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1 Introduction

Let us look at the standard approach to mathematical modeling of a deterministic process. One
starts with a set X and a family of maps φt1,t2 : X → X where t1, t2 are two numbers which are

whose points correspond to the possible states of the system in question. A change in the state of
the system is modeled as a map from this set to itself. A ”process” is usually a family of such maps
– one for each interval [t0, t1] of the line representing time, which satisfy the obvious composition
condition for intervals of the form [t0, t1], [t1, t2] and [t0, t2]. For example, any (deterministic)
computer program which takes t0, t1, and the state of the system at time t0 as an input and
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produces the state of the system at time t1 as an output defines a ”process” in the sense specified
above.

If the program we use is not deterministic but uses a random number generator to compute new
values of the variables from the old ones it does not define such a process.

Consider now the case when we have a process whose computer model is based on a randomized
algorithm to produce the new values of the variables from the old ones. As an example we may
look at a simple population dynamics model where the the state of the system is determined by the
number of organisms currently alive, time is discrete and to produce the state at the next moment
of time our algorithm uses a random number generator to determine whether a given organism
survives (with probability p) or dies (with probability 1− p).

Note that all the notions used in the mathematical description of a deterministic process natu-
rally belong to the language of the category theory: we have a set X and a family of morphisms
(maps) f[t0,t1] : X → X satisfying the composition condition.

The stochastic category described below allows one to repeat the same description in a random-
ized case simply by replacing the category of sets with the stochastic category.

For related material see also [3], [4], [10], [2], [7].

2 Stochastic categories

2.1 The category of measurable spaces

Let us first recall the following definition.

Definition 2.1.1 A σ-algebra R on a set X is a collection of subsets of X satisfying the following
conditions.

1. The empty subset is in R.

2. For a countable family Ui of elements of R one has ∪iUi ∈ R.

3. For U in R the complement X\U to U in X is in R.

For a collection R of subsets of X we let clσ(R) denote the smallest σ-algebra which contains R.
For a set of σ-algebras Rα on X the collection of subsets

⋂
α Rα is the largest σ-algebra contained

in all Rα and we will write ∑
α

Rα = clσ(∪αRα)

for the smallest σ-algebra which contains all of the Rα.
Let f : X → Y be a map of sets.

1. For a collection R of subsets of X we let f(R) denote the collection of subsets of Y of the
form f(U) where U ∈ R,

2. For a collection R of subsets of X we let f#(R) denote the collection of subsets U of Y such
that f−1(U) ∈ R.

3. For a collection S of subsets of Y we let f−1(S) denote the collection of subsets of X of the
form f−1(U) where U ∈ S.

It is easily seen that if R (resp. S) is a σ-algebra then f#(R) (resp. f−1(S)) is a σ-algebra. The
collection of subsets f(R) is usually not a σ-algebra.
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Definition 2.1.2 The category MS of measurable space is defined as follows:
Objects of MS are measurable spaces i.e. pairs of the form (X,R) where X is a set and R is a

σ-algebra of subsets of X.
Morphisms from (X,R) to (Y,S) are maps of sets f : X → Y such that for each V ∈ S one

has f−1(V ) ∈ R.
Compositions of morphisms and the identity morphisms correspond to the compositions of maps

of sets and to the identity maps of sets.

The associativity of the composition and the defining property of the identity maps are obvious
and therefore MS is indeed a category.

Sending (X,R) to X we get a functor from MS to the category Sets of sets. This functor has
two adjoints. The right adjoint sends X to (X, {∅, X}) and the left adjoint to (X, 2X) where 2X is
the set of all subsets of X. We will say that a morphism in MS is surjective, injective or bijective
if the morphism of the underlying sets has the corresponding property.

The measurable spaces (∅, {∅}) and (pt, 2pt) give us an initial object and a final object of MS.
To simplify the notation we will write ∅ instead of (∅, 2∅) and pt instead of (pt, 2pt).

For there are three natural ways to form a new measurable space starting with a family of
measurable spaces (Xα,Rα): ∐

α

(Xα,Rα) = (
∐

Xα,∩αiα,#(Rα))

∏
α

(Xα,Rα) = (
∏

Xα, clσ(∪αpr−1
α (Rα)))

K∏
α

(Xα,Rα) = (
∐

Xα,
∑
α

iα,#(Rα))

where iα and prα are the canonical embeddings and projections respectively.

Lemma 2.1.3 [prcopr] The space
∐
α(Xα,Rα) is the coproduct of the family (Xα,Rα) in MS

and the space
∏
α(Xα,Rα) is the product of the family (Xα,Rα) in MS.

Proof: ???

A categorical meaning for the space
∏K
α (Xα,Rα) will be given in Lemma 2.2.13 below.

Theorem 2.1.4 [mscomplete] The category MS is a complete category i.e. any small diagram
in MS has a limit.

Proof: By [9, Theorem 1, p.113] it is sufficient to show that products and equalizers exist inMS.
By Lemma 2.1.3 we know that products exist.

Let f, g : (X,R) → (Y,S) be a pair of morphisms in MS. Consider the equalizer diagram in
Sets corresponding to f and g

Z
i→ X →→ Y

and define the equalizer of f and g in MS by the formula

[eqdef ]eq(f, g) = (Z, i−1(R)) (1)

as in the case of the product one verifies easily that together with the obvious morphism eq(f, g)→
X this measurable space is indeed the equalizer of the morphisms f and g in MS.
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Remark 2.1.5 [powerspace] Let X be a set and (Y,S) a measure space. The product of as
many copies of (Y,S) as there are elements in X can also be described in a slightly different way.
Consider the set Y X of all maps of sets from X to Y . For any V in S and any x in X let A(x, V )
be the set of all g : X → Y such that g(x) ∈ V . Let SX be the σ-algebra on Y X generated by the
subsets A(x, V ). Then our product is given by (Y,S)X = (Y X ,SX).

Theorem 2.1.6 [mscocomplete] The category MS is co-complete i.e. any small diagram in
MS has a colimit.

Proof: By [9, Theorem 1, p.113] applied to the category MSop it is sufficient to show that MS
has coproducts and coequalizers. By Lemma 2.1.3 we know that coproducts exist.

Let f, g : (X,R)→ (Y,S) be a pair of morphisms in MS. Consider the coequalizer diagram in
Sets corresponding to f and g

X →→ Y
p→ Z

and define the coequalizer of f and g in MS by the formula

[coeqdef ]coeq(f, g) = (Z, p#(S)). (2)

As in the case of the coproduct one verifies easily that together with the obvious morphism
(Y,S) → coeq(f, g) this measurable space is indeed the coequalizer of the morphisms f and g in
MS.

Lemma 2.1.7 [epimono1] A morphism f : (X,R)→ (Y,S) in MS is an epimorphism (resp. a
monomorphism) if and only if it is surjective (resp. injective).

Proof: The ’if’ part is obvious both for epimorphisms and for monomorphisms. Let us prove the
’only if’ parts. Assume that f is a monomorphism. Then it is injective since otherwise there would
be two different morphisms from the point pt toX whose compositions with f coincide. Assume that
f is an epimorphism. Then it is surjective since otherwise there would be two different morphisms
from Y to ({0, 1}, 2{0,1}) whose compositions with f coincide.

Recall that a morphism X → Y is called an effective epimorphism if X ×Y X →→ X
f→ Y is

a coequalizer diagram and an effective monomorphism if it is an effective epimorphism in the
opposite category.

Lemma 2.1.8 [epimono2] A morphism f : (X,R)→ (Y,S) in MS is an effective epimorphism
iff it is an epimorphism and S = f#(R). It is an effective monomorphism iff it is a monomorphism
and R = f−1(S).

Proof: The statement for the epimorphisms follows from (2) and the statement for the monomor-
phisms from (1).

Example 2.1.9 [bijective] Let X be a set and R2 ⊂ R1 be two σ-algebras on X. Then the
identity of X defines a bijective morphism (X,R1)→ (X,R2). This morphism is an epimorphism
and a monomorphism but unless R2 = R1 it is not an isomorphism.

Proposition 2.1.10 [epimono3] For any morphism f : (X,R) → (Y,S) there exists a unique
decomposition of the form f = i ◦ b ◦ p where i is an effective monomorphism, b is a bijection and
p is an effective epimorphism.
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Proof: Let X
p→ Z

i→ Y be the decomposition of f into a surjection and an injection in the
category of sets. It defines a decomposition of f in the category MS of the form

(X,R)
p→ (Z, p#(R)) b→ (Z, i−1(S)) i→ (Y,S)

which satisfies the conditions of the proposition by Lemmas 2.1.7 and 2.1.8. The uniqueness easily
follows from the same two lemmas.

2.2 Category of kernels

We define the category of kernels K as follows. Objects of K are pairs (X,R) where X is a set and
R is a σ-algebra of subsets of X i.e. objects are measurable spaces. Morphisms in K are called
kernels.

Definition 2.2.1 [d1] A kernel f = f(x, U) from (X,R) to (Y,S) is a function

f(−,−) : X ×S→ [0,∞]

such that for any x ∈ X the function

f(x,−) : U 7→ f(x, U)

is a measure on (Y,S) and for any U ∈ S the function

f(−, U) : x 7→ f(x, U)

is a measurable function on (X,R).

For a measure µ on (X,R), a measurable function f on the same space and a measurable subset
Y of X we let ∫

Y
fdµ

denote the integral of f restricted to Y with respect to µ.

Lemma 2.2.2 [comp1] Let f be a kernel (X,R) → (Y,S) and g : Y → [0,∞] be a non-negative
measurable function on Y . Then the function

f∗(g) : x 7→
∫
Y
gdf(x,−)

is a measurable function on (X,R).

Proof: Consider the class C of all g such that f∗(g) is measurable. By definition of a kernel this
class contains defining functions IU of subsets U in S. Hence it contains all non-negative simple
functions on (Y,S). The continuity property of the integral (e.g. [1, Th.15.1(iii),p.204]) implies
that if 0 ≤ gn ↑ g where gn are in C then g is in C. By [1, Th.13.5, p.185] the smallest class
satisfying these two properties contains all measurable functions.

Now let f : (X,R) → (Y,S), g : (Y,S) → (Z,T) be two kernels. Consider the function on X × T

of the form
[comp2](x,W ) 7→

∫
Y
g(−,W )df(x,−) (3)
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This function is well defined since g(−,W ) is measurable. For each W it is a measurable function
on (X,R) by Lemma 2.2.2. On the other hand for any x the function

W 7→
∫
Y
g(−,W )df(x,−)

is a measure on (Z,T) by the standard properties of the integral. Therefore, (3) defines a kernel
from (X,R) to (Z,T) which we denote by g ◦ f and call the composition of f and g.

For every (X,R) the kernel Id which takes x to the measure δx concentrated in x is the identity
morphism. The following three lemmas imply that our composition is associative and therefore
measure spaces, kernels and compositions (3) define a category. We denote this category by K and
call the category of kernels.

Lemma 2.2.3 [funcmes] Let µ be a measure on (X,R) and f : (X,R)→ (Y,S) a kernel. Then
the function f∗(µ) on S of the form

U 7→
∫
X
f(−, U)dµ

is a measure on (Y,S).

Proof: Obvious.

Lemma 2.2.4 [tudysyudy] Let f : (X,R)→ (Y,S) be a kernel, µ a measure on (X,R) and g a
measurable non-negative function on (Y,S). Then one has∫

f∗(g)dµ =
∫
gdf∗(µ)

Proof: If g is the simple function corresponding to a subset U ∈ S then our equality holds by
definitions. For a general g the result follows by the same continuity argument as in the proof of
Lemma 2.2.2.

Lemma 2.2.5 [assos] The composition of kernels defined by (3) is associative.

Proof: It follows immediately from definitions and Lemma 2.2.4.

For a topological space X we will write simply X instead of the usual (X,B) for the measure
space with the underlying set X and the underlying σ-algebra the Borel σ-algebra on X. We
will further consider sets as topological spaces with the discrete topology (all subsets are open).
Combining these two conventions we will write X for the measure space with the underlying set X
and the underlying σ-algebra of all subsets of X.

Example 2.2.6 [ex0]For any (X,R) there is a unique kernel from ∅ to (X,R). Therefore ∅ is the
initial object of the category of kernels. Since there is a unique measure on ∅ there is also a unique
kernel from any (X,R) to the empty set i.e. ∅ is also the final object.

Example 2.2.7 [ex1]We will denote the object of K corresponding to the one element set by 1.
A morphism from 1 to (X,R) is the same as a measure on (X,R). A morphism from (X,R) to 1
is a non-negative measurable function or an (unbounded) random variable on (X,R). In particular

[h11]Hom(1,1) = R≥0 ∪ {∞} (4)
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and for any (X,R) the composition pairing

Hom(1, (X,R))×Hom((X,R),1)→ Hom(1,1)

takes (µ, f) to
∫
fµ. Note that the composition on (4) is of the form (a, b) 7→ ab where 0∞ =∞0 = 0

as is usually assumed in measure theory.

Example 2.2.8 [matrixex] Let n be the measure space with the underlying set {1, . . . , n} and
the σ-algebra of all subsets. Then Hom(n,n) is the set of n× n matrices with entries from [0,∞].
The composition is given by the product of matrices.

Example 2.2.9 [ex0new] Let (X,R) be a measurable space and f a non-negative measurable
function on it. Then the mapping which sends a point x of X to the measure f(x)δx is a kernel
which we denote If . If µ : 1 → (X,R) is a measure on (X,R) the the composition If ◦ µ is the
’product measure’ which sends U ∈ R to

∫
U fdµ. We will denote this measure by f ∗ µ.

Let (X,R), (Y,S) be measurable spaces and let f : X → Y be a measurable map. Sending x ∈ X
to the measure δf(x) on Y concentrated in f(y) defines a morphism from (X,R) to (Y,S) in K.
To verify the integrability condition note that for a subset U in Y the function x 7→ δf(x)(U) is
the characteristic function of the subset f−1(U). Hence the second condition of Definition 2.2.1
is equivalent to the condition that f is measurable. This construction defines a functor from the
category of measurable spaces and measurable maps to the category of kernels. To distinguish
morphisms in K which correspond to maps of measure spaces from the general morphisms we will
call the former deterministic morphisms.

Example 2.2.10 [ex5]Let µ : 1 → (X,R) be a measure on (X,R) and f : (X,R) → (Y,S) a
measurable map considered as a kernel. Then f ◦µ = f∗(µ) is the ”direct image” of µ with respect
to f .

Example 2.2.11 [retract]Let (X,R) be a measure set and (U,RU ) be a measurable subset of X
considered with the induced σ-algebra. Then the embedding (U,RU ) → (X,R) can be split by a
projection p where p(x,−) is zero for x ∈ X − U and is the measure concentrated in x for x ∈ U .
Hence any measurable subset (including the empty one) of a measure space is canonically a retract
of this space in K.

The functor from the category of measurable spaces to K does not reflect isomorphisms i.e. some
morphisms of measurable spaces may become isomorphisms when considered in K. Let (Y,S) be a
measurable space and f : X → Y a be any surjection of sets. Then measures on (X, f−1(S)) are in
one-to-one correspondence with measures on (Y,S). In particular for each point y ∈ Y we have a
measure fy on (X, f−1(S)) corresponding to the delta measure δy on (Y,S). Sending y to fy gives
us a kernel (Y,S) → (X, f−1(S)) and one verifies easily that it is inverse to the obvious kernel
(X, f−1(S)) → (Y,S). Hence, from the point of view of the category of kernels, the measurable
spaces (Y,S) and (X, f−1(S)) are indistinguishable.

Lemma 2.2.12 [copr] Let (Xα,Rα) be a family of measure spaces. The measure space
∐

(Xα,Rα)
is the coproduct of the family (Xα,Rα) in K.

Proof: ???

Lemma 2.2.13 [pr] Let (Xα,Rα) be a family of measure spaces. The measure space
∏K(Xα,Rα)

is the product of the family (Xα,Rα) in K.
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Proof: ???

Lemmas 2.2.12 and 2.2.13 together with Example 2.2.6 show that K has both finite products and
finite coproducts which coincide. The set of morphisms between any two objectsis an abelian
semi-group and moreover a ”module” over R≥0 ∪ {∞}. However (since we do not allow negative
measures) morphisms can not be subtracted and therefore K is not an additive category.

Lemmas 2.2.12 and 2.2.13 also imply that the countable products and coproducts in K coincide.

Example 2.2.14 [prcopr2]The set of natural numbers N considered with the σ-algebra of all
subsets is both the product and the coproduct of a countable number of copies of 1. The sets
HomK(N,1) and HomK(1,N) can both be identified with the set [0,∞]N of infinite sequences of
(extended) non-negative real numbers.

Lemma 2.2.15 [l1] Let G be a finite group of measurable automorphisms of a measure space
(X,R). Then the measure space (X/G,RG) is the categorical quotient of (X,R) in K with respect
to the action of G.

Proof: ???

2.3 Category of bounded kernels

A kernel f : (X,R)→ (Y,S) is called bounded if the function

βf : x 7→ f(x, Y )

is a bounded function on X. Note that this condition means in particular that βf takes only finite
values i.e. that for any x the measure f(x,−) on (Y,S) is finite. The composition of bounded
kernels is bounded and therefore measure spaces and bounded kernels form a subcategory Kb in K
called the category of bounded kernels.

Lemma 2.3.1 [whenk] Let (X,R), (Y,S) be two measurable spaces and f : X × S → R≥0 a
mapping such that for any x ∈ X the map f(x,−) is a measure on (Y,S). Let further S be
a collection of subsets of Y which is closed under finite unions and contains ∅ (resp. is closed
under finite intersections and contains Y ) such that clσ(S) = S. Then if the map x 7→ f(x, U) is
measurable for any U ∈ S then f is a kernel.

Proof: ???

For (X,R), (X ′,R′) consider the measure space (X×X ′,R×R′) where R×R′ is the σ-algebra
generated by U × V with U ∈ R and V ∈ R′. If f : (X,R) → (Y,S) and f ′ : (X ′,R′) →
(Y ′,S′) are bounded kernels define f × f ′ as the family which takes (x, x′) to the product measure
f(x,−)×f ′(x′,−) on Y ×Y ′. Standard results about products of finite measures imply that f×f ′ is
a bounded kernel. One can easily see that this construction defines a symmetric monoidal structure
on Kb which we will denote by ⊗ instead of × to avoid confusion with the categorical product. The
one element set is the unit of this monoidal structure which is why we denote it by 1.

Example 2.3.2 [net1] The standard example of a problem which one encounters if one tries to
define the product of two measures one of which is not necessarily finite can be found in [12, p.78].
The source of the problem seems to lie in the fact that while all measures are continuous with
respect to countable filtered colimits (cf. [12, Lemma 1.10(a)]) only finite measures are continuous
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with respect to countable filtered limits ([12, Lemma 1.10(b)]). Since limits are required to produce
measurable subsets of the product of two measure spaces (e.g. the diagonal), a pair of measures on
the factors can not be canonically extended to a measure on the product.

????

Lemma 2.3.3 [kol] Let T be a set, (Y,S) a measurable space and Pt a collection of probability
measures on (Y,S) one for each t ∈ T . Then there exists a unique probability measure P on (Y,S)T

such that for any finite set of pairwise distinct elements t1, . . . , tn of T and any finite set V1, . . . , Vn
of elements of S one has

P (∩ni=1A(ti, Vi)) =
n∏
i=1

Pti(Vi)

where A(t, V ) is the set of all f : T → Y such that f(t) ∈ V .

Proof: See e.g. [11] or [8].

Example 2.3.4 [paths1] Let T be an interval of the real line. Then Y T is the space of paths in Y .
An elementary measurable subset A(t, V ) in (Y,S)T is the subset of all paths γ such that γ(t) ∈ V .
More generally ∩ni=1A(ti, Vi) in Y T is the subset of all paths which pass through Vi at time ti.
Lemma 2.3.3 asserts that any non-deterministic path φ : T → (Y,S) defines a measure on (Y,S)T

such that the ”size” of ∩ni=1A(ti, Vi) relative to this measure is the product of the probabilities
(determined by φ) that ti lands in Vi.

Let ev : (Y,S)X ⊗ X → (Y,S) be the evaluation morphism (g, x) 7→ g(x). Our choice of the
σ-algebra on Y X implies immediately that it is a measurable map. Consider µf as a morphism
1→ (Y,S)X . Then the diagram

X
µf⊗Id−−−−→ (Y,S)X ⊗X

Id

y yev
X

f−−−−→ (Y,S)

commutes and provides a canonical implementation of the morphism f . The obvious extension of
this construction to bounded kernels (X,R)→ (Y,S) implies the following result.

Lemma 2.3.5 [hasanimpl] For any bounded kernel f : (X,R)→ (Y,S) the diagram

X
µf⊗Id−−−−→ (Y,S)X ⊗X

Id

y yev
(X,R)

f−−−−→ (Y,S)

where µf is the measure of Lemma 2.3.3, is an implementation of f .

Remark 2.3.6 For each (X,R) the diagonal (X,R)→ (X,R)⊗(X,R) and the projection (X,R)→
1 make (X,R) into a (commutative) comonoid in Kb with respect to the product ⊗. Note however
that this structure is not natural with respect to morphisms in K.
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Remark 2.3.7 Let fα : (Xα,Rα) → (Y,S) be a countable family of morphisms in Kb. Our
definitions imply that

∐
fα is a bounded kernel if and only if the functions βfα are uniformly

bounded. This observation shows in particular that the coproduct of our family in K is not its
coproduct in Kb.

Similarly for fα : (X,R)→ (Yα,Sα), the family which sends x to the measure
∑
fα(x,−) is not

a bounded kernel unless this measure is finite i.e. unless∑
βfα <∞

everywhere on X, which shows that the product of our family in K is not its product in Kb.
One can also see (cf. 2.5.3 below) that sending a family (Xα,Rα) to the coproduct space∐

(Xα,Rα) is not even a functor from the category of families of objects in Kb to Kb. These
properties make the category of bounded kernels to be of limited use. Instead one uses the stochastic
category considered in the following section.

Let us also include in this section some very elementary facts about bounded measures on intervals
and their distribution functions. For a measure µ on an interval [u, v] of the real line the distribution
function of µ is given by

Distr(µ)(x) = µ([u, x])

For any µ the function Distr(µ) is monotone non-decreasing, right continuous and has the property
that Distr(µ)(u) = 0. Conversely, for any function F with these properties there exists a unique
measure µ (called Lebesgue-Stieltjes measure of F ) such that Distr(µ) = F (see e.g. [12, p.33-34]).

For any bounded measure µ on [u, v] define a function

X+
µ : [0, µ([u, v])]→ [u, v]

by the rule
X+
µ = sup{x ∈ [u, v] |Distr(x) ≤ y}

Then
µ = (X+

µ )∗(dy)

where dy is the Lebesgue measure on [0, µ([u, v])] (see [12, p.34]). This is called Skorokhod repre-
sentation of µ.

A measure µ is called non-atomic if µ({x}) = 0 for any point x. A measure is non-atomic if and
only if its distribution function is continuous.

Lemma 2.3.8 [skor1] Let µ be a non-atomic measure and G = Distr(µ). Then one has:

1. X+
µ is an order preserving embedding whose image is the complement to the disjoint union of

a countable number of intervals of the form [x, x′),

2. G ◦X+ = Id,

3. G∗(µ) = dy

Proof: Since µ is non-atomic the function G is continuous. A continuous monotone non-decreasing
function is strictly increasing on the complement of a countable number of intervals of the form
[x, x′) and therefore defines an order preserving bijection between this complement and [0, G(v)].
The mapping X+ is the composition of the inverse to this bijection with the inclusion of its image
into [u, v] which proves the first two assertions.

To prove the third assertion note that G−1([0, y]) = [u, x] where G(x) = y.
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2.4 The stochastic category

A kernel f : (X,R) → (Y,S) is called stochastic if for any x one has f(x, Y ) = 1 i.e. if the
corresponding measures are probability measures (in probability theory such kernels are also known
as Markov kernels). Composition of stochastic kernels is stochastic. The subcategory generated by
stochastic kernels is called the stochastic category. We denote it by S. One may also consider the
category of sub-probability kernels whose morphism are kernels such that f(x, Y ) ≤ 1.

Example 2.4.1 [exsc1]One obtains an important class of stochastic kernels as follows. Consider
an (idealized) randomized computer algorithm A which takes as an input a sequence of real numbers
r1, . . . , rm and produces as an output a sequence of real numbers s1, . . . , sn. Let us assume that our
computer has access only to the usual (i.e. equally distributed) random numbers on the interval
I = [0, 1]. Then such an algorithm defines a map

ã : Rm × I∞ → Rn

where ã(s1, . . . , sm; ρ1, . . . ) is the result our algorithm will produce for the input r1, . . . , rm if its
i-th request for a random number gives ρi. Consider the usual Lebesgue measure λ on I∞. Then
sending every (r1, . . . , rm) to the push-out of λ with respect to

ã|(r1,...,rm)×I∞ : I∞ → Rn

we get a stochastic kernel a : Rm → Rn which we call the kernel corresponding to A. This kernel
takes (r, U) where r ∈ Rm and U ⊂ Rn to the probability that our algorithm will produce a result
lying in U when given r = (r1, . . . , rm) as an input.

If A and B are two randomized algorithms such that the output of A can be used as an input
for B we map consider the composed algorithm B ◦ A. It is easy to see that the stochastic kernel
corresponding to B ◦ A is the composition b ◦ a of the stochastic kernels corresponding to A and
B. It is also easy to see that the stochastic kernel corresponding to an algorithm is a deterministic
morphism if and only if our algorithm is essentially deterministic i.e. while it may request random
numbers at some point the output does not depend on which random number it gets.

