
A note on the Archimedean property

To Cathrine Lelay from Vladimir Voevodsky, March 15, 2016

Hi Cath,

here is something that I suggest to implement that may be nicer than the approach you have used.
It only concerns the part of the theory that goes into Algebra.

The relation > below is everywhere supposed to be a transitive binary operation relation.

Definition 1 [2016.03.10.def1] Let M be an abelian (additive) monoid. A relation > on M is
said to be Archimedean if for all x, y1, y2 ∈M such that y1 > y2 one has:

1. there exists n ∈ N such that ny1 + x > ny2,

2. there exists n′ ∈ N such that n′y1 > x + n′y2.

Lemma 2 [2016.03.14.l1] Let M be an abelian group and > be a transitive binary operation
relation on M . Then > is Archimedean if and only if for all x, y1 > y2 in M there exists n ∈ nat
such that ny1 + x > ny2.

Proof: The ”only if” part is obvious since the condition of the lemma is one of the two conditions
of Definition 1. To show the ’if” implication we need to prove that if the condition of the lemma
holds then the second condition of Definition 1 holds, i.e., that for x, y1 > y2 in M there exists
n′ such that n′y1 > x + n′y2. Let n′ ∈ N be such that the condition of the lemma is satisfied for
−x, y1, y2, i.e., such that n′y1 + (−x) > n′y2. Since > is a binary operation relation this inequality
implies that n′y1 > n′y2 + x or, equivalently using commutativity, that n′y1 > x + n′y2.

Remark 3 [2016.03.14.rem1] The analog of Lemma 2 with the condition ny1+x > ny2 replaced
with the condition n′y1 > n′y2 + x holds as well.

Theorem 4 [2016.03.10.th1] Let R be a rig with a transitive relation > that is a binary operation
relation for the addition and satisfies 1 > 0. Then its additive monoid if Archimedean if and only
if the following three conditions hold:

1. for all y1 > y2 there exists m ∈ N such that my1 > 1 + my2,

2. for all x there exists n ∈ N such that n > x,

3. for all x there exists n ∈ N such that n + x > 0.

Proof: Suppose that the additive monoid is Archimedean. Then one has:

1. let y1 > y2, applying the second condition of Definition 1 to 1, y1, y2 we find m such that
my1 > 1 + my2,

2. let x ∈M , applying the second condition of Definition 1 to x, 1, 0 we find n such that n > x,

3. let x ∈M , applying the first condition of Definition 1 to x, 1, 0 we find n such that n+x > 0.

Suppose that the three conditions of the theorem hold. Let x, y1, y2 ∈ M and y1 > y2. Let m be
such that my1 > 1 + my2. Then one has:

1. let n be such that n + x > 0 then nmy1 + x > n + nmy2 + x > nmy2,
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2. let n be such that n > x then nmy1 > n + nmy2 > x + nmy2.

Remark 5 The first condition of Theorem 4 can be interpreted as expressing the property that
R does not have infinitesimally close to each other pairs of elements, the second as expressing the
fact that R does not have infinitely large elements and the third as expressing the fact that R does
not have infinitely small elements.

Corollary 6 [2016.03.14.cor1] Let R be a ring and > be a transitive relation on R that is a
binary operation relation relative to the additive structure of R. Then the additive group of R is
Archimedean if and only if the following two conditions hold:

1. for all y > 0 there exists m ∈ N such that my > 1,

2. for all x there exists n ∈ N such that n > x.

Proof: Condition (1) of the corollary implies Condition (1) of the theorem by taking y = y1 − y2
and conversely Condition (1) of the corollary implies Condition (1) of the theorem by taking y1 = y,
y2 = 0.

Condition (2) of the corollary coincides with the Condition (2) of the theorem.

Condition (2) of the corollary implies Condition (3) of the theorem when applied to −x.

Definition 7 [2016.03.06.def1] For an abelian (additive) monoid M with a relation > define a
new relation >c by the rule that x1 >c x2 if there exists c ∈ such that x1 + c >c x2 + c.

Lemma 8 [2016.03.10.l1] In the context of Definition 7, if > is a transitive binary operation
relation then so is >c.

Proof: Omitted.

Lemma 9 [2016.03.07.l1] Let M , > be as above. Suppose that M is a group. Then > equals >c.

Proof: If x > y then x >c y for c = 0. If x+ c > y + c then, since > is a binary operation relation,
x + c + (−c) > y + c + (−c) which is equivalent to x > y.

Definition 10 [2016.03.07.def1] For M and > as above we say that > is differentially Archimedean
if >c is Archimedean.

Let M be an abelian monoid. Denote by M+ the abelian group of differences of M . For a transitive
binary operation relation > on M define a relation > on M+ setting that (x1, x2) > (y1, y2) if and
only if x1 + y2 >c y1 + x2.

Lemma 11 [2016.03.10.l2] Let M , > be as above. Then the relation > on M+ is a transitive
binary operation relation.

Proof: Omitted.

Theorem 12 [2016.03.10.th2] Let M , > be as above. Then > on M+ is Archimedean if and
only if > on M is differentially Archimedean.
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Proof: Suppose that (M+, >) is Archimedean. Let x, y1, y2 ∈ M be such that y1 >c y2. Then
(y1, 0) > (y2, 0) in M+ and one has:

1. There exists n such that n(y1, 0) + (x, 0) > n(y2, 0) in M+. By definition of > on M+ this is
equivalent to ny1 + x >c ny2 in M .

2. There exists n′ such that n′(y1, 0) > (x, 0) + n′(y2, 0) in M+. By definition of > on M+ this
is equivalent to n′y1 >c x + n′y2 in M .

This improves one implication.

To prove the second implication suppose that (M,>) is differentially Archimedean. Let

(x, x′), (y1, y
′
1) > (y2, y

′
2) ∈M+.

By definition this means that y1 + y′2 >c y2 + y′1. In view of Lemma 2 it is sufficient to find N such
that

N(y1, y
′
1) + (x, x′) > N(y2, y

′
2)

that is, such that
[2016.03.14.eq1]Ny1 + x + Ny′2 >c Ny2 + Ny′1 + x′ (1)

Let n be such that
ny1 + ny′2 + x > ny2 + ny′1

and n′ be such that
n′y1 + n′y′2 > n′y2 + n′y′1 + x′

Then
(n + n′)y1 + (n + n′)y′2 + x > (n + n′)y2 + (n + n′)y′1 + x′

that is, N = n + n′ satisfies the inequality (1). This completes the proof of Theorem 12.

Corollary 13 [2016.03.14.cor2] Let R be a rig with a transitive, additive binary operation rela-
tion > such that 1 > 0. Then the ring of differences R+ of R is Archimedean if and only if > is
differentially Archimedean on the additive monoid of R. In particular, R+ is Archimedean if > on
R satisfies the three conditions of Theorem 4.

Proof: The first assertion is straightforward. The second assertion follows from a simple proof that
if > satisfies the three conditions of Theorem 4 then so does >c and therefore the first assertion of
the corollary applies.
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