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Abstract. Work on proving consistency of the intensional Martin-Löf type theory
with a sequence of univalent universes (“MLTT+UA”) led to the understanding that
in type theory we do not know how to construct an interpretation of syntax from a
model of inference rules. That is, we now have the concept of a model of inference
rules and the concept of an interpretation of the syntax and a conjecture that implies
that the former always defines the latter. This conjecture, stated as the statement
that the term model is an initial object in the category of all models of a given kind,
is called the Initiallity Conjecture. In my talk I will outline the various parts of this
new vision of the theory of syntax and semantics of dependent type theories.

1. Introduction

The first few steps in all approaches to the set-theoretic semantics of dependent
type theories remain insufficiently understood. The constructions which have been
worked out in detail in the case of a few particular type systems by dedicated authors
are being extended to the wide variety of type systems under consideration today by
analogy. This is not acceptable in mathematics. Instead we should be able to obtain
the required results for new type systems by specialization of general theorems and
constructions formulated for abstract objects the instances of which combine together
to produce a given type system.

An approach that follows this general philosophy was outlined in [29]. In this
approach the connection between the type theories, which belong to the concrete
world of logic and programming, and abstract mathematical concepts such as sets or
homotopy types is constructed through the intermediary of C-systems.

C-systems were introduced in [11] (see also [12]) under the name “contextual cate-
gories”. A modified axiomatics of C-systems and the construction of new C-systems
as sub-objects and regular quotients of the existing ones in a way convenient for use
in type-theoretic applications are considered in [35]. A C-system equipped with ad-
ditional operations corresponding to the inference rules of a type theory is called a
model or a C-system model of these rules or of this type theory. There are other
classes of objects on which one can define operations corresponding to inference rules
of type theories most importantly categories with families or CwFs. They lead to
other classes of models.

Date: August, 2017.
2000 Mathematics Subject Classification. Primary 18C50; Secondary 03B15.

1



2 VLADIMIR VOEVODSKY

In the approach of [29], in order to provide an interpretation for a type theory
one first constructs two C-systems. One C-system, which we will call the proximate
or term C-system of a type theory, is constructed from formulas of the type theory
using the main construction of [33]. The second C-system is constructed from the
category of abstract mathematical objects using the results of [30]. Both C-systems
are then equipped with additional operations corresponding to the inference rules of
the type theory making them into models of type theory. The model whose underlying
C-system is the term C-system is called the term model.

A crucial component of this approach is the expected result that for a particular
class of inference rules the term model is an initial object in the category of models.
This is known as the Initiallity Conjecture. In the case of the pure Calculus of
Constructions with a “decorated” application operation this conjecture was proved in
1988 by Thomas Streicher [27]. The problem of finding an appropriate formulation
of the general version of the conjecture and of proving this general version will be the
subject of future work.

Note that we do not have much freedom in how we may define the term C-system
of a type theory. In particular, we can not use for its definition various approaches
that generate a priory an initial model. The term C-system should reflect faithfully
the object that is used to implement the type theory in the computer programs of
proof assistants. Since such an implementation is based on a subset of “well-typed”
sentences in a given system of “raw” syntax we either have to realize this definition
mathematically or to provide a theorem stating that the definition that we use is
equivalent to the one in terms of the subsets of well-typed sentences in the sets of raw
sentences.

Assuming that the initiallity conjecture is proved for a given system of inference
rules, there is a unique homomorphism from the term C-system to the abstract C-
system that is compatible with the corresponding systems of operations. Such ho-
momorphisms are called representations or interpretations of the type theory. More
generally, any functor from the category underlying the term C-system of the type
theory to another category may be called a representation of the type theory in that
category. Since objects and morphisms of term models are built from formulas of the
type theory and objects and morphisms of abstract C-systems are built from mathe-
matical objects such as sets or homotopy types and the corresponding functions, such
representations provide a mathematical meaning to formulas of type theory.

The existence of these interpretations in the particular case of the “standard univa-
lent models” of Martin-Löf type theories and of the Calculus of Inductive Construc-
tions (CIC) provides the only known justification for the use of the proof assistants
such as Coq for the formalization of mathematics in the univalent style [31], [38].

Only if we know that the initiallity result holds for a given type theory can we claim
that a model defines a representation. A similar problem also arises in the predicate
logic but there, since one considers only one fixed system of syntax and inference rules,
it can and had been solved once without the development of a general theory. The
term models for a class of type theories can be obtained by considering slices of the
term model of the type theory called Logical Framework (LF), but unfortunately it
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is unclear how to extend this approach to type theories that have more substitutional
(definitional) equalities than LF itself.

A construction of a model for the version of the Martin-Löf type theory that is used
in the UniMath library [38], [31] is sketched in [20]. At the time when that paper
was written it was unfortunately assumed that a proof of the initiallity result can be
found in the existing body of work on type theory which is reflected in [20, Theorem
1.2.9] (cf. also [20, Example 1.2.3] that claims as obvious everything that is done in
tens of different papers by computer scientists, the present paper and in [35]). Since
then it became clear that this is not the case and that a mathematical theory leading
to the initiallity theorem and providing a proof of such a theorem is lacking and needs
to be developed.