Note that for a non-empty (X,R) there are no stochastic kernels from (X,R) to ∅. Therefore,
while ∅ is an initial object of the stochastic category it is not a finial object. On the other hand for
any (X,R) there is exactly one stochastic kernel from (X,R) to 1. Therefore, 1 is the final object
of the stochastic category but not of the category of kernels.

For (X,R) and (X ′,R′) the coproduct (X,R)
∐

(X ′,R′) in K is easily seen too be the coproduct
of (X,R) and (X ′,R′) in the stochastic category. However it is not the product of (X,R) and
(X ′,R′) in the stochastic category since the sum of two probability measures is not a probability
measure.

For any measurable map of measure spaces (X,R) → (Y,S) the corresponding morphism in
K is stochastic. Therefore the functor from measurable spaces to the category of kernels factors
through the stochastic category.

Our description of morphisms from infinite coproducts given above implies the following result.

Lemma 2.4.2 [l3] Let (Xα,Rα) be a family of measure spaces. Then
∐

(Xα,Rα) of this family in
K is also a coproduct in the stochastic category.

Proof: ???

11



Note also that the finite group quotients of Lemma 2.2.15 remain quotients in the stochastic
category.

The tensor product of two stochastic kernels is a stochastic kernel and therefore the symmetric
monoidal structure defined above for the category of bounded kernels gives a similar structure on
S.

Example 2.4.3 [markov2]Let G be a set which is finite or countable. We consider G as a measure
space with respect to the σ-algebra which contains all subsets of G. Then HomKb(G,G) is the set of
matrices (pij)i,j∈G such that pij ≥ 0, for any i the sum pi =

∑
j pij is finite and the set of numbers pi

is bounded. The set HomS(G,G) is the set of stochastic matrices with rows and columns numbered
by elements of G. The composition of kernels corresponds in this description to multiplication of
matrices. If P is an element of this set and f : G→ 1 a morphism in K (corresponding to a random
variable by 2.2.7) then the sequence of random variables fn = f ◦ Gn is called the Markov chain
generated by the stochastic matrix P .

2.5 Branching morphisms and branching category

For a measure space (X,R) let Sn(X,R) = (X,R)n/Σn be the n-th symmetric power of (X,R).
For n = 0 we set S0(X,R) := 1 for all (X,R) including the empty set. We further set

S•(X,R) =
∐
n≥0

Sn(X,R)

Example 2.5.1 [ex6]We obviously have:

S•(∅) = 1

and
S•(1) = N

Lemma 2.2.15 shows that for each n, Sn(−) is a functor from the category of bounded kernels to
itself. Since S•(X,R) is the coproduct of Sn(X,R) in K we conclude that S•(−) is a functor from
the category of bounded kernels to the category of all kernels. Finally, since coproduct of stochastic
kernels is stochastic we conclude that both the individual symmetric powers Sn(X,R) and the total
symmetric power S•(X,R) are functors from the stochastic category to itself.

Remark 2.5.2 For a sufficiently nice space (X,R) the space S•(X,R) is isomorphic to the space of
integer-valued measuresM((X,R),Z+) on (X,R). This interpretation of the total symmetric power
appears in some probabilistic texts on branching processes (e.g. [5]). The theory of measure valued
branching processes studies the analogs of branching processes with the integer-valued measures
replaced by more general measures.

Remark 2.5.3 [ex7]One can easily see that the total symmetric power S• is not a functor from Kb
to Kb. Indeed consider a kernel a : 1→ 1 where a > 1 (see (4)). Then Sn(a) = an and S•(a) is not
bounded since the volumes of corresponding measures on N are a, a2, . . . which is an unbounded
function on N.

Definition 2.5.4 [d2] A branching morphism φ from (X,R) to (Y,S) is a morphism in S of the
form (X,R)→ S•(Y,S).

12



The functor S•(−) is an extension to S of a functor with the same notation and meaning on
the category of measure spaces and measurable maps to itself. In particular the obvious monad
structure

S• ◦ S• → S•

Id→ S•

of the total symmetric power functor on sets defines a monad structure on S• on S. We define the
branching category B as the category of free algebras over S• . The objects of B are again measure
spaces (X,R) and morphisms from (X,R) to (Y,S) are the branching morphisms of Definition
2.5.4.

Remark 2.5.5 [notfree] In view of Lemma 2.4.2 algebras over S• are exactly commutative monoids
in S with respect to ⊗.

We will write φ : [X,R]→ [Y,S] for branching morphisms to distinguish them from morphisms in
K and S. Let us describe the composition of branching morphisms more explicitly. Observe first
that there is a measurable map of measure spaces

m : S•(Y,S)× S•(Y,S)→ S•(Y,S)

which makes S•(Y,S) into a commutative monoid. In view of Lemma 2.2.15 and the definition of
the symmetric product it shows that any kernel φ from (X,R) to S•(Y,S) in Kb defines a family
of kernels of the form

φn : Sn(X,R)→ S•(Y,S)

(where we set φ0 to be identically 1). If the original kernel is stochastic so are the kernels φn and
therefore by Lemma 2.4.2 they define a kernel

φ∗ =
∐

φn : S•(X,R)→ S•(Y,S)

We can now define the composition of two branching morphisms by the rule:

ψ ◦B φ := ψ ◦ φ∗

Forgetting the S• algebra structure defines a functor

F : B → S

which takes (X,R) to S•(X,R) and φ to the kernel φ∗ defined above.

Example 2.5.6 [ex8]Consider morphisms in the branching category of the form φ : [1] → [1].
Since S•(1) = N we may identify this set with the set of probability measures on N. For any φ let
pφ =

∑
pit

i be the generating function of this measure. This construction identifies HomB([1], [1])
with formal power series

∑
pit

i satisfying pi ≥ 0 and
∑
pi = 1. If φ, ψ two endomorphisms of [1]

in B then one has
[compseries]pφ◦ψ = pψ(pφ(t)) (5)

i.e. in this description the composition of morphisms corresponds to the composition of power
series in the reverse order.
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Example 2.5.7 [ex10]The previous example has an immediate generalization to branching mor-
phisms of the form φ : [n]→ [n] where n :=

∐n
i=1 1 is the set of n elements considered as a measure

space with respect to the maximal σ-algebra. Such morphism is a collection of n probability mea-
sures on Nn. If we describe these measures through their generating functions we may identify
HomB([n], [n]) with the set of n-tuples (f1, . . . , fn) where each fi is a formal power series in n-
variables with non-negative coefficients satisfying the condition fi(1, . . . , 1) = 1. The composition
of morphisms corresponds to the substitution composition for such n-tuples.

For any (X,R) let

[tr1]trn =
n∑
i=1

pri : (X,R)⊗n → (X,R) (6)

be the kernel which sends a point (x1, . . . , xn) to the measure
∑n

i=0 δxi . For n = 0 we take tr0 to
be the zero kernel.

The kernel (6) is clearly invariant under the action of the symmetric group and by Lemma 2.4.2
it defines a bounded kernel

trn : Sn(X,R)→ (X,R)

which sends the point x1, . . . , xn to the sum of δ-measures δx1 + · · ·+ δxn (for n = 0 our kernel is 0)
and which we continue to denote by trn. The coproduct of trn’s is a kernel tr∗ : S•(X,R)→ (X,R).
For a stochastic kernel (X,R) → S•(Y,S) (i.e. for a branching morphism φ : [X,R] → [Y,S])
define a kernel

tr(φ) : (X,R)→ (Y,S)

as the composition tr∗ ◦ φ.

Lemma 2.5.8 [comm] For any stochastic kernel f : (X,R)→ (Y,S) and any n ≥ 0 the diagram

(X,R)⊗n
f⊗n−−−−→ (Y,S)⊗n

trn

y ytrn
(X,R)

f−−−−→ (Y,S)

commutes.

Proof: In view of the definition of trn it is sufficient to verify that pri ◦f⊗n = f ◦pri for all i. More
generally it is sufficient to see that for a kernel f : X → Y and a stochastic kernel f ′ : X ′ → Y ′

one has prY ◦ (f ⊗ f ′) = f ◦ prX i.e. that the square

X ⊗X ′ f⊗f ′−−−−→ Y ⊗ Y ′

prX

y yprY
X

f−−−−→ Y

commutes. Let e be the canonical stochastic kernel from an object to the point. We have

prY ◦ (f ⊗ f ′) = (IdY ⊗ e) ◦ (f ⊗ f ′) = f ⊗ (e ◦ f ′) = f ⊗ e = f ◦ prX

where the third equality holds since e ◦ f ′ = e eactly means that f ′ is stochastic.
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Proposition 2.5.9 [comm2] For any φ as above the diagram

S•(X,R)
φ∗−−−−→ S•(Y,S)

tr∗

y tr∗

y
(X,R)

tr(φ)−−−−→ (Y,S)

commutes.

Proof: By definition of φ∗ it is sufficient to verify that for any n the diagram

(X,R)⊗n
φ⊗n−−−−→ S•(Y,S)⊗n m−−−−→ S•(Y,S)

trn

y trn

y ytr∗
(X,R)

φ−−−−→ S•(Y,S) tr∗−−−−→ (Y,S)

commutes. The right hand side square consists of kernels which take a point to the sum of finitely
many points and it is easy to verify its commutativity explicitly. The left hand side square commutes
by Lemma 2.5.8.

Corollary 2.5.10 [main1] For a pair of branching morphisms φ : [X,R] → [Y,S], ψ : [Y,S] →
[Z,T] one has

tr(ψ ◦ φ) = tr(ψ) ◦ tr(φ)

Proof: This follows immediately from the explicit description of the composition of branching
morphisms given above and Proposition 2.5.9.

Example 2.5.11 [ex11]Consider a branching morphism φ : [1] → [1] which we describe through
the corresponding probability generating function pφ =

∑
pit

i as in Example 2.5.6. Then tr(φ) is
a kernel 1→ 1 i.e. a non-negative number. One can easily see that

tr(φ) =
∑

ipi = p′φ(1)

where p′φ is the formal derivative of pφ with respect to t. In other words, tr(φ) is in this case the
expectation value of φ. For two morphisms φ, ψ of this form Corollary 2.5.10 asserts that

tr(ψ ◦ φ) = tr(ψ)tr(φ).

In view of (5) this follows from the equation

(pφ ◦ pψ)′(1) = p′ψ(1)p′φ(pψ(1)) = p′ψ(1)p′φ(1)

where the last equation holds since the pψ(1) = 1 because ψ is a stochastic kernel.

Example 2.5.12 [ex12]Consider now branching morphisms [n]→ [n] as in Example 2.5.7. For a
morphism φ of this form tr(φ) is a kernel n→ n i.e. an n×n-matrix (aij) with entries from [0,∞].
If we represent φ a sequence of power series (f1, . . . , fn) in variables t1, . . . , tn then one gets

aij =
∂fi
∂tj

(1)

If ψ = (g1, . . . , gn) is another such morphism then the statement of Corollary 2.5.10 is again
equivalent to the formula for the differential of a composition combined with the fact that gi(1) = 1
since ψ is stochastic.
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3 Standard notions of probability

3.1 Stochastic processes

Definition 3.1.1 [sproc] Let T be a subset of R. A stochastic process with time window T and
values in a measurable space (Y,S) is the following collection of data:

1. a measurable space (Ω,F),

2. a probability measure P : 1→ (Ω,F),

3. a measurable map X : (Ω,F)→ (Y,S)T .

Two stochastic processes ((Ω,F), P,X) and ((Ω′,F′), P ′, X ′) are said to be equivalent in the wide
sense if the corresponding measures X ◦ P , X ′ ◦ P ′ on (Y,S)T coincide.

Since (Y,S)T is the product of T copies of (Y,S) in MS, specification of a map X is equivalent
to the specification of measurable maps Xt : (Ω,F)→ (Y,S), one for each t ∈ T .

The projections Pt1,...,tn of X ◦ P to the products (Y,S)n corresponding to finite subsets
{t1, . . . , tn} of T are called finite dimensional distributions (or marginal distributions) of the pro-
cess. Since the product σ-algebra on the infinite product is generated in the strong sense by the
pull-backs of the product σ-algebras on the corresponding finite products, two stochastic processes
are equivalent in the wide sense if and only if their ”marginal distributions” coincide.

The main result towards the existence of a stochastic process with given family of finite-
dimensional distribution is the following theorem.

Theorem 3.1.2 (Kolmogorov) [kol1] Let Y be a separable complete topological space and BY be
its Borel σ-algebra. Then for any compatible (in the obvious sense) system of probability measures
PA on the spaces (Y,S)A where A runs through finite subsets of T , there exists a unique probability
measure P on (Y,S)T whose partial projections are PA.

Corollary 3.1.3 [projlim] Under the assumption of Theorem 3.1.2 the space (Y,S)T is the in-
verse limit of the system of spaces {(Y,S)A}A∈Fin(T ) in S where Fin(T ) is the partially ordered
set of finite subsets of T .

Proof: Follows immediately from the theorem and Lemma 2.3.1.

For the proof of Theorem 3.1.2 as well as for a discussion of its variants and generalizations see
[11].

An issue which often arises in probability in connection with stochastic processes on some subset
T of the real line is the possibility of finding a process which is equivalent to the given one in the
wide sense and has trajectories lying in some subset C of (X,R)T i.e. such that Im(X) ⊂ C.

Lemma 3.1.4 [smallertr] Let C be a subset of (Y,R)T . A process ((Ω,F), P,X) on (YR) with
time window T is equivalent to a process ((Ω′,F′), P ′, X ′) satisfying the condition

Im(X ′) ⊂ C

if and only if for any A,B ∈ RT such that A ∩ C = B ∩ C one has X∗(P )(A) = X∗(P )(B).

Proof: The ’only if” part is obvious. To prove the ’if’ part one may take Ω′ = C and F′ = i−1(RT )
where i : C → (Y,R)T is the inclusion.
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3.2 Markov processes - classical approach

Let us start with a definition of a Markov process from [5].

Definition 3.2.1 [dynkindef] A Markov process is a collection of data of the form:

1. a measurable space X = (X,R),

2. a set Ω,

3. a function ζ : Ω→ [0,∞],

4. a function x : U(Ω, ζ)→ X where

U(Ω, ζ) = {(t, ω) ∈ [0,∞)× Ω | t < ζ(ω)}

5. for each s in [0,∞) a σ-algebra Ms on Ω,

6. for each s ≤ t in [0,∞) a σ-algebra Ms
t on Ωt where

Ωt = {ω ∈ Ω | ζ(ω) > t}

7. for each s ∈ [0,∞), x ∈ X a probability measure Ps,x on (Ω,Ms),

which satisfies the following conditions:

1. for each s ≤ t in [0,∞) one has it(Ms
t ) ⊂Ms where it : Ωt → Ω is the inclusion,

2. for each s ≤ t in [0,∞) the map xt : (Ωt,M
s
t )→ (X,R) is measurable,

3.3 Path systems

Let T be a time window i.e. a subset of R. The pairs of elements u, v of T such that u ≤ v form a
partially ordered set where (u′, v′) ≤ (u, v) if u′ ≥ u and v′ ≤ v. A path system over T with values
in a category C is a contravariant functor from this partially ordered set to C. In what follows we
will work almost exclusively with path systems with values in the category of measurable spaces
for which we have the following explicit definition.

Definition 3.3.1 [pathsystem] Let T be a subset in R. A path system X∗∗ over T is a mapping
which assigns to each u ≤ v in T a measurable space Xuv and to each u ≤ u′ ≤ v′ ≤ v in T a
measurable map resu,vu′,v′ : Xuv → Xu′v′, such that resu,vu,v = Id and for u ≤ u′ ≤ u′′ ≤ v′′ ≤ v′ ≤ v
one has

resu,vu′′,v′′ = resu
′,v′

u′′,v′′ ◦ res
u,v
u′,v′

Isomorphisms between path systems are defined in the obvious way. More general morphisms
between path systems can be of different types and will be considered later.

Path systems arise whenever we model some dynamical processes especially under time inho-
mogeneous conditions. The space Xuu is the space of all possible immediate states of the system
at time u and the space Xuv is the space of possible, in our model, trajectories or paths with time
window [u, v]. In what follows we will often write Xu instead of Xuu and ξt instead of resu,vt,t for
u ≤ t ≤ v.
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Let [u, v]T = {x ∈ T |u ≤ x ≤ v}. A family of spaces Xt given for all t ∈ T defines a path
system with

Xuv =
∏

t∈[u,v]T

Xt

and resu,vu′,v′ being the partial projection maps. This path system will be called the canonical path
system defined by the family Xt. In an important case when all Xt are the same space X we get a
path system where Xuv = X [u,v]T is the space of all maps from [u, v]T to X.

Many of path systems which one encounters are sub-objects of the canonical path system defined
by a single space X. For example, if X is a topological space then one may consider the path systems
whose uv-spaces are the spaces of continuous or right continuous maps from [u, v]T to X with the
σ-algebras defined by the inclusion to X [u,v]T .

The constant path systems with Xuv = X for all u ≤ v is a sub-object of the canonical path
system given by diagonals in X [u,v]T .

3.4 A categorical view of Markov processes

A pre-process P on a path system (Xuv, res
u,v
u′,v′) with time window T ⊂ R is a collection of sub-

probability kernels µvu : Xu → Xuv given for all u ≤ v in T such that for any x ∈ Xu, ξuµvu(x) is
zero on Xu − {x}.

The kernels
φuv = ξv ◦ µvu : Xu → Xv

are called the transition kernels of the pre-process. The projection Xu

φuv
X v→ pt is a function on

Xu which we denote by υuv.
A pre-process is called non-degenerate if for all u ∈ T one has φuu = Id or equivalently υuu ≡ 1.

A pre-process is called a process if it satisfies the following equivalent conditions

1. for all u ≤ v in T , υvu ≡ 1,

2. for all u ≤ v in T , φuv is a probability kernel,

3. for all u ≤ v in T , µvu is a probability kernel,

4. for all u ≤ v in T , µvu is a section of ξu.

For any pre-process and any u ≤ w ≤ v the composition

Xuw
Id×ξu−→ Xuw ×Xw

Id⊗µvw→ Xuw ×Xwv

is a kernel which sends a point ω ∈ Xuv to the measure δω ⊗ µvw(ξw(ω)) and which we denote by
Id⊗ (µvw ◦ ξw).

Definition 3.4.1 [submarkov] A (pre-)process is said to be a Markov (pre-)process if it satisfies
the condition

M For any u ≤ v ≤ w the square

[md]

Xu
µwu−−−−→ Xuw

µvu

y yId⊗(µvw◦ξw)

Xuv
resu,vu,w×resu,vw,v−−−−−−−−−→ Xuw ×Xwv

(7)
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commutes.

Example 3.4.2 [2009.04.29.5] A pre-process on the constant path system X is a collection of
measurable functions υvu on X with values in [0, 1]. It satisfies (M) if and only if for all u ≤ w ≤ v
in T one has υwu υ

v
w = υvu.

To compare our definition with other definitions which appear in the literature on probability
it will be convenient for us to introduce to weaker versions of condition (M).

Mf For any u ≤ v ≤ w the diagram

[mfd]

Xu
µwu−−−−→ Xuw

µvu

y yId⊗(µvw◦ξw)

Xuv
resu,vu,w×resu,vw,v−−−−−−−−−→ Xuw ×Xwv

ξu×Id−−−−→ Xu ×Xwv

(8)

commutes.

Mb For any u ≤ v ≤ w the diagram

[mbd]

Xu
µwu−−−−→ Xuw

µvu

y yId⊗(µvw◦ξw)

Xuv
resu,vu,w×resu,vw,v−−−−−−−−−→ Xuw ×Xwv

Id×ξv−−−−→ Xuw ×Xv

(9)

commutes.

The first of this conditions is a generalization of the ”forward Markov property” and the second
one of the ”backward Markov property”. Our main condition (M) expresses the ”two-sided Markov
property”.

Lemma 3.4.3 [mtr] For any pre-process µ∗∗ which satisfies (Mf) (resp. (Mb)) and any u ≤ w ≤ v
one has

[wm]φwv ◦ φuw = φuv (10)

Proof: For µ∗∗ satisfying (Mf) one gets the equation (10) combining diagram (8) with the commu-
tative square

Xuw
ξw−−−−→ Xw

ξu⊗(µvw◦ξw)

y yξv◦µvw
Xu ×Xwv

ξv◦pr−−−−→ Xv

For µ∗∗ satisfying (Mb) one gets the equation (10) combining diagram (9) with the commutative
square

Xuw
ξw−−−−→ Xw

Id⊗(ξv◦µvw◦ξw)

y yξv◦µvw
Xuw ×Xw

pr−−−−→ Xv
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Remark 3.4.4 For a process which satisfies (M) the projection of µvu to Xuw coincides with µwu .
If T has a maximal element tmax and µ∗∗ is a process then it is sufficient to verify the condition (M)
for v = tmax.

If µ∗∗ satisfies (M) but is not a process then the projection of µvu to Xuw does not coincide with
µwu . Instead by (M) we get

resu,vu,w(µvu) = (υvw ◦ ξw) ∗ µwu
where υvw is the function on Xw which takes x to µvw(x,Xwv) and which equals 1 if and only if µ∗∗
is a process.

Remark 3.4.5 [ff] For any pre-process, φuu is the kernel of the form x 7→ υuu(x)δu. For a pre-
process satisfying (M) the equation (10) applied to u, u, u implies that for any u one has (υuu)2 = υuu
and therefore this function may take only values 0 and 1. Note also that for a Markov pre-process
one has

[canuneq1]υvu = (Xu
φu,v→ Xv → pt) (11)

and for u ≤ w ≤ v

[canuneq2]ξw(µvu) = υvw ∗ φu,w = (x 7→ υvw(x)δx) ◦ φu,w (12)

Denote the σ-algebra on Xuv by Sv
u.

Lemma 3.4.6 [smf] A pre-process satisfies condition (Mf) if and only if for any u ≤ w ≤ v in T ,
x ∈ Xu and any A in Sv

w one has µvu(x,A) = (µvw ◦ φuw)(x,A).

Proof: The condition of our lemma is equivalent to the commutativity of the external rectangle of
the diagram

[ad1]

Xu
µwu−−−−→ Xuw

ξw−−−−→ Xw

µvu

y yId⊗(µvw◦ξw)

yµvw
Xuv −−−−→ Xuw ×Xwv

pr−−−−→ Xwv

(13)

Since the right hand side square of this diagram always commutes the commutativity of (8) implies
commutativity of (13). On the other hand since both µwu and µvu are supported on the fibers of ξu
the commutativity of (13) implies the commutativity of (8).

Lemma 3.4.7 [smb] A pre-process satisfies condition (Mb) if and only if for any u ≤ w ≤ v in
T , x ∈ Xu, A ∈ Sw

u and B in Sv
v one has

[eqgik2]µvu(x,A ∩ ξ−1
v (B)) =

∫
ω∈A

µvw(ξw(ω), ξ−1
v (B))dµwu (x). (14)

Proof: Since the σ-algebra on Xuw ×Xv is generated in the strong sense by subsets of the form
A×B where A ∈ Sw

u and B ∈ Sv
v the commutativity of (9) is equivalent to the assertion that for

any x ∈ Xv and any such A,B one has:

µvu(x, res−1(A) ∩ ξ−1
v (B)) = ((IdXuw ⊗ (ξv ◦ µvw ◦ ξw))) ◦ µwu )(x,A×B)

By definition of kernel composition the right hand side is of the form

((IdXuw ⊗ (ξv ◦ µvw ◦ ξw))) ◦ µwu )(x,A×B) =
∫

(δω ⊗ (ξv ◦ µvw))(ξw(ω), A×B)dµwu (x) =

=
∫
ω∈A

(ξv ◦ µvw)(ξw(ω), B)dµwu (x) =
∫
ω∈A

µvw(ξw(ω), ξ−1
v (B))dµwu (x).
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Lemma 3.4.8 [cr1] A pre-process satisfies condition (M) if and only if for any u ≤ w ≤ v in T ,
x ∈ Xu and any A ∈ Sw

u , B ∈ Sv
w one has

µvu(x,A ∩B) =
∫
ω∈A

µvw(ξw(ω), B)dµwu (x).

Proof: The σ-algebra on Xuw×Xwv is generated in the strong sense by subsets of the form A×B
where A ∈ Sw

u and B ∈ Sv
w. The value of the image of a point x ∈ Xu on A×B under the path of

our diagram going through the lower left corner is µvu(x,A ∩B). If we go through the upper right
corner we get ∫

Xuw

(δω ⊗ µvw(ξw(ω)))(A×B)dµwu (x) =
∫
ω∈A

µvw(ξw(ω), B)dµwu (x).

Lemma 3.4.9 [canun] Let Xt be a family of measurable spaces given for all t ∈ T and let P, P ′

be two pre-processes satisfying condition (M) on the canonical path system defined by this family
such that for all u ≤ v in T one has φuv(P ) = φuv(P ′). Then P = P ′.

Proof: From (11) we conclude that for all u ≤ v in T we have υvu(P ) = υvu(P ′) and from (12) that
for all u ≤ w ≤ v in T we have

ξw(µvu(P )) = ξw(µvu(P ′))

Since the σ-algebra on Xuv =
∏
w∈[u,v]T

Xw is generated in the strong sense by the pull-backs of
σ-algebras on Xt with respect to projections ξw the claim of the lemma follows.

