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Let us look at the standard approach to mathematical modeling of a deterministic process. One
starts with a set X and a family of maps ¢¢1 2 : X — X where ¢1,¢2 are two numbers which are
whose points correspond to the possible states of the system in question. A change in the state of
the system is modeled as a map from this set to itself. A ”process” is usually a family of such maps
— one for each interval [tg, 1] of the line representing time, which satisfy the obvious composition
condition for intervals of the form [to,¢1], [t1,t2] and [to,t2]. For example, any (deterministic)
computer program which takes tg, 1, and the state of the system at time ty as an input and



produces the state of the system at time #; as an output defines a ”process” in the sense specified
above.

If the program we use is not deterministic but uses a random number generator to compute new
values of the variables from the old ones it does not define such a process.

Consider now the case when we have a process whose computer model is based on a randomized
algorithm to produce the new values of the variables from the old ones. As an example we may
look at a simple population dynamics model where the the state of the system is determined by the
number of organisms currently alive, time is discrete and to produce the state at the next moment
of time our algorithm uses a random number generator to determine whether a given organism
survives (with probability p) or dies (with probability 1 — p).

Note that all the notions used in the mathematical description of a deterministic process natu-
rally belong to the language of the category theory: we have a set X and a family of morphisms
(maps) fi,) @ X — X satisfying the composition condition.

The stochastic category described below allows one to repeat the same description in a random-
ized case simply by replacing the category of sets with the stochastic category.

For related material see also [3], [4], [10], [2], [7].

2 Stochastic categories
2.1 The category of measurable spaces
Let us first recall the following definition.

Definition 2.1.1 A og-algebra SR on a set X is a collection of subsets of X satisfying the following
conditions.

1. The empty subset is in R.
2. For a countable family U; of elements of R one has U;U; € *R.
3. For U in R the complement X\U to U in X is in fR.

For a collection R of subsets of X we let cl,(R) denote the smallest o-algebra which contains fR.
For a set of o-algebras R, on X the collection of subsets [, Rq is the largest o-algebra contained
in all R, and we will write

> Ra = clo(UaRa)

for the smallest o-algebra which contains all of the R,,.
Let f: X — Y be a map of sets.

1. For a collection PR of subsets of X we let f(R) denote the collection of subsets of Y of the
form f(U) where U € R,

2. For a collection R of subsets of X we let f4(9R) denote the collection of subsets U of Y such
that f~1(U) € R.

3. For a collection & of subsets of Y we let f~!(&) denote the collection of subsets of X of the
form f~1(U) where U € &.

It is easily seen that if R (resp. &) is a o-algebra then fu(R) (resp. f~1(&)) is a o-algebra. The
collection of subsets f(fR) is usually not a o-algebra.



Definition 2.1.2 The category MS of measurable space is defined as follows:

Objects of MS are measurable spaces i.e. pairs of the form (X,R) where X is a set and R is a
o-algebra of subsets of X.

Morphisms from (X,9R) to (Y, &) are maps of sets f : X — Y such that for each V € & one
has f71(V) € R.

Compositions of morphisms and the identity morphisms correspond to the compositions of maps
of sets and to the identity maps of sets.

The associativity of the composition and the defining property of the identity maps are obvious
and therefore MS is indeed a category.

Sending (X,R) to X we get a functor from MS to the category Sets of sets. This functor has
two adjoints. The right adjoint sends X to (X, {0, X}) and the left adjoint to (X,2%) where 2% is
the set of all subsets of X. We will say that a morphism in MS is surjective, injective or bijective
if the morphism of the underlying sets has the corresponding property.

The measurable spaces (), {0}) and (pt, 2P") give us an initial object and a final object of MS.
To simplify the notation we will write () instead of (0, 2@) and pt instead of (pt, 2P?).

For there are three natural ways to form a new measurable space starting with a family of
measurable spaces (X, Rq):

J1(X0,%Ra) = (J ] Xa> Nataz(Ra))

«

H(Xow Ra) = (H Xas Clcr(Uapr;1 (Ra)))

67

K

H(Xow Ra) = (H Xa, Z la# (Ra))

«

where i, and pr, are the canonical embeddings and projections respectively.

Lemma 2.1.3 /prcopr/ The space [[, (Xa,Ra) is the coproduct of the family (Xq,Rqa) in MS
and the space [[,(Xa,Ra) is the product of the family (Xo,Ra) in MS.

Proof: 777

A categorical meaning for the space Hf (Xa, Re) will be given in Lemma 2.2.13 below.

Theorem 2.1.4 /mscomplete/ The category MS is a complete category i.e. any small diagram
in MS has a limit.

Proof: By [9, Theorem 1, p.113] it is sufficient to show that products and equalizers exist in MS.
By Lemma 2.1.3 we know that products exist.
Let f,g: (X,R) — (Y, &) be a pair of morphisms in MS. Consider the equalizer diagram in
Sets corresponding to f and g
Z5XZY
and define the equalizer of f and g in MS by the formula

leqdefleq(f, g) = (Z,i " (R)) (1)

as in the case of the product one verifies easily that together with the obvious morphism eq(f,g) —
X this measurable space is indeed the equalizer of the morphisms f and g in MS.



Remark 2.1.5 [powerspace| Let X be a set and (Y, &) a measure space. The product of as
many copies of (Y, &) as there are elements in X can also be described in a slightly different way.
Consider the set YX of all maps of sets from X to Y. For any V in & and any x in X let A(z,V)
be the set of all g : X — Y such that g(z) € V. Let & be the o-algebra on YX generated by the
subsets A(z, V). Then our product is given by (Y, &)* = (YX, &%).

Theorem 2.1.6 /mscocomplete/ The category MS is co-complete i.e. any small diagram in
MS has a colimit.

Proof: By [9, Theorem 1, p.113] applied to the category MS? it is sufficient to show that MS
has coproducts and coequalizers. By Lemma 2.1.3 we know that coproducts exist.
Let f,g: (X,R) — (Y,S) be a pair of morphisms in MS. Consider the coequalizer diagram in
Sets corresponding to f and g
xzvy 2z

and define the coequalizer of f and g in MS by the formula

[coeqdef]coeq(f,g) = (Z,p4(6)). (2)

As in the case of the coproduct one verifies easily that together with the obvious morphism
(Y,8) — coeq(f,g) this measurable space is indeed the coequalizer of the morphisms f and ¢ in

MS.

Lemma 2.1.7 /epimonol]/ A morphism f: (X,R) — (Y,8) in MS is an epimorphism (resp. a
monomorphism) if and only if it is surjective (resp. injective).

Proof: The ’if’ part is obvious both for epimorphisms and for monomorphisms. Let us prove the
‘only if’ parts. Assume that f is a monomorphism. Then it is injective since otherwise there would
be two different morphisms from the point pt to X whose compositions with f coincide. Assume that
f is an epimorphism. Then it is surjective since otherwise there would be two different morphisms
from Y to ({0, 1},2{01}) whose compositions with f coincide.

Recall that a morphism X — Y is called an effective epimorphism if X xy X = X TN Y is
a coequalizer diagram and an effective monomorphism if it is an effective epimorphism in the
opposite category.

Lemma 2.1.8 Jepimono2/ A morphism f : (X,R) — (Y,8) in MS is an effective epimorphism
iff it is an epimorphism and & = fu(R). It is an effective monomorphism iff it is a monomorphism

and R = f71(&).

Proof: The statement for the epimorphisms follows from (2) and the statement for the monomor-
phisms from (1).

Example 2.1.9 [bijective] Let X be a set and Ry C R; be two o-algebras on X. Then the
identity of X defines a bijective morphism (X, ;) — (X,9R2). This morphism is an epimorphism
and a monomorphism but unless Ry = fR; it is not an isomorphism.