As the criteria for what constitutes an acceptable proof were becoming more clear
as a result of continuing work on formalization, it also became clear that more detailed
and general proofs need to be given to many of the theorems of [20] that are related to
the model itself. For the two of the several main groups of inference rules of current
type theories it is done in [34], [36] and [32]. Other groups of inference rules will be
considered in further papers of that series.

That work concerned the construction of the second, “abstract”, C-system model
used in the construction of a representation.

The work done in [33] provides the first step in the construction of the term C-
system model. The result of our construction is equivalent to the results of construc-
tions sketched many years ago, see e.g. [19]. The main innovation, other than the
first careful mathematical proofs of all the required assertions, is the observations
that one can take all raw sentences (sequents) as the source for the construction and
build from them a C-system. Moreover, this C-system can be equipped by operations
corresponding to the systems of inference rules of the type theory.

Note that we say “a system of inference rules” instead of “a collection of inference
rules”. The reason for it is that inference rules of type theories depend on each
other and there is a partial order structure on the collection of all inference rules
corresponding to this dependence. The simplest example is the pair of inference rules

(1)
Γ, x : AB B type

ΓB
∏

(x : A), B type

Γ, x : AB r : B

ΓB λ(x : A), r :
∏

(x : A), B

Here the first rule introduces a type constructor
∏

and the second one introduces
an element constructor λ. Without going into any detail about what else these rules
“mean” one can see that it is impossible to state the second one until the first one was
stated. It is a usual situation with inference rules in dependent type theories with
sequences of dependency between the rules themselves that can be arbitrary long.

We do not have yet a mathematical definition of what a general system of inference
rules is. It is an active area of current research. What we certainly expect is that any
such system defines a system of operations on the sets of raw sentences in the syntax
of the type theory. Again, we don’t yet have a well defined mathematical concept
of what a “system of operations” is. However, we certainly expect that for any such
system S there is the concept of a set of sentences X closed under the operations from
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S and that the intersection of any collection of sets closed under S is again closed
under S.

This very minimal requirement on what systems of operations can be allows one
to show that for any set of sentences X there is the smallest set of sentences ClS(X)
that contains X and is closed under S. In particular, there is the set ClS(∅) that is
the smallest one among all sets of sentences closed under S.

The term C-system of the type theory with a given raw syntax and the set of
inference rules S should be defined as the C-system corresponding to the set ClS(∅).
This C-system should carry a system of operations SC corresponding to S and with
this operations should be, in “good” cases, the initial object in the category of C-
systems with operations SC .

This is the general picture. In this picture we know some of the components. We
know what the “raw syntax” is specified by and what are the sets of “raw sentences”
of any type system of the Martin-Löf kind.

As we will describe below there are five main kinds of sentences. The first three
kinds correspond to objects while the other two to equivalences between objects.

We know what conditions a subset in the set of raw sentences should satisfy to
define a C-system. In particular, the set of all raw sentences of the first three kinds
defines a C-system described in detail in [33] and the C-systems corresponding to the
“good” subsets of sentences are quotients of sub-systems of this C-system.

A set of inference rules should satisfy some conditions in order for the corresponding
set ClS(∅) of sentences to correspond to a C-system. There is no complete clarity in
what this conditions are as there is no complete clarity in what a general system of
inference rules is. As I mentioned above this is an active area of current research.

Let me explain now the parts of the picture that we understand. Here by “un-
derstand” I mean a very strong statement, namely “know how to formalize in the
UniMath”. This meaning allows us to treat a very complex concept of understanding
in very concrete terms. Experience shows that it is an excellent tool to eliminate
arguments and to concentrate on the mathematics.

The five kinds of “sequents” that we call “sentences” were originally introduced by
Per Martin-Löf in [22, p.161]1 . If we consider the type theory as a language then
sequents are the smallest units that have semantical meaning when an interpretation
is chosen. This is why we call them “sentences”. The five kinds of sentences considered
by Martin-Löf are sequences of expressions of the following forms

x0 : T0, . . . , xn−1 : Tn−1 B ok(2)
x0 : T0, . . . , xn−1 : Tn−1 B T type(3)
x0 : T0, . . . , xn−1 : Tn−1 B t : T(4)
x0 : T0, . . . , xn−1 : Tn−1 B T ≡ T ′(5)
x0 : T0, . . . , xn−1 : Tn−1 B t ≡ t′ : T(6)

1This paper is highly recommended. It is a foundational one for many ideas of type theory and
for the modern approach to constructive mathematics in general.
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Here x0, . . . , xn−1 are names of variables, Ti is an expression with free variables from
the set {x0, . . . , xi−1}, and T and t are expressions with free variables from the set
{x0, . . . , xn−1}. If one wants to emphasize that a variable x may appear as a free
variable in the expression T one writes T (x), but in most cases the set of allowed free
variables in an expression should be inferred from its position in the sentence.