In what follows we will omit the product sign and write XY instead of X × Y . We will also
write [u, v] instead of [u, v]T . For t1, . . . , tn ∈ [u, v] we let prt1,...,tn denote the partial projection
X [u,v] → Xt1 . . . Xtn . For any 1 < m < n and any t1 ≤ · · · ≤ tn in T consider the disgram

[prmd]

Xt1

prt1,...,tm◦µ
tm
t1−−−−−−−−−→ Xt1 . . . Xtm∥∥∥ yIdt1,...,tm−1⊗(prtm,...,tn◦µ

tn
tm

)

Xt1

prt1,...,tn◦µ
tn
t1−−−−−−−−−→ Xt1 . . . Xtn

(15)

Proposition 3.4.10 [cpthm] Let Xt be a family of measurable spaces given for all t ∈ T and
let P = {µvu}u≤v be a pre-process on the corresponding canonical path system. Then the following
conditions are equivalent:

1. P satisfies condition (M),

2. diagrams (15) commute for all 1 < m < n and all t1 ≤ · · · ≤ tn in T ,

3. diagrams (15) commute for m = 2, n > m and all t1 ≤ · · · ≤ tn in T ,

4. diagrams (15) commute for n > 2, m = n− 1 and all t1 ≤ · · · ≤ tn in T .
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Proof: Commutativity of the diagram (15) is equivalent to the commutativity of the diagram

Xt1

µtmt1−−−−→ X [t1,tm]
prt1,...,tm−−−−−−→ Xt1 . . . Xtm

µtnt1

y Id⊗(µtntm◦ξtm )

y Idt1,...,tm−1⊗(prtm,...,tn◦µ
tn
tm

)

y
X [t1,tn] −−−−→ X [t1,tm] ×X [tm,tn]

prt1,...,tm−1×prtm,...,tn−−−−−−−−−−−−−−−→ Xt1 . . . Xtn

and commutativity of all such diagrams is equivalent to the commutativity of diagrams (7) for the
canonical path system since the σ-algebra on X [t1,tm] ×X [tm,tn] is generated in the strong sense by
the pull-backs of the corresponding σ-algebras from finite projections. This proves the equivalence
of the first two conditions. It remains to show that conditions (3) and (4) each imply condition
(2). In the case of condition (3) proceed by induction on m. For the inductive step consider the
following diagram

Xt1

pr ◦ µtmt1 - Xt1 . . . Xtm

Id⊗ (pr ◦ µtntm)
- Xt1 . . . Xtn

Xt1

Id

?

pr ◦ µt2t1
- Xt1Xt2

Id⊗ (pr ◦ µtmt2 )

6

Id⊗ (pr ◦ µtnt2 )
- Xt1 . . . Xtn

Id

?

Xt1

Id

? (pr ◦ µtnt1 )
- Xt1 . . . Xtn

Id

?

where the maps are such that the upper left square is (15) for t1, t2 . . . , tm, the upper right square
is equivalent to (15) for t2, . . . , tm, . . . , tn multiplied with Xt1 and the lower rectangle is equiv-
alent to (15) for t1, t2, . . . , tn. Then the external path of the diagram is equivalent to (15) for
t1, . . . , tm, . . . , tn which gives the inductive step.

In the case of condition (4) proceed by induction on n−m. Consider the diagram

Xt1

pr ◦ µtmt1 - Xt1 . . . Xtm

Id⊗ (pr ◦ µtntm)
- Xt1 . . . Xtn

Xt1

Id

?

pr ◦ µtn−1

t1

- Xt1 . . . Xtn−1

Id⊗ (pr ◦ µtn−1

tm )

?

Id⊗ (pr ◦ µtntn−1
)

- Xt1 . . . Xtn

Id

?

Xt1

Id

? pr ◦ µtnt1 - Xt1 . . . Xtn

Id

?

where the maps are such that the upper left square is (15) for t1, . . . , tm, . . . , tn−1, the upper right
square is equivalent to (15) for tm, . . . , tn−1, tn multiplied with Xt1 . . . Xtm−1 and the lower rectangle
is equivalent to (15) for t1, . . . , tn−1, tn. Then the external path of the diagram is equivalent to (15)
for t1, . . . , tm . . . , tn which gives the inductive step.
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Corollary 3.4.11 [bcase] If a pre-process on a canonical path system satisfies (Mf) (resp. (Mb))
then it satisfies (M).

Proof: One can see immediately that in the context of the canonical path systems condition (3)
of the proposition implies (Mf) and condition (4) implies (Mb).

Remark 3.4.12 Using Theorem 3.1.2 it is not hard to show that if X is a separable complete
topological space with its Borel σ-algebra then for any time window T and any collection of proba-
bility kernels satisfying (10) there exists a Markov process on the canonical path system of X over
T for which these kernels are the transition kernels. By Lemma 3.4.9 such a process is unique.

Example 3.4.13 One can construct processes on the canonical path system whose transition ker-
nels satisfy (10) and which are not Markov processes. Consider for example the time window
T = {a, b, c} where a ≤ b ≤ c. Processes on the canonical path system of X over T correspond to
triples of probability kernels

Xa
νca−−−−→ XbXc

Xa
νba−−−−→ Xb

Xb
νcb−−−−→ Xc

where for u ≤ v in {a, b, c} we write νvu = prµvu for the projection pr which removes Xu. The
transition kernels of the process determine φab = νba, φbc = νcb and φac = prXcν

c
a and the only

non-trivial composition condition asserts that

prXcν
c
a = νcb ◦ νbc .

For a non-trivial X we may choose many different νca satisfying this condition. By Lemma 3.4.9 all
such choices but one will define processes which do not satisfy (M).

Example 3.4.14 Let X be a measurable space. A Markov process on the canonical path system of
X over T such that the kernels µ∗∗ are deterministic maps is the same as a collection of endomorphism
φuv : X → X such that φuu = 1 and φuv = φwvφuw for u ≤ w ≤ v.

Let P be a pre-process on the path system X∗∗ over T . Consider the canonical path system
X ′uv =

∏
t∈[u,v]Xt over T defined by the family of spaces Xt = Xtt. For each pair u ≤ v in T we

have a map
ξ[u,v] =

∏
t∈[u,v]

ξt : Xuv →
∏

t∈[u,v]

Xt

The compositions ξ[u,v] ◦ µvu form a pre-process P ′ on X ′∗∗ which has the same transition kernels
and which is called the canonical representation of P . It follows immediately from the definitions
that if P is a Markov pre-process then so is P ′.

Proposition 3.4.15 [eqv3] Let X∗∗ be a path system over T be such that for all u ≤ v in T one
has

[monstr]ξ−1
[u,v](S

[u,v]) = Sv
u. (16)

where
S[u,v] = clσ(∪t∈[u,v]pr

−1
t (St

t))

is the σ-algebra of
∏
t∈[u,v]Xt. Then any pre-process on X∗∗ which satisfies (Mf) (resp. (Mb))

satisfies (M) and any two pre-processes which satisfy (M) and have the same transition kernels
coincide.
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Proof: The equality (16) implies that the maps ξ[u,v] are monomorphisms in the category of kernels
and moreover the same holds for the maps ξ[u,w] × ξ[w,v]. Therefore, a process satisfies condition
(M), (Mf) or (Mb) if and only if its canonical representation satisfies the corresponding condition.
Together with Corollary 3.4.11 this implies the first claim of the proposition. The second claim
follows by the same argument from Lemma 3.4.9.

Let us now compare our definition of a Markov process with a classical one from [6, Def.1, p.40].
We will show that any path system over (0,∞] together with a Markov process on it defines a
Markov process in the sense of [6].

The space (X,R) is called the phase space of the system and the space (Ω,S) the trajectory
space. We will write Ωt

s for the measurable space (Ω,St
s). For simplicity of notation we will

sometimes abbreviate the notation for a path system omitting some of its components.

Proposition 3.4.16 [compare1] Any pair of a path system over [0,∞) and a process over it
satisfying (Mb) defines a Markov process in the sense of [6, Def.1, p.40].

Proof: For this comparison we will use freely the notations of loc.cit.. Note that we write St
s

where they write Ss
t . Let Ss denote the union St

s for all t ≥ s. Since we assume (P) we have
prs,ts,u(µus ) = µts and therefore kernels µts for t ≥ s define a kernel

Ps,∗ : (X,R)→ (Ω,Ss)

such that µts are obtained from it by obvious projections. It is obvious from our definitions that
the only condition of [6, Def. 1, p.40] which we have to verify is that for any x ∈ X, any 0 ≤ s ≤
t ≤ u <∞ in T and any B ∈ R one has

[eqgik1]Ps,x{ξu(ω) ∈ B|St
s} = Pt,ξt(ω){ξu(ω) ∈ B}. (17)

The left hand side f(ω) of this equation is a real functions on Ω which is defined only up to a
subset of measure zero with respect to Ps,x and the right hand side g(ω) is a well defined function
on Ω. The definition of conditional expectation tells us that the only thing which we know about
the left hand side is that it is St

s-measurable and for any A ∈ St
s we have∫

A
fdPs, x = Ps,x(A ∩ {ξu(ω) ∈ B})

Hence, the equation (17) really means that for any A ∈ St
s one has

[eqgik2a]Ps,x(A ∩ {ξu(ω) ∈ B}) =
∫
A
Pt,ξt(ω){ξu(ω) ∈ B}dPs,x (18)

which is equivalent to (14). The claim of the lemma follows now from Lemma 3.4.7.

Definition 3.4.17 [determmor] A deterministic morphism of path systems F : X∗∗ → Y∗∗ is a
collection of measurable maps Xuv → Yuv given for all u ≤ v in T which are compatible with the
restriction maps for X and Y and such that the maps Xu → Yu are isomorphisms.

Definition 3.4.18 [morpath] A morphism from a path system Y to a path system Z in time
window T is a collection of probability kernels fvu : Yuv → Zuv such that for any u ≤ w ≤ v the
square

Yuv
res×res−−−−−→ Yuw × Ywv

fvu

y yfwu ⊗fvw
Zuv

res×res−−−−−→ Zuw × Zwv
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commutes, i.e. for any ω ∈ Yuv one has

[2009.04.29.3](resu,vu,w × resu,vw,v)(fvu(ω)) = fwu (resu,vu,w(ω))⊗ fvw(resu,vw,v(ω)) (19)

If f∗∗ and g∗∗ are morphisms of path systems such that the compositions g∗∗f
∗
∗ are defined then these

composition again form a morphism of path systems.
If fvu are defined by measurable maps then the condition of Definition 3.4.18 is equivalent to the

requirement that fvu commute with the restriction maps i.e. that these maps form a deterministic
morphism. In general, the condition of 3.4.18 implies that

resu,vu′,v′f
v
u = fv

′
u′ res

u,v
u′,v′

but does not follow from it. For example, the averaged sum (f+g)/2 of two deterministic morphisms
between path systems is almost never a morphism of path systems.

Lemma 3.4.19 [2009.04.29.1] Let fvu be a collection of probability kernels of the form

fvu(ω) =
∑
ψ∈Zuv

fvu(ω, ψ)δψ

Then fvu is a morphism of path systems if and only if for all u ≤ w ≤ v, ω ∈ Yuv, ψ′ ∈ Zuw,
ψ′′ ∈ Zwv one has

[2009.04.29.2]
∑

{ψ∈Zuv | resu,vu,w(ψ)=ψ′ and resu,vw,v(ψ)=ψ′′}

fvu(ω, ψ) = fwu (resu,vu,w(ω), ψ′) ·fvw(resu,vw,v(ω), ψ′′)

(20)

Proof: An easy computation shows that the left and right hand sides of (20) are equal to the
coefficient at δψ′ ⊗ δψ′′ in the left and right hand sides of (19).

Proposition 3.4.20 [2009.04.29.4] Let Y∗∗ and Z∗∗ be path systems over X and f∗∗ : Y∗∗ → Z∗∗
be a morphism over (X,T ) i.e. a morphism of path systems in time window T such that for all
u ∈ T one has ξu ◦ fuu = ξu. Let µ∗∗ be a pre-process on Y∗∗ over (X,T ).

Then kernels fvu ◦ µvu form a pre-process on Z∗∗ over (X,T ). If µ∗∗ is a process (resp. if µ∗∗
satisfies (M)) then fvu ◦ µvu is a process (resp. satisfies (M)).

Proof: Observe first that since f∗∗ is a morphism of path systems and ξw ◦ fww = ξw for all w ∈ T
we conclude that ξw ◦ fvu = ξw for all u ≤ w ≤ v in T . In particular, ξu ◦ fvu ◦ µvu = ξu ◦ µvu which
implies that kernels f∗∗ ◦ µ∗∗ form a pre-process which is a process if µ∗∗ is.

Suppose now that µ∗∗ satisfies (M). Consider the diagram

X
µwu - Yuw

fwu - Zuw

Yuv

µvu

?

res× res
- Yuw × Ywv

Id⊗ (µvw ◦ ξw)

?

fwu ⊗ Id
- Zuw × Ywv

Id⊗ (µvw ◦ ξw)

?

Zuv

fvu

? res× res
- Zuw × Zwv

Id⊗ fvw
?
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The lower pentagon is equivalent to the square of Definition 3.4.18 and therefore commutes. The
left hand side upper square commutes since µ∗∗ satisfies (M). The right hand side upper square
commutes since ξw ◦ fvu = ξw. We conclude that the ambient square commutes i.e. f∗∗ ◦ µ∗∗ satisfies
(M).

3.5 Right continuous functions

Recall that a function f on [s, t] is called monotone increasing (resp. decreasing) if for x ≤ y one
has f(x) ≤ f(y) (resp. f(x) ≥ f(y)). A function is called right continuous if for all u ∈ [s, t) one
has

lim
ε>0,ε→0

f(u+ ε) = f(u).

The following lemmas give some elementary properties of such functions which will be used below.

Lemma 3.5.1 [rcim2] Let f be a right continuous function on an interval of the form [u, v). Then
for any (a, b) ⊂ R one has

f−1((a, b)) = qα∈AIα
where A is countable and each Iα is an interval of the form (y−, y+) or [yα,−, yα,+). In particular,
any right continuous function f on [s, t] is measurable.

Proof: For x ∈ f−1((a, b)) consider the sets

Ix,− = {y | f([y, x]) ⊂ (a, b)}

Ix,+ = {y | f([x, y]) ⊂ (a, b)}

Ix = Ix,− ∪ Ix,+
For any f we have Ix,− = (x−, x] or Ix,− = [x−, x] where x− = Inf(Ix,−) and Ix,+ = [x, x+) or
Ix,+ = [x, x+) where x+ = Sup(Ix,+) and for x1, x2 ∈ f−1((a, b)) one has Ix1 = Ix2 or Ix1 ∩ Ix2 = ∅.

Since f is right continuous we have Ix,+ = [x, y+) where y+ > x. In particular, the length of
each interval Ix is greater than zero which implies that there are at most countably many distinct
intervals in this set.

Lemma 3.5.2 [pirc] Let f be a right continuous on [s, t). If f is monotone increasing then for
any a+ > a such that f−1([a, a+)) 6= ∅ there exists b+ > b such that f−1([a, a+)) = [b, b+). If f is
monotone decreasing then for any a+ > a such that f−1((a, a+]) 6= ∅ there exists b− < b such that
f−1((a, a+]) = [b−, b).

Proof: Consider for example the case of an increasing f . Then if f−1([a, a+)) 6= ∅ we have

f−1([a,∞)) = [b, t)

and
f−1((−∞, a+)) = [s, b+)

which implies the claim of the lemma.

Lemma 3.5.3 [rcim3] Let fn be a countable family of non-negative right continuous functions on
[u, v]. Suppose that all the functions are monotone decreasing or monotone increasing and that the
sum f =

∑
n≥1 fn exists. Then f is right-continuous.
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Proof: The monotonicity of fn implies that for each ε > 0 there exists N ≥ 1 such that for all
x ∈ [u, v] one has

∑
n>N fn(x) < ε (in the case of increasing functions one takes x = v and in the

case of decreasing ones x = u). This easily implies that the sum is right continuous if all summands
are.

Example 3.5.4 [2009.06.15.1]Lemma 3.5.3 is false without the monotonicity assumption on the
functions fn. For example consider a monotone decreasing sequence an ∈ R converging to a ∈ R
such that a < an for all n. Let fn be the indicator function of the interval I[an,an−1). Then

∑
n≥1 fn

is the indicator function of the open interval (a, a0) which is not right continuous.

Recall that an ordered set is called well-ordered if any its non-empty subset has a minimal
element. For an element a of a well ordered set such that a is not the maximal element one defines
the next element a+ as the minimum of the set of elements greater than a.

Definition 3.5.5 [t1subset] Let I be an interval of R which is closed from the below (i.e. an
interval of the form [u, v) or [u, v]). A subset A of I is called a T1 subset if it is closed (in I) ,
well-ordered (by the induced ordering) and contains inf(I).

The minimal element of a T1 subset A is necessarily inf(I). If I is closed then a T1 subset has a
maximal element amax. If amax exists we will write (amax)+ = sup(I). We denote the set of T1
subsets of an interval I by ST1(I). This set is partially ordered by inclusion. For a closed from
below subinterval J of I and A ∈ ST1(I) set AJ = {inf(J)} ∪ (A ∩ J). One observes easily that
AJ ∈ ST1(J). For a function F on ST1(T ) we will write limA∈ST1(T )F (A) = x if for any ε > 0 there
exists A′ ∈ ST1(T ) such that for any A ∈ ST1(T ) such that A′ ⊂ A one has |F (A)− x| < ε|.

Lemma 3.5.6 [2009.05.16.3] Let A1, A2 be two T1 subsets of I. Then A1 ∩A2 and A1 ∪A2 are
T1 subsets.

Proof: Straightforward.

Lemma 3.5.7 [2009.05.16.8] The following conditions on a subset A of I are equivalent:

1. A is a T1 subset,

2. A contains inf(I) and for any non-empty subset B of A one has inf(B) ∈ B and if sup(B) ∈
I then sup(B) ∈ A,

3. for any x ∈ I such that x 6= sup(I) there exists y > x such that (x, y) ∩ A = ∅ and for any
x ∈ I such that x is a limit point of {a ∈ A | a < x} one has x ∈ A.

Proof: The equivalence of the first two conditions is straightforward. The third condition clearly
implies the second. Suppose that A is a T1 subset. If x < sup(I) is such that for all y > x one
has (x, y) ∩ A 6= ∅ then the set {a ∈ A | a > x} has no minimal element which contradicts the
well-orderness of A. If x is such that x is a limit point of {a ∈ A | a < x} then a ∈ A since A is
closed. We conclude that the first condition implies the third one.

For a ∈ A set:

I(A, a) =
{

[a, a+) if a 6= amax
{x ∈ I |x ≥ amax} if a = amax

When no confusion is possible we will write I(a) instead of I(A, a).
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Proposition 3.5.8 [2009.05.16.1] Let A be a T1 subset of I. Then I(A, a) ∩ I(A, a′) = ∅ for
a 6= a′ and

[2009.05.16.2]I = qa∈AI(A, a) (21)

Proof: The fact that I(A, a)∩I(A, a′) = ∅ follows immediately from the definition of a+ and holds
for any well-ordered A in I. To see that (21) holds consider an element x ∈ I and let Ax = {a ∈
A | a ≤ x}. Since inf(I) ∈ A this set is non-empty and since A is closed, Ax = A∩ I ∩ [inf(I), x] is
a closed subset in [inf(I), x]. Therefore it has a maximal element a(x) and one verifies immediately
that x ∈ I(A, a(x)).

Corollary 3.5.9 [2009.05.16.6] A T1 subset is countable.

Lemma 3.5.10 [2009.05.16.5] Let A be a T1 subset. The there exist a T1 subset A′ such that
A ⊂ A′ and for any a′ ∈ A there exists a ∈ A such that the closure I(A′, a′) of I(A′, a′) in R is
contained in I(A, a).

Proof: For any a in A choose a monotone increasing sequence a < a1 < · · · < an < · · · < a+ which
converges to a+. Then the subset A′ = A ∪ {an}a∈A,n≥1 satisfies the condition of the lemma.

If A′ satisfies the condition of Lemma 3.5.10 relative to A we will write A′ > A. The smallest T1
subset of I is {inf(I)}. A subset A satisfying A > {inf(I)} will be called a T2 subset. Equivalently,
a T1 subset A is a T2 subset if for each a ∈ A one has sup(I(a)) ∈ I. If I is closed from the above
this condition holds for any T1 subset and if I is open from the above it holds if and only if
sup(A) = sup(I). Lemma 3.5.10 implies among other things that the subset ST2(I) of ST1(I) is
co-final.

For a function f : I → R and ε > 0 let A0(f, ε) be the set of points a ∈ I such that for all x < a
in I there exists x′, x ≤ x′ ≤ a such that |f(a)− f(x′)| > ε.

Proposition 3.5.11 [2009.05.16.7] Let f be a right continuous function. Then for any ε > 0,
A0(f, ε) is a T1 subset.

Proof: Let us verify the third condition of Lemma 3.5.7. Since f is right continuous, for any
x ∈ I such that x < sup(I) there exists y > x such that f([x, y]) ⊂ (f(x) − ε/2, f(x) + ε/2)}.
Let us show that (x, y) ∩ A0(f, ε) = ∅. Indeed, if a ∈ (x, y) then for all x′ ∈ [x, a] we have
|f(a)− f(x′)| ≤ |f(a)− f(x)|+ |f(x′)− f(x)| ≤ ε and therefore a is not an element of A0(f, ε) this
proofs the first half of the condition. The second half of the condition follows immediately from
the definition of A0(f, ε).

Corollary 3.5.12 [2009.05.16.09] Let f be a right continuous function on an interval. The the
set of its points of discontinuity is countable.

Proof: It follows from the proposition and Corollary 3.5.9 since f is continuous outside of the
subset ∪n≥1A0(f, 1/n).

Proposition 3.5.13 [2009.05.16.4] Let f : I → R be a right continuous function. Then for any
ε > 0 there exists a T1 subset A = A1(f, ε) such that for any a ∈ A1 one has

[2009.05.16.10]supx∈I(a)(f(x))− infx∈I(a)(f(x)) < ε (22)
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Proof: For any x ∈ I the set {y | f([x, y]) ⊂ (f(x) − ε, f(x) + ε)} is of the form [x, x+) for some
x+ > x or of the form [x, sup(I)]. Set inductively x+0 = x and x+(n+1) = (x+n)+ assuming that
sup(I)+ = sup(I). For any x, the sequence x+n is monotone increasing and must converge to some
x′. One observes immediately that either this sequence stops at sup(I) after a finite number of
steps or x′ ∈ A0(f, ε). Let A1(f, ε) be the set of points of the form x+n for x ∈ A0 and n ≥ 0. Then
it is a T1 set which satisfies (22).

Corollary 3.5.14 [2009.05.16.15] Let f : I → R be a right continuous function. Then for any
ε > 0 there exists a T2 subset A = A2(f, ε) such that

[2009.05.16.11]sup
x∈I(A2,a)

(f(x))− inf
x∈I(A2,a)

(f(x)) < ε (23)

Proof: It follows immediately from the proposition and Lemma 3.5.10.

Proposition 3.5.15 [2009.05.16.13] Let f be a non-negative right continuous function on I.
Then for any bounded measure α on I one has∫

y∈I
f(y)dα = limA∈ST2(I)

∑
a∈A

α(I(a))f(sup(I(a)))

Proof: Follows immediately from Corollary 3.5.14.

3.6 Path system defined by a multi-graph

An important class of path systems arises from multi-graphs. A reflexive multi-graph X is a
diagram of sets of the form (∂0, ∂1 : X1 → X0, σ : X0 → X1) such that ∂0 ◦ σ = ∂1 ◦ σ = Id. The
set X0 is the set of vertices of X and X1 is the set of edges. Edges lying in Xnd

1 = X1\σ(X0) are
called non-degenerate.

We let X[u, v] denote the set of triples

({x1, . . . , xn} ⊂ [u, v], p : [u, v]→ X0, e : {x1, . . . , xn} → Xnd
1 )

such that:

1. u < x1 < · · · < xn ≤ v,

2. p is right continuous and continuous outside {x1, . . . , xn},

3. for each i = 1, . . . , n one has p−(xi) = ∂0(e(xi)) and p(xi) = ∂1(e(xi)) where p−(x) =
limy↑x p(y).

For u ≤ u′ ≤ v′ ≤ v the obvious restriction defines a map of sets

resu,vu′,v′ : X[u, v]→ X[u′, v′]

such that resu,vu,v = Id and for u ≤ u′ ≤ u′′ ≤ v′′ ≤ v′ ≤ v one has

resu,vu′′,v′′ = resu
′,v′

u′′,v′′res
u,v
u′,v′

Let Xn = X1 ∂1×∂0 . . . ∂1×∂0 X1 be the set of paths of length n in X and Xnd
n the subset of paths

(e1, . . . , en) such that ei ∈ Xnd
1 for all i.
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Let
∆n

(u,v) = {u < x1 < · · · < xn < v}

and
∆n

(u,v] = {u < x1 < · · · < xn ≤ v}

We assume that ∆0
(u,u) = ∆0

(u,u] = pt and ∆i
(u,u) = ∆i

(u,u] = ∅ for i > 0. For u > v and n > 0 we
have

∆n
(u,v] = ∆n

(u,v) q∆n−1
(u,v)

With this notation X[u, v] can also be written as

X[u, v] = qn≥0∆n
(u,v] ×X

nd
n

If X is countable then this description provides an obvious choice of σ-algebras on X[u, v]. With
respect to these σ-algebras the maps resu,vu′,v′ are measurable and the resulting structure is a path
system in the sense of Definition 3.3.1. Our definition implies that X[u, u] = X0 and therefore
X[∗, ∗] is naturally a path system over X0.

If there is at most one edge e ∈ X1 connecting any pair of vertices p, p′ ∈ X0 then X[∗, ∗] is a
sub-system of the canonical path system of X0 but in general it is not the case.