Proposition 2.1.10 /epimono3/ For any morphism f : (X,R) — (Y,8) there exists a unique
decomposition of the form f = iobop where i is an effective monomorphism, b is a bijection and
p is an effective epimorphism.



Proof: Let X & Z 5 Y be the decomposition of f into a surjection and an injection in the
category of sets. It defines a decomposition of f in the category MS of the form

(X, %) 2 (Zpg(R) > (2,i74(8)) > (V. 6)

which satisfies the conditions of the proposition by Lemmas 2.1.7 and 2.1.8. The uniqueness easily
follows from the same two lemmas.

2.2 Category of kernels

We define the category of kernels K as follows. Objects of K are pairs (X, ) where X is a set and
R is a o-algebra of subsets of X i.e. objects are measurable spaces. Morphisms in K are called
kernels.

Definition 2.2.1 /d1] A kernel f = f(z,U) from (X,R) to (Y, 8) is a function
f==): X x 6 —0,00]
such that for any x € X the function
[, =) U f(z,U)
is a measure on (Y, &) and for any U € & the function
f(=U) x e f(z,U)
is a measurable function on (X, %R).

For a measure p on (X,fR), a measurable function f on the same space and a measurable subset

Y of X we let
/ fdu
Y

denote the integral of f restricted to Y with respect to u.

Lemma 2.2.2 [compl/ Let f be a kernel (X,R) — (Y,8) and g : Y — [0,00] be a non-negative
measurable function on'Y . Then the function

OIS /Y gdf (z, )

is a measurable function on (X, %R).

Proof: Consider the class C of all g such that f*(g) is measurable. By definition of a kernel this
class contains defining functions Iy of subsets U in &. Hence it contains all non-negative simple
functions on (Y,&). The continuity property of the integral (e.g. [1, Th.15.1(iii),p.204]) implies
that if 0 < g, T g where g, are in C then g is in C. By [1, Th.13.5, p.185] the smallest class
satisfying these two properties contains all measurable functions.

Now let f: (X,R) — (Y,6), g: (Y,6) — (Z,%) be two kernels. Consider the function on X x ¥
of the form

[comp2](z, W) v /Y o(— W)df(z, -) 3)
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This function is well defined since g(—, W) is measurable. For each W it is a measurable function
on (X,MR) by Lemma 2.2.2. On the other hand for any x the function

W /Y o(— W)df (z, )

is a measure on (Z,%) by the standard properties of the integral. Therefore, (3) defines a kernel
from (X,fR) to (Z,%) which we denote by go f and call the composition of f and g.

For every (X,fR) the kernel Id which takes = to the measure 6, concentrated in z is the identity
morphism. The following three lemmas imply that our composition is associative and therefore
measure spaces, kernels and compositions (3) define a category. We denote this category by K and
call the category of kernels.

Lemma 2.2.3 [funcmes/ Let p be a measure on (X,R) and f: (X,R) — (Y,6) a kernel. Then
the function f.(u) on & of the form

U /Xf<—,U>dﬂ

is a measure on (Y, S).

Proof: Obvious.

Lemma 2.2.4 ftudysyudy/ Let f: (X,R) — (Y, 8) be a kernel, u a measure on (X,R) and g a
measurable non-negative function on (Y,S). Then one has

[ #@n= [ gar.

Proof: If g is the simple function corresponding to a subset U € & then our equality holds by
definitions. For a general g the result follows by the same continuity argument as in the proof of
Lemma 2.2.2.

Lemma 2.2.5 [assos] The composition of kernels defined by (3) is associative.

Proof: It follows immediately from definitions and Lemma 2.2.4.

For a topological space X we will write simply X instead of the usual (X, B) for the measure
space with the underlying set X and the underlying o-algebra the Borel o-algebra on X. We
will further consider sets as topological spaces with the discrete topology (all subsets are open).
Combining these two conventions we will write X for the measure space with the underlying set X
and the underlying o-algebra of all subsets of X.

Example 2.2.6 [ex0/For any (X,9R) there is a unique kernel from @ to (X,9R). Therefore () is the
initial object of the category of kernels. Since there is a unique measure on () there is also a unique
kernel from any (X,fR) to the empty set i.e. ) is also the final object.

Example 2.2.7 Jex1/We will denote the object of K corresponding to the one element set by 1.
A morphism from 1 to (X, fR) is the same as a measure on (X,R). A morphism from (X,%R) to 1
is a non-negative measurable function or an (unbounded) random variable on (X, fR). In particular

(h11]Hom(1,1) = R>o U {oco} (4)



and for any (X,R) the composition pairing
Hom(1,(X,R)) x Hom((X,MR),1) — Hom(1,1)

takes (, f) to [ fu. Note that the composition on (4) is of the form (a, b) — ab where 0co = o000 = 0
as is usually assumed in measure theory.

Example 2.2.8 [matrixex| Let n be the measure space with the underlying set {1,...,n} and
the o-algebra of all subsets. Then Hom(n,n) is the set of n x n matrices with entries from [0, oo].
The composition is given by the product of matrices.

Example 2.2.9 [exOnew] Let (X,R) be a measurable space and f a non-negative measurable
function on it. Then the mapping which sends a point x of X to the measure f(z)d, is a kernel
which we denote Iy. If u: 1 — (X,9) is a measure on (X,R) the the composition I oy is the
'product measure’ which sends U € R to fU fdp. We will denote this measure by f * p.

Let (X,9R), (Y,S) be measurable spaces and let f : X — Y be a measurable map. Sending x € X
to the measure d;(,) on Y concentrated in f(y) defines a morphism from (X,R) to (Y, &) in K.
To verify the integrability condition note that for a subset U in Y the function x + 67, (U) is
the characteristic function of the subset f~1(U). Hence the second condition of Definition 2.2.1
is equivalent to the condition that f is measurable. This construction defines a functor from the
category of measurable spaces and measurable maps to the category of kernels. To distinguish
morphisms in K which correspond to maps of measure spaces from the general morphisms we will
call the former deterministic morphisms.

Example 2.2.10 fex5/Let p: 1 — (X,R) be a measure on (X,R) and f : (X,R) — (V,6) a
measurable map considered as a kernel. Then fopu = fi(u) is the "direct image” of u with respect

to f.

Example 2.2.11 [retract/Let (X, R) be a measure set and (U, Ry) be a measurable subset of X
considered with the induced o-algebra. Then the embedding (U,Ry) — (X,2R) can be split by a
projection p where p(x, —) is zero for € X — U and is the measure concentrated in z for z € U.
Hence any measurable subset (including the empty one) of a measure space is canonically a retract
of this space in K.

The functor from the category of measurable spaces to K does not reflect isomorphisms i.e. some
morphisms of measurable spaces may become isomorphisms when considered in K. Let (Y, &) be a
measurable space and f : X — Y a be any surjection of sets. Then measures on (X, f~!(&)) are in
one-to-one correspondence with measures on (Y, &). In particular for each point y € Y we have a
measure f, on (X, f71(&)) corresponding to the delta measure 6, on (Y, &). Sending y to f, gives
us a kernel (Y,8) — (X, f71(&)) and one verifies easily that it is inverse to the obvious kernel
(X, f71(&)) — (Y,8). Hence, from the point of view of the category of kernels, the measurable
spaces (Y, &) and (X, f~1(&)) are indistinguishable.

Lemma 2.2.12 [copr/ Let (X, MRa) be a family of measure spaces. The measure space [ [(Xa,Ra)
is the coproduct of the family (Xq,MRa) in K.