In many modern papers on type theory the symbol ` is used where we use the
triangle symbol B . We made this choice because the meaning of the former symbol
in type theory may conflict with its meaning in logic.

The part of a sentence to the left of B is called the context and the part to the
right of this symbol is called the judgement. When the names of variables and the
expressions of the context are not important or can be inferred from some data or
conventions, it is customary to denote the context by a capital Greek letter such as
Γ or ∆.

There are some equivalent versions of the Martin-Löf’s approach. For example,
Martin Hofmann, in [19], considers six kinds of sentences adding the equality of
contexts, B Γ ≡ ∆, as a separate kind.

In any approach sentences are sequences of expressions with some restrictions on
allowed free variables. Therefore

The first step towards mathematical theory of type theories is to find a way to view
“expressions” as mathematical objects.

In practice, what are “expressions” from which the sentences of a type theory are
formed is most likely to be specified in detail when this type theory is used as a basis
of a computer proof assistant. Depending on the programming language on which the
proof assistant is written and on the personal tastes of the developers, “expressions”
will be represented as elements of different datatypes. They may be represented as
actual strings of characters or as trees with additional labels at nodes and edges or
as something else entirely. While each of these representations can be given a precise
mathematical form it would be clearly wrong to make the mathematical theory of
type theories dependent on which of the representations is chosen. Therefore, we
need a concept of an abstract expression, or, as we will see below, two concepts one
for abstract element expressions and one for abstract type expressions.

This problem has been addressed by many authors, first in the context of algebraic
expressions and later in the context of expressions with binders, that is, expressions
that may contain bound variables. As far as we know, the first mathematical abstrac-
tion in the case of expressions with binders was described by Fiore, Plotkin and Turi
in [15]. Later a different and more convenient for mathematicians abstraction was
described by Hirschowitz and Maggesi in a series of papers including [17]. The two
approaches were shown to be equivalent in particular in [6], [7] using the concept of a
well behaved functor. The proof of equivalence in [6], [7] was based on the important
observation that the abstract clones of [15] are particular cases of relative monads.

Let us explain this approach in some detail. Let us consider the case of algebraic
expressions first. Modern mathematical theory of algebraic expressions has been
developed in a multitude of papers which can be summarized by the 1935 paper by
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G. Birkhoff [10], followed by the 1963 Ph.D. thesis of Bill Lawvere [21] and a 1966
paper by F. Linton [?] connecting the two approaches. However, our interest in having
the theory extended later to operations that bound variables, such as the ∀ quantifier,
together with the need to have our approach adapted for a constructive meta-theory
bring forward aspects of this theory that are easy to miss otherwise.

Systems of algebraic expressions are specified by algebraic signatures - pairs, con-
sisting of a set Op, called the set of operations, and a function Ar : Op → N, called
arity. Let us choose a set V from which we will take the names of variables. Since
we test our understanding using UniMath and UniMath is a library of constructive
mathematics it is convenient to assume that both Op and V are sets with decidable
equality. Let further Fin(V ) be the set of finite subsets in V . Constructive definition
of a finite subset includes the condition that the subset is decidable, that is, it is
decidable whether or not a given element of V is in the given finite subset X.

Given a signature Sig and a set V one can define, for any X ∈ Fin(V ), the set
Exp(X) of expressions relative to Sig with (free) variables from X. Note that when
we write Exp(X) we assume that the signature Sig and the set V have been fixed.

There are many different families of sets Exp(X) whose elements may be called
expressions. For example, one can use a subset of the set of sequences (lists) of
elements of OpqX. Alternatively, one can use some axiomatization of planar rooted
trees with labels from OpqX on the nodes. Other possibilities exist as well. We will
assume that one of these variants is chosen.

Let U be a universe of sets that contains Op, V , and Exp(X) for all X ∈ Fin(V ).
Let Fin(V ) be the category of sets whose set of objects is Fin(V ), let Sets(U) be the
category of sets whose set of objects is U , and JV : Fin(V )→ Sets(U) the inclusion
functor.

We may consider Exp as a function Fin(V )→ U . In the chosen representation of
expressions one can construct the substitution operation that for any X, Y ∈ Fin(V )
and f : X → Exp(Y ), defines a function rrX,Y (f) : Exp(X)→ Exp(Y ). In addition,
for any X ∈ Fin(V ) one can define a function ηX : X → Exp(X). The triple
(Exp, η, rr) satisfies the conditions making it into a JV -relative monad.

This is how relative monads appear in the theory of expressions with variables.

Next, following [15], we let F denote the category with the set of objects N and the
set of morphisms

MorF(m,n) = Fun(stn(m), stn(n))

where stn(m) = {i ∈ N | i < m} is our choice for the standard set with m elements
and where for two sets X and Y , Fun(X, Y ) is the set of functions from X to Y .

