A note on the Archimedean property

To Cathrine Lelay from Vladimir Voevodsky, March 15, 2016

Hi Cath,

here is something that I suggest to implement that may be nicer than the approach you have used.
It only concerns the part of the theory that goes into Algebra.

The relation > below is everywhere supposed to be a transitive binary operation relation.

Definition 1 [2016.03.10.defl] Let M be an abelian (additive) monoid. A relation > on M is
said to be Archimedean if for all z,y1,y2 € M such that y1 > ys one has:

1. there exists n € N such that ny; + x > nys,
2. there exists n' € N such that n'y; > x + n'ys.

Lemma 2 [2016.03.14.11/ Let M be an abelian group and > be a transitive binary operation
relation on M. Then > is Archimedean if and only if for all x,y1 > yo in M there exists n € nat
such that ny; + x > nys.

Proof: The "only if” part is obvious since the condition of the lemma is one of the two conditions
of Definition [I} To show the ’if” implication we need to prove that if the condition of the lemma
holds then the second condition of Definition [I] holds, i.e., that for z,y1 > y2 in M there exists
n’ such that n'y; > x + n'ys. Let n’ € N be such that the condition of the lemma is satisfied for
—Z, Y1, Y2, i.€., such that n'y; + (—z) > n'ys. Since > is a binary operation relation this inequality
implies that n'y; > n'ys + x or, equivalently using commutativity, that n'y; > x + n/ys.

Remark 3 [2016.03.14.rem1] The analog of Lemmawith the condition ny; +x > nys replaced
with the condition n/y; > n'ys +  holds as well.

Theorem 4 [2016.03.10.th1] Let R be a rig with a transitive relation > that is a binary operation
relation for the addition and satisfies 1 > 0. Then its additive monoid if Archimedean if and only
if the following three conditions hold:

1. for all y1 > yo there exists m € N such that my; > 1+ mypo,

2. for all x there exists n € N such that n > z,

3. for all x there exists n € N such that n+ x > 0.

Proof: Suppose that the additive monoid is Archimedean. Then one has:

1. let y1 > w9, applying the second condition of Definition [If to 1,y1,y2 we find m such that
my1 > 1+ mys,

2. let x € M, applying the second condition of Definition [I] to x, 1,0 we find n such that n > z,
3. let x € M, applying the first condition of Definition [I|to z, 1,0 we find n such that n+x > 0.

Suppose that the three conditions of the theorem hold. Let x,y1,y2 € M and y; > y2. Let m be
such that my; > 1+ mys. Then one has:

1. let » be such that n 4+ x > 0 then nmy; + x > n + nmys + x > nmys,



2. let n be such that n > x then nmy; > n 4+ nmys > x + nmys.

Remark 5 The first condition of Theorem [4| can be interpreted as expressing the property that
R does not have infinitesimally close to each other pairs of elements, the second as expressing the
fact that R does not have infinitely large elements and the third as expressing the fact that R does
not have infinitely small elements.

Corollary 6 [2016.03.14.corl] Let R be a ring and > be a transitive relation on R that is a
binary operation relation relative to the additive structure of R. Then the additive group of R is
Archimedean if and only if the following two conditions hold:

1. for all y > 0 there exists m € N such that my > 1,

2. for all x there exists n € N such that n > x.
Proof: Condition (1) of the corollary implies Condition (1) of the theorem by taking y = y1 — yo
and conversely Condition (1) of the corollary implies Condition (1) of the theorem by taking y; = v,
y2 = 0.
Condition (2) of the corollary coincides with the Condition (2) of the theorem.

Condition (2) of the corollary implies Condition (3) of the theorem when applied to —z.

Definition 7 [2016.03.06.defl] For an abelian (additive) monoid M with a relation > define a
new relation >. by the rule that x1 >. xo if there exists ¢ € such that x1 + ¢ >, x2 + c.

Lemma 8 [2016.03.10.11/ In the context of Definition [7, if > is a transitive binary operation
relation then so is >..

Proof: Omitted.

Lemma 9 [2016.03.07.11/ Let M, > be as above. Suppose that M is a group. Then > equals >.

Proof: If x > y then x >, y for ¢ = 0. If x 4+ ¢ > y + ¢ then, since > is a binary operation relation,
x+c+ (—c) >y + c+ (—c) which is equivalent to z > y.

Definition 10 [2016.03.07.defl] For M and > as above we say that > is differentially Archimedean
if > is Archimedean.

Let M be an abelian monoid. Denote by M ™ the abelian group of differences of M. For a transitive
binary operation relation > on M define a relation > on M ™ setting that (z1,x2) > (y1,y2) if and
only if 1 + y2 >¢ y1 + z2.

Lemma 11 [2016.03.10.12] Let M, > be as above. Then the relation > on M is a transitive
binary operation relation.

Proof: Omitted.

Theorem 12 [2016.03.10.th2] Let M, > be as above. Then > on M™ is Archimedean if and
only if > on M is differentially Archimedean.



Proof: Suppose that (M*,>) is Archimedean. Let z,y1,y2 € M be such that y; >, y2. Then
(y1,0) > (y2,0) in M and one has:

1. There exists n such that n(y;,0) + (z,0) > n(y2,0) in M*. By definition of > on M ™ this is
equivalent to ny; + x >, nys in M.

2. There exists n’ such that n'(y1,0) > (x,0) + n'(y2,0) in M. By definition of > on M ™ this
is equivalent to n'y; >. x + n'yy in M.

This improves one implication.

To prove the second implication suppose that (M, >) is differentially Archimedean. Let

(:c,m’), (ylayll) > (y27y,2) € M+'

By definition this means that y; + y5 > y2 +y;. In view of Lemma it is sufficient to find N such
that

N(y1,91) + (z,2") > N(ya, )
that is, such that
[2016.03.14.eq1|Ny; + x + Nyh >. Nys + Nyj + 2’ (1)

Let n be such that
ny1 + nyh + x> nys + nyy

and n’ be such that
n'y1 +n'yy > n'ys +n'y) + 2
Then
(n+n")y1 + (n+n")ys + x> (n+n)ya + (n +n")y; +2'

that is, N = n + n’ satisfies the inequality . This completes the proof of Theorem

Corollary 13 [2016.03.14.cor2/ Let R be a rig with a transitive, additive binary operation rela-
tion > such that 1 > 0. Then the ring of differences R of R is Archimedean if and only if > is
differentially Archimedean on the additive monoid of R. In particular, R is Archimedean if > on
R satisfies the three conditions of Theorem []]

Proof: The first assertion is straightforward. The second assertion follows from a simple proof that
if > satisfies the three conditions of Theorem [ then so does >, and therefore the first assertion of
the corollary applies.