Proof: 777

Lemma 2.2.13 [pr] Let (Xo,Ra) be a family of measure spaces. The measure space [[*(Xq, Ra)
is the product of the family (X,,Rq) in K.



Proof: 777

Lemmas 2.2.12 and 2.2.13 together with Example 2.2.6 show that K has both finite products and
finite coproducts which coincide. The set of morphisms between any two objectsis an abelian
semi-group and moreover a "module” over R>o U {oo}. However (since we do not allow negative
measures) morphisms can not be subtracted and therefore K is not an additive category.

Lemmas 2.2.12 and 2.2.13 also imply that the countable products and coproducts in K coincide.

Example 2.2.14 [prcopr2/The set of natural numbers N considered with the o-algebra of all
subsets is both the product and the coproduct of a countable number of copies of 1. The sets
Homy(N,1) and Homy(1,N) can both be identified with the set [0, 00]™N of infinite sequences of
(extended) non-negative real numbers.

Lemma 2.2.15 11/ Let G be a finite group of measurable automorphisms of a measure space
(X,R). Then the measure space (X/G,R%) is the categorical quotient of (X,R) in K with respect
to the action of G.

Proof: 777

2.3 Category of bounded kernels
A kernel f: (X, ) — (Y, 6) is called bounded if the function

Bf:x— f(z,Y)

is a bounded function on X. Note that this condition means in particular that 3y takes only finite
values i.e. that for any x the measure f(x,—) on (Y, &) is finite. The composition of bounded
kernels is bounded and therefore measure spaces and bounded kernels form a subcategory K in K
called the category of bounded kernels.

Lemma 2.3.1 /whenk/ Let (X,R), (Y,8) be two measurable spaces and f : X X & — R>q a
mapping such that for any x € X the map f(x,—) is a measure on (Y,S). Let further S be
a collection of subsets of Y which is closed under finite unions and contains 0 (resp. is closed
under finite intersections and contains Y ) such that cl,(S) = &. Then if the map x — f(z,U) s
measurable for any U € S then f is a kernel.

Proof: 777

For (X,R), (X', ) consider the measure space (X x X', R x R') where R x R’ is the o-algebra
generated by U x V with U € Rand V € R. If f: (X,R) — (V,6) and f : (X', R) —
(Y',&') are bounded kernels define f x f’ as the family which takes (z,2’) to the product measure
flz,=)x f'(«',—) on Y xY’. Standard results about products of finite measures imply that f x [’ is
a bounded kernel. One can easily see that this construction defines a symmetric monoidal structure
on K% which we will denote by ® instead of x to avoid confusion with the categorical product. The
one element set is the unit of this monoidal structure which is why we denote it by 1.

Example 2.3.2 [netl] The standard example of a problem which one encounters if one tries to
define the product of two measures one of which is not necessarily finite can be found in [12, p.78].
The source of the problem seems to lie in the fact that while all measures are continuous with
respect to countable filtered colimits (cf. [12, Lemma 1.10(a)]) only finite measures are continuous



with respect to countable filtered limits ([12, Lemma 1.10(b)]). Since limits are required to produce
measurable subsets of the product of two measure spaces (e.g. the diagonal), a pair of measures on
the factors can not be canonically extended to a measure on the product.

7777

Lemma 2.3.3 kol] Let T be a set, (Y,8) a measurable space and P; a collection of probability
measures on (Y, &) one for eacht € T. Then there exists a unique probability measure P on (Y, &)7
such that for any finite set of pairwise distinct elements ty,...,t, of T and any finite set Vi,...,Vy,
of elements of © one has

P(Miey At Vi) = ] P (Vi)
i=1
where A(t, V) is the set of all f : T —'Y such that f(t) € V.
Proof: See e.g. [11] or [8].

Example 2.3.4 [pathsl] Let 7 be an interval of the real line. Then Y7 is the space of paths in Y.
An elementary measurable subset A(t, V) in (Y, &)7 is the subset of all paths v such that v(t) € V.
More generally N, A(t;, Vi) in Y71 is the subset of all paths which pass through V; at time ¢;.
Lemma 2.3.3 asserts that any non-deterministic path ¢ : ' — (Y, &) defines a measure on (Y, &)7
such that the "size” of N} A(t;, Vi) relative to this measure is the product of the probabilities
(determined by ¢) that ¢; lands in V.

Let ev : (Y,8)X ® X — (Y, &) be the evaluation morphism (g,z) — g(x). Our choice of the
o-algebra on YX implies immediately that it is a measurable map. Consider ff as a morphism

1 — (Y,8)¥. Then the diagram

Id
x Yy e X e x

] |

x 1. (ve

commutes and provides a canonical implementation of the morphism f. The obvious extension of
this construction to bounded kernels (X,2R) — (Y, &) implies the following result.

Lemma 2.3.5 /hasanimpl/ For any bounded kernel f : (X,R) — (Y,S) the diagram

d
x My e ex
Idl lev
/

where py is the measure of Lemma 2.3.3, is an implementation of f.

Remark 2.3.6 For each (X, R) the diagonal (X, R) — (X, R)®(X,R) and the projection (X, R) —
1 make (X,fR) into a (commutative) comonoid in K with respect to the product ®. Note however
that this structure is not natural with respect to morphisms in .



Remark 2.3.7 Let f, : (X4, M) — (Y, 8) be a countable family of morphisms in K°. Our
definitions imply that [] fo is a bounded kernel if and only if the functions 3y, are uniformly
bounded. This observation shows in particular that the coproduct of our family in X is not its
coproduct in .

Similarly for fo : (X,R) — (Ya, &4), the family which sends x to the measure Y fo(z, —) is not
a bounded kernel unless this measure is finite i.e. unless

Z’Bfa < 0

everywhere on X, which shows that the product of our family in K is not its product in K.

One can also see (cf. 2.5.3 below) that sending a family (X,,M,) to the coproduct space
[1(Xa,Ra) is not even a functor from the category of families of objects in K? to K’. These
properties make the category of bounded kernels to be of limited use. Instead one uses the stochastic
category considered in the following section.

Let us also include in this section some very elementary facts about bounded measures on intervals
and their distribution functions. For a measure p on an interval [u, v] of the real line the distribution
function of u is given by

Distr(u)(x) = p([u, )

For any p the function Distr(u) is monotone non-decreasing, right continuous and has the property

that Distr(u)(u) = 0. Conversely, for any function F' with these properties there exists a unique

measure p (called Lebesgue-Stieltjes measure of F') such that Distr(u) = F' (see e.g. [12, p.33-34]).
For any bounded measure p on [u,v] define a function

X0+ [0, ([, 0])] = [u, 0]

by the rule

X: = sup{x € [u,v]| Distr(z) <y}

Then
= (X;1)«(dy)

where dy is the Lebesgue measure on [0, u([u, v])] (see [12, p.34]). This is called Skorokhod repre-
sentation of u.

A measure p is called non-atomic if p({x}) = 0 for any point z. A measure is non-atomic if and
only if its distribution function is continuous.

Lemma 2.3.8 [skorl] Let u be a non-atomic measure and G = Distr(u). Then one has:

1. X;[ is an order preserving embedding whose image is the complement to the disjoint union of
a countable number of intervals of the form [z, z'),

2. Go X+ =1d,
3. Gi(p) =dy

Proof: Since p is non-atomic the function G is continuous. A continuous monotone non-decreasing
function is strictly increasing on the complement of a countable number of intervals of the form
[z,2") and therefore defines an order preserving bijection between this complement and [0, G(v)].
The mapping X T is the composition of the inverse to this bijection with the inclusion of its image
into [u,v] which proves the first two assertions.

To prove the third assertion note that G1([0,y]) = [u, z] where G(x) = y.