It is sometimes convenient to distinguish natural numbers used as objects of F from
their other uses. For this purpose we may write n for n used as an object of F.

Let Jf : F → Sets(U) be the functor given by n 7→ stn(n) on objects and by the
identity on the sets of morphisms.

Our previous construction applies to V = N. Consider the functor Φ : F→ Fin(N)
that takes n to stn(n) and that is again the identity on the sets of morphisms.
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Relative monads on a functor C1 → C2 can be precomposed with functors C0 →
C1. Precomposing the monad of expressions (Exp, η, rr) with Φ and observing that
Φ ◦ JN = Jf we obtain, for any algebraic signature Sig a Jf -relative monad that we
denote by ExpSig.

This is how the Jf -relative monads appear in the theory of algebraic expressions.

Note that that up to this point our constructions were completely elementary.

Suppose now that we want to associate with the family of sets Exp(X) not a relative
monad but a usual monad. First we would need to extend, for some V with decidable
equality, the function Exp : Fin(V ) → U to a function U → U . There is no way of
doing it in the UniMath and I do not know of any way of doing it in any constructive
foundation. The best one could achieve is to construct a function Exp′ : U → U and
a family of isomorphisms φV : Exp(X) → Exp′(X) for X ∈ Fin(V ). This requires
developing a constructive theory of filtered colimits and functors that commute with
such colimits and it is not an obvious task. Modulo these difficulties the category of
Jf -relative monads is equivalent to the category of finitary monads on Sets(U).

Alternatively, one can build a (finitary) monad Exp′′ corresponding to a signature
directly by constructing the set Exp′′(X) as an initial algebra over the functor FSig,X :
Sets(U)→ Sets(U) given on objects by the formula

FSig,X(A) := X
∐

(
∐
O∈Op

AAr(O))

Constructing initial algebras for FSig,X also requires the use of colimits, but only
ω-colimits, that is, colimits of sequences, see e.g. [2]. The monad structure on the
family of sets Exp′′(X) can be constructed from the initial algebra structures, see
[9] or [23, Th.3, p.161]. One is then left with the task of establishing a family of
bijections between Exp′′(X) and Exp(X) for X ∈ Fin(V ) that are compatible with
the substitution which can be done but requires extra work.

In general, a monad on Sets(U) is a richer object than a Jf -relative monad and
there may be situations when a monad associated with a signature is required as an
intermediary between the syntax and an abstract mathematical construction. How-
ever, in our case, when we want to construct from the syntax a C-system, a Jf -relative
monad is precisely what we need, so that even when we have a monad at our disposal
we have to restrict it to a Jf -relative monad first in order to perform our construction.

This is why we use Jf -relative monads and not the usual monads.

Let us now explain another very important point. At the very start of our expla-
nation of how the Jf -relative monads are related to expressions we said that we will
consider algebraic expressions. However, the expressions that appear in the sentences
of type theories are often not algebraic because they contain operations that bound
some of the variables in their arguments. For example, the expression

∏
(x : A), B

that appears in (??) can be rewritten as
∏

(A, x.B) which makes it visible that it
is the result of an operation

∏
applied to two arguments A and B and that this

operation binds one variable, here called x, in its second argument.
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Expressions that contain operations that may bound variables in their arguments
are called expressions with binders.

Expressions with binders are specified by binding signatures - pairs consisting of
a set of operations Op and the arity function Ar : Op → Fseq(N). Here Fseq(N)
is the set of finite sequences of elements of N. The set N is considered as a subset
of Fseq(N) through the embedding taking d to the sequence (0, . . . , 0) of length d.
This defines an inclusion of algebraic signatures into binding signatures. The earliest
mention of the concept equivalent to the binding arity that we know of is in [1]. The
meaning of an operation E with the algebraic arity d is that E has d arguments.
The meaning of an operation E with the binding arity (i1, . . . , id) is that E has d
arguments and binds ik variables in its k-th argument.

To apply an operation Op with arity (n0, . . . , nd−1) to expressions E0, . . . , Ed−1

one has to specify, in addition to the expressions themselves, d sequences, of lengths
n0, . . . , nd−1 respectively, of names of variables. These sequences will show which of
the variables are bound in each argument.

The best known examples of operations with binders are the quantifiers ∀ and ∃ of
predicate logic and the λ-abstraction of the (untyped) lambda calculus [13],[8]. All
three of these operations have arity (1), that is, they have one argument in which
they bind one variable.

To get an example with arity (2) one may consider the operation that one gets by
applying an operation of arity (1) twice.