A (deterministic) morphism f : X → X ′ of reflexive multi-graphs defines a morphism of associ-
ated path systems as follows. For ({x1, . . . , xn} ⊂ [u, v], p : [u, v]→ X0, e : {x1, . . . , xn} → Xnd

1 ) in
X[u, v] let ι : I ⊂ {1, . . . , n} be the subset which consists of i such that f(xi) ∈ (X ′1)nd. Then

fvu({x1}ni=1, p, e) = ({xi}i∈I , f0 ◦ p, f1 ◦ e ◦ ι)

The compatibility of these maps with the restriction maps is obvious and we get a morphism of
path systems over the map X0 → X ′0.

When no confusion is possible we will write ∆e
(u,v] for the simplex in X[u, v] corresponding to

an element e = (e1, . . . , en) ∈ Xnd
n . For any u ≤ w ≤ v the product resu,vu,w × resu,vw,v restricted to

∆e
(u,v] maps it bijectively to

(resu,vu,w × resu,vw,v)(∆e
(u,v]) = qni=0(∆(e1,...,ei)

(u,w] ×∆(ei+1,...,en)
(w,v] )

such that
(resu,vu,w × resu,vw,v)−1(∆(e1,...,ei)

(u,w] ×∆(ei+1,...,en)
(w,v] ) =

= {(x1, . . . , xn) ∈ ∆e
(u,v] |u < x1 < · · · < xi ≤ w < xi+1 < · · · < xn ≤ v}

In particular, for a reflexive multi-graph X the ”cutting maps” resu,vu,w × resu,vw,v define a bijection

resu,vu,w × resu,vw,v : X[u, v] ∼= X[u,w]×X0 X[w, v]

Let us call a sequence of measurable subsets I1, . . . , In of R admissible if for all i = 1, . . . , n− 1
one has sup(Ii) < inf(Ii+1). For u ≤ v in T , e ∈ Xnd

n and an admissible sequence I1, . . . , In of
measurable subsets in (u, v] let

Uve,u(I1, . . . , In) = {(x1, . . . , xn) ∈ ∆n
(u,v] × {e} |xi ∈ Ii}

For n = 0 we set Uve,u = {e} = ∆0
(u,v] × {e}.
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Lemma 3.6.1 [2009.05.27.2][generation1] For any u ≤ v in T and p ∈ X0 the set of subsets of
the form Uve,u(I1, . . . , In) where Ii are closed intervals of (u, v] is closed under finite intersections
and generates the Borel σ-algebra of X[u, v]p,∗.

Proof: We have

Uve,u(I1, . . . , In) ∩ Uve′,u(I ′1, . . . , I
′
n′) =

{
Uve,u(I1 ∩ I ′1, . . . , In ∩ I ′n) for e = e′

∅ for e 6= e′

which shows that our class of subsets is closed under finite intersections. The fact that it gen-
erates the Borel σ-algebra of X[u, v]p,∗ is equivalent to the assertion that subsets of the form
{(x1, . . . , xn) ∈ ∆n

(u,v] |xi ∈ Ii} generate the Borel σ-algebra of the simplex ∆n
(u,v]. This is a corol-

lary of the theorem which says that the Borel σ-algebra of Rn coincides with the product of Borel
σ-algebras on R1.

Let T be a time window which we assume to be of the form T = [Tmin, Tmax]. Let P = (µvu |u ≤
v, u, v ∈ T ) be a pre-process on (X[∗, ∗], T ). Let us introduce the following notation. For u ≤ v in
T and p ∈ X0 we set

hp(u, v) = µvp,u(Uvp,u)

and for e ∈ Xnd
1 we let λve,u denote the co-restriction of µv∂0(e),u to ∆1

(u,v] × {e} considered as a
measure on (u, v]. For convenience we will often consider λve,u as measures on [u, v] which are zero
on {u}.

We will also consider for p, p′ ∈ X0 and u, v as above the functions

φp
′
p (u, v) = µvu,p(X[u, v]∗,p′)

and
υp(u, v) = µvp,u(X[u, v]p,∗) =

∑
p′

φp
′
p (u, v)

which are defined in the context of any path system.

3.7 Renewal pre-processes on multi-graphs

For a multigraph X and p ∈ X0 we let Xnd
n (p) denote the subset of e ∈ Xnd

n such that ∂n0 (e) = p.

Definition 3.7.1 [thetagenerator] Let X be a multi-graph and T = [Tmin, Tmax] a time window.
A generating kernel on (X,T ) is a probability kernel

θ : X0 × T → (X0 × {∗})q (Xnd
1 × T )

such that for any p ∈ X0 and u ∈ T the measure θ(p, u) is supported on ({p}×{∗})q(Xnd
1 (p)×T>u).

For a generating kernel θ, e ∈ Xnd
1 and u ∈ T we let θe,u denote the co-restriction of the measure

θ(∂0(e), u) to T = {e} × T .

Theorem 3.7.2 [2009.06.30.3] Let X be a countable multi-graph, T = [Tmin, Tmax] a time win-
dow and θ a generating kernel on (X,T ). The there exists a unique pre-process P = {µvp,u} on
(X,T ) such that

31



1. for any u ≤ v in T and p ∈ X0 one has

µvp,u(Uvp,u) = 1−
∑

e∈Xnd
1 | ∂0(e)=p

θe,u(T≤v)

2. for any u ≤ v in T , n ≥ 1, e ∈ Xnd
n and any admissible sequence I1, . . . , In of closed intervals

in (u, v] one has

µvp,u(Uve,u(I1, . . . , In)) =
∫
x1∈I1

µvp′,x1
(Uv∂1(e),x1

(I2, . . . , In))dθ∂n−1
0 (e),u

where
p = ∂n0 (e), p′ = ∂n−1

0 ∂1(e)

Proof: The uniqueness part follows immediately from Lemma 3.6.1. The proof of the existence
part will be finished in Proposition 3.7.10.

Definition 3.7.3 [renewal] A pre-process is called a renewal pre-process if it corresponds accord-
ing to Theorem 3.7.2 to a generating kernel.

Definition 3.7.4 [2009.06.02.3] Let X be a multi-graph and T = [Tmin, Tmax] a time window. A
generating map on (X,T ) is a measurable map

[egenerator]E : X0 × T × [0, 1]→ (X0 × {∗})q (Xnd
1 × T ) (24)

such that for any p ∈ X0, u ∈ T one has

Im(E(p, u,−)) ⊂ ({p} × {∗})q (Xnd
1 (p)× T>u).

A generating map is said to represent a generating kernel θ if for all p ∈ X0 and u ∈ T one has

E(p, u,−)∗(dx) = θ(e, u)

where dx is the Lebesgue measure on [0, 1].

For a generating map E, p ∈ X0 and u ∈ T we let Ep,u denote the map r 7→ E(p, u, r) from [0, 1]
to ({p} × {∗})q (Xnd

1 (p)× T>u).

Proposition 3.7.5 [2009.06.02.2] Let θ be a generating kernel for (X,T ). Then there exists a
generating map

E : X0 × T × [0, 1]→ (X0 × {∗})q (Xnd
1 × T )

which represents θ.

Proof: Let Θe,u : T → [0, 1] be the right continuous distribution function of θe,u i.e.

Θe,u(v) = θe,u([u, v]).

For each p ∈ X0 let us choose a linear ordering on Xnd
1 (p) and let e(p, n) be the n-th element of

Xnd
1 (p) relative to this ordering. Let x0(p) = 1 and for each n ≥ 1 let

xn(p) = 1−
n∑
i=1

θe(p,n),u(T ).
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Let further
x∞(p) = limn→∞xn(p) = inf{xn(p), n ≥ 0}

Then
[0, 1] = [0, x∞]q (qn≥1(xn, xn−1])

For n ≥ 1 define a map Ee(p,n),u : (xn, xn−1]→ T by the rule

Ee(p,n),u(x) = inf{v |Θe(p,n),u(v) ≥ x− xn}

Note that Ee(p,n),u is a well defined monotone increasing map whose image lies in {e(p, n)} × T>u.
Let

Ep,u : [0, 1]→ (X0 × {∗})q (Xnd
1 × T )

be the map given by the conditions

(Ep,u)|[0,x∞] = {p} × {∗}

and
(Ep,u)|(xn,xn−1] = {e(p, n)} × Ee(p,n),u

for all n ≥ 1. We claim that the map

E : X0 × T × [0, 1]→ (X0 × {∗})q (Xnd
1 × T )

given by E(p, u, x) = Ep,u(x) is a generating map which represents θ. This is proved in the following
two lemmas.

Lemma 3.7.6 [2009.05.30.1] One has (Ep,u)∗(dx) = θp,u.

Proof: (cf. [12, §3.12]) It is clear from the construction that in order to prove the lemma we have
to verify that

(Ee(p,n),u)∗(dx|(xn,xn−1]) = θp,u

Since Θe,u are monotone increasing and right continuous we have

{v |Θe(p,n),u(v) ≥ x− xn} = [Ee(p,n),u(x), Tmax]

Therefore, Ee(p,n),u(x) ≤ w if and only if Θe(p,n),u(w) ≥ x− xn and we have

{x ∈ (xn, xn−1] |Ee(p,n),u(x) ≤ w} = {x |x > xn and x ≤ xn + Θe(p,n),u(w)}

and
dx({x ∈ (xn, xn−1] |Ee(p,n),u(x) ≤ w}) = Θe(p,n),u(w)

Lemma 3.7.7 [2009.06.01.4] The map E is a generating map i.e. it satisfies the conditions of
Definition 3.7.4.

Proof: The only non-trivial condition is that E is measurable. Since all subsets of X0 and Xnd
1

are assumed to be measurable, in order to prove that E is measurable it is sufficient to show that
for any p ∈ X0 and n ≥ 0 the map

F : T × [0, 1]→ ∗q T

33



given by

F (u, x) =
{
Ee(p,n),u(x) if xn−1(p, u) ≤ x > xn(p, u)
∗ otherwise

is measurable i.e. that for any w the subset Uw = {(u, x) |F (u, x) ∈ T and F (u, x) ≤ w} is
measurable. By the same reasoning as in the proof of Lemma 3.7.6 we see that (u, x) ∈ Uw if and
only if x > xn(p, u) and x ≤ xn(p, u) + Θe(p,n),u(w). Since θ is a kernel the functions Θe,u(v) are
measurable as the functions of u ∈ T . By one of the standard properties of the product σ-algebras
the area under the graph of a measurable function is measurable which implies the statement of
the lemma.

Let E be a generating map representing θ. Denote the measurable space [0, 1] by Rnd and the
Lebesgue measure by PRnd. For n ≥ 1 define maps

En : X0 × T ×Rndn → (X0 × {∗})q (Xnd
1 × T )

inductively as follows:

1. E1 = E

2. If n > 1

(a) if En−1(p, u, r1, . . . , rn−1) = (e, t) then En(p, u, r1, . . . , rn) = E(∂1(e), t, rn),

(b) else if En−1(p, u, r1, . . . , rn−1) = (p′, ∗) then En(p, u, r1, . . . , rn) = (p′, ∗).

For u ≤ v in T , p ∈ X0 and n ≥ 1 let

Ωv
p,u,n = {(r1, . . . , rn, . . . ) ∈ Rnd∞ |En+1(p, u, r1, . . . , rn+1) ∈ (X0 × {∗})q (Xnd

1 × T>v)}

For convenience we will write Ωv
p,u,−1 for ∅. We have Ωv

p,u,n ⊂ Ωv
p,u,n+1 and Ωv′

p,u,n ⊂ Ωv
p,u,n for

v′ ≥ v.
For u ≤ v in T , p ∈ X0 and n ≥ 0 define a map

Mv
p,u,n : Ωv

p,u,n\Ωv
p,u,n−1 → qe∈Xnd

n (p)∆
n
(u,v] × {e}

setting
Mv
p,u,0(r) = {p}

and for n ≥ 1,
Mv
p,u,n(r) = {(x1, . . . , xn)} × {(e1, . . . , en)}

where Ei(r1, . . . , ri) = (ei, xi). Let

Ωv
p,u,∞ = ∪n≥0Ωv

p,u,n = qn≥0 Ωv
p,u,n\Ωv

p,u,n−1 ⊂ Rnd∞

Taking the disjoint union over n ≥ 0 we get a map

Mv
p,u : Ωv

p,u,∞ → X[u, v]p.∗

and the map
M̄v
p,u : Rnd∞ → {∗} qX[u, v]p,∗
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which equals Mv
p,u on Ωv

p,u,∞ and sends Rnd∞\Ωv
p,u,∞ to ∗. This map is clearly measurable and we

define measures µvp,u on X[u, v]p,∗ by the formula

µvp,u = ((M̄v
p,u)∗(P⊗∞Rnd))|X[u,v]p,∗

Since X0 is assumed to be countable these measures define kernels µvu : X0 → X[u, v] which form
a pre-process P = P (E) on (X,T ). We will call it the pre-process defined by a generating map E.

Remark 3.7.8 [2009.06.17.1]The maps Mv
p,u commute with the restriction maps resu,vu,w i.e. for

u ≤ w ≤ v in T and p ∈ X0 the square

Ωv
p,u,∞

Mv
p,u−−−−→ X[u, v]p,∗y yresu,vu,w

Ωw
p,u,∞

Mw
p,u−−−−→ X[u,w]p,∗

commutes. However, the square

Rnd∞
M̄v
p,u−−−−→ {∗} qX[u, v]p,∗

=

y y{∗}qresu,vu,w
Rnd∞

M̄w
p,u−−−−→ {∗} qX[u,w]p,∗

does not commute in general since for r ∈ Ωw
p,u,∞\Ωv

p,u,∞ we have M̄v
p,u(r) = {∗} while M̄w

p,u(r) ∈
X[u,w]p,∗.

For u ≤ w ≤ v in T , let
ju,vw,v : X[w, v]→ X[u, v]

be the embedding which sends (x1 . . . , xn) ∈ ∆n
(w,v] × {e} to (x1 . . . , xn) ∈ ∆n

(u,v] × {e}. For v ∈ T
and p ∈ X0 define a map

M̄v
p : T ×Rnd∞ → {∗} ×X[Tmin, v]p,∗

by the formula
M̄v
p (x, r) = (Id{∗} q ju,vx,v )(M̄v

p,x(r))

Lemma 3.7.9 [2009.06.17.2] The maps M̄v
p are measurable.

Proof: We have to prove that for any e ∈ Xnd
n (p) and any measurable V in ∆n

(Tmin,v]×{e} the subset
(M̄v

p )−1(V ) is measurable. Since the Borel σ-algebra on Rn coincides with the product of Borel
σ-algebras on R it is sufficient, for n ≥ 1, to consider subsets of the form V = {(x1, . . . , xn) |x1 ∈
I, (x2, . . . , xn) ∈ U} where I is a measurable subset of (Tmin, v] and U a measurable subset of
∆n−1

(sup(I),v].
Let us proceed by induction on n. For n = 0 we have Xnd

n (p) = {p} and M̄v
p (x, r) = {p} if and

only if E(p, x, r1) ∈ ({p} × {∗}) q (Xnd
1 × T>v). Therefore (M̄v

p )−1({p}) is measurable since E is
measurable. Suppose that n ≥ 1 and let I and U be as above. Then M̄v

p (x, r) ∈ I × U if and only
if E(p, x, r1) = (∂n−1

0 (e), x′), x′ ∈ I and M̄v
p′(x

′, (r2, . . . , )) ∈ U where U is considered as a subset
of ∆n−1

(Ymin,v] × {∂1(e)}, where p′ = ∂n−1
0 (∂1(e)). Consider the map

f : T ×Rnd∞ → ((X0 × {∗})q (Xnd
1 × T ))× T ×Rnd∞
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of the form
f(x, r) = (E(p, x, r1), y, (r2, . . . , ))

This map is clearly measurable. Let Ze be the subset of elements of the form ((e, z), z, r) of
((X0×{∗})q (Xnd

1 ×T ))×T ×Rnd∞. It is measurable since the diagonal of T ×T is measurable.
On the other hand we have

(M̄v
p )−1(I × U) = f−1(Ze ∩ ((X0 × {∗})q (Xnd

1 × T ))× ((M̄v
p′)
−1(U)))

which together with the inductive assumption shows that (M̄v
p )−1(I × U) is measurable.

The second statement of the following proposition is a reformulation of the second condition of
Theorem 3.7.2 and therefore the proof of this proposition finishes the proof of Theorem 3.7.2.

Proposition 3.7.10 [2009.06.03.1] Let P be a process defined by a generating map E. Then for
any p ∈ X0, any u ≤ w ≤ v in T and any measurable U ⊂ X[w, v], the function

[2009.06.03.eq1]x 7→ µvp,x((resx,w × resw,v)−1({p} × U)) (25)

on [u,w] is measurable.

Proof: Observe that we have

(resx,w × resw,v)−1({p} × U) = jx,vw,v(U)

and
(M̄v

p,x)−1(jx,vw,v(U)) = (M̄v
p )−1(jTmin,vw,v (U)) ∩ {x} ×Rnd∞

therefore

µvp,x((resx,w × resw,v)−1({p} × U)) = P⊗∞Rnd((M̄v
p )−1(jTmin,vw,v (U)) ∩ {x} ×Rnd∞)

which is a measurable function since (M̄v
p )−1(jTmin,vw,v (U)) is a measurable subset by Lemma 3.7.9.

Corollary 3.7.11 [2009.05.28.1] For P as above, the functions hp(−, v) are measurable.

Proof: The function hp(−, v) is the function (25) for w = v and U = {p}.

Lemma 3.7.12 [2009.05.27.4] For u ≤ v in T , n ≥ 1, e ∈ Xnd
n , and two measurable subsets

I ⊂ (u, v] and U ⊂ ∆n−1
(sup(I),v] × {∂1(e)} let

W v
e,u(I, U) = {(x1, . . . , xn) ∈ ∆n

(u,v] × {e} |x1 ∈ I and (x2, . . . , xn) ∈ U}

Let further e1 = ∂n−1
0 (e), p = ∂0(e1) and p′ = ∂1(e1). Then for the pre-process defined by a

generating map E one has

[2009.06.17.eq3]µvp,u(W v
e,u(I, U)) =

∫
x∈I

µvp′,x((resx,sup(I) × ressup(I),v)−1({p′} × U))dθe1,u (26)
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Proof: Let Ωe1 = E−1
p,u({e1} × T ) and let g : Ωe1 → T be the map defined by the condition

Ep,u(r) = (e1, g(r)). We have
(M̄v

p,u)−1(W v
e,u(I, U)) =

= {r ∈ Rnd∞ |E(r1) = (e1, x) ∈ {e1}×I and Mv
p′,x(r2, . . . ) ∈ (resx,sup(I)×ressup(I),v)−1({p′}×U)}

By definition of M̄v
p we have

[2009.06.17.eq2](M̄v
p′,x)−1((resx,sup(I)×ressup(I),v)−1({p′}×U)) = (M̄v

p )−1(U)∩{x}×Rnd∞ (27)

where on the right hand side, U is considered as a subset of ∆n
(Tmin,v] × {∂1(e)}. Therefore,

µvp,u(W v
e,u(I, U)) = P⊗∞Rnd((M̄v

p,u)−1(W v
e,u(I, U))) =

= (P |Ωe1Rnd ⊗ P
⊗∞
Rnd)((g × IdRnd∞)−1((I ×Rnd∞) ∩ (M̄v

p )−1(U)) =

= (θe,u ⊗ P⊗∞Rnd)((I ×Rnd∞) ∩ (M̄v
p )−1(U))

By Fubini’s theorem we have

(θe,u ⊗ P⊗∞Rnd)((I ×Rnd∞) ∩ (M̄v
p )−1(U)) =

∫
x∈I

P⊗∞Rnd((M̄v
p )−1(U) ∩ {x} ×Rnd∞)dθe,u

and applying again (27) we conclude that (26) holds.

Proposition 3.7.13 [2009.05.27.3] For the pre-process on (X,T ) defined by a generating map E
with the underlying kernel θ and u ≤ v in T one has

1. for any p ∈ X0,
hp(u, v) = µvp,u(Uvp,u) = 1−

∑
e∈Xnd

1 | ∂0(e)=p

θe,u((u, v])

2. for any n ≥ 1, e ∈ Xnd
n and any sequence of measurable subsets I1, . . . , In in (u, v] such that

sup(Ii) < inf(Ii+1) one has
µvp0,u(Uve,u(I1, . . . , In)) =

=
∫
x1∈I1

. . .

∫
xn∈In

hpn(xn, v)dθen,xn−1 . . . θe1,u

where
Uve,u(I1, . . . , In) = {x1, . . . , xn ∈ ∆n

(u,v] × {e} |xi ∈ Ii},

ei = ∂n−i0 ∂i−1
1 (e), p0 = ∂n0 (e), pn = ∂n1 (e)

Proof: To prove the first part observe that

(M̄v
p,u)−1({p}) = Ωv

p,u,0 = {r ∈ Rnd∞ |E(u, p, r1) ∈ (T>v ×Xnd
1 )q ({∗} ×X0)

and therefore

µvp,u({p}) = PRnd(Rnd\E−1
u,p((u, v]×Xnd

1 ))) = 1−
∑

e∈Xnd
1 | ∂0(e)=p

θe,u((u, v])
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To prove the second part observe that for e ∈ Xnd
1 one has

Uve,u(I1) = W v
e,u(I1, {p1})

and
(resx1,sup(I1) × ressup(I1),v)

−1({p1} × {p1}) = {p1}

and for n > 1
Uve,u(I1, . . . , In) = W v

e,u(I1, U
v
∂1(e),sup(I1)(I2, . . . , In))

and

(resx1,sup(I1) × ressup(I1),v)
−1({p1} × Uv∂1(e),sup(I1)(I2, . . . , In)) = Uv∂1(e),x1

(I2, . . . , In)

Therefore, by Lemma 3.7.12 we have for e ∈ Xnd
1

[2009.05.27.eq1]µvp0,u(Uve,u(I1)) = µvp0,u(W v
e,u(I1, {p1})) =

∫
x1∈I1

µvp1,x1
({p1})dθe,u (28)

and for e ∈ Xnd
n where n > 1,

µvp0,u(Uve,u(I1, . . . , In)) = µvp0,u(W v
e,u(I1, U

v
∂1(e),sup(I1)(I2, . . . , In))) =

=
∫
x1∈I1

µvp1,x1
(Uv∂1(e),x1

(I2, . . . , In))dθe1,u

which by easy induction implies the second part of the proposition.

Corollary 3.7.14 [2009.05.27.7] For any renewal pre-process the functions hp(u,−) are right
continuous.

Proof: It follows from the first part of the proposition since the distribution function defined
through closed intervals is right continuous and the difference of two right continuous functions is
right continuous.

Corollary 3.7.15 [2009.05.27.5] Under the assumption of the proposition we have for any u ≤ v
in T and e ∈ Xnd

1 ,
λve,u = θe,u ∗ h∂1(e)(−, v)

Proof: It is the equivalent to (28).

Proposition 3.7.16 [2009.06.19.1] Let P be a process defined by a generating kernel θ. Then
for any u ≤ v in T and any e ∈ Xnd

1 one has

θe,u([u, v]) = limA∈ST1([u,v])

∑
a∈A

λsup(I(a))
e,u (I(a))

Proof: Let p = ∂0(e) and p′ = ∂1(e). We have

λsup(I(a))
e,u (I(a)) = P⊗∞Rnd((M̄ sup(I(a))

p,u )−1(I(a) ⊂ ∆1
(u,sup(I(a))] × {e}) =

= P⊗∞Rnd({r |Ep,u(r1) = (x, e) s.t. x ∈ I(a) and Ep′,x(r2) ∈ {p′ × ∗} q (Xnd
1 × T>sup(I(a)))}) =
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= P⊗2
Rnd({(r1, r2) |Ep,u(r1) = (x, e) s.t. x ∈ I(a) and Ep′,x(r2) ∈ {p′ × ∗} q (Xnd

1 × T>sup(I(a)))})

Since intervals I(a) are disjoint so are the subsets (M̄ sup(I(a))
p,u )−1(I(a)) and therefore∑

a∈A
λsup(I(a))
e,u (I(a)) =

= P⊗2
Rnd({(r1, r2) |Ep,u(r1) = (x, e) s.t. x ≤ v and Ep′,x(r2) ∈ {p′ × ∗} q (Xnd

1 × T>a(x))})
where a(x) = sup(I(a)) for a such that x ∈ I(a). On the other hand

[2009.0616.eq2]θve,u([u, v]) = PRnd({r1 |Ep,u(r1) = (e, x) s.t. x ≤ v}) (29)

Let A be such that for all a ∈ A one has sup(I(a))− inf(I(a)) < ε. Then

|θve,u([u, v])−
∑
a∈A

λsup(I(a))
e,u (I(a))| ≤ P⊗2

Rnd({(r1, r2) |Ep,u(r1) = (x, e) and Ep′,x(r2)− x < ε})

We have
∩∞n=1P

⊗2
Rnd({(r1, r2) |Ep,u(r1) = (x, e) and Ep′,x(r2)− x < 1/n}) = ∅

and from σ-additivity of P⊗2
Rnd we conclude that

limA∈ST1([u,v])|θve,u([u, v])−
∑
a∈A

λsup(I(a))
e,u (I(a))| = 0.

Corollary 3.7.17 [2009.07.13.1] The pre-processes defined by generating maps E, E′ coincide if
and only if the generating kernels θ, θ′ defined by E and E′ coincide.

Lemma 3.7.18 [2009.05.27.6] A for a renewal pre-process the functions υp(u,−) are right con-
tinuous and υp(u, u) = 1.