10



2.4 The stochastic category
A kernel f : (X,R) — (Y,6) is called stochastic if for any = one has f(z,Y) = 1 i.e. if the

corresponding measures are probability measures (in probability theory such kernels are also known
as Markov kernels). Composition of stochastic kernels is stochastic. The subcategory generated by
stochastic kernels is called the stochastic category. We denote it by S. One may also consider the
category of sub-probability kernels whose morphism are kernels such that f(z,Y) < 1.

Example 2.4.1 [exscl/One obtains an important class of stochastic kernels as follows. Consider
an (idealized) randomized computer algorithm A which takes as an input a sequence of real numbers
r1,...,Tn and produces as an output a sequence of real numbers s1, ..., s,. Let us assume that our
computer has access only to the usual (i.e. equally distributed) random numbers on the interval
I =[0,1]. Then such an algorithm defines a map

a:R™xI*® —=R"

where a(s1,...,8m;p1,-..) is the result our algorithm will produce for the input rq,...,ry, if its
i-th request for a random number gives p;. Consider the usual Lebesgue measure A on I°°. Then
sending every (rq,...,7ry,) to the push-out of A with respect to

. oo n
AY(ry ) xree P 17— R

we get a stochastic kernel a : R™ — R™ which we call the kernel corresponding to A. This kernel
takes (r,U) where r € R™ and U C R" to the probability that our algorithm will produce a result
lying in U when given r = (r1,...,r) as an input.

If A and B are two randomized algorithms such that the output of A can be used as an input
for B we map consider the composed algorithm B o A. It is easy to see that the stochastic kernel
corresponding to B o A is the composition b o a of the stochastic kernels corresponding to A and
B. It is also easy to see that the stochastic kernel corresponding to an algorithm is a deterministic
morphism if and only if our algorithm is essentially deterministic i.e. while it may request random
numbers at some point the output does not depend on which random number it gets.

Note that for a non-empty (X,9R) there are no stochastic kernels from (X, ) to (). Therefore,
while () is an initial object of the stochastic category it is not a finial object. On the other hand for
any (X,fR) there is exactly one stochastic kernel from (X, R) to 1. Therefore, 1 is the final object
of the stochastic category but not of the category of kernels.

For (X,fR) and (X', ) the coproduct (X, R) [[(X’,R’) in K is easily seen too be the coproduct
of (X,R) and (X',R) in the stochastic category. However it is not the product of (X,2) and
(X’,9R) in the stochastic category since the sum of two probability measures is not a probability
measure.

For any measurable map of measure spaces (X,R) — (Y, &) the corresponding morphism in
K is stochastic. Therefore the functor from measurable spaces to the category of kernels factors
through the stochastic category.

Our description of morphisms from infinite coproducts given above implies the following result.

Lemma 2.4.2 13] Let (X,,Ra) be a family of measure spaces. Then [[(Xa,Ra) of this family in
K is also a coproduct in the stochastic category.

Proof: 777
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Note also that the finite group quotients of Lemma 2.2.15 remain quotients in the stochastic
category.

The tensor product of two stochastic kernels is a stochastic kernel and therefore the symmetric
monoidal structure defined above for the category of bounded kernels gives a similar structure on

S.

Example 2.4.3 /markov2/Let G be a set which is finite or countable. We consider G as a measure
space with respect to the o-algebra which contains all subsets of G. Then Homy (G, G) is the set of
matrices (p;j)i jeq such that p;; > 0, for any ¢ the sum p; = Z]- p;j is finite and the set of numbers p;
is bounded. The set Homs(G, G) is the set of stochastic matrices with rows and columns numbered
by elements of G. The composition of kernels corresponds in this description to multiplication of
matrices. If P is an element of this set and f : G — 1 a morphism in K (corresponding to a random
variable by 2.2.7) then the sequence of random variables f,, = f o G™ is called the Markov chain
generated by the stochastic matrix P.

2.5 Branching morphisms and branching category

For a measure space (X,R) let S™(X,R) = (X,R)"/%,, be the n-th symmetric power of (X,R).
For n = 0 we set S°(X,R) := 1 for all (X,fR) including the empty set. We further set

S (x,®) = [[ (X, ®)

n>0
Example 2.5.1 [ex6/We obviously have:
Se(0)=1
and
S*(1)=N

Lemma 2.2.15 shows that for each n, S™(—) is a functor from the category of bounded kernels to
itself. Since S*(X,fR) is the coproduct of S™(X,R) in K we conclude that S*(—) is a functor from
the category of bounded kernels to the category of all kernels. Finally, since coproduct of stochastic
kernels is stochastic we conclude that both the individual symmetric powers S™(X,2R) and the total
symmetric power S*(X,fR) are functors from the stochastic category to itself.

Remark 2.5.2 For a sufficiently nice space (X, R) the space S* (X, R) is isomorphic to the space of
integer-valued measures M ((X,R),Z) on (X, R). This interpretation of the total symmetric power
appears in some probabilistic texts on branching processes (e.g. [5]). The theory of measure valued
branching processes studies the analogs of branching processes with the integer-valued measures
replaced by more general measures.

Remark 2.5.3 [ex7/One can easily see that the total symmetric power S* is not a functor from A
to KP. Indeed consider a kernel a : 1 — 1 where a > 1 (see (4)). Then S™(a) = a” and S*(a) is not
bounded since the volumes of corresponding measures on N are a,a?,... which is an unbounded
function on N.

Definition 2.5.4 [d2/ A branching morphism ¢ from (X,R) to (Y,S) is a morphism in S of the
form (X,R) — S*(Y,6).

12



The functor S*(—) is an extension to S of a functor with the same notation and meaning on
the category of measure spaces and measurable maps to itself. In particular the obvious monad
structure

S*oS5* — S

Id — S°

of the total symmetric power functor on sets defines a monad structure on S* on §. We define the
branching category B as the category of free algebras over S*. The objects of B are again measure
spaces (X,) and morphisms from (X,R) to (Y,S) are the branching morphisms of Definition
2.5.4.

Remark 2.5.5 [notfree| In view of Lemma 2.4.2 algebras over S* are exactly commutative monoids
in § with respect to ®.

We will write ¢ : [X,R] — [V, &] for branching morphisms to distinguish them from morphisms in
KC and S. Let us describe the composition of branching morphisms more explicitly. Observe first
that there is a measurable map of measure spaces

m: S (Y, &) x §(Y,8) — 5*(Y, )

which makes S*(Y, &) into a commutative monoid. In view of Lemma 2.2.15 and the definition of
the symmetric product it shows that any kernel ¢ from (X,%) to S*(Y, &) in K defines a family
of kernels of the form

¢n : S"(X,R) — S (Y,6)

(where we set ¢¢ to be identically 1). If the original kernel is stochastic so are the kernels ¢,, and
therefore by Lemma 2.4.2 they define a kernel

¢ = [ bn: S°(X,R) — 5°(Y,6)
We can now define the composition of two branching morphisms by the rule:
Y op ¢ =1 o .
Forgetting the S* algebra structure defines a functor
F:B—S§
which takes (X, 9R) to S*(X,R) and ¢ to the kernel ¢, defined above.