Consider expressions formed by operations with binders applied to variables. For
example, consider expressions generated by one operation of arity (1) that we will
call λ. Every such expression is of the form

E = λxn−1.λ xn−2. . . . .λ x0.x

Here xn, . . . , x0 are bound variables. We do not assume that xi 6= xj for i 6= j or
that xi 6= x. In particular x is a free variable if xi 6= x for all i ≥ 0 and a bound one
otherwise. The usual, but hard to formulate precisely, rules of α-equivalence (see e.g.
[8, Def. 2.1.11, p.26]) imply that if we rename the bound variables in any way that
preserves the rightmost occurrence of x among the xi’s then the resulting expression
will be α-equivalent to the original one. In particular, we can always rename xi such
that xi 6= xj for i 6= j and there is an most one k such that xk = x. If such a k exists
then E has no free variables and if it does not then E has one free variable x.

If x is a free variable then we can substitute another expression E ′ of the same form
for x. However, we can not do it directly. Instead we have to use something called
the capture-avoiding substitution to avoid the “capture” of variable names by binders.
For example, let E = λx0.x, where x is free, and E ′ = x′. Then we have two cases -
if x0 6= x′ then we can directly substitute E ′ for x and E[E ′/x] = λx0.x

′. If x0 = x′

we have first to rename x0 into x′0 such that x′0 6= x′ and then to substitute, obtaining
E[E ′/x] = λx′0.x

′. If we used direct substitution the resulting operation would not
respect the α-equivalence. The capture-avoiding substitution does.
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One shows, and it should be clear from the above that it is not easy, that for any
binding signature (Op,Ar) one can define, for expressions constructed using opera-
tions of this signature and names of variables from a given set V , which occurrences of
variable names among the arguments of the operations are free and which are bound.
From this one can define, for any subset X ∈ Fin(V ), the set Exp·(X) of expressions
with free variables from X. Next one can define the concept of α-equivalence on each
of the sets Exp·(X) and define the sets Expα(X) of α-equivalence classes of expres-
sions with free variables from X. Most definitions of α-equivalence require V to be a
set with an additional operation that for every finite subset of V gives an element in
the complement to this subset. Let us call it a freshness operation. Some approaches
to the α-equivalence and further constructions discussed below, notably the approach
through the nominal sets [24], may only require that for any finite subset of V there
exist an element in the complement to this subset. In the latter case we will say that
V has the freshness property. In the ZFC a set has the freshness property if and only
if it is infinite. In constructive meta-theories the situation may be more involved and
it is convenient to have a special name for this particular property.

If V has the freshness property one can define, and again it is not at all easy, the
simultaneous capture-avoiding substitution of expressions Ex ∈ Exp·(Y ), x ∈ X, for
the free variables of an expression E ′ ∈ Exp·(X) such that it is compatible with
the α-equivalence. After the passage to the α-equivalence classes these constructions
become equivalent and one obtains, for any function X → Expα(Y ) and an element
of Expα(X), an element of Expα(Y ). In addition one has, for any X ∈ Fin(V ), a
function X → Expα(X).

This brings us again to a structure of the same form as we obtained in the case
of algebraic operations - a JV -relative monad, where JV is the obvious functor from
Fin(V ) to Sets(U). Performing the same construction as the one described above in
the case of algebraic expressions one obtains from a JN-relative monad, a Jf -relative
monad ExpSig. This is a direct generalization of the construction that we described
previously from algebraic expressions to expressions with binders. The main idea
behind this generalization goes back to Fiore, Plotkin and Turi [15] where this theory
is developed for abstract clones, structures constructively equivalent to the Jf -relative
monads.

This is how the Jf -relative monads appear in the theory of expressions with binders.

Let us calculate what we get from this construction when the signature is given by
one operation λ with the arity (1). The expressions then are the expressions that we
considered above. We have seen that

Expα(∅) = {an,k |n ∈ N, k = 0, . . . , n− 1}

where an,k is (the equivalence class of) the expression with n λ-abstractions such that
k is the smallest index satisfying xk = x.

Next, we know that

Expα({x}) = Expα(∅) ∪ {bn(x) |n ∈ N}
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where bn(x) is the expression with n λ-abstractions ending with x and such that
xi 6= x for all n− 1 ≥ i ≥ 0. We have to add Expα(∅) because an expression without
free variables is an expression with free variables from the set {x}.

Finally, for a general X ∈ Fin(V ) we have

Expα(X) = Expα(∅) ∪ (∪x∈X{bn(x) |n ∈ N})

and the union on the right hand side is disjoint.

The capture-avoiding substitution in the case of one free variable is of the form

bn(an′,k′/x) = an+n′,k′

bn(bn′(x′)/x) = bn+n′(x′)

For many free variables the substitution is determined by the case of one free variable
because in any one expression there is at most one free variable.

It is easy to see that the Jf -relative monad that we obtain in this case is isomorphic
to the Jf -relative monad defined by the algebraic signature with operations ak, k ∈ N
and b where the arity of ak is 0 and the arity of b is 1. The elements corresponding
under this isomorphism to an,k are bn(ak) and the elements corresponding to bn(x)
are bn(x).