Proof: By construction we have

υp(u, v) = P⊗∞Rnd(Ωv
p,u,∞)

and one observes easily that

[2009.05.27.eq2] ∪δ↓0 Ωv+δ
p,u,n = Ωv

p,u,n (30)

for all n ≥ 1 and all p. Therefore by σ-additivity of P⊗∞Rnd we conclude that

limε↓0υp(u, v + ε) = υp(u, v)

i.e. υp(u,−) is right continuous. The fact that υp(u, u) = 1 follows from the obvious equation
Ωu
p,u,n = Rnd∞.

Recall that for e ∈ Xnd
1 and u ≤ v in T we let αve,u denote the measure

αve,u = ((x1, e1)∗(µv∂0(e),u))[u,v]×{e}

where
(x1, e1) : X[u, v]→ ([u, v]×Xnd

1 )q ∗
is the ”first event” map. For p ∈ X0 set:

αvp,u =
∑

e∈Xnd
1 | ∂0(e)=p

αve,u
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Proposition 3.7.19 For any renewal pre-process P , any e ∈ Xnd
1 , any u ≤ w ≤ v in T , any

measurable I in [u,w] and any measurable U ⊂ X[w, v] one has

[2009.05.28.eq1]µvp0,u((x1, e1)−1(U×{e})∩ (resu,vw,v)
−1(U)) =

∫
x∈I

µvp1,x((resx,vw,v)
−1(U))dθe,u (31)

where p0 = ∂0(e) and p1 = ∂1(e).

Proof: We have

µvp0,u((x1, e1)−1(U × {e}) ∩ (resu,vw,v)
−1(U)) = P⊗∞Rnd((M̄v

p0,u)−1((x1, e1)−1(U × {e}) ∩ (resu,vw,v)
−1(U))

and
(M̄v

p0,u)−1((x1, e1)−1(U × {e}) ∩ (resu,vw,v)
−1(U) =

= {r ∈ Rnd∞ |E(p0, u, r1) = (x, e) ∈ I × {e} and (r2, . . . , ) ∈ Ωv
p1,x,∞ and

Mv
p1,x(r2, . . . , ) ∈ (resx,vw,v)

−1(U)})

which implies (31) by Fubini’s theorem.

Corollary 3.7.20 [2009.05.28.3] Under the assumptions of the proposition one has

[2009.05.28.eq2]αve,u = θe,u ∗ υp1(−, v) (32)

Proof: The equation (32) is equivalent to equations∫
x∈[u,w]

υp1(x, v)dθe,u = αve,u([u, v])

for all w ∈ [u, v], which follows from the proposition for U = X[w, v].

Let us consider the following conditions on pre-processes on (X,T ):

C1 For any p ∈ X0, any u ≤ w ≤ v in T , any measurable U in X[u,w]p,∗ one has

µvp,u((resu,vu,w)−1(U)) ≤ µwp,u(U),

C2a For any p ∈ X0 the function hp(u, v) = µvp,u({p}) is measurable in u,

C2b For any p ∈ X0 the function hp(u, v) = µvp,u({p}) is right continuous in v,

C3a For any p ∈ X0 the function υp(u, v) = µvp,u(X[u, v]p,∗) is measurable in u,

C3b For any p ∈ X0 the function υp(u, v) = µvp,u(X[u, v]p,∗) is right continuous in v,

C4a For any e ∈ Xnd
1 and any w ≤ v in T the function

u 7→ λve,u([w, v])

on [Tmin, w] is measurable,

C4b For any e ∈ Xnd
1 and any u ≤ w in T the function

v 7→ λve,u([u,w])

on [w, Tmax] is right continuous.
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Proposition 3.7.21 [2009.06.19.2] Any renewal process satisfies conditions (C1), (C2a), (C2b),
(C4a), (C4b).

Proof: For any p ∈ X0 and u ≤ w ≤ v in T one has

(M̄v
p,u)−1((resu,w)−1(U)) = (Mw

p,u)−1(U) ∩ Ωv
p,u,∞

and therefore, for any measurable U ⊂ X[u,w],

µvp,u((resu,w)−1(U)) = P⊗∞Rnd((M̄v
p,u)−1((resu,w)−1(U)) ≤ P⊗∞Rnd((M̄w

p,u)−1(U)) = µwp,u(U).

This shows that a renewal process satisfies (C1). (C2a) is proved in Corollary 3.7.11. (C2b) is
proved in Corollary 3.7.14. (C4a) follows from Proposition 3.7.10 since

λve,u((w, v]) = µvp,u((resu,w × resw,v)−1({p} × (∆1
(w,v] × {e}))

where p = ∂0(e) and for u < w

λve,u([w, v]) = limx↑wλ
v
e,u((x, v])

To prove (C4b) observe that
λv+ε
e,u ([u,w]) =

= P⊗∞Rnd{r |Ep,u(r1) = (x, e) x ∈ [u,w] Ep′,x(r2) ∈ (X0 × {∗})q (Xnd
1 × T>v+ε)}

and σ-additivity of Rnd⊗∞ implies immediately that

limε↓0λ
v+ε
e,u ([u,w]) = λve,u([u,w])

Lemma 3.7.22 [2009.05.28.5] Let P be a pre-process satisfying (C1). The for any p ∈ X0 and
any u ≤ x0 < x1 < · · · < xn in T one has

n−1∑
i=0

α
xi+1
p,u ((xi, xi+1]) ≤ hp(u, x0)− hp(u, xn)

Proof: By obvious induction it is sufficient to show that for u ≤ w ≤ v one has αvp,u((w, v]) ≤
hp(u,w)− hp(u, v). We have

αvp,u((w, v]) + hp(u, v) = µvp,u({p} q (x1, e1)−1((w, v])) =

= µvp,u((resu,vu,w)−1({p})) ≤ µwp,u({p}) = hp(u,w).

Proposition 3.7.23 [2009.05.28.4] Let P be a pre-process satisfying (C1). Then for any e ∈ Xnd
1

and any u ≤ v the limit

[2009.05.28.eq3]Θe,u(v) = limA∈ST2([u,v])

∑
a∈A

λsup(I(a))
e,u (I(a)) (33)

exists and for p ∈ X0

[2009.05.28.eq4]hp(u, v) +
∑

e∈Xnd
1 (p)

Θe,u(v) ≤ 1 (34)

In particular, Θe,u(−) is a non-negative monotone increasing function bounded by 1.
If P in addition satisfies (C2b) then Θe,u(−) is right continuous.
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Proof: To show that the limit (33) exists in R ∪ {∞} it is sufficient to show that the expression
under the limit is a monotone function of A. Let us show that it is monotone increasing, i.e. for
A′ ⊂ A we have ∑

a∈A
λsup(I(A,a))
e,u (I(A, a)) ≥

∑
a′∈A′

λsup(I(A
′,a′))

e,u (I(A′, a′))

One observes easily that in order to prove this assertion it is sufficient to show that for an interval
I in [u, v] which is closed from the below and B ∈ ST2(I) we have∑

b∈B
λsup(I(b))e,u (I(b)) ≥ λsup(I)e,u (I)

From condition (C1) we have

λsup(I(b))e,u (I(b)) ≥ µsup(I)p0,u ((resu,sup(I)u,sup(I(b)))
−1(I(b))) ≥ λsup(I)e,u (I(b))

and therefore ∑
b∈B

λsup(I(b))e,u (I(b)) ≥
∑
b∈B

λsup(I)e,u (I(b)) = λsup(I)e,u (I)

This proves that Θe,u is well defined. Let us show that it satisfies (34) and in particular that it is
bounded.

Lemma 3.7.24 [2009.05.29.1] For any w ∈ [u, v] and A ∈ ST2([w, v]) one has

hp(u, v) +
∑
a∈A

αsup(I(a))
p,u (I(a)) ≤ hp(u,w) + αwp,u({w})

Proof: Since the infinite sum on the left is the limit over the sums over finite subsets of A it is
sufficient to show that for a sufficiently large finite subset A′ ⊂ A one has∑

a∈A′
αsup(I(a))
p,u (I(a)) ≤ hp(u,w)− hp(u, v) + αwp,u({w})

Without loss of generality we may assume that A′ = {x0, . . . , xn} where x0 = w and xn = v. Then

∑
a∈A′

αsup(I(a))
p,u (I(a)) =

n−2∑
i=0

α
xi+1
p,u ([xi, xi+1)) + αxnp,u([xn−1, xn]) =

=
n−1∑
i=0

α
xi+1
p,u ((xi, xi+1]) +

n−1∑
i=0

α
xi+1
p,u ({xi})−

n−1∑
i=1

αxip,u({xi})

By condition (C1) we have αxip,u({xi}) ≥ αxi+1
p,u ({xi}). Therefore

∑
a∈A′

αsup(I(a))
p,u (I(a)) ≤

n−1∑
i=0

α
xi+1
p,u ((xi, xi+1]) + αx0

p,u({x0}) ≤ hp(u,w)− hp(u, v) + αwp,u({w})

where the last inequality holds by Lemma 3.7.22.

Since αwe,u({w}) = λwe,u({w}) and

αsup(I(a))
e,u (I(a)) ≥ λsup(I(a))

e,u (I(a))
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we conclude from Lemma 3.7.24 that

[2009.05.28.eq5]hp(u, v) +
∑
a∈A

∑
e∈Xnd

1 (p)

λsup(I(a))
e,u (I(a)) ≤ hp(u,w) +

∑
e∈Xnd

1 (p)

λwe,u({w}) (35)

which for w = u implies (34).
Let us consider the question of when Θe,u is right continuous. For v′ ≥ v one has

Θe,u(v′) = limA∈ST2([u,v))

∑
a∈A

λsup(I(a))
e,u (I(a)) + limB∈ST2([v,v′])

∑
b∈B

λsup(I(b))e,u (I(b))

Therefore,

Θe,u(v + ε)−Θe,u(v) = limB∈ST2([v,v+ε])

∑
b∈B

λsup(I(b))e,u (I(b))− λve,u({v})

Since all this differences are non-negative it is sufficient to show that their sum over all e ∈ Xnd
1 (p)

goes to zero with ε. By (35)

limB∈ST2([v,v+ε])

∑
b∈B

∑
e∈Xnd

1 (p)

λsup(I(b))e,u (I(b))−
∑

e∈Xnd
1 (p)

λve,u({v}) ≤ hp(u, v)− hp(u, v + ε)

and we conclude that Θe,u(−) is right continuous if h∂0(e)(u,−) is.

Definition 3.7.25 [condn] Let X be a countable multi-graph and T = [Tmin, Tmax] a time window.
A pre-process on (X,T ) is said to satisfy condition (N) if it satisfies condition (C1) and for any
p ∈ X0 and u ≤ v in T one has

[2009.05.28.eq6]hp(u, v) +
∑

e∈Xnd
1 | ∂0(e)=p

Θe,u(v) = 1 (36)

Consider a collection of monotone increasing, right continuous functions Θe,u : T≥u → R≥0 such
that Θe,u(u) = 0, given for all e ∈ Xnd

1 and u ∈ T . Such a collection corresponds to a collection of
measures θe,u on T determined by the condition

θe,u([Tmin, v]) =
{

Θe,u(v) if u ≤ v
0 if u > v

Assume in addition that the condition

1−
∑

e∈Xnd
1 | ∂0(e)=p

Θe,u(v) ≥ 0

holds. Then there is a unique probability measure θp,u on (X0 × {∗})q (Xnd
1 × T ) such that

(θp,u)|{e}×T =
{
θe,u if ∂0(e) = p
0 otherwise

and

(θp,u)|{p
′}×{∗} =

{
1−

∑
e∈Xnd

1 | ∂0(e)=p θe,u(T ) for p′ = p

0 for p′ 6= p
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Lemma 3.7.26 [2009.06.01.2] Let P be a pre-process satisfying (C1) then for e ∈ Xnd
1 , u ≤ w ≤

v in T and U measurable in [u, v] one has

λwe,u(U) ≥ λve,u(U)

Proof: We have

λwe,u(U) = µw∂0(e),u(U ⊂ ∆1
(u,w] × {e}) ≥ µ

v
∂0(e),u((resu,w)−1(U ⊂ ∆1

(u,w] × {e})) ≥

≥ µv∂0(e),u(U ⊂ ∆1
(u,v] × {e})

Lemma 3.7.27 [2009.06.01.1] Let P be a pre-process which satisfies condition (C1) and (C4b).
Let e ∈ Xnd

1 , u ≤ w ≤ v in T and let Q be a dense subset of [w, v] which contains w and v. Then

Θe,u(v)−Θe,u(w) = limA∈Finw(Q)

∑
a∈A

λsup(I(a))
e,u (I(a))− λwe,u({w})

where Finw(Q) is the set of finite subsets of Q which contain w, considered as a subset of ST2([w, v]).

Proof: It follows easily from the definition of Θ that

Θe,u(v)−Θe,u(w) = limA∈ST2([w,v])

∑
a∈A

λsup(I(a))
e,u (I(a))− λwe,u({w})

It remains to show that

limA∈Finw(Q)

∑
a∈A

λsup(I(a))
e,u (I(a)) = limA∈ST2([w,v])

∑
a∈A

λsup(I(a))
e,u (I(a))

Since the function F (A) =
∑

a∈A λ
sup(I(a))
e,u (I(a)) has the property that F (A) ≥ F (A′) for A ⊂ A′

the limits on the right and left hand sides are supremums of the sets of values of F on ST2([w, v])
and Fin(Q) respectively. In addition since the sum of an infinite set of non-negative numbers is
the supremum of the sums over the finite subsets of this set we have

limA∈ST2([w,v])

∑
a∈A

λsup(I(a))
e,u (I(a)) = limA∈Finw([w,v])

∑
a∈A

λsup(I(a))
e,u (I(a))

where Finw([w, v]) is the set of finite subsets of [w, v] which contain w. It remains to shows that
under the assumption of the lemma one has:

[2009.06.01.eq1]limA∈Finw(Q)

∑
a∈A

λsup(I(a))
e,u (I(a)) = limA∈Finw([w,v])

∑
a∈A

λsup(I(a))
e,u (I(a)) (37)

Let A = {x0, . . . , xn} be a finite subset of [w, v] such that x0 = w and xn = v and let ε > 0. We
will show that there exists a finite subset A′ = {x′0, . . . , x′n} such that x′0 = w, x′n = v, xi ∈ Q and
F (A′) ≥ F (A)− ε, which together with the previous comments implies (37).

Since P satisfies (C4b), the functions λye,u([xi, xi+1] and λye,u([xi+1, xi+1] are right continuous on
y ∈ [xi+1, Tmax] and therefore λye,u([xi, xi+1) is right continuous. Therefore, for any δ > 0 there
exist x′1, . . . , x

′
n−1 such that x′i ≥ xi, x′i ∈ Q and for i = 0, . . . , n− 2

|λx
′
i+1
e,u ([xi, xi+1))− λxi+1

e,u ([xi, xi+1))| < δ
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Set x′0 = w, X ′n = v and A′ = {x′0, x′1, . . . , x′n}. Then one has

λ
x′i+1
e,u ([x′i, x

′
i+1)) = λ

x′i+1
e,u ([xi, xi+1))− λx

′
i+1
e,u ([xi, x′i)) + λ

x′i+1
e,u ([xi+1, x

′
i+1)

for i = 0, . . . , n− 2 and

λx
′
n
e,u([x′n−1, x

′
n]) = λx

′
n
e,u([xn−1, xn])− λx′ne,u([xn−1, x

′
n−1))

(since xn = x′n). Therefore,

F (A′) =
n−2∑
i=0

λ
x′i+1
e,u ([xi, xi+1)) + λx

′
n
e,u([xn−1, xn]) +

n−2∑
i=0

(
(λ
x′i+1
e,u ([xi+1, x

′
i+1)− λx

′
i+2
e,u ([xi+1, x

′
i+1))

)
≥

≥
n−1∑
i=0

λ
x′i+1
e,u ([xi, xi+1)) ≥ F (A)− n · δ

where the first inequality holds by Lemma 3.7.26 and the second one by our choice of x′i’s.

Lemma 3.7.28 [2009.05.30.2] Let P be a pre-process on (X,T ) which satisfies (C1), (C2b) and
(C4a), (C4b). Then the functions Θe,u(v) are measurable as functions of u ∈ T≤v.

Proof: It is sufficient to show that for any y ∈ R≥0 the subset {u ∈ T≤v |Θe,u(v) > y} is
measurable. Let us fix v. For w ∈ T≤v set

F (u,w) =
{

Θe,u(v)−Θe,u(w) if w ≥ v
0 otherwise

Since Θe,u(u) = 0 we have
{u |Θe,u(v) > y} = {u |F (u, u) > y}

Since Θe,u(w) is right continuous in w, F (−,−) is right continuous in the second argument and for
any u such that F (u, u) > y there exists ε such that for all w ∈ [u, u+ ε] we have F (u,w) > y. In
particular, if Q be a dense countable subset in T then

{u |F (u, u) > y} = ∪q∈Q{u |F (u, q) > y}.

It remains to show that the function F (u,w) is measurable in u for u < w. Let Q be a countable,
dense subset of [w, v] which contains w and v. Then by Lemma 3.7.27 we have

F (u,w) = limA∈Finw(Q)

∑
a∈A

λsup(I(a))
e,u (I(a))− λwe,u({w})

For each A the function u 7→
∑

a∈A λ
sup(I(a))
e,u (I(a)) is measurable as the sum of finitely many

measurable functions and we conclude that F (u,w) is measurable as the supremum of a countable
family of measurable functions.
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3.8 Markov pre-processes on multi-graphs

Lemma 3.8.1 [2009.06.14.1] Let X be a multi-graph and T = [Tmin, Tmax] a time window. A
pre-process P = {µ∗∗} on (X,T ) satisfies condition (M) if and only if for any u ≤ w ≤ v in T
and e ∈ Xnd

n , e′ ∈ Xnd
m such that ∂n1 (e) = ∂m0 (e′) and any admissible intervals I1, . . . , In in (u,w],

J1, . . . , Jm in (w, v] one has

µvp,u(Uwe′′,u(I1, . . . , In, J1, . . . , Jm)) = µwp,u(Uwe,u(I1, . . . , In))µvp′,w(Uve′,w(J1, . . . , Jm))

where p = ∂n0 (e), p′ = ∂m0 (e′) and e′′ ∈ Xnd
n+m is such that ∂m0 (e′′) = e and ∂n1 (e′′) = e′.

Proof: For u ≤ w ≤ v in T , p, p′ ∈ X0, e ∈ Xnd
n , e′ ∈ Xnd

m and admissible intervals I1, . . . , In in
(u,w], J1, . . . , Jm in (w, v] we have

(resu,w × resw,v)−1(Uwe,u(I1, . . . , In)× Uve′,w(J1, . . . , Jm)) =

=
{
Uve′′,u(I1, . . . , In, J1, . . . , Jm) if ∂n1 (e) = ∂m0 (e′)
∅ if ∂n1 (e) 6= ∂m0 (e′)

where e′′ ∈ Xnd
n+m is such that ∂m0 (e′′) = e and ∂n1 (e′′) = e′. Together with Lemma 3.6.1 it implies

the claim of the lemma.

Note that for any Uve,u(I1, . . . , In) as above, there exist points wi, i = 1, . . . , n − 1 such that
sup(Ii) < wi < inf(Ii+1) and for any choice of points satisfying these conditions we have

[cut1]Uve,u(I1, . . . , In) = (resu,vu,w1
× · · · × resu,vwn−1,v)

−1(Uw1
e1,u(I1)× · · · × Uven,wn−1

(In)) (38)

where e = (e1, . . . , en). This observation immediately implies that it is sufficient to verify conditions
of Lemma 3.8.1 for n ≤ 1 or m ≤ 1 and that any pre-process on (X,T ) satisfying condition (M) is
determined by the corresponding functions hp(−,−) and measures λve,u.

From property (M) we get for all p ∈ X0 and all u ≤ w ≤ v the equations

υp(u, v) =
∑
p′

φp
′
p (u,w)υp′(w, v)

and
[ob1]hp(u, v) = hp(u,w)hp(w, v) (39)

Since hp(u, v) ≤ υp(u, v) ≤ 1 we conclude that hp(u, v) is monotone increasing in u and monotone
decreasing in v and υp(u, v) are monotone decreasing in v. We will see from examples below (??)
that υp(u, v) need not be monotone in u.

Lemma 3.8.2 [ob00] Let P be a pre-process on (X,T ) satisfying condition (M). Then for any
p, p′ ∈ X0 and any u ≤ w < v in T one has:

1. the function hp(u,w + ε)φp
′
p (w + ε, v) is monotone decreasing in ε and one has

lim
ε↓0

hp(u,w + ε)φp
′
p (w + ε, v) = hp(u,w)φp

′
p (w, v)

2. the function hp(u,w + ε)υp(w + ε, v) is monotone decreasing in ε and one has

lim
ε↓0

hp(u,w + ε)υp(w + ε, v) = hp(u,w)υp(w, v)
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3. the function φp
′
p (u,w + ε)hp′(w + ε, v) is monotone increasing in ε and one has

lim
ε↓0

φp
′
p (u,w + ε)hp′(w + ε, v) = φp

′
p (u,w)hp′(w, v)

Proof: Applying property (M) to U = {p} and V = X[w + ε, v]p,p′ we get

hp(u,w + ε)φp
′
p (w + ε, v) = µvu,p((resu,w+ε × resw+ε,v)−1({p} ×X[w + ε, v]p,p′)).

Since for ε′ ≥ ε one has

(resu,w+ε′ × resw+ε′,v)−1({p} ×X[w + ε′, v]p,p′) ⊂ (resu,w+ε × resw+ε,v)−1({p} ×X[w + ε, v]p,p′)

and

∪ε↓0(resu,w+ε × resw+ε,v)−1({p} ×X[w + ε, v]p,p′) = (resu,w × resw,v)−1({p} ×X[w, v]p,p′)

we conclude that that the first assertion holds. The second assertion follows by the same argument
applied to U = {p} and V = X[w + ε, v]p,∗ and the third to U = X[u,w + ε]p,p′ and V = {p′}.

Recall that P is called non-degenerate υp(u, u) = 1 for all p ∈ X0 and u ∈ T . Since X[u, u] = X0,
a process on (X[∗, ∗], T ) is non-degenerate if and only if hp(u, u) = 1 for all p ∈ X0 and u ∈ T .
A pre-process satisfying condition (M) is non-degenerate if and only if for any p ∈ X0 and u ∈ T ,
hp(u, u) 6= 0 or, equivalently, υp(u, u) 6= 0.

Proposition 3.8.3 [th1] Let P be a non-degenerate pre-process on (X[∗, ∗], T ) satisfying condition
(M). Then the following conditions are equivalent:

1. for any p ∈ X0 the function υp(u, v) is right continuous on T as a function of u and for all
u < Tmax there exists v > u such that υp(u, v) 6= 0,

2. for any p ∈ X0 the function hp(u, v) is right continuous on T as a function of u and for all
u < Tmax there exists v > u such that υp(u, v) 6= 0,

3. for any p, p′ ∈ X0 the function φp
′
p (u, v) is right continuous on T as a function of u and for

all u < Tmax there exists v > u such that υp(u, v) 6= 0,

4. for any p ∈ X0 the function υp(u, v) is right continuous on T as a function of v,

5. for any p ∈ X0 the function hp(u, v) is right continuous on T as a function of v,

6. for any p, p′ ∈ X0 the function φp
′
p (u, v) is right continuous on T as a function of v,

Proof: Observe first that if for u < Tmax there exits v > u such that υp(u, v) 6= 0 then, applying
Lemma 3.8.2(2) for w = u we get

[feqp]limε↓0hp(u, u+ ε)υp(u+ ε, v) = υp(u, v) 6= 0 (40)

which implies that there exists v > u such that hp(u, v) > 0. For any such v we also have
υp(u, v) > 0 and φpp(u, v) > 0.

(1) ⇒ (2) Let u < Tmax and let v be such that hp(u, v) > 0 and υp(u, v) > 0. Since υp(u, v) is
right continuous in u, the equation (40) implies that

(limε↓0hp(u, u+ ε))υp(u, v) = υp(u, v)
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and since υp(u, v) > 0 we conclude that limε↓0 hp(u, u+ ε) = 1 for all u ∈ T , u < Tmax. Therefore
by (39)

limε↓0hp(u+ ε, v) = limε↓0hp(u, u+ ε)−1hp(u, v) = hp(u, v)

i.e. (2) holds.
(3)⇒ (2) Same as (1)⇒ (2) with the use of Lemma 3.8.2(1) for u = w and p = p′.
(2)⇒ (5) Follows from (39).
(5) ⇒ (3) Since hp(u, u) = 1, condition (5) implies that for any u < Tmax there exists v > u

such that hp(u, v) > 0 and therefore υp(u, v) > 0 since υp(u, v) ≥ hp(u, v).
By Lemma 3.8.2(3) for w = u we get

limε↓0hp(u, u+ ε)φp
′
p (u+ ε, v) = φp

′
p (u, v)

for all v > u which together with condition (5) implies that

limε↓0φ
p′
p (u+ ε, v) = φp

′
p (u, v)

i.e. that φp
′
p (u, v) is right continuous in u.

(5)⇒ (1) Same as (5)⇒ (3) using Lemma 3.8.2(2) instead of Lemma 3.8.2(1).
(2)⇒ (6) Let u < w < Tmax and let v be such that hp(w, v) 6= 0. By Lemma 3.8.2(2) for u,w, v

together with the condition that hp′(−,−) is right continuous in the first variable we get

(limε↓0φ
p′
p (u,w + ε))hp′(w, v) = limε↓0φ

p′
p (u,w + ε)hp′(w + ε, v) = φp

′
p (u,w)hp′(w, v)

which implies that
[seqp] lim

ε↓0
φp
′
p (u,w + ε) = φp

′
p (u,w) (41)

or equivalently that φp
′
p (u, v) is right continuous in v.