Example 2.5.6 [ex8/Consider morphisms in the branching category of the form ¢ : [1] — [1].
Since S*(1) = N we may identify this set with the set of probability measures on N. For any ¢ let
pe = Y. pit’ be the generating function of this measure. This construction identifies Hompg([1], [1])
with formal power series S p;t* satisfying p; > 0 and Y. p; = 1. If ¢, 1) two endomorphisms of [1]
in B then one has

[compseries]pgoy = py(ps(t)) (5)

i.e. in this description the composition of morphisms corresponds to the composition of power
series in the reverse order.
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Example 2.5.7 [ex10/The previous example has an immediate generalization to branching mor-
phisms of the form ¢ : [n] — [n] where n := [["_; 1 is the set of n elements considered as a measure
space with respect to the maximal o-algebra. Such morphism is a collection of n probability mea-
sures on N™. If we describe these measures through their generating functions we may identify
Homp([n], [n]) with the set of n-tuples (fi,..., fn) where each f; is a formal power series in n-
variables with non-negative coefficients satisfying the condition f;(1,...,1) = 1. The composition
of morphisms corresponds to the substitution composition for such n-tuples.

For any (X,R) let
n
ferdltr, = Y pri: (X, R — (X, ) (6)
i=1
be the kernel which sends a point (z1,...,z,) to the measure » ;" d,,. For n = 0 we take trg to
be the zero kernel.
The kernel (6) is clearly invariant under the action of the symmetric group and by Lemma 2.4.2

it defines a bounded kernel
try, : S"(X,R) — (X, R)

which sends the point z1, ..., z, to the sum of J-measures d,, + - - -+ 95, (for n = 0 our kernel is 0)
and which we continue to denote by ¢r,. The coproduct of tr,’s is a kernel tr, : S*(X,R) — (X,R).
For a stochastic kernel (X,R) — S*(Y,&) (i.e. for a branching morphism ¢ : [X,R] — [Y,&])
define a kernel

tr(¢) : (X,R) — (¥, 86)
as the composition tr, o ¢.

Lemma 2.5.8 [comm/ For any stochastic kernel f : (X,R) — (Y, &) and any n > 0 the diagram

®n
(x,m)°" L (v, &)=n

trnl ltrn
(X7 %) - (Y7 6)
commutes.

Proof: In view of the definition of tr,, it is sufficient to verify that pr;o f®® = fopr; for all i. More
generally it is sufficient to see that for a kernel f : X — Y and a stochastic kernel f' : X’ — Y’
one has pry o (f ® f') = f o prx i.e. that the square

Xeox' L% yvevy

| [

x L. vy

commutes. Let e be the canonical stochastic kernel from an object to the point. We have

pryo(f@f)=Udy@e)o(fof)=f@(eof)=f®e= foprx

where the third equality holds since e o f' = e eactly means that f’ is stochastic.
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Proposition 2.5.9 [comm?2/ For any ¢ as above the diagram
Se (X, %) —2 Se(V,8)

tr*l tr*J/

2 (v,8)
commautes.

Proof: By definition of ¢, it is sufficient to verify that for any n the diagram

(X, %)% 221, Se(v,&)Fn —T, Se(Y,8)

tryn l try l ltr*

(X, %) —2- S(v,6) - (v,6)

commutes. The right hand side square consists of kernels which take a point to the sum of finitely
many points and it is easy to verify its commutativity explicitly. The left hand side square commutes
by Lemma 2.5.8.

Corollary 2.5.10 /mainl/ For a pair of branching morphisms ¢ : [X,R] — [Y, 6], ¢ : [V, 5] —
[Z,%] one has
tr(y o ¢) = tr(y) o tr(9)

Proof: This follows immediately from the explicit description of the composition of branching
morphisms given above and Proposition 2.5.9.

Example 2.5.11 [ex11/Consider a branching morphism ¢ : [1] — [1] which we describe through
the corresponding probability generating function py = pitt as in Example 2.5.6. Then tr(¢) is
a kernel 1 — 1 i.e. a non-negative number. One can easily see that

tr(¢) = ipi = ply(1)

where pﬁb is the formal derivative of p, with respect to t. In other words, tr(¢) is in this case the
expectation value of ¢. For two morphisms ¢, ¢ of this form Corollary 2.5.10 asserts that

tr(v o ¢) =tr(P)tr(¢).
In view of (5) this follows from the equation
(Pg © py)'(1) = Py ()P (py (1)) = Py (1)p(1)
where the last equation holds since the py (1) = 1 because 1 is a stochastic kernel.

Example 2.5.12 /ex12/Consider now branching morphisms [n] — [n] as in Example 2.5.7. For a
morphism ¢ of this form ¢r(¢) is a kernel n — n i.e. an n x n-matrix (a;;) with entries from [0, oo].
If we represent ¢ a sequence of power series (fi,..., f,) in variables t1, ..., t, then one gets

_Of;
aij = 6Tj(1)

If v = (g1,...,9n) is another such morphism then the statement of Corollary 2.5.10 is again
equivalent to the formula for the differential of a composition combined with the fact that g;(1) = 1
since 1) is stochastic.
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3 Standard notions of probability

3.1 Stochastic processes

Definition 3.1.1 [sproc/ Let T be a subset of R. A stochastic process with time window T and
values in a measurable space (Y, &) is the following collection of data:

1. a measurable space (2,F),
2. a probability measure P : 1 — (Q,F),
3. a measurable map X : (Q,§) — (¥, 6)T.

Two stochastic processes ((,F), P, X) and (¥, §"), P', X') are said to be equivalent in the wide
sense if the corresponding measures X o P, X' o P' on (Y, &)1 coincide.

Since (Y,&)7 is the product of T copies of (Y, &) in MS, specification of a map X is equivalent
to the specification of measurable maps X; : (2, F) — (Y, &), one for each t € T'.

The projections P, ¢, of X o P to the products (Y,&)" corresponding to finite subsets
{t1,...,tn} of T are called finite dimensional distributions (or marginal distributions) of the pro-
cess. Since the product o-algebra on the infinite product is generated in the strong sense by the
pull-backs of the product o-algebras on the corresponding finite products, two stochastic processes
are equivalent in the wide sense if and only if their ”marginal distributions” coincide.

The main result towards the existence of a stochastic process with given family of finite-
dimensional distribution is the following theorem.

Theorem 3.1.2 (Kolmogorov) /koll/ LetY be a separable complete topological space and By be
its Borel o-algebra. Then for any compatible (in the obvious sense) system of probability measures
Py on the spaces (Y, &)* where A runs through finite subsets of T, there exists a unique probability
measure P on (Y, G)T whose partial projections are Pj.

Corollary 3.1.3 [projlim/ Under the assumption of Theorem 3.1.2 the space (Y, &)Y is the in-
verse limit of the system of spaces {(Y, G)A}Aepm(T) in S where Fin(T) is the partially ordered
set of finite subsets of T'.

Proof: Follows immediately from the theorem and Lemma 2.3.1.

For the proof of Theorem 3.1.2 as well as for a discussion of its variants and generalizations see
[11].

An issue which often arises in probability in connection with stochastic processes on some subset
T of the real line is the possibility of finding a process which is equivalent to the given one in the
wide sense and has trajectories lying in some subset C' of (X,9R)? i.e. such that Im(X) C C.

Lemma 3.1.4 [smallertr] Let C be a subset of (Y,R)T. A process ((€,F), P, X) on (YR) with
time window T is equivalent to a process (¥, F'), P', X') satisfying the condition

Im(X")cC
if and only if for any A, B € RT such that ANC = BN C one has X.(P)(A) = X.(P)(B).