Church’s famous λ-calculus starts with the system of abstract expressions corre-
sponding to two operations ap and λ with the arity of ap being (0, 0) and the arity of
λ being (1). Operation ap is called application and is usually denoted using the infix
notation with the empty operation symbol, that is, ap(E,E ′) is denoted E E ′.

I do not know of an algebraic representation similar to what we have described
above for the free Church’s λ-expressions, that is, for the Jf -relative monad corre-
sponding to the binding signature

SigΛ = ({ap, λ}, Ar(ap) = (0, 0), Ar(λ) = (1))

More generally, one may ask if for any binding signature Sig one may construct
an algebraic signature Alg(Sig) and an isomorphism between the Jf -relative mon-
ads corresponding to Sig and Alg(Sig) as we have done in the case when Sig =
({λ}, Ar(λ) = (1)).

To obtain the actual λ-calculus, or more specifically, the ληβ-calculus, one has to
add to the system of expressions defined by SigΛ two relations that are called the β-
and the η-reductions. The fact that one still gets a Jf -relative monad structure after
passing to the equivalence classes under the equivalence relation generated by these
“reductions” requires a proof.

It appears that the Jf -relative monad, corresponding to the ληβ-calculus has an
algebraic presentation closely related to the combinatory logic of Schönfinkel [25]
(translated in [28]) and Curry [14]. However many subtle difficulties arise in making
it precise (cf. [26]) and we know of no theorem asserting such a presentation in terms
of relative monads or monads.

This is how the Jf -relative monads corresponding to binding signatures relate to
the Jf -relative monads corresponding to algebraic signatures.
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What we said about the direct extension of ExpSig from a Jf -relative monad to a
monad immediately generalizes from the algebraic case to the case of operations with
binders.

Also generalizes the discussion about the possibility to construct a monad cor-
responding to the signature directly using category theory. The beginnings of this
generalization can be seen in [15]. It is highly non-trivial. Operations that bind vari-
ables change the set of free variables e.g for x ∈ X, the operation λx can be seen
as an operation from Exp(X

∐
{x}) to Exp(X). Because of this, the individual sets

Expα(X) do not have universal characterization. Instead, a universal characterization
can be given to a functor Exp : Sets(U)→ Sets(U) that will be later given a monad
structure. This functor has an initial algebra structure for Id+HSig where HSig is a
functor of the second order - a functor from functors to functors and Id is the functor
of second order that takes any F to the identity functor of Sets(U). The functor HSig

can be directly constructed from the binding signature Sig. Bindings correspond to
the operation on functors F 7→ F ′ where F ′(X) = F (X

∐
pt). The general theory of

initial algebras for ω-cocontinuous functors from [2] is applicable here as well and an
initial algebra Exp′′ for Id + HSig can be constructed as the colimit of the sequence
of functors (Id + HSig)

n(∅) where ∅ is the functor X 7→ ∅. Since the initial algebras
are unique up to a unique algebra isomorphism the sets Exp′′(X) constructed by
the colimit construction are in a bijective correspondence with the sets Exp(X) of
α-equivalence classes of expressions. The sets Exp′′ are closely related to the sets
that one obtains representing α-equivalence classes using de Bruijn levels or indexes.
There is more story to tell here, but it is too much outside of the scope of the present
note.

Next one needs to construct a monad structure on Exp′′. The corresponding theory
is developed in [15, Sec. 4],[23] and with the formalization in the UniMath in [3] and
[4]. An outline of the theory that allows one to give a universal characterization
to the monad structure itself can be found in [18]. Not all is understood yet and
it remains an active area of research. Much of the work that is being done today
is being simultaneously formalized in the UniMath. The key question here is what
structure on H has to be specified in order to obtain a monad structure on the initial
algebra of Id + H. The main idea was introduced in [23]. In [3] a functor with this
structure is called an (abstract) signature. As became understood later in [4], the
additional condition of H being ω-cocontinuous allows one to remove the condition of
the existence of the right adjoints from the main theorem [23, Th. 15, p.170] leading
to [4, Th. 48].

The case that is most important for us, that of the monads defined by the binding
signatures, has been fully formalized in the UniMath. There remains the problem
of showing that the families of sets of the JV -relative monads corresponding to this
monad are isomorphic to the sets of expressions modulo the α-equivalence and that
the monad structure that one obtains satisfies the universality conditions of [18].

The preceding discussion shows how the monads corresponding to the binding sig-
natures can be constructed by methods of category theory.
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The raw syntax of a type theory can be specified by a binding signature2. For
example, the raw syntax of Streicher’s formulation of the Calculus of Constructions
of G. Huet and T. Coquand (CC-S), when brought into the standard form, consists
of six operations

∏
, Prop, Proof , λ, app and ∀ with the corresponding arities (0, 1),

(), (0), (0, 1), (0, 1, 0, 0) and (0, 1), see [27, p.157].

