [2014.10.26.def1] A non-unital pre-l-B-system (in sets) is the following collection
of data:

1. two sets B and B̃,

2. a function l : B → N,

3. a function ∂ : B̃ → B such that for all s ∈ B̃, l(∂(s)) > 0,

4. a function ft : B → B such that

(a) for all b such that l(b) > 0 one has l(ft(b)) = l(b)− 1,

(b) for all b such that l(b) = 0 one has l(ft(b)) = 0,

5. for each i ≥ 0 four operations:

Ti : (X ∈ B, Y ∈ B, l(X) > 0, l(Y ) > i, ft(X) = fti+1(Y ))→ B

T̃i : (X ∈ B, r ∈ B̃, l(X) > 0, l(∂(r)) > i, ft(X) = fti+1(∂(r)))→ B̃

Si : (s ∈ B̃, Y ∈ B, ∂(s) = fti+1(Y ))→ B

S̃i : (s ∈ B̃, r ∈ B̃, ∂(s) = fti+1(∂(r)))→ B̃

such that:

(a) l(Ti(X,Y )) = l(Y ) + 1,

(b) l(∂(T̃i(X, r))) = l(∂(r)) + 1,

(c) l(Si(s,X)) = l(X)− 1,

(d) l(∂(S̃i(s, r))) = l(∂(r))− 1.

Definition 5.2 [2014.10.26.def2] A unital pre-l-B-system is a non-unital pre-l-B-system together
with an operation

δ : (X ∈ B, l(X) > 0)→ B̃

such that l(∂(δ(X))) = l(X) + 1.

Definition 5.3 [2014.12.05.def3] A pre-l-B-system is a pre-l-B-system together with an element
pt ∈ B such that l(pt) = 0.

It is easy now to define non-unital and unital l-B0-systems and l-B-systems.
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