Proof: The ’only if” part is obvious. To prove the ’if” part one may take ' = C and § = i~ 1(RT)
where i : C — (Y,R)? is the inclusion.
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3.2 Markov processes - classical approach

Let us start with a definition of a Markov process from [5].
Definition 3.2.1 /dynkindef/ A Markov process is a collection of data of the form:

1. a measurable space X = (X,R),

2. a set (),
3. a function ¢ : 2 — [0, 00,
4. a function x : U(S2, () — X where
U(©,¢) = {({t,w) € [0,00) x Q[ < ((w)}
5. for each s in [0,00) a o-algebra IM® on €,
6. for each s <t in [0,00) a o-algebra M; on Q where

Q ={weQ|(w) >t}

7. for each s € [0,00), x € X a probability measure Py on (Q,9%),
which satisfies the following conditions:
1. for each s <t in [0,00) one has i;(M]) C M® where i, : Q. — Q is the inclusion,

2. for each s <t in [0,00) the map ¢ : (S, M) — (X, R) is measurable,

3.3 Path systems

Let T be a time window i.e. a subset of R. The pairs of elements u, v of T" such that u < v form a
partially ordered set where (v/,v") < (u,v) if &' > u and v < wv. A path system over T" with values
in a category C is a contravariant functor from this partially ordered set to C. In what follows we
will work almost exclusively with path systems with values in the category of measurable spaces
for which we have the following explicit definition.

Definition 3.3.1 /pathsystem]/ Let T be a subset in R. A path system X, over T is a mapping
which assigns to each u < v in T a measurable space Xy, and to each u < v < v < v inT a
measurable map T@SZ}UU, : Xuw — Xuwr, such that resyy = Id and for u < o' <u” <" <o <w
one has 7

TES it 1 = resZ:;z;,, 0TS,
Isomorphisms between path systems are defined in the obvious way. More general morphisms
between path systems can be of different types and will be considered later.

Path systems arise whenever we model some dynamical processes especially under time inho-
mogeneous conditions. The space X, is the space of all possible immediate states of the system
at time u and the space X, is the space of possible, in our model, trajectories or paths with time
window [u,v]. In what follows we will often write X, instead of X, and & instead of res;;” for
u<t<ow.
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Let [u,v]r = {x € T'|u < x < v}. A family of spaces X; given for all ¢ € T" defines a path

system with
Xuv = H Xt
teu,v|r

and resz;vv, being the partial projection maps. This path system will be called the canonical path
system defined by the family X;. In an important case when all X; are the same space X we get a
path system where Xy, = X®%7 is the space of all maps from [u,v]7 to X.

Many of path systems which one encounters are sub-objects of the canonical path system defined
by a single space X. For example, if X is a topological space then one may consider the path systems
whose uv-spaces are the spaces of continuous or right continuous maps from [u,v]|r to X with the
o-algebras defined by the inclusion to X [®vI7

The constant path systems with X, = X for all © < v is a sub-object of the canonical path
system given by diagonals in X [T

3.4 A categorical view of Markov processes

A pre-process P on a path system (X, resZ}f’v/) with time window 7' C R is a collection of sub-
probability kernels ul : X,, — Xy, given for all v < v in T such that for any x € X, {ui(x) is
zero on X, — {z}.
The kernels
(z)uv :EUO,UI:Z:Xu _>X’U

are called the transition kernels of the pre-process. The projection X, ?}?UH pt is a function on
X, which we denote by vy,,.

A pre-process is called non-degenerate if for all u € T" one has ¢y, = Id or equivalently v} = 1.
A pre-process is called a process if it satisfies the following equivalent conditions

1. forallu <vin T, vy =1,

2. for all u < v in T, ¢y, is a probability kernel,
3. for all u <win T, puy is a probability kernel,
4. for all u <wvin T, p;, is a section of ,.

For any pre-process and any u < w < v the composition

Idx &y

Id®uy,
Xuw — ww X Xy —

XU/LU X XU)’U

is a kernel which sends a point w € Xy, to the measure d,, ® p? (&w(w)) and which we denote by
Id® (it 0 ).

Definition 3.4.1 [submarkov/ A (pre-)process is said to be a Markov (pre-)process if it satisfies
the condition

M For any u < v < w the square
Hay,
Xy —_— KXuw

[deLzl lld@(u;@ogw) (7)

TSy 1y XT€S 1y o
u,w w,v
Xuv ’ qu X va
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commutes.

Example 3.4.2 [2009.04.29.5] A pre-process on the constant path system X is a collection of
measurable functions v on X with values in [0, 1]. Tt satisfies (M) if and only if for all u < w <w

v
u
1 W)y, v v
in T one has vZvy, = vy.

To compare our definition with other definitions which appear in the literature on probability

it will be convenient for us to introduce to weaker versions of condition (M).

Mf For any v < v < w the diagram

w

X, Xuw

[mfd«m l1d®(u§20£w) (8)
X res? xres? X x Xy SXM x|y

commutes.
Mb For any v < v < w the diagram

x, M X

[mbd&zl lld®(#&0£w) 9)

TeSy w XTESw v Idxé&,

— Xyw x Xy

X ——— Xuw X Xuw
commutes.
The first of this conditions is a generalization of the ”forward Markov property” and the second

one of the ”backward Markov property”. Our main condition (M) expresses the ”two-sided Markov
property”.

Lemma 3.4.3 /mtr/ For any pre-process uk which satisfies (Mf) (resp. (Mb)) and any u < w <wv
one has

[Wm] (rbwv o ¢uw = ¢uv (10)

Proof: For u} satisfying (Mf) one gets the equation (10) combining diagram (8) with the commu-

tative square
Ew

Xuw _— w
€u®(/lvw Oﬁw) J/ l&;olﬂ{u

Xy % Xop =22 X,

For p satisfying (Mb) one gets the equation (10) combining diagram (9) with the commutative

square
Ew

Xow I w
1d®(&vopy,0bw) l F” Oply

Xow X Xy —2— X,

19



Remark 3.4.4 For a process which satisfies (M) the projection of uf to Xy, coincides with u{.
If T has a maximal element ¢,,4, and p is a process then it is sufficient to verify the condition (M)
for v = timae-

If uf satisfies (M) but is not a process then the projection of u! to X, does not coincide with
u. Instead by (M) we get

resy () = (Vg © &w) * b/
where v is the function on X,, which takes = to ul (z, Xyv) and which equals 1 if and only if pf
is a process.

Remark 3.4.5 [ff] For any pre-process, ¢, is the kernel of the form z — v¥(z)d,. For a pre-
process satisfying (M) the equation (10) applied to u, u,u implies that for any u one has (v%)? = v¥
and therefore this function may take only values 0 and 1. Note also that for a Markov pre-process
one has

[canuneql]v; = (X, P X, pt) (11)

and for u <w <o
[canuneq2]&,, () = Uy * Gy = (T Uy (2)0z) © Gy (12)
Denote the o-algebra on X, by G.

Lemma 3.4.6 [smf] A pre-process satisfies condition (Mf) if and only if for any u < w < v in T,
x € Xy, and any A in &}, one has p(x, A) = (1y, © puw)(x, A).

Proof: The condition of our lemma is equivalent to the commutativity of the external rectangle of
the diagram

oy Ew

Xu —u> qu - Xu)
[adllzl lldé@(uﬁ,%w) lu& (13)
pr

Xuw — Xuyw X Xyo —— X
Since the right hand side square of this diagram always commutes the commutativity of (8) implies
commutativity of (13). On the other hand since both ul and p?, are supported on the fibers of £,
the commutativity of (13) implies the commutativity of (8).