In view of the preceding discussion, this suggests that the class of abstract math-
ematical objects that can be used to most directly model the raw syntax of type
theories is the class of Jf -relative monads. However, in [33] we use pairs of a Jf -
relative monad RR and a left module LM over this monad. Let us explain why
we need such pairs and how one can generate them from data similar to binding
signatures.

To obtain the binding signature of the raw syntax from the usual presentation of
a type theory by a list of inference rules such as (1) one should make the list of
operations that these inference rules introduce with their names and their binding
arities. Often operations will be given in a non-standard form such as

∏
x : A,B

instead of
∏

(A, x.B), but for unambiguous inference rules it should be easy to see
what the corresponding standard form should be.

Among those operations will be operations that introduce types and operations that
introduce elements (also called objects) of types.

For example, in the type theory CC-S the operations
∏
, Prop and Proof introduce

types while operations λ, app and ∀ introduce elements. In addition, some arguments
of each operation must be types and some elements. However, only element variables
can be bound.

Define a restricted 2-sorted binding signature as a signature where arities of op-
erations are given by sequences ((n0, ε0), . . . , (nd−1, εd−1), ε) where ε ∈ {0, 1} with 0
corresponding to elements and 1 to types. Such two sorted arities of the six oper-
ations of CC-S are, correspondingly, ((0, 1), (1, 1), 1), (1), ((0, 0), 1), ((0, 1), (1, 0), 0),
((0, 1), (1, 1), (0, 0), (0, 0), 0) and ((0, 1), (1, 0), 0).

Any restricted 2-sorted binding signature defines the usual, 1-sorted one, where the
set of operations is the same and the arity function is the composition of the original
arity function with the function that maps ((n0, ε0), . . . , (nd−1, εd−1), ε) to (n0, . . . , nd).

Let Sig2 be a (restricted) 2-sorted binding signature and Sig1 the corresponding
1-sorted one. Let Z be a set such that the set of expressions with respect to Sig1

with variables from Z is defined. Let us fix two (decidable) subsets V, Y ⊂ Z such
that V ∩ Y = ∅ and both V and Y have the freshness property. Consider the
subset ExpSig2 [V, Y ] of expressions that conform to the additional rules defined by
the sequences (ε0, . . . , εn−1, ε) of the 2-sorted arities of the operations of Sig2 under
the assumption that a variable can be used as an element variable if and only if it is
in V and as a type variable if and only if it is in Y . This subset will be the disjoint
union of two smaller subsets ElExpSig2 [V, Y ] and TyExpSig2 [V, Y ] where the first one

2The type theories whose syntax can be specified by an algebraic signature correspond to the
“generalized algebraic theories” of John Cartmell [12], [11], [16].
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consists of expressions of sort “element” and the second one of expressions of sort
“type”.

Next, for X ∈ Fin(V ) let Exp·Sig2(X, Y ) be the subset of ExpSig2 [V, Y ] that con-
sists of expressions where an element variable is free if and only if it belongs to X with
a similar notation for ElExp and TyExp. Since V has the freshness property one can
define the α-equivalence relation on Exp·Sig2 [V, Y ] and therefore on ElExp·Sig2(X, Y )
and TyExp·Sig2(X, Y ). Let ElExpαSig2(X, Y ) and TyExpαSig2(X, Y ) be the correspond-
ing sets of equivalence classes.

Let us fix a set PrTy ∈ Fin(Y ). This set will eventually play the role of the set of
primitive types that we add to the base type theory. Consider X as a variable, writing
RRV (X) and LMV (X) instead of ElExpαSig2(X,PrTy) and TyExpαSig2(X,PrTy).

The structures that we get on the families of sets RRV (−) and LMV (−) are slightly
different. On RR we get the JV -relative monad structure - for any X ∈ Fin(V ) we
have a function ηX : X → RRV (X) and for any X, Y ∈ Fin(V ) and a function
f : X → RRV (Y ) we have a function

rrX,Y (f) : RRV (X)→ RRV (Y )

On the other hand, on the LMV we do not have ηX since variables from X are not
type expressions and substitution defines for any X, Y ∈ Fin(V ) and a function
f : X → RRV (Y ), a function

lmX,Y (f) : LMV (X)→ LMV (Y )

This operation makes the family of sets LMV (X) into a left module LMV = (LMV , lm)
over the JV -relative monad RRV = (RRV , η, rr).

Precomposing RRN and LMN with the obvious functor Φ : F→ Fin(N) we obtain
a pair (RR,LM) of a Jf -relative monad and a left module over it.

In some type theories all types are elements of universes and moreover element
expressions are not syntactically distinguishable from type expressions. For example,
it is the case in the very important type theory MLTT79 - the Martin-Löf type
theory from [22]. The inference rules related to the universes [22, p.172] make all
type expressions also element expressions and an element expression of any form may
be used as a type. In our notation it means that LM(X) = RR(X).

The preceding discussion shows how pairs of a Jf -relative monad RR and a left
module LM over it correspond to the raw syntax of type theories because some ex-
pressions are type expressions and some are element expressions.