(6) ⇒ (4) Follows from the fact that υp(u, v) =
∑

p′ φ
p′
p (u, v) by Lemma 3.5.3. ???? wrong

argument?
(4)⇒ (2) Since functions υp′(u, v) are right continuous in v and υp′(u, u) = 1 there exists v > u

such that υp′(u, v) > 0 and hp′(u, v) > 0. Taking in Lemma 3.8.2(3) p 6= p′ and w = u we get

limε↓0φ
p′
p (u, u+ ε)hp′(u+ ε, v) = 0

and since hp′(u+ ε, v) ≥ hp′(u, v) > 0 for all ε we conclude that

[eq020]limε↓0φ
p′
p (u, u+ ε) = 0 (42)

i.e. φp
′
p (u, v) are right continuous in v at v = u for p′ 6= p. Applying Lemma 3.5.3 we conclude

that the same holds for
∑

p′ 6=p φ
p′
p (u, v) and since it holds for

υp(u, v) = φpp(u, v) +
∑
p′ 6=p

φp
′
p (u, v)

we conclude that it holds for φpp(u, v) i.e. that

[teqp]limε↓0φ
p
p(u, u+ ε) = 1 (43)

Applying Lemma 3.8.2(3) for p′ = p and w = u together with (43) we conclude that for all v > u

limε↓0hp(u+ ε, v) = limε↓0φ
p
p(u, u+ ε)hp(u+ ε, v) = hp(u, v)

i.e. that hp(u, v) is right continuous in u.
Proposition is proved.
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Definition 3.8.4 [rcont] A pre-process P on (X[∗, ∗], T ) is called right continuous if for any
p ∈ X0 the function υp(u, v) is right continuous in v.

Note that any process on (X[∗, ∗], T ) is automatically right continuous.

Example 3.8.5 [nonrc] Consider a pre-process P on X[∗, ∗] such that the measures µvp,u(P ) are
concentrated on {p}. Such a pre-process is simply a collection of functions υp(u, v) on T . It satisfies
property (M) if and only if for all u ≤ w ≤ v and all p ∈ X0 one has υp(u, v) = υp(u,w)υp(w, v).
From this it is easy to construct an example of a non-degenerate pre-process satisfying (M) such
that the functions υp(u, v) are right continuous in u but not in v and an example of a degenerate
pre-process satisfying (M) for which functions υp(u, v) are right continuous in v but not in u.

For a pre-process P on (X[∗, ∗], T ) and p ∈ X0 define A(P ;hp) (abbreviated to A(hp)) as the
subset of T which consists of points x such that for all y ∈ T , y < x one has hp(y, x) = 0.

Proposition 3.8.6 [ob2] Let P be a non-degenerate right continuous pre-process satisfying condi-
tion (M) and p ∈ X0. Then for any x ∈ T one has hp(x, Tmax) > 0 or there exists a unique element
a(x, hp) in A(P ;hp) such that a(x, hp) > x and for all y ∈ [x, a(x, hp)) one has hp(x, y) > 0.

Proof: We may assume that hp(x, Tmax) = 0. By Proposition 3.8.3 the function hp(x,−) is right
continuous and since it is non-negative and monotone decreasing the set of zeros of hp(x,−) is of
the form [a, Tmax] for some a = a(x, hp) in (x, Tmax]. It remains to show that a ∈ A(hp). Let y < a.
If y ≤ x then hp(y, a) = hp(y, x)hp(x, a) = 0. If y > x then

hp(x, y)hp(y, a) = hp(x, a) = 0

and since hp(x, y) > 0 we conclude that hp(y, a) = 0 and a ∈ A(hp).

Corollary 3.8.7 [ob2a] Let P be as above and p ∈ X0. Then one has:

1. hp(u, v) = 0 if and only if (u, v] contains an element of A(hp),

2. A(hp) is a T1 subset, in particular it is countable, has a maximal element amax and

T = (qx∈A(hp), x 6=amax [x, a(x, hp))q [amax, Tmax]

For any u < v consider the map

(x1, e1) : X[u, v]\X0 → [u, v]×Xnd
1

which sends (x1, . . . , xn) ∈ ∆(e1,...,en)
(u,v] to x1.

For a pre-process P on (X,T ), e ∈ Xng
1 and u ≤ v denote by αve,u(P ) the measure

αve,u(P ) = (x1, e1)∗((µv∂0(e),u(P ))|X[u,v]\X0)|(u,v]×{e}

For a measurable subset I ⊂ [u, v] we have

(x1, e1)−1(I) = (resu,sup(I) × ressup(I),v)−1((I ⊂ ∆e
(u,sup(I)])×X[sup(I), v]∂1(e),∗)qDv

e,u(I)

where Dv
e,u(I) ⊂ X[u, v]∂0(e),∗ is of the form

Dv
e,u(I) = qn≥2 q(e2,...,en)∈Xnd

n−1, ∂0(e2)=∂1(e) {x ∈ ∆(e,e2,...,en)
(u,v] |x1 ∈ I and x2 ∈ I}

and therefore

[2009.06.15.18]αve,u(P, I) = λsup(I)e,u (P, I)υ∂1(e)(sup(I), v) + µv∂0(e),u(Dv
e,u(I)) (44)
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Lemma 3.8.8 [2009.05.20.2] For any u ≤ v, e ∈ Xnd
1 one has:

[2009.05.20.3]limA∈ST1([u,v])

∑
a∈A

µv∂0(e),u(Dv
e,u(I(A, a))) = 0 (45)

Proof: For any δ > 0 the class of T1 subsets A of [u, v] such that such that for any a ∈ A one has
sup(I(A, a))− inf(I(A, a)) < δ is co-final among all subsets. Let

sk>1,δX[u, v] = qn≥2 qe∈Xnd
n
{x ∈ ∆n

(u,v] |x2 − x1 < δ}

Then for A as above
∪a∈ADv

e,u(I(A, a)) ⊂ sk>1,δX[u, v]

Since subsets Dv
e,u(I(A, a)) are disjoint for different a we conclude that∑

a∈A
µvp0,u(Dv

e,u(I(A, a))) ≤ µvp0,u(sk>1,δX[u, v])

On the other hand
∩δ↓0sk>1,δX[u, v] = ∅

and by σ-additivity of µv∂0(e),u we conclude that (45) holds.

Lemma 3.8.9 [2009.05.20.4] Let I be closed from the below interval of T≤u such that hp1(inf(I), sup(I)) >
0. Then

[2009.05.20.5]limB∈ST2(I)

∑
b∈B

αsup(I)e,u (I(b))υp1(sup(I(b)), sup(I))−1 = limB∈ST1(I)

∑
b∈B

λsup(I(b))e,u (I(b))

(46)
i.e. the corresponding limits exist and are equal.

Proof: By (44) we have
αsup(I)e,u (I(b))υp1(sup(I(b)), sup(I))−1 =

= λsup(I(b))e,u (I(b)) + µsup(I)p0,u (Dsup(I)
e,u (I(b)))υp1(sup(I(b)), sup(I))−1

By our assumption υp1(sup(I(b)), sup(I))−1 is bounded from the above on I which together with
Lemma 3.8.8 shows that

limB∈ST1(I)

∑
b∈B

µsup(I)p0,u (Dsup(I)
e,u (I(b)))υp1(sup(I(b)), sup(I))−1 = 0

and therefore (3.8.9) holds.

Lemma 3.8.10 [2009.05.20.6] Let I be an interval closed from the below such that inf(I) = u
and sup(I) = v and hp1(u, v) > 0. Then

[2009.05.20.7]limB∈ST1(I)

∑
b∈B

αve,u(I(b))υp1(sup(I(b)), v)−1 = limB∈ST1(I)

∑
b∈B

αsup(I(b))e,u (I(b))

(47)
i.e. the corresponding limits exist and are equal.
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Proof: In the view of Lemma 3.8.9, it is sufficient to show that

limB∈ST1(I)

∑
b∈B

(αsup(I(b))e,u (I(b))− λsup(I(b))e,u (I(B, b))) = 0

By definition,
αsup(I(b))e,u (I(b))− λsup(I(b))e,u (I(b)) = µsup(I(b))p0,u (Dsup(I(b))

e,u (I(b)))

and since
Dsup(I(B,b))
e,u (I(B, b))

Proposition 3.8.11 [2009.05.16.12] Let P be a non-degenerate right continuous pre-process on
T = [Tmin, Tmax] which satisfies (M). Then for any u ≤ w ≤ v and any e ∈ Xnd

1 one has

[2009.05.16.16](αve,u)|[u,w] ∗ υp1(−, w) = αwe,u ∗ υp1(−, v)|[u,w] (48)

where p1 = ∂1(e).

Proof: Let p0 = ∂0(e). Since the measures on both sides of (48) are bounded, their equality is
equivalent to the condition that for any x ∈ [u,w] one has∫

y∈[u,x]
υp1(y, w)dαve,u =

∫
y∈[u,x]

υp1(y, v)dαwe,u

In view of Proposition 3.5.15 it is sufficient show that

[2009.05.15.17]limA∈ST2([u,x])|
∑
a∈A

αwe,u(I(a))υp1(sup(I(a)), v)−
∑
a∈A

αve,u(I(a))υp1(sup(I(a)), w)| = 0

(49)

For an interval I ⊂ [u, y] let Uy,p
′

e,u (I) be the subset in X[u, y]p0,p′ given by

Uy,p
′

e,u (I) = (x1, e1)−1(I) ∩ res−1
sup(I),sup(I)({p

′})

If sup(I) ≤ w then by condition (M) we have

[2009.05.16.19]αwe,u(I) = µsup(I)p0,u (U sup(I),p1e,u (I))υp1(sup(I), w) + µwp0,u(qp′ 6=p1Uw,p
′

e,u (I)) (50)

and

[2009.05.16.20]αve,u(I) = µsup(I)p0,u (U sup(I),p1e,u (I))υp1(sup(I), v) + µvp0,u(qp′ 6=p1Uw,p
′

e,u (I)) (51)

Therefore

|
∑
a∈A

αwe,u(I(a))υp1(sup(I(a)), v)−
∑
a∈A

αve,u(I(a))υp1(sup(I(a)), w)| ≤

≤
∑
a∈A

[
µwp0,u(qp′ 6=p1Uw,p

′
e,u (I(a)))υp1(sup(I(a)), v) + µvp0,u(qp′ 6=p1Uv,p

′
e,u (I(a)))υp1(sup(I(a)), w)

]
≤

≤
∑
a∈A

[
µwp0,u(qp′ 6=p1Uw,p

′
e,u (I(a))) + µvp0,u(qp′ 6=p1Uv,p

′
e,u (I(a)))

]
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and since we have
qp′ 6=p1Uw,p

′
e,u (I) ⊂ Dw

e,u(I)

and
qp′ 6=p1Uv,p

′
e,u (I) ⊂ Dv

e,u(I)

we conclude by Lemma 3.8.8 that

limA∈ST2([u,x])|
∑
a∈A

αwe,u(I(a))υp1(sup(I(a)), v)−
∑
a∈A

αve,u(I(a))υp1(sup(I(a)), w)| = 0

For u ∈ T and e ∈ Xnd
1 let A be a T1 subset of T≥u satisfying the condition of Lemma 3.5.10

relative to the T1 subset AT≤u(h∂(e)). Then for any a ∈ A we have

υp1(inf(I(a)), sup(I(a))) ≥ hp1(inf(I(a)), sup(I(a))) > 0

and therefore we may consider the measure

θe,u,A = ⊕a∈A(αsup(I(a))
e,u ∗ υp1(−, sup(I(a)))−1)|I(a)

Proposition 3.8.12 [theta] Let P be a non-degenerate right continuous pre-process which satisfies
(M). Then for any u ∈ T and e ∈ Xnd

1 there exists a unique measure θe,u on T≥u such that for any
v ≥ u one has

[2009.05.17.2]αve,u = (θe,u)|[u,v] ∗ υ∂1(e)(−, v)|[u,v] (52)

i.e. for any u ≤ w ≤ v,

αve,u((u,w]) =
∫
x∈(u,w]

υ∂1(e)(x, v)dθe,u

Proof: By Lemma 3.5.1 and our assumtion that P is right continuous we know that υp(−, v) is
measurable for all p and v. Let p0 = ∂0(e) and p1 = ∂1(e). In view of Corollary 3.8.7 and Lemma
3.5.10 there exists a T1 subset A of T≥u such that for any a ∈ A one has hp1(inf(I(a)), sup(I(a))) >
0. Consider the corresponding partition T≥u = qa∈AI(A, a) of T≥u.

Our condition (52) on θe,u implies that for any a ∈ A we have

(θe,u)|I(a) ∗ υp1(−, sup(I(a)))|I(a) = (αsup(I(a))
e,u )|I(a)

and since υp1(−, sup(I(a)))|I(a) > 0 we conclude that

[2009.05.17.4](θe,u)|I(a) = (αsup(I(a))
e,u )|I(a) ∗ (υp1(−, sup(I(a)))|I(a))

−1 (53)

One observes immediately that there exists a unique measure θe,u on T≥u which satisfies (53) for
all a ∈ A. It remains to check that it satisfies (52) for all v ≥ u. It follows from Proposition 3.8.11.

Lemma 3.8.13 [2009.05.21.1] Let I be a closed from the below interval of T≥u such that hp1(inf(I), sup(I)) >
0. Then one has

θe,u(I) = lim
B∈ST2(I)

∑
b∈B

λsup(I(b))e,u (I(b))
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Proof: Note first that since hp1(inf(I), sup(I)) > 0 we have υp1(−, sup(I)) > 0 on I and

θe,u(I) =
∫
x∈I

υp1(−, sup(I))−1dαsup(I)e,u

By Proposition 3.5.15 we conclude that

θe,u(I) = limB∈ST2(I)

∑
b∈B

αsup(I)e,u (I(b))υp1(sup(I(b)), sup(I))−1

and by Lemma 3.8.9 that
θe,u(I) = lim

B∈ST2(I)

∑
b∈B

λsup(I(b))e,u (I(b)).

Lemma 3.8.14 [2009.05.21.3] Let I = [x, y) be an interval of T≤u and p ∈ X0. Then for any
B ∈ ST2(I) one has

limb′<yhp(u, b′) +
∑
b∈B

∑
e∈Xnd

1 | ∂0(e)=p

λsup(I(b)e,u (I(b)) ≤ hp(u, x) +
∑

e∈Xnd
1 | ∂0(e)=p

λxe,u({x})

Proof: Note first that for any u ≥ a < a′ ≥ y we have

[2009.05.22.1]λye,u((a, a′)) = h∂0(e)(u, a)λye,a((a, a
′)) (54)

and
[2009.05.22.1b]λye,u({a′}) = h∂0(e)(u, a)λye,a({a′}) (55)

for any e ∈ Xnd
1 , and

[2009.05.22.2]hp(a, a′) +
∑

e∈Xnd
1 | ∂0(e)=p

λa
′
e,a((a, a

′)) ≤ υp(a, a′)−
∑

e∈Xnd
1 | ∂0(e)=p

λa
′
e,a(a

′) (56)

for any p ∈ X0.
Consider the function on B given by

F (b′) =
∑

b∈B, b<b′

∑
e∈Xnd

1 | ∂0(e)=p

λsup(I(b)e,u (I(b)) + hp(u, b′) +
∑

e∈Xnd
1 | ∂0(e)=p

λb
′
e,u({b′})

Then
F (x) = hp(u, x) +

∑
e∈Xnd

1 | ∂0(e)=p

λxe,u({x})

and using (54), (55) and (56) we get:

F (b′+)− F (b′) =
∑

e∈Xnd
1 | ∂0(e)=p

λ
b′+
e,u([b′, b′+)) + hp(u, b′+) +

∑
e∈Xnd

1 | ∂0(e)=p

λ
b′+
e,u({b′+})

−hp(u, b′)−
∑

e∈Xnd
1 | ∂0(e)=p

λb
′
e,u({b′}) =

=
∑

e∈Xnd
1 | ∂0(e)=p

λ
b′+
e,u({b′}) + hp(u, b′)

∑
e∈Xnd

1 | ∂0(e)=p

λ
b′+
e,u((b′, b′+)) + hp(u, b′)hp(b′, b′+)+
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∑
e∈Xnd

1 | ∂0(e)=p

λ
b′+
e,u({b′+})− hp(u, b′)−

∑
e∈Xnd

1 | ∂0(e)=p

λb
′
e,u({b′}) ≤

≤
∑

e∈Xnd
1 | ∂0(e)=p

λ
b′+
e,u({b′}) + hp(u, b′)(υp(b′, b′+)−

∑
e∈Xnd

1 | ∂0(e)=p

λ
b′+
e,b′(b

′
+))+

∑
e∈Xnd

1 | ∂0(e)=p

λ
b′+
e,u({b′+})− hp(u, b′)−

∑
e∈Xnd

1 | ∂0(e)=p

λb
′
e,u({b′}) =

= hp(u, b′)(υp(b′, b′+)− 1) +
∑

e∈Xnd
1 | ∂0(e)=p

λb
′
e,u({b′})(h∂1(e)(b

′, b′+)− 1) ≤ 0

Let now b′′ be a limit element of B i.e. b′′ = sup({b′ ∈ B | b′ < b}). Then a similar computation
shows that

limb′<b′′F (b′) =
∑

b∈B, b<b′′

∑
e∈Xnd

1 | ∂0(e)=p

λsup(I(b)e,u (I(b)) + limb′<b′′hp(u, b′)

and therefore

F (b′′)− limb′<b′′F (b′) = hp(u, b′′) +
∑

e∈Xnd
1 | ∂0(e)=p

λb
′′
e,u({b′′})− limb′<b′′hp(u, b′)

On the other hand we have

hp(u, b′′) +
∑

e∈Xnd
1 | ∂0(e)=p

λb
′′
e,u({b′′}) = limε↓0hp(u, b′′ − ε)υp(b′′ − ε, b′′) ≤ limb′<b′′hp(u, b′)

and therefore F (b′′)− limb′<b′′F (b′) ≤ 0. We conclude that for all b′ ∈ B one has

F (b′) ≤ hp(u, x) +
∑

e∈Xnd
1 | ∂0(e)=p

λxe,u({x})

On the other hand a simple computation shows that

limb′∈BF (b′) =
∑
b∈B

∑
e∈Xnd

1 | ∂0(e)=p

λsup(I(b)e,u (I(b)) + limb′<yhp(u, b′)

which finishes the proof of the lemma.

Proposition 3.8.15 [2009.05.22.3] For any y ≥ x ≥ u in T and any e ∈ Xnd
1 one has

[2009.05.22.4]θe,u([x, y)) = lim
A∈ST1([x,y))

∑
a∈A

λsup(I(a))
e,u (I(a)) (57)

and
[2009.05.22.5]θe,u([x, y]) = lim

A∈ST1([x,y])

∑
a∈A

λsup(I(a))
e,u (I(a)) (58)

Proof: The second equation follows from the first one since

θe,u({y}) = λye,u({y})

The first one follows from Lemma 3.8.13 since [x, y] has a T1 subset such that the corresponding
partition splits it into a disjoint union of countably many intervals which satisfy the condition this
lemma.
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Corollary 3.8.16 [2009.05.22.6] For any x ≥ u and any p ∈ X0 one has

[2009.05.22.7]
∑

e∈Xnd
1 | ∂0(e)=p

θe,u([u, x]) ≤ 1− hp(u, x) (59)

Proof: From (3.8.15) and Lemma 3.8.14 we have∑
e∈Xnd

1 | ∂0(e)=p

θe,u([u, x)) ≤ 1− limA∈ST1([u,x))lima∈A,a<xhp(u, a) = 1− lima<xhp(u, a)

and since

lima<xhp(u, a) ≥ hp(u, x) +
∑

e∈Xnd
1 | ∂0(e)=p

λxe,u({x}) = hp(u, x) +
∑

e∈Xnd
1 | ∂0(e)=p

θxe,u({x})

we get (59).

Proposition 3.8.17 [2009.05.22.8] For any v ≥ u in T and e ∈ Xnd
1 one has

λve,u = θe,u ∗ h∂1(e)(−, v)

Proof: For v ≥ x ≥ u we have, by Proposition 3.5.15:

(θe,u∗h∂1(e)(−, v))([u, x]) =
∫
y∈[u,x]

h∂1(e)(y, v)dθe,u = lima∈ST2([u,x])

∑
a∈A

θe,u(I(a))h∂1(e)(sup(I(a)), v)

which equals by (57) and (58) to

lima∈ST2([u,x])

∑
a∈A

λsup(I(a))
e,u (I(a))h∂1(e)(sup(I(a)), v) = lima∈ST2([u,x])

∑
a∈A

λve,u(I(a)) =

= λve,u([u, x])

.

Theorem 3.8.18 [2009.06.02.5] Let X be a countable multi-graph, T = [Tmin, Tmax] a time
window and P = {µp,u} a pre-process on (X,T ) which satisfies condition (M). Then P is a renewal
process if and only if it is non-degenerate, right continuous and satisfies condition (N).

Proof: By Lemma 3.7.18 any renewal process is non-degenerate and right continuous and by
Lemma ?? and Proposition 3.7.13(1) it satisfies condition (N). It remains to show that a non-
degenerate right continuous pre-process P = {µ}p,u satisfying condition (M) is a renewal pre-process.

3.9 rl-sets

To accommodate a number of important examples the constructions of the previous section has to
be generalized from reflexive multi-graphs to objects of a wider class which we call rl-sets.

Let ∆ be the usual category of finite non-empty ordered sets and let Θ be the subcategory in
∆ with the same objects and morphisms being non-decreasing maps f : [i] → [j] whose images
are segments i.e. such that if a, b ∈ Im(f) and a < c < b then c ∈ Im(f). In particular all the
non-decreasing surjections are in Θ and for i < j there are exactly j − i + 1 injections [i] → [j]
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in Θ. One verifies easily that Θ can also be described as the subcategory in ∆ generated by the
injections dnn : {0, . . . , n − 1} ⊂ {0, . . . , n − 1, n}, d0

n : {1, . . . , n} ⊂ {0, 1, . . . , n} and surjections
sin : {0, . . . , n+ 1} → {0, . . . , n} where si(i) = si(i+ 1) = i.

A Θ-set X∗ is a contravariant functor from Θ to Sets. We let ∂0, ∂1 : Xn → Xn−1 denote the
maps corresponding to dnn and d0

n and σni : Xn−1 → Xn the maps corresponding to sin. In what
follows we will write ∂i instead of ∂ni . With this abbreviation, we get the equation

∂0∂1 = ∂1∂0

which implies that any composition of the maps ∂∗∗ going from Xn to Xn−k can be written in a
unique way as ∂i0∂

j
1 where i+ j = k.

An element x ∈ Xn is called degenerate if it belongs to the image of one of the degeneracy maps
σn−1
i : Xn−1 → Xn. We denote the subset of non-degenerate maps of Xn by Xnd

n . A Θ-set is called
an rl-set if it satisfies the Eilenberg-Zilber condition i.e. for any x ∈ Xn there exists a unique pair
(x′, s) where s : [n]→ [m] is a surjection, x′ ∈ Xnd

m and s∗(x′) = x.

Example 3.9.1 [dgrl] Let (∂0, ∂1 : X1 → X0, id : X0 → X1; ∂0 ◦ id = ∂1 ◦ id = Id) be a reflexive
multi-graph. Define maps ∂n0 , ∂

n
1 : Xn → Xn−1 by ∂1

i = ∂i and

∂n0 (e1, . . . , en) = (e1, . . . , en−1)

∂n1 (e1, . . . , en) = (e2, . . . , en)

for n > 1 and maps σni : Xn−1 → Xn by

σni (e1, . . . , en−1) = (e1, . . . , ei−1, σ(pi), ei, . . . , en−1)

where pi = ∂0(ei) for i = 1, . . . , n and pn+1 = ∂1(en).
One verifies easily that the resulting system of sets and maps is an rl-set.

Example 3.9.2 The first two terms X1, X0 of any rl-set form a reflexive-multigraph. We denote
the rl-set defined by this multi-graph by X∗ i.e. X0 = X0, X1 = X1 and for n > 1 we have Xn =
X1 ∂1×∂0 . . . ∂1×∂0 X1. The rl-set generated by this multi-graph coincides with the original one if
and only if the segments of non-degenerate elements are non-degenerate, non-degenerate elements
are determined by their one dimensional segments and any finite sequence of one dimensional
segments with compatible end-points defines an n-dimensional segment.

Example 3.9.3 [srl] Let Y∗ be a simplicial set. A collection of subsets Xn of Yn which is closed
under the boundaries ∂nn and ∂n0 and such that (σin)−1(Xn) ⊂ Xn−1 defines an rl-set. In the rest
of this section we show that any rl-set can be obtained by this construction from an rl-set.

Let φ : Θ→ ∆ be the obvious functor. It defines a pair of adjoint functors (φ∗, φ∗) between Θ-
sets and simplicial sets. For any simplicial set Y the Θ-set φ∗Y is an rl-set by the Eilenberg-Zilber
Lemma. The following proposition shows that any rl-set can be obtained from a simplicial set by
the construction of Example 3.9.3.

Proposition 3.9.4 [dlin] Let X be an rl-set. Then the natural morphism X → φ∗φ
∗X is a

monomorphism and an element x ∈ Xn is degenerate in X if and only if its image in φ∗Xn is
degenerate in φ∗X. In addition, any non-degenerate element of φ∗Xn is the boundary of a non-
degenerate element of Xm for some m ≥ n.
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Proof: Let ∆surj be the subcategory of surjective maps in ∆. Since all morphisms in ∆surj are
epimorphisms the category [m]\∆surj of arrows [m] → [n] under a given object [m] is a partially
ordered set. This partially ordered set is isomorphic to the cube (0→ 1)m or, equivalently, to the
partially ordered set of subsets of {1, . . . ,m}. To establish this isomorphism, a surjection [m]→ [n]
is viewed as a partition of {0, . . . ,m} into n sequential non-empty segments which is obtained by
”erasing” n−m of the elementary intervals [i, i+ 1], i = 0, . . . ,m− 1. For example, the standard
generating surjections sin : [n+ 1]→ [n] correspond to the subsets {i} of {0, . . . , n}.