Lemma 3.4.7 [smb] A pre-process satisfies condition (Mb) if and only if for any u < w < v in
T, ze X, Ac B and B in &} one has

leagik2]ul(z, AN &1(B)) = / (6. 6 (B ). (14)

Proof: Since the o-algebra on X, x X, is generated in the strong sense by subsets of the form
A x B where A € G and B € G} the commutativity of (9) is equivalent to the assertion that for
any x € X, and any such A, B one has:

p(a,res H(A) N EH(B)) = ((Tdx,, @ (& © uy 0 &w))) o py ) (x, A x B)
By definition of kernel composition the right hand side is of the form

(Idx, ® (€0 0 it 0 €0))) 0 1) (1, A x B) = / (60 ® (€ 0 1)) (€w(w), A x B)du® (z) =

- / (€0 0 1) (Ew(w), B)du® (z) = / (6 (), €71 (B))dal ().
weA wEA
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Lemma 3.4.8 [crl] A pre-process satisfies condition (M) if and only if for any w < w < v in T,
x € Xy and any A € &, B € G, one has

%@Aﬂ&z/ 2 (), B) Al ().

w€eA

Proof: The o-algebra on X, X Xy, is generated in the strong sense by subsets of the form A x B
where A € G and B € &},. The value of the image of a point z € X;, on A x B under the path of
our diagram going through the lower left corner is pl (x, AN B). If we go through the upper right
corner we get

‘/<m®%@mmmewﬂm=/ 4 (), B)d® ().
Xuw wEA

Lemma 3.4.9 [canun/ Let Xy be a family of measurable spaces given for all t € T and let P, P’
be two pre-processes satisfying condition (M) on the canonical path system defined by this family
such that for allu < wv in T one has ¢yy(P) = ¢up(P’). Then P = P'.

Proof: From (11) we conclude that for all u < v in 7' we have v%(P) = v5(P’) and from (12) that
for all u <w <wvin T we have

(b (P)) = Ewlpg (P))

Since the g-algebra on X, = Hwe[u’v]T X, is generated in the strong sense by the pull-backs of
o-algebras on X; with respect to projections &, the claim of the lemma follows.

In what follows we will omit the product sign and write XY instead of X x Y. We will also
write [u,v] instead of [u,v]r. For t1,...,t, € [u,v] we let pry, . 4, denote the partial projection
Xl X4 ... Xy, Forany 1 <m < nand any t; <--- <%, in T consider the disgram

tm
Pty tm Ol
X, — N X X

m

[prmd] H lfdtl ,,,,, tm—1 @@Ttm,..., tnouifn) (15)

t
Priq,..., tn Op’t’f

X, —m X, X,

Proposition 3.4.10 [cpthm/ Let X; be a family of measurable spaces given for all t € T and
let P = {ul}u<v be a pre-process on the corresponding canonical path system. Then the following
conditions are equivalent:

1. P satisfies condition (M),
2. diagrams (15) commute for all1 <m <n and all t; <--- <t, in T,
3. diagrams (15) commute for m =2, n>m and allty < --- <t, inT,

4. diagrams (15) commute form >2, m=n—1and all t; <--- <t, inT.
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Proof: Commutativity of the diagram (15) is equivalent to the commutativity of the diagram

tm
My DPriq,..., t
Xy, 1N X [t1:tm] Lonm Xty oo Xy,
ui{‘l Id@(ui;zoetm)l Ldiy.. iy O e, tnouiﬁn)l
Priq,..., t 1 XPTtm,..., t
XMt — xltitm] o X [tmtn] m S Xy X,

and commutativity of all such diagrams is equivalent to the commutativity of diagrams (7) for the
canonical path system since the g-algebra on X [t1:tm] 5 X[tm:tn] i generated in the strong sense by
the pull-backs of the corresponding o-algebras from finite projections. This proves the equivalence
of the first two conditions. It remains to show that conditions (3) and (4) each imply condition
(2). In the case of condition (3) proceed by induction on m. For the inductive step consider the
following diagram

pro pgr Id@ (pro )

th th e Xtm > th e th
Id Id® (pro pym) Id

Y Y
X X X .. ¢

t pro uif t1M o Id® (pT o M;;) 1 tn
Id Id

tn
7 O

Xy, (br o ) - Xy .. Xy,

where the maps are such that the upper left square is (15) for ¢1,¢2 ..., t,, the upper right square
is equivalent to (15) for to,...,tm,...,t, multiplied with X;, and the lower rectangle is equiv-
alent to (15) for ty,t9,...,t,. Then the external path of the diagram is equivalent to (15) for
t1,...,tm,...,t, which gives the inductive step.

In the case of condition (4) proceed by induction on n — m. Consider the diagram

t t
pro 1d® (pro py,)
Xy, L X Xy - Xy Xy,
Id 1d® (propy™™) Id
Y
Xt Xt ...th_ ‘Xt th
" propp ' oHdepropr )
Id Id
Y pr le) /‘Li? Y
th - th . e th
where the maps are such that the upper left square is (15) for ¢1,...,tm,...,th—1, the upper right
square is equivalent to (15) for t,,, ..., tn—_1, t, multiplied with Xy, ... X, _, and the lower rectangle
is equivalent to (15) for ¢1,...,t,—1,t,. Then the external path of the diagram is equivalent to (15)
for t1,...,tm ..., t, which gives the inductive step.
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Corollary 3.4.11 |bcase/ If a pre-process on a canonical path system satisfies (Mf) (resp. (Mb))
then it satisfies (M).

Proof: One can see immediately that in the context of the canonical path systems condition (3)
of the proposition implies (Mf) and condition (4) implies (Mb).

Remark 3.4.12 Using Theorem 3.1.2 it is not hard to show that if X is a separable complete
topological space with its Borel o-algebra then for any time window 7" and any collection of proba-
bility kernels satisfying (10) there exists a Markov process on the canonical path system of X over
T for which these kernels are the transition kernels. By Lemma 3.4.9 such a process is unique.

Example 3.4.13 One can construct processes on the canonical path system whose transition ker-
nels satisfy (10) and which are not Markov processes. Consider for example the time window
T = {a,b,c} where a < b < c¢. Processes on the canonical path system of X over T' correspond to
triples of probability kernels

X, -, XX,

where for v < v in {a,b,c} we write v}, = pru, for the projection pr which removes X,. The
transition kernels of the process determine ¢q, = 1/3, ¢pe = vy and ¢qc = prx.v; and the only
non-trivial composition condition asserts that

c c b
prx.Vg =V, 0V,

For a non-trivial X we may choose many different v/ satisfying this condition. By Lemma 3.4.9 all
such choices but one will define processes which do not satisfy (M).

Example 3.4.14 Let X be a measurable space. A Markov process on the canonical path system of
X over T such that the kernels u} are deterministic maps is the same as a collection of endomorphism
Guv + X — X such that ¢y = 1 and ¢y = Puuduw for u < w < v.

Let P be a pre-process on the path system X,, over T. Consider the canonical path system
X, = Hte[u’v] X over T defined by the family of spaces X; = Xy. For each pair u < v in T we

have a map
g[u,v} = H &+ Xup — H Xi
te(u,v] te(u,v)]
The compositions &, © p, form a pre-process P’ on X!, which has the same transition kernels

and which is called the canonical representation of P. It follows immediately from the definitions
that if P is a Markov pre-process then so is P’.

Proposition 3.4.15 [eqv3/ Let X.. be a path system over T be such that for all w < v in T one
has
(monstr]¢, ! (&) = &7, (16)

where
Sl — Clg(Ute[u,v]pT;l(GD)

s the o-algebra of Hte[uﬂ}] Xi. Then any pre-process on X which satisfies (Mf) (resp. (Mb))
satisfies (M) and any two pre-processes which satisfy (M) and have the same transition kernels
coincide.
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Proof: The equality (16) implies that the maps ¢, ,) are monomorphisms in the category of kernels
and moreover the same holds for the maps [, ] X §[w,,]- Therefore, a process satisfies condition
(M), (Mf) or (Mb) if and only if its canonical representation satisfies the corresponding condition.
Together with Corollary 3.4.11 this implies the first claim of the proposition. The second claim
follows by the same argument from Lemma 3.4.9.