To construct the pair (RR,LM) by methods of category theory without a reference
to expressions one can proceed as follows.

A restricted 2-sorted binding signature defines a monad on the category Sets(U)×
Sets(U). See [39] for a much more general case of multi sorted signatures. For the
formalization of this construction in UniMath see [5].

Choosing an object PrTy of Sets(U) and applying to this monad on Sets(U) ×
Sets(U) two constructions from [33] one obtains a pair (RR,LM) of a Jf -relative
monad and a module over it.
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This is how the pairs (RR,LM) can be obtained from a restricted 2-sorted binding
signature by methods of category theory.

Let us return to sentences of type theory that can be of the five kinds (2)-(6). The
expressions in the sentences are considered modulo the α-equivalence. Moreover, the
sentences themselves are also considered modulo the α-equivalence, that is, modulo
the renaming of the variables x0, . . . , xn−1 introduced by the context. Using this
α-equivalence we may assume that (x0, . . . , xn−1) = (0, . . . , n − 1). Then Ti has
free variables from stn(i) and T, T ′, t and t′ free variables from stn(n). When we
are given all the necessary additional information for the construction of the pair
(RR,LM) where RR(n) and LM(n) are the α-equivalence classes of type and element
expressions with free variables from the sets stn(n) we obtain the following description
of the sets of all possible sentences of the five main kinds:

(1) a sentence of the form (2) is an element of

B(RR,LM) =
∐
n≥0

n−1∏
i=0

LM(i)

(2) a sentence of the form (3) is an element of

Bt(RR,LM) =
∐
n≥0

(
n−1∏
i=0

LM(i))× LM(n)

(3) a sentence of the form (4) is an element of

B̃(RR,LM) =
∐
n≥0

(
n−1∏
i=0

LM(i))×RR(n)× LM(n)

(4) a sentence of the form (5) is an element of

Beq(RR,LM) =
∐
n≥0

(
n−1∏
i=0

LM(i))× LM(n)× LM(n)

(5) a sentence of the form (6) is an element of

B̃eq(RR,LM) =
∐
n≥0

(
n−1∏
i=0

LM(i))×RR(n)×RR(n)× LM(n)

In any approach to Martin-Löf type theory a sentence of the form 0 : T0, . . . , n− 1 :
Tn−1 B T type is equivalent to the sentence 0 : T0, . . . , n− 1 : Tn−1, n : T B ok. This
allows one not to consider sentences of the form (3).

This description of sentences immediately generalizes from the pairs (RR,LM)
corresponding to the α-equivalence classes of expressions to all pairs (RR,LM) where
RR is a Jf -relative monad and LM a left module over RR.

The next question that we know the answer to is how subsets in the sets of sentences
of the four (or five) kinds are related to C-systems.
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LetB, B̃, Beq and B̃eq be the subsets inB(RR,LM), B̃(RR,LM), Beq(RR,LM)

and B̃eq(RR,LM) corresponding to ClS(∅). We want, under the additional assump-
tion that these subsets satisfy some conditions, to construct a C-system CC that
corresponds to them.

This construction should be compatible with the constructions outlined in earlier
papers, such as the construction of the category with families outlined in [19]. In
particular, the set of objects of CC should be defined together with an isomorphism
to the quotient set B/ ∼ of the set B by the equivalence relation defined by the set
Beq according to the rue that (T0, . . . , Tn−1) is equivalent to (T ′0, . . . , T

′
n′−1) if and

only if n′ = n and the sequences defined by the table

B T0 ≡ T ′0(7)
x0 : T0 B T1 ≡ T ′1(8)

. . .(9)
x0 : T0, . . . , xn−2 : Tn−2 B Tn−1 ≡ T ′n−1(10)

are in Beq.

Hofmann and some other authors suggest to directly construct the set of morphisms
and all the required structures using the subsets B̃ and B̃eq. Already the first step,
the definition from B̃ of a set that will later have to be factorized by an equivalence
relation coming from B̃eq to produce the set of morphisms is non-trivial, c.f [19,
Def. 2.11, p.97]. Constructing the composition and proving its properties such as the
associativity represents additional difficulties.

In [33] and [37], we propose to proceed in a different manner. Instead of starting
with B/ ∼ and building the C-system structure on it, we will construct a C-system
C(RR,LM) and then use the results of [35] to show how any quadruple of sub-
sets B,B̃,Beq,B̃eq, satisfying certain properties, defines a sub-quotient C-system of
C(RR,LM). This sub-quotient will be the carrier of the term model C-system of
our type theory.

The properties that the B-subsets have to satisfy will be seen to be the ones that
have long been known as the “structural properties” that the valid sentences of all
type theories must satisfy. By approaching them from the direction of [35] we will see
why these particular properties are necessary and sufficient for a subset of sentences
to correspond to a C-system.

There is much more that one can add, but this is where I would like to end this
review of what is known and what is not on the syntactic side of the mathematical
theory of general dependent type theories.
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