For a surjection p : [n] → [m] in ∆ define the minimal section sp : [m] → [n] of p setting
sp(i) = min{p−1(i)}. One verifies easily that for a composable pair of surjections [n]

p→ [m]
q→ [k]

one has
[2009.04.20.1]spsq = sqp (60)

Let p : [n]→ [m] be a surjection and f : [m′]→ [m] a morphism. Define commutative square

[n(p, f)]
pf−−−−→ [m′]

fp

y yf
[n]

p−−−−→ [m]

by the condition that for k ∈ {0, . . . ,m} such that p−1(k) ∼= {1, . . . , ik} and f−1 = {1, . . . , jk}
where jk ≥ 1 one has (fpf )−1(k) = (fpp)−1(k) = {1, . . . , j} q{jk} {jk, . . . , jk + ik}, the map to
{1, . . . , ik} maps the first segment to {1} and the rest bijectively and the map to {1, . . . , jk} maps
the first segment bijectively and the second one to jk:

{1, . . . , jk} q{jk} {jk, . . . , jk + ik} −−−−→ {1, . . . , jk} q{jk} {jk}y y
{1} q{1} {1, . . . , ik} −−−−→ {k}

(61)

Then
[msec]fpspf = spf (62)

We have n+ 1 =
∑m

k=0 ik, m
′ + 1 =

∑m
k=0 jk. Therefore, if f is a surjection then

n(p, f) = −1 +
m∑
k=0

(ik + jk − 1) = −1 + n+ 1 +m′ + 1−m− 1 = n+m′ −m.

Let X∗ be a Θ-set. A pair (p, x) where p : [n] � [m] is a surjection and x ∈ Xn defines an
element s∗p(x) ∈ φ∗(X)m. In view of (60) this construction defines a map

[phiuppereq1] lim
[n]�[m]

Xn → φ∗(X)m (63)

where the limit is taken over the category of surjections over [m] in ∆.

Lemma 3.9.5 [phiupper1] For any Θ-set X the maps (63) are bijections. For (p, x) ∈ φ∗(X)m
and f : [m′]→ [m] in ∆ one has

[phiuppereq2]f∗(p, x) = (pf , f∗p (x)) (64)
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Proof: The set φ∗(X)m is the quotient set of the set q[m]→[n]Xn by the equivalence relation

defined by the condition that for [m]
f→ [n0]

g→ [n1] where g is in Θ and x0 ∈ Xn0 , x1 ∈ Xn1 one
has (f, x0) v (gf, x1).

Let f : [m] → [n] be a morphism in ∆. One can easily see that it can be written as [m]
sp→

[n′]
g→ [n] where g a morphism in Θ and p : [n′] → [m] is a surjection such that p−1(m) = {n′}.

This shows that the map (63) is surjective. To show that it is injective it is sufficient to verify that
for two such representations f = g1sp1 = g2sp2 of a morphism f of this form there exist surjections
q1 : [n′′]→ [n′1], q2 : [n′′]→ [n′2] such that q1g1 = q2g2. We have

g1(0) = g1(sp1(0)) = g2(sp2(0)) = g2(0)

g1(n′1) = g1(sp1(m)) = g2(sp2(m)) = g2(n′2)

Since g1, g2 are in Θ we conclude that Im(g1) = In(g2) and therefore surjections with the required
property exist.

The equation 64 follows immediately from (62).

Lemma 3.9.6 [maintd] Let X be a Θ-set. Then X is an rl-set if and only if the maps Xm →
φ∗(X)m are injective and any x ∈ Xm which is degenerate in φ∗(X) is degenerate in X.

Proof: ”If” Follows immediately from the fact that any simplicial set has Eilenberg-Zilber property.
”Only if” By Lemma 3.9.5 we have φ(X)m = lim[n]�[m]Xn. Suppose that X is an rl-set. Then

all maps Xm → Xn for surjections [n]� [m] are injective and therefore Xm → φ∗(X)m is injective.
Let f : [m]� [k] be a surjection and (p : [n]� [k], x ∈ Xn) ∈ φ∗(X)k. By Lemma 3.9.5 we have

f∗(p : [n]� [k], x ∈ Xn) = (pf , f∗p (x)). Suppose that this element lies in Xm i.e. f∗p (x) = p∗f (y) for
y ∈ Xm. We need to show that y is degenerate in X∗. If y is non-degenerate then there is a map
(necessarily surjective one) h : [m′] → [n] such that fp = hpf . From the construction of fp we see
that it is possible only if p is an isomorphism in which case y = f∗(x) which is impossible since f
is a surjection and we assumed y to be non-degenerate.

To finish the proof of the proposition it remains to show that any non-degenerate simplex of
φ∗X is the boundary of a non-degenerate simplex of X. It follows easily from the fact that any
morphism in ∆ can be represented by an injection followed by a morphism from Θ and also by a
surjection followed by an injection.

Example 3.9.7 Let ∆surj be the subcategory of surjective maps in ∆. A Θ-set X is an rl-set if
and only if it takes push-out squares in ∆surj to pull-back squares in sets. In view of the description
of [m]\∆surj given below we know that any push-out square is a ”composition” of squares which
are push-outs of pairs of maps of the form σin. Therefore, X is an rl-set if and only if the maps
sin : Xn → Xn+1 are injective and for 0 ≤ i ≤ j ≤ n one has

Im(sin+1s
j
n = sj+1

n+1s
i
n) = Im(sin+1) ∩ Im(sj+1

n+1)

Example 3.9.8 [univrl] Since any representable functor takes push-out squares to pull-back
squares the Θ-sets Θn represented by objects [n] of Θ are rl-sets. These sets correspond by the
construction of Example 3.9.1 to the ”linear” reflexive graph with non-degenerate base of the form
1→ 2→ . . .→ n. These rl-sets are universal in the same way as simplexes ∆n are universal among
simplicial sets. There is a unique element yn ∈ (Θn)ndn and for any rl-set and any element x ∈ Xn

there exists a unique morphism f : Θn → X such that f(yn) = x.
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The rl-sets Θn can be obtained by the construction of Example 3.9.3 as follows. Take Y = ∆n.
The non-degenerate simplexes of ∆n correspond to non-empty subsets of {0, . . . , n}. The non-
degenerate simplexes of Θn consists of non-empty segments {i, . . . , i+ j} of {0, . . . , n}.

3.10 Path systems defined by countable rl-sets

Note: that X∗ is a path system over X0, notation X[u, v]p,∗, X[u, v]∗,p′ and X[u, v]p,p′ .
Let X∗ be an rl-set and

X[u, v] = qn≥0∆n
(u,v] ×X

nd
n

(note that for u = v we get X[u, v] = X0). For u ≤ u′ ≤ v′ ≤ v define maps resu,vu′,v′ as follows.
Consider a point (x1, . . . , xn; r) of X[u, v]. Then we have

{x1, . . . , xn} ∩ (u, u′] = {x1, . . . , xi}

{x1, . . . , xn} ∩ (v′, v] = {xj+1, . . . , xn}

for some well defined values of i and j (note that j ≥ i and for u′ = v′ we get i = j). Since
X∗ satisfies the Eilenberg-Zilber condition there exist a unique pair (r′, s) where s : [j − i] → [m]
is a surjection and r′ ∈ Xnd

m is an element such that ∂i1∂
n−j
0 (r) = s∗(r′). As noted below order

preserving surjections [m′]→ [m] correspond to (m′ −m)-element subsets I in an ordered set with
m′ elements. In particular, s corresponds to a subset I of {i+1, . . . , j}. We set J = {i+1, . . . , j}\I
and

resu,vu′,v′(x1, . . . , xn; r) = ({xi}i∈J ; r′)

In the case when X∗ is generated by a reflexive multi-graph this construction agrees with the one
given above in terms of right continuous maps. Together with the universal property of the rl-sets
Θn given in Example 3.9.8 it implies that for u ≤ u′ ≤ u′′ ≤ v′′ ≤ v′ ≤ v we have

resu
′,v′

u′′,v′′res
u,v
u′,v′ = resu,vu′′,v′′

In the case when X is countable, the sets X[u, v] have obvious structures of measurable spaces, the
maps res are measurable for these structures (X[∗, ∗], res∗,∗∗,∗) is a path system.

Example 3.10.1 Let X be a simplicial set. Define the [u, v]-geometric realization of X as

|X|[u,v] = qn∆n
(u,v) ×X

nd
n

for u < v and |X|[u,u] = π0(X) for v = u. For [u, v] = [0, 1] we get the usual geometric realization
considered as the disjoint union of the open simplexes of its canonical triangulation.

Let EX be the simplicial set which is the composition of X with the functor {0, . . . , n} 7→
{0, . . . , n} q {n+ 1} such that (EX)n = Xn+1 and (EX)ndn = Xnd

n+1 qXnd
n (cf. [?]).

Then φ∗X[u, v] = |EX|[u,v]. Indeed, for u < v we get

|EX|[u,v] = qn∆n
(u,v) × (EX)ndn = qn∆n

(u,v) ×X
nd
n+1 qXnd

n =

= qn(∆n
(u,v) q∆n−1

(u,v))×X
nd
n = qn∆n

(u,v] ×X
nd
n = φ∗X[u, v]

and for v = u
|EX|[u,u] = π0(EX) = X0 = φ∗X[u, u]
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Example 3.10.2 [univrlp] For u < v we have

Θn[u, v] = ∆n
(u,v] q 2 ·∆n−1

(u,v] q · · · q (n+ 1) ·∆0
(u,v]

For any rl-set X such that the boundaries of non-degenerate elements are non-degenerate, any
e ∈ Xnd

n and any u ≤ w ≤ v the product resu,vu,w × resu,vw,v restricted to ∆e
(u,v] maps it bijectively to

(resu,vu,w × resu,vw,v)(∆e
(u,v]) = qni=0(∆∂n−i0 (e)

(u,w] ×∆∂i1(e)

(w,v])

such that
(resu,vu,w × resu,vw,v)−1(∆∂n−i0 (e)

(u,w] ×∆∂i1(e)

(w,v]) ∩∆e
(u,v] = V v

e,u(w, i)

where
V v
e,u(w, i) = {x1, . . . , xn |u < x1 < · · · < xi ≤ w < xi+1 < · · · < xn ≤ v}

For e ∈ Xnd
n , e′ ∈ Xnd

n′ , u ≤ w ≤ v and again under the assumption that boundaries of non-
degenerate elements are non-degenerate, we get

[preim1](resu,vu,w × resu,vw,v)−1(∆e
(u,w] ×∆e′

(w,v]) = q{f∈Xnd
n+n′ | ∂

n′
0 (f)=e, ∂n1 (f)=e′}V

v
f,u(w, n) (65)

As in the case of X corresponding to a directed multi-graph let

Uve,u(I1, . . . , In) = {(x1, . . . , xn) ∈ ∆e
(u,v] |xi ∈ Ii}

where Ii is a sequence of sub-intervals [yi,−, yi,+] of (u, v] such that yi,+ < yi+1,−. For any such
sequence there exist points wi, i = 1, . . . , n− 1 such that yi,+ < wi < yi+1,− and for any choice of
points satisfying these conditions we have

(resu,vu,w1
×· · ·×resu,vwn−1,v)

−1(Uw1
e1,u(I1)×· · ·×Uven,wn−1

(In)) = q{f∈Xnd
n | ∂

n−i
0 ∂i−1

1 (f)=ei}U
v
f,u(I1, . . . , In)

The following lemma is straightforward.

Lemma 3.10.3 [2009.04.28.1] For any countable rl-set X and any u ≤ v the σ-algebra on X[u, v]
is generated in the strong sense by points {p} ∈ X0 and subsets Uve,u(I1, . . . , In) where n > 0 and
e ∈ Xnd

n .

Let f∗ : X∗ → Y∗ be a morphism of rl-sets. Then f defines a deterministic morphism of the
corresponding path systems as follows. Let u ≤ v. By definition we have

X[u, v] = qn≥0∆n
(u,v] ×X

nd
n

Since Y∗ satisfies the Eilenberg-Zilber condition, for any y ∈ Yn there exist a unique surjection
sy : [n]� [m] and ynd ∈ Y nd

m such that f(x) = s∗(y). As explained in the proof of Proposition 3.9.4
surjections [n] � [m] are in a bijective correspondence with n −m element subsets of {1, . . . , n}.
Let Is be the subset corresponding to s and CIs be its complement. For a sequence (x1, . . . , xn)
denote by s∗(x1, . . . , xn) the sequence which consists of xi with i ∈ CIs.

For r = (x1, . . . , xn;x) ∈ X[u, v] define fvu(r) as the element (s∗y(x1, . . . , xn); ynd) of ∆m
(u,v]×{y

nd}
in Y [u, v].

Lemma 3.10.4 [2009.04.29.6] The family of maps fvu corresponding to a map of rl-sets f : X∗ →
Y∗ is a deterministic morphism of path systems.
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Proof: ???

Lemma 3.10.5 [2009.04.29.7] If f∗ : X∗ → Y∗, g∗ : Y∗ → Z∗ is a composable pair of maps of
rl-sets then (g ◦ f)vu = gvu ◦ fvu .

Proof: ???

Let now f∗ : X∗ → Y∗ be a family of probability kernels of the form

f(x) =
∑
y∈Yn

f(x, y)δy

Define kernels fvu : X[u, v]→ Y [u, v] setting

fvu(x1, . . . , xn;x) =
∑
y∈Yn

f(x, y) · δ(s∗y(x1,...,xn);ynd) =

=
∑
m≤n

∑
s:[n]�[m]

∑
y∈Y ndm

f(x, s∗(y)) · δ(s∗(x1,...,xn);y)

The first representation of fvu(x1, . . . , xn;x) shows that it is a probability measure on Y [u, v] and
therefore fvu is a probability kernel.

Let us re-write fvu in the form

fvu(x1, . . . , xn;x) =
∑

(y1,...,ym;y)∈Y [u,v]

fvu((x1, . . . , xn;x), (y1, . . . , ym; y)) · δ(y1,...,ym;y)

where fvu((x1, . . . , xn;x), (y1, . . . , ym; y)) 6= 0 only if there exists a surjection [n] � [m] such that
(y1, . . . , ym) = s∗(x1, . . . , xn) in which case

[2009.04.30.1]fvu((x1, . . . , xn;x), (y1, . . . , ym; y)) = f(x, s∗(y)) (66)

Let us assume that Y is regular i.e. boundaries of a non-degenerate element are non-degenerate.
Substituting our definition of f∗∗ definition into (20) we see that the collection f∗∗ is a morphism of
path systems if and only if for all u ≤ w ≤ v, x ∈ Xnd

m , y′ ∈ Y nd
n′ , y′′ ∈ Y nd

n′′ , (x1 . . . , xi) ∈ ∆i
(u,w],

(xi+1, . . . , xm) ∈ ∆m−i
(w,v], (y′1, . . . , y

′
n′) ∈ ∆n′

(u,w], (y′′1 , . . . , y
′′
n′′) ∈ ∆n′′

(w,v] one has:∑
{y∈Y nd

n′+n′′ | ∂
n′′
0 (y)=y′ and ∂n

′
1 (y)=y′′}

fvu((x1, . . . , xm;x), (y′1, . . . , y
′
n′ , y

′′
1 , . . . , y

′′
n′′ ; y)) =

= fwu ((x1, . . . , xi; ∂m−i0 (x)), (y′1, . . . , y
′
n′ ; y

′))fvw((xi+1, . . . , xm; ∂i1(x)), (y′′1 , . . . , y
′′
n′′ ; y

′′))

Using (66) we see that fvu is a morphism of path systems if and only if for all u ≤ w ≤ v, x ∈ Xnd
i+j ,

s′ : [i]� [n′], s′′ : [j]� [n′′] one has∑
{y∈Y nd

n′+n′′}

fvu(x, (s′ + s′′)∗(y)) = fwu (∂j0(x), (s′)∗∂n
′

0 (y))fvw(∂i1(x), (s′′)∗∂n
′′

1 (y))

where s′+ s′′ : [i+ j]� [n′+ n′′] is the surjection which corresponds to the subset C(CIs′ ∪CIs′′).
Since

(s′)∗∂n
′

0 (y) = ∂j0(s′ + s′′)∗(y)

(s′′)∗∂n
′′

1 (y) = ∂i1(s′ + s′′)∗(y)

and Y satisfies the Eilenberg-Zilber property we get the following result
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Lemma 3.10.6 [2009.04.30.2] The kernels fvu defined above form a morphism of path systems if
and only if for all u ≤ w ≤ v, i, j ≥ 0, x ∈ Xnd

i+j, y1 ∈ Yi, y2 ∈ Yj one has

[2009.04.30.3]
∑

{y∈Yi+j | ∂j0(y)=y1 and ∂i1(y)=y2}

f(x, y) = f(∂j0(x), y1)f(∂i1(x), y2) (67)

Applying the condition (3.10.6) for i = j = 0 we conclude that for all x ∈ X0 and y ∈ Y0 we have

f(x, y) = f(x, y)2

Together with the condition that
∑

y f(x, y) = 1 this implies that for each x ∈ X0 there is exactly
one y ∈ Y0 for which f(x, y) 6= 0 and for this y we have f(x, y) = 1 i.e. f0 : X0 → Y0 is a
deterministic map.

Applying (3.10.6) for i = 0 and for j = 0 we further conclude that for x ∈ Xnd
n and y ∈ Yn we

have f(x, y) 6= 0 only if
f0(∂n0 (x)) = ∂n0 (y)

and
f0(∂n1 (x)) = ∂n1 (y)

Summing up the equations (3.10.6) over y1 for a given y2 and over y2 for a given y1 we get∑
{y∈Yn | ∂j0(y)=y1}

f(x, y) = f(∂j0(x), y1)

and ∑
{y∈Yn | ∂i1(y)=y2}

f(x, y) = f(∂i1(x), y2)

which is equivalent to commutativity of the squares

Xnd
n

fn−−−−→ Yn

∂j0

y y∂j0
Xn−j

fn−j−−−−→ Yn−j

Xnd
n

fn−−−−→ Yn

∂i1

y y∂i1
Xn−i

fn−i−−−−→ Yn−i

Consider now two families of probability kernels

X∗
f∗→ Y∗

g∗→ Z∗

For u ≤ v, x ∈ Xnd
n and (x1, . . . , xn) ∈ ∆n

(u,v] we have

gvuf
v
u(x1, . . . , xn;x) =

∑
y∈Yn

f(x, y)
∑

z∈Zm(y)

g(ynd, z)δ(s∗z(s∗y(x1,...,xn));znd)

where ynd ∈ Ym(y), and

(g ◦ f)uv (x1, . . . , xn;x) =
∑
z∈Zn

∑
y∈Yn

f(x, y)g(x, y)δ(s∗z(x1,...,xn);znd)

Therefore, the equation
[2009.05.01.1]gvuf

v
u = (g ◦ f)uv (68)
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is equivalent to the condition that for all n ≥ k, xnd ∈ Xnd
n , znd ∈ Zndk and s : [n]� [k] we have∑

n≥m≥k

∑
{J⊂{1,...,n} |CIs⊂J and #J=m}

∑
ynd∈Y ndm

f(x, s∗CJ(y))g(ynd, r∗(znd)) =

[2009.05.01.2] =
∑
y∈Yn

f(x, y)g(y, s∗CI(z
nd)) (69)

where r : [m]� [k] corresponds to the inclusion CIs ⊂ J .
Let us look for the conditions on g which would imply that (68) holds for deterministic morphisms

of rl-sets f .
Consider the case when x ∈ Xnd

n and fn(x) = y for a given y ∈ Yn (e.g. when f is the universal
morphism Θn → Y corresponding to y). Let y = s∗y(y

nd) for ynd ∈ Y nd
m and let J = CIsy . Then

(69) implies that for all k ≤ m, I ⊂ J such that #I = k and all z ∈ Zndk one has

[2009.05.01.4]g(ynd, r∗(znd)) = g(y, s∗y(r
∗(znd))) (70)

where r : [m]� [k] corresponds to the inclusion I ⊂ J and for all I which are not contained in J
one has

[2009.05.01.5]g(y, s∗CI(z)) = 0 (71)

Since Z has the Eilenberg-Zilber property these conditions are equivalent to the commutativity of
the squares

Yn
gn−−−−→ Zn

s∗
x xs∗
Y nd
m

gm−−−−→ Zm

for all s : [n]� [m] and therefore to the commutativity of the squares

[2009.05.01.3]

Yn
gn−−−−→ Zn

s∗
x xs∗
Ym

gm−−−−→ Zm

(72)

Assume that (70) and (71) hold. By (70), the left hand side of (69) equals∑
y∈Yn,I

f(x, y)g(y, s∗CI(z
nd))

where Yn,I is the subset of Yn which consists of y such that I ⊂ CIsy and by (71) the same hold
for the right hand side.

Example 3.10.7 [srl2]Let C be a small category and E be a class of morphisms in C which is closed
under compositions with isomorphisms. Each pair like that defines an rl-setX = X(C, E) as follows.
Consider the nerve N(C) of C. The set of n-simplexes Nn(C) is the set of composable sequences
(f1, . . . , fn) of morphisms of C of length n. Define an equivalence relation w on N(C) saying that
(f1, . . . , fn) is equivalent to (f ′1, . . . , f

′
n) if there is a sequence of isomorphisms (g1, . . . , gn) such that

gi+1fi = f ′igi.
One can easily see that this equivalence relation is compatible with the face and degeneracy

maps and the quotient sets Nn(C)/ w form a simplicial set NN(C). Consider the subsets X(E)n
of NNn(C) which consist of equivalence classes which consist of elements (e1, . . . , en) with ei ∈ E.
These subsets satisfy the conditions of Example 3.9.3 and therefore define an rl-set X(C, E).
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Example 3.10.8 [slr3]More generally, one can define an rl-set starting with a ”gadget” which ...
A gadget can be defined in a several equivalent ways:

1. A gadget is a list of data of the form:

(a) sets X1 and X0,

(b) mappings ∂0, ∂1 : X1 → X0 and id : X0 → X1 such that ∂0 ◦ id = ∂1 ◦ id = IdX0 (for
p, p′ ∈ X0 we let X1(p, p′) denote the set ∂−1

0 × ∂−1
1 ({(p, p′)})),

(c) a mapping G : X0 → Groups,

(d) a mapping which assigns to each p, p′ ∈ X0 a right action X1(p, p′) × G(p) → X1(p, p′)
and a left action G(p′)×X1(p, p′)→ X0(p, p′) such that for all g ∈ G(p) one has

[centereq]g · id(p) = id(p) · g (73)

2. A gadget is a pair of a (small) groupoid A and a functor F : Aop×A→ Sets together with a
mapping which assigns to any p ∈ A an element id(p) ∈ F (p, p) such that for any g ∈ Aut(p)
one has F (g−1, g)(id(p)) = id(p).

To a groupoid A and a functor F : A × Aop → Sets one associates a gadget in the sense of the
first definition in the following way. Note that this construction is well defined only up to an
isomorphism of the resulting gadget. Let X0 be a set of objects of A which contains exactly one
representative of each isomorphism class. Let X1 = q(p,p′)∈X0×X0

F (p, p′). The maps ∂0, ∂1 and
id are defined in the obvious way. For p ∈ X0 set G(p) = AutA(p). The left and right actions are
given by

1. for g ∈ G(p) and x ∈ X0(p, p′) one sets x · g = X0(g, Id)(x),

2. for g ∈ G(p′) and x ∈ X0(p, p′) one sets g · x = X0(Id, g)(x).

A large class of gadgets arises from pairs (C, S) where C is a category and S is a class of morphisms in
C which contains identities and is closed under compositions with isomorphisms. The corresponding
gadget is the one associated with the groupoid Ciso of isomorphisms in C and the functor S which
maps p, p′ ∈ ob(C) to

S(p, p′) = HomC(p, p′) ∩ S
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4 Tonus spaces

4.1 Tonus spaces

Definition 4.1.1 [conus] A conus structure on a set C is an abelian semi-group structure (with
unit 0) together with a map

m : R≥0 × C → C

which makes C into a module over R≥0 i.e. such that

[eqpo1]m(r, x+ y) = m(r, x) +m(r, y) (74)

[eqpo3]m(r + s, x) = m(r, x) +m(s, x) (75)

[eqpo4]m(rs, x) = m(r,m(s, x)) (76)

[eqpo6]m(1, x) = x (77)

[eqpo5]m(0, x) = 0 (78)

When no confusion is possible we write rx instead of m(r, x). A set with a conus structure is called
a conus space.

Definition 4.1.2 [dpo1] A tonus structure on a set C is a topology together with a conus structure
such that the addition and the multiplication by scalars are continuous.

Definition 4.1.3 [dpo2] Let C1, C2 be two conus (resp. tonus) spaces. A morphism f : C1 → C2

is a map (resp. a continuous map) which commutes with addition and multiplication by scalars.

We let T denote the category of tonus spaces.

Proposition 4.1.4 [ppo1] The category T has all limits. The final object of T is the one point
space. For any diagram D of tonus spaces the underlying topological space of lim(D) is the limit of
the corresponding diagram of topological spaces and the same is true for the limit of the underlying
diagram of conus spaces and abelian semi-groups.

Proof: Straightforward.

Proposition 4.1.5 [ppo2] The category T of tonus spaces has colimits. The initial object of T is
the one point space.

Proof: The statement of the proposition follows from Lemmas 4.1.6-4.1.8 below and the usual
reduction of general colimits to inductive colimits, reflexive coequalizers and finite coproducts.

Lemma 4.1.6 [lpo5] Let (Cα, fαβ : Cα → Cβ) be an inductive system of tonus spaces. Let C be
the colimit of this sequence in the category of sets which we consider with the colimit topology and
the obvious operations of addition and multiplication by elements of R≥0. Then C is a tonus space
and a colimit of our sequence in T .

Proof: It follows by direct verification using the fact that inductive colimits commute with finite
products in the category of topological spaces.

65



Lemma 4.1.7 [lpo6] Let C1, C2 be tonus spaces, f, g : C1 → C2 two morphisms and s : C2 → C1

a common section of f and g (i.e. f, g, s form a reflexive coequalizer diagram). Let C be the
coequalizer of f and g in the category of sets which we consider with the coequalizer topology and
the obvious operations of addition and multiplication by elements of R≥0. Then C is a tonus space
and a coequalizer of f and g in T .

Proof: As in the proof of Lemma 4.1.6 everything follows by direct verification from the fact that
reflexive coequalizers commute with finite products.

Lemma 4.1.8 [lpo7] Let C1, C2 be tonus spaces. Let C = C1 × C2 and consider C with the
topology of the product and the obvious operations of addition and multiplication by elements of
R≥0. Then C is a tonus spaces which is both the product and the coproduct of C1 and C2 in T .

Proof: The only non-trivial part of the lemma is that C is the coproduct of C1 and C2 i.e. that
for any tonus space D the map

Hom(C,D) = Hom(C1, D)×Hom(C2, D)

given by the composition with the embeddings C1 → C, C2 → C is bijective. It is clearly injective
and to verify that it is bijective it is enough to prove that a map f : C1 × C2 → D which is
compatible with the algebraic structures and whose restrictions f1, f2 to C1 × {0} and {0} × C2

are continuous is itself continuous. This follows from the fact that f = mD ◦ (f1 × f2) and the
continuity of mD : D ×D → D.

Definition 4.1.9 [grouplike] A tonus space C is called group-like if the underlying semi-group is
a group.

For the basic definitions related to the topological vector spaces and pre-ordered vector spaces we
follow [?].

Lemma 4.1.10 [lpo3] Let V be a group-like tonus space. Then there exists a unique extension of
m : R≥0 × V → V to a continuous map m : R× V → V satisfying the condition

m(r − s, x) = m(r, x)−m(s, x)

and with respect to this map V becomes a topological vector space (over R).

Proof: The uniqueness is obvious. It is also obvious that if m as required exists then it makes V
into a topological vector space. To prove the existence consider the map m̃ : NR×R≥0 × V → V
of the form m̃(r, s, x) = m(r, x) − m(s, x). The algebraic properties of m imply that it has a
decomposition

R≥0 ×R≥0 × V → R× V m→ V

where the first arrow is defined by (r, s) 7→ r − s. Since the first arrow is a strict topological
epimorphism and the composition is continuous we conclude that m is continuous.

Lemma 4.1.11 [lpo4] Let C be a tonus space and let C → VC be the universal map from C as an
abelian semi-group to an abelian group. Then V has a unique structure of a tonus space such that
C → VC is a morphism of tonus spaces. With this structure C → VC is the universal morphism
from C to a group-like tonus space.
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Proof: By (see e.g. []) we may describe VC as the set of equivalence classes of pairs (x, y), x, y ∈ C
such that (x1, y1) ∼= (x2, y2) if and only if there exists u such that x1 + y2 + u = x2 + y1 + u. As
usual we will write x − y for the equivalence class of (x, y). For r ∈ R≥0 set r(x, y) = (rx, ry).
In view of 74 this defines a map R≥0 × VC → VC which takes x − y to rx − ry and one verifies
easily that it satisfies the conditions 75-78. Let π : C × C → VC be the surjection (x, y) 7→ x− y.
Consider VC as topological space with the topology defined by π i.e. such that U is open in VC if
and only if π−1(U) is open in C ×C. The universal properties of this topology imply immediately
that the addition and multiplication by elements from R≥0 are continuous for V and we conclude
that V has a structure of a tonus space such that C → VC is a morphism of tonus spaces. One can
see immediately that such a structure is unique.

Definition 4.1.12 [cancellable] A tonus space C is called pre-group like if the universal map
C → VC is an injection i.e. if the underlying semi-group is a semi-group with cancellation.

Definition 4.1.13 [reduced] A tonus space C is called reduced if it is pre-group like and the
topology on C induced by the map C → VC coincides with the original topology.

Definition 4.1.14 [closedts] A tonus space C is called closed the corresponding universal map
C → VC is a closed embedding.

Clearly any closed tonus space is reduced and any reduced is a pre-group like. It is also clear that
any group-like tonus space is closed. To produced counter-examples to other implications we will
use the following lemma.

Lemma 4.1.15 [need1] Let f : C → V be a monomorphism from a tonus space C to a group-like
tonus space V and let V0 be the set of interior points of f(C) in V . Assume that the following two
conditions hold:

1. the map C0 = f−1(V0)→ V0 is a homeomorphism,

2. for any v ∈ V there exist x, y ∈ V0 such that v = x− y.

Then V (f) : VC → V is an isomorphism.

Proof: Clearly V (f) is bijective as a map of sets and continuous. Let us show that it is open. Let
V0 be the set of interior points of f(C) it is open in V and the restriction of f to C0 = f−1(V0) is
an isomorphism. Consider the diagram:

C0 × C0 V0 × V0

p0

y yq0
VC

V (f)−−−−→ V

where the vertical arrows map (u, v) to u − v and f0 is the restriction of f to C0. Our conditions
imply that q0 is surjective. Since V0 is open in V and the subtraction map V × V → V is open
(follows from the fact that it is isomorphic to the projection V × V → V to one of the factors) we
conclude that q0 is also open. This immediately implies that V (f) is open.

Example 4.1.16 [contr2]Not all reduced tonus spaces are closed. Indeed let C be the subset in R2

which consists of points (x, y) such that x ≥ 0 and y > 0 and the point (0, 0). Considered with the
induced topology and the obvious addition and multiplication by scalars C is a tonus space. Lemma
4.1.15 implies immediately that the embedding C → R2 coincides with the universal embedding to
a group-like tonus space. Therefore C is reduced but not closed.
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Example 4.1.17 [contr1] Not any pre-group like tonus space is reduced. Consider the subset C
in R2 which consists of (x, y) such that x, y ≥ 0. Let further U be the subset of elements of C of
the form (x, 0) where x > 0. Consider the topology on C which is generated by the usual topology
coming from R2 together with the condition that U is open. One verifies immediately that the
addition and multiplication by scalars are continuous in this topology. On the other hand Lemma
?? again implies that the embedding C → R2 is the universal one. Since in the topology on C
induced by this embedding U is not open we conclude that C is pre-group like but not reduced.

Example 4.1.18 [expo1]Not all tonus spaces are pre-group like. Indeed, consider the set {0, 1}
with the discrete topology, the abelian semi-group structure given by 0+0 = 0, 0+1 = 1, 1+1 = 1
and m given by m(r, 0) = 0, m(r, 1) = 1 if r 6= 0 and m(0, 1) = 0. These structures satisfiy all the
conditions of Definition 4.1.2 but the resulting tonus space C is not pre-group like since VC = 0.
We will see below (Lemma 4.1.20) however that all Hausdorf tonus spaces are pre-group like. Note
that the spaces in Examples 4.1.16 and 4.1.17 are both Hausdorf. Thus a Hausdorf tonus space
need not be reduced or closed.

Sending C to (VC , Cred)) where Cred is the image of C in VC considered with the topology induced
from VC we get (by Lemmas 4.1.10, 4.1.11) a functor from tonus spaces to pairs (V,C) where V is
a topological vector space and C is a cone in V . Clearly this functor is a full embedding on the
subcategory of reduced tonus spaces and the pair (V,C) is in the image of this embedding if and
only if any element of V can be written as x − y where x, y are in C. Recall that a pre-ordered
topological vector space is a pair as above such that C is closed in V . Therefore, we get the following
result.

Proposition 4.1.19 [embed1] The category of closed tonus spaces is equivalent to the full sub-
category of the category of pre-ordered topological vector spaces (V,C) such that any element of V
is of the form x− y for x, y ∈ C.

Lemma 4.1.20 [lpo1] Let C be a Hausdorf tonus space then one has:

1. C is pre-group like i.e. for any x, y, u in C such that x+ u = y + u one has x = y

2. m(r, 0) = 0

Proof: Let us denote m(r, x) by rx. Consider the first claim. By 77 and 75 for any positive integer
n we have nx =

∑n
i=1 x. From this by easy induction we get that for x, y, u as above one has

nx+ u = ny + u. By 74 and 76 we get that

x+ (1/n)u = y + (1/n)u

Since C is Hausdorf a sequence may have only one limit and from the continuity of addition and
multiplication by a number and 78 we get

x = x+ 0u = lim
n→∞

(x+ (1/n)u) = lim
n→∞

(y + (1/n)u) = y + 0u = y.

To get the second claim note that by 74 we have r0 + r0 = r0 = r0 + 0 and we conclude from
the first part of the proof that r0 = 0.

Lemma 4.1.21 [hus] Let C be a Hausdorf tonus space C. Then VC is Hausdorf.
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Proof: Consider the natural map π : C × C → VC . If C is Hausdorf then by Lemma 4.1.20 we
have π−1(0) = ∆ where ∆ is the diagonal. Since in a Hausdorf space the diagonal is closed and
since π is a topological epimorphism we conclude that {0} is closed in VC . Since VC is a topological
vector space this implies in the standard way that VC is Hausdorf.

Let C be a conus space and let fα : C → Cα be a collection of conus maps to tonus spaces Cα.
Let t(fα) be the weakest topology on C which makes all the maps fα continuous. It is easy to see
that with this topology C is a conus space. We will say that the topology on C is defined by the
collection fα.

Lemma 4.1.22 [isred1] Let C be a pre-group like conus space and let fα : C → Cα be a collection
of morphisms to reduced tonus spaces. Then C with the induced topology is a reduced tonus space.

Proof: Let C → VC and Cα → Vα be the universal morphisms to group-like spaces. By universality
we get commutative squares

C
fα−−−−→ Cα

p

y ypα
V

gα−−−−→ Vα

such that gα are continuous. Let x ∈ U ⊂ C be an open neighborhood of x in C. We have to show
that there is an open neighborhood U ′ of p(x) in V such that p−1(U ′) ⊂ U . Since the topology
on C is defined by (fα) there exists a finite set α1, . . . , αn and open neighborhoods W1, . . . ,Wn of
fαi(x) in Cα such that U contains ∩f−1

αi (Wi). Since each Cα is assumed to be reduced we have
Wi = p−1

αi (W ′i ) for some W ′i open in Vα. The commutativity of our squares imply now that

∩p−1g−1
α (W ′i ) ⊂ U.

Remark 4.1.23 [impo] It is important to note that (in the notations of Lemma 4.1.22) the uni-
versal topology on V defined by the topology on C need not coincide with the topology induced by
the maps gα : V → Vα. For an example see ??.

In the following lemma we keep the notations of Lemma 4.1.22.

Lemma 4.1.24 [isclosed] Let C be a pre-group like conus space and fα : C → Cα a collection of
maps to closed tonus spaces such that if x ∈ V is an element satisfying gα(x) ∈ Cα for all α then
x ∈ C. Then with the topology defined by (fα), C is a closed tonus space.

Proof: By Lemma 4.1.22 C is reduced. It remains to check that the image of C in V is closed.
Let x ∈ V be an element outside of C. Then by our assumption there exists α such that gα(x) is
outside Cα. Since Cα are closed this implies that there is a neighborhood W of gα(x) which does
not intersect Cα. Then g−1

α (W ) is a neighborhood of x which does not intersect C.

4.2 Embedding Kop → T

Let (X,R) be a measure space and M+(X,R) the set of non-negative measurable functions on
(X,R). It has an obvious structure of a conus space. Define the standard topology on M+(X,R)
by the condition that a set Z is closed if and only if for any sequence fn of elements of Z such that
fn ↑ f we have f ∈ Z.
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4.3 Embedding K → T

Let (X,R) be a measurable space and let M+(X,R) be as above the set of all bounded measures
on (X,R). Any (bounded, non-negative) measurable function f ∈M+(X,R) defines a map

f∗ : M+(X,R)→ R≥0

Define the standard topology on M+(X,R) as the weakest topology which makes all maps of the
form f∗ continuous.

Lemma 4.3.1 [lem4] A map u from a topological space T to M+(X,R) is continuous with respect
to the standard topology if and only if for any f ∈M+(X,R) the composition

f∗ ◦ u : T → R≥0

is continuous.

Lemma 4.3.2 [lem1] The set M+(X,R) considered with the standard topology and the addition
and multiplication by elements of R≥0 defined in the obvious is a closed, Hausdorf tonus space.

Proof: The continuity of the addition and multiplication by scalars follow from Lemma 4.3.1. To
see that the standard topology is Hausdorf consider two measures µ1 and µ2 such that µ1 6= µ2.
Then there is a measurable subset U ∈ R such that µ1(U) 6= µ2(U). Let f be the indicator function
of U . Then for any µ, f∗(µ) = µ(U) and if V1, V2 are two non-intersecting neighborhoods of µ1(U)
and µ2(U) respectively then f−1

∗ (Vi) give us two non-intersecting neighborhoods of µ1 and µ2.
To see that C = M+(X,R) is closed in the corresponding vector space V we need to check that

if µ1, µ2 are two measures such that x = µ1 − µ2 is not in C then there exists a neighborhood N
of x in V such that N ∩ C = ∅. By Lemma 4.1.11, V is universal and therefore any map of the
form f∗ extends to a continuous map f∗ : V → R. Since x is not in C there exists a measurable
subset U ∈ R such that x(U) = µ1(U)− µ2(U) < 0. Let W be a neighborhood of x(U) which lies
in (−∞, 0). Taking f to be the indicator function of U we get a neighborhood f−1

∗ (W ) of x which
does not intersect C.

Remark 4.3.3 [dense]Unless R is finite the image of C = M+(X,R) in the corresponding uni-
versal group-like tonus space V has no internal points i.e. the complement to C in V is dense.

Lemma 4.3.4 [lem2] Let φ : (X,R)→ (Y,S) be a bounded kernel. Then the composition with φ
defines a map

φ∗ : M+(X,R)→M+(Y,S)

which is a morphism of tonus spaces.

Proof: Follows from Lemma 4.3.1.

Remark 4.3.5 [rem1]Consider the metric on M+(X,R) given by

[eqem1]ν(µ1, µ2) = supU∈R|µ1(U)− µ2(U)| (79)

Remark 4.3.6 The proof of Lemma 4.3.4 implies that if φ is a (sub-)stochastic kernel then the
corresponding map M+(φ) does not increase the distances between measures.
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Remark 4.3.7 [rem1]For any point x of (X,R) we have the δ-measure δx concentrated in x.
Evaluating φ∗ on δx we get a measure φ∗(δx) on (Y,S) and one verifies easily that it is exactly
φ(x,−). This shows that for any (X,R), (Y,S) the map

HomK((X,R), (Y,S))→ HomT (M+(X,R),M+(Y,S))

is a monomorphism. We will see below in Theorem 4.3.12 that it is in fact a bijection.

Let µ be a measure on (X,R) and let X =
∐n
i=1Xi be a partition of X into a disjoint union of

measurable subsets. For any δ > 0 denote by U(µ, δ, (Xi)) the set of all measures λ on (X,R) such
that for each i = 1, . . . , n one has

|µ(Xi)− λ(Xi)| < δ.

Clearly U(µ, δ, (Xi)) is an open neighborhood of µ in the standard topology.

Lemma 4.3.8 [lem55] Subsets of the form U(µ, δ, (Xi)) form a fundamental system of open neigh-
borhoods of µ in the standard topology.

Proof: If X =
∐n
i=1Xi and X =

∐m
j=1 Yj are two measurable partitions of X then X =

∐
(Xi∩Yj)

is also a measurable partition of X. Let δ > 0 be a real number and k be an integer such that
k ≥ n and k ≥ m. Let λ be an element of U(µ, δ/k, (Xi ∩ Yj)). Then

|µ(Xi)− λ(Xi)| = |
m∑
j=1

(µ(Xi ∩ Yj)− λ(Xi ∩ Yj)| ≤
m∑
j=1

|(µ(Xi ∩ Yj)− λ(Xi ∩ Yj)| ≤ (m/k)δ ≤ δ

i.e. λ ∈ U(µ, δ, (Xi)). Similarly λ ∈ U(µ, δ, (Yj)) and we conclude that the intersection of two
subsets of the type we consider contains a third subset of the same type.

The standard topology is generated by the maps f∗ : µ 7→
∫
fdµ for bounded non-negative

measurable functions f . In particular for any µ finite intersections of subsets of the form

U(µ, ε, f) = {λ : |
∫
fdµ−

∫
fdλ| < ε}

form a fundamental system of open neighborhoods of µ. It remains to show that any neighborhood
of the form U(µ, ε, f) contains a neighborhood of the form U(µ, δ, (Xi)) i.e. that for any f and any
ε > 0 there exists a partition X =

∐
Xi and δ > 0 such that for any λ satisfying

|µ(Xi)− λ(Xi)| < δ

we have
|
∫
fdµ−

∫
fdλ| < ε.

Without loss of generality we may assume that f(x) < 1 for all x ∈ X. Let n > 0 be an integer.
For k = 0, . . . , n− 1 set Ik = [k/n, (k + 1)/n). Then

[0, 1) =
n−1∐
k=0

Ik

is a measurable partition of the interval [0, 1). Let further Xk = f−1(Ik) and let

fn =
n−1∑
k=0

k/nFk
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where Fk is the indicator function of Xk. By construction we have f(x) ≥ fn(x) and f(x)−fn(x) <
1/n for all x ∈ X. For any λ we have

|
∫
fdµ−

∫
fdλ| ≤ |

∫
(f − fn)dµ−

∫
(f − fn)dλ|+ |

∫
fndµ−

∫
fndλ| ≤

≤ |
∫

(f − fn)dµ|+ |
∫

(f − fn)dλ|+
n−1∑
k=0

k/n|µ(Xk)− λ(Xk)| ≤

≤ µ(X)/n+ λ(X)/n+
n−1∑
k=0

k/n|µ(Xk)− λ(Xk)| ≤

We also have:

λ(X) =
n−1∑
k=0

λ(Xk)| ≤
n−1∑
k=0

|µ(Xk)− λ(Xk)|+
n−1∑
k=0

µ(Xk) =
n−1∑
k=0

|µ(Xk)− λ(Xk)|+ µ(X)

and therefore

|
∫
fdµ−

∫
fdλ| ≤ 2µ(X)/n+

n−1∑
k=0

(k + 1)/n|µ(Xk)− λ(Xk)| ≤

≤ 2µ(X)/n+ (1 + 1/n)
n−1∑
k=0

|µ(Xk)− λ(Xk)|

To find n, δ such that U(µ, δ, (Xk)n−1
k=0) is contained in U(µ, ε, f) it is sufficient now to choose n such

that 2µ(X)/n < ε and then choose δ such that (n+ 1)δ < ε− 2µ(X)/n.

Let M∗(X,R) be the universal group-like tonus space associated with M+(X,R) i.e. the space of
signed measures on (X,R) with the topology defined by the canonical map

p : M+(X,R)×M+(X,R)→M∗(X,R)

For any f ∈ M+(X,R) the map f∗ : M+(X,R) → R≥0 defines a map M∗(X,R) → R which we
will also denote by f∗.

Lemma 4.3.9 [imp1] The topology on M∗(X,R) coincides with the topology defined by the linear
functionals f∗ for f ∈M+(X,R).

Proof: Let µ = µ+−µ− be an element of M∗(X,R) and U be a subset in M∗(X,R) which contains
µ and such that p−1(U) is open in M+(X,R) ×M+(X,R). We need to verify that there exists a
finite set f1, . . . , fn of elements of M+(X,R) and δ > 0 such that for any λ = λ+−λ− in M∗(X,R)
satisfying

|
∫
fidλ−

∫
fidµ| < δ

for all i = 1, . . . , n, we have λ ∈ U . The condition that p−1(U) is open together with Lemma 4.3.8
implies that there exists ε > 0 and a measurable partition X =

∐m
i=1Xi such that for any pair of

measures λ+, λ− satisfying
|λ+(Xi)− µ+(Xi)| < ε|
|λ−(Xi)− µ−(Xi)| < ε|

one has λ+ − λ− ∈ U .
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Proposition 4.3.10 [tem1] The map f 7→ f∗ gives a bijection

M+(X,R)→ HomT (M+(X,R),R≥0).

Its inverse takes a map φ of tonus spaces to the function f such that for each x ∈ X one has
f(x) = φ(δx).

Proof: Let φ : M+(X,R)→ R≥0 be a morphism.

Corollary 4.3.11 [definedby] Let f, g : M+(X,R) → R≥0 be two morphisms of tonus spaces
which coincide on measures of the form δx for all x ∈ X. Then f = g.

Theorem 4.3.12 [t1] The functor K → T sending (X,R) to M+(X,R) is a full embedding. I.e.
For any measurable spaces (X,R), (Y,S) the map

[mm]HomK((X,R), (Y,S))→ HomT (M+(X,R),M+(Y,S)) (80)

is a bijection. Its inverse takes a map φ of tonus spaces to the kernel ψ such that for each x ∈ X
the measure φ(x,−) is f(δx).

Proof: We already noted in Remark 4.3.7 that the map (80) is injective. To show that it is surjective
consider a morphism φ : M+(X,R)→M+(Y,S) of tonus spaces. Let U be a measurable subset of
Y and let IU be its indicator function. The composition of φ with the morphism M+(Y,S)→ R≥0

defined by IU is, by Proposition 4.3.10 a measurable function on (X,R) whose value on x ∈ X is
φ(δx)(U). Therefore, a map ψ : X × S → R≥0 of the form ψ(x, U) = φ(δx)(U) is a kernel. It
remains to show that the map ψ∗ : M+(X,R) → M+(Y,S) defined by this kernel is φ. We know
that it coincides with φ on delta measures. Since the measurable functions on (Y,S) distinguish
elements of M+(Y,S) it is sufficient to check that the compositions of φ and ψ∗ with any map
M+(Y,S)→ R≥0 coincide. This follows from Corollary 4.3.11.

4.4 Radditive functors on K

Recall that a contravariant functor F from a category C with finite coproducts and initial object
0 is called radditive if F (0) = pt and F (X

∐
Y ) = F (X) × F (Y ). We let R(C) denote the full

subcategory in the category of all contravariant functors formed by radditive functors. For general
properties of radditive functors see [], [].

Lemma 4.4.1 [lrf1] Let C be a category as above and assume that finite coproducts in C coincide
with finite products (in particular pt = 0). Then R(C) is equivalent to the category of contravariant
functors F from C to the category of abelian semi-groups such that F (X

∐
Y ) = F (X)× F (Y ).

Proof: In the case of an additive C (i.e. under the additional assumption that morphisms in C
can be subtracted) the statement is proved in []. The same proof works without subtraction.

4.5 Accessible spaces

4.6 Accessible enrichment of K

Let (X,R), (Y,S) be measurable spaces. For any bounded measure µ on (X,R) and a bounded
measurable function f on (Y,S) consider the map

η(µ, f) : HomK((X,R), (Y,S))→ R≥0
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sending φ to
f ◦ φ ◦ µ : 1→ (X,R)→ (Y,S)→ 1.

Define the standard topology on HomK((X,R), (Y,S)) as the weakest topology with respect to
which all maps η(µ, f) are continuous.

Lemma 4.6.1 [lae1] The set HomK((X,R), (Y,S)) with the standard topology and the obvious
operations of addition and multiplication by scalar is a closed, Hausdorf tonus space.

Proof: ???

Lemma 4.6.2 [lem0] The composition of morphisms in K defines maps of tonus spaces of the
form

HomK((X,R), (Y,S))⊗HomK((Y,S), (Z,T))→ HomK((X,R), (Z,T)).

Proof: ???

Remark 4.6.3 [nottopen] Note that the maps of topological spaces

HomK((X,R), (Y,S))×HomK((Y,S), (Z,T))→ HomK((X,R), (Z,T))

defined by composition of morphisms need not be continuous if we take the standard topology on
the right and the product of the standard topologies on the left.

4.7 Notes

To the relativistic Brownian motion. A physical formulation of the problem. There is a particle p
moving according to the Brownian motion pattern on a physical line L with a marked Borel subset
B. There are three observers X,N1, N2 all moving inertially relative to each other. Observer X
fixes the act of observation of the particle by N1 and the result of the observation (particle is in
point l1 ∈ L). He further fixes an act of observation of the same particle by N2 and bets that N2

observed the particle in B. What is the probability that he won?
The relative velocities of the observers with respect to each other and to the line are known.

Observer X has a clock. For simplicity assume that all the observers are moving along the line L.
Here is another version. There is a physical line L with a ’Brownian motion field’ F . An

experimenter X which is located at point 0 of L and has a clock T creates an apparatus A which
moves along L with a constant speed v. At time s ∈ T the experimenter emits a light signal. When
A receives this signal it places a particle p at its current location on L. From this point on the
movement of p is controlled by F . At time t ∈ T the experimenter emits a second light signal.
When A receives this signal it emits a light signal along L which when it reaches p reflects back.
When A receives the reflected signal it emits a light signal to X who notices the time of its arrival.
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