Let us now compare our definition of a Markov process with a classical one from [6, Def.1, p.40].
We will show that any path system over (0,00] together with a Markov process on it defines a
Markov process in the sense of [6].

The space (X,fR) is called the phase space of the system and the space (€2, &) the trajectory
space. We will write Q) for the measurable space (,&%). For simplicity of notation we will
sometimes abbreviate the notation for a path system omitting some of its components.

Proposition 3.4.16 /comparel]/ Any pair of a path system over [0,00) and a process over it
satisfying (Mb) defines a Markov process in the sense of [6, Def.1, p.40].

Proof: For this comparison we will use freely the notations of loc.cit.. Note that we write &
where they write &f. Let &° denote the union &% for all ¢ > s. Since we assume (P) we have
prim(pt) = pt and therefore kernels i for ¢ > s define a kernel

P, (X,R) — (2,6

such that u! are obtained from it by obvious projections. It is obvious from our definitions that
the only condition of [6, Def. 1, p.40] which we have to verify is that for any x € X, any 0 < s <
t<u<ooinT and any B € ‘R one has

[quikl]PS,x{gu(w) € B|6l;} = Pt,és(w){&u(w) € B} (17)

The left hand side f(w) of this equation is a real functions on © which is defined only up to a
subset of measure zero with respect to P, and the right hand side g(w) is a well defined function
on 2. The definition of conditional expectation tells us that the only thing which we know about
the left hand side is that it is &%-measurable and for any A € &% we have

/A FdPs, = Pyo(AN {€a(w) € BY)

Hence, the equation (17) really means that for any A € &% one has

leqgik2a] P, o (A N {€u(w) € BY) = /A Pre ) 16u(w) € BYdP.., (18)

which is equivalent to (14). The claim of the lemma follows now from Lemma 3.4.7.

Definition 3.4.17 [determmor/ A deterministic morphism of path systems F : X, — Y is a
collection of measurable maps Xy, — Yy given for all u < v in T which are compatible with the
restriction maps for X andY and such that the maps X,, — Y, are isomorphisms.

Definition 3.4.18 /morpath/ A morphism from a path system Y to a path system Z in time
window T' is a collection of probability kernels f. : Yy, — Zy, such that for any v < w < v the
square

TESXTES
YUU Yuw X wi

f&’l l wofy

TESXTES
Z’U/U Zuw X Zwv
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commutes, i.e. for any w € Yy, one has
[2009.04.29.3] (Tesﬁzfu X resi‘u’z,)(f;’(w)) = ff(resﬁ:fu(w)) & f;’,(res%z}(w)) (19)

If f¥ and ¢} are morphisms of path systems such that the compositions g} f¥ are defined then these
composition again form a morphism of path systems.

If fV are defined by measurable maps then the condition of Definition 3.4.18 is equivalent to the
requirement that f commute with the restriction maps i.e. that these maps form a deterministic
morphism. In general, the condition of 3.4.18 implies that

U,v v _ v u,v
resu,w,fu = fu TS,

but does not follow from it. For example, the averaged sum (f+g¢)/2 of two deterministic morphisms
between path systems is almost never a morphism of path systems.

Lemma 3.4.19 [2009.04.29.1] Let f be a collection of probability kernels of the form

fow)= Y filw,9)dy

YE Ly

Then fY is a morphism of path systems if and only if for all u < w < v, w € Yy, V' € Zyw,
V" € Zyy one has

[2009.04.29.2] > fa(w, ) = fi (resy (W), ¢) - o (resy(w), ")
{¢€Zuv |T€Sﬁ;fu(¢)=1/)' and TGS;LU’,%(W:W'}
(20)

Proof: An easy computation shows that the left and right hand sides of (20) are equal to the
coefficient at 0y ® 6y~ in the left and right hand sides of (19).

Proposition 3.4.20 [2009.04.29.4/ Let Y. and Z.. be path systems over X and f} : Yi. — Z.s
be a morphism over (X,T) i.e. a morphism of path systems in time window T such that for all
u €T one has &, o f} =&,. Let p} be a pre-process on Yi, over (X,T).

Then kernels f. o ul form a pre-process on Z.. over (X,T). If u} is a process (resp. if p:
satisfies (M)) then fl o ul is a process (resp. satisfies (M)).

Proof: Observe first that since f; is a morphism of path systems and &, o f =&, for all w € T
we conclude that &, o f) = &, for all u < w < v in T. In particular, &, o f o u, = &, o py, which
implies that kernels f; o u} form a pre-process which is a process if p} is.

Suppose now that u} satisfies (M). Consider the diagram

w w
_X Mu o Yuw fu L Zuw
e, 1d @ (py, © §w) Id @ (i, 0 Ew)
Y Y
Y, Yiw X Yoo ———————— Zyw X Y,
fu Id® f?
! res X res '
Zuv > Ly X Zwv
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The lower pentagon is equivalent to the square of Definition 3.4.18 and therefore commutes. The
left hand side upper square commutes since u} satisfies (M). The right hand side upper square
commutes since &, o f = &,. We conclude that the ambient square commutes i.e. fJ o} satisfies
(M).

3.5 Right continuous functions

Recall that a function f on [s,t] is called monotone increasing (resp. decreasing) if for < y one
has f(z) < f(y) (resp. f(z) > f(y)). A function is called right continuous if for all u € [s,t) one
has

lim f(u+e€) = f(u).

€>0,e—0

The following lemmas give some elementary properties of such functions which will be used below.

Lemma 3.5.1 [rcim2] Let f be a right continuous function on an interval of the form [u,v). Then
for any (a,b) C R one has

f_l((a> b)) = acala

where A is countable and each 1, is an interval of the form (y—,y+) or [Ya,—, Ya,+). In particular,
any right continuous function f on [s,t] is measurable.

Proof: For z € f~!((a,b)) consider the sets
L ={y[ f(ly,z]) € (a,0)}

Iﬁ?:-l— = {y | f([x?yb - (CL, b)}
I, = z,— U Ix,—i—
For any f we have I, = (z_,z] or I, — = [z_,z] where x_ = Inf(I;_) and I, = [z,z4) or
I+ = [v,24) where 4 = Sup(I, +) and for z1, 22 € f~1((a,b)) one has I, = I, or I;, NI, = 0.
Since f is right continuous we have I, ; = [z,y4) where y4 > x. In particular, the length of

each interval I, is greater than zero which implies that there are at most countably many distinct
intervals in this set.

Lemma 3.5.2 |pirc/ Let f be a right continuous on [s,t). If f is monotone increasing then for
any ay > a such that f~1([a,ay)) # 0 there exists by > b such that f~'([a,ay)) = [b,by). If f is
monotone decreasing then for any ay > a such that f~'((a,a.]) # 0 there exists b_ < b such that

fH(a,aq]) = [b-,b).
Proof: Consider for example the case of an increasing f. Then if f~1([a,ay)) # 0 we have
7 (a,00)) = [b,1)
and
FH(=00,a4)) = [5,b4)
which implies the claim of the lemma.
Lemma 3.5.3 [frcim3]/ Let f,, be a countable family of non-negative right continuous functions on

[u,v]. Suppose that all the functions are monotone decreasing or monotone increasing and that the
sum f =" o, fn exists. Then f is right-continuous.
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Proof: The monotonicity of f,, implies that for each ¢ > 0 there exists N > 1 such that for all
r € [u,v] one has ) fu(z) < € (in the case of increasing functions one takes x = v and in the
case of decreasing ones x = u). This easily implies that the sum is right continuous if all summands
are.

Example 3.5.4 [2009.06.15.1/Lemma 3.5.3 is false without the monotonicity assumption on the
functions f,,. For example consider a monotone decreasing sequence a, € R converging to a € R
such that a < a,, for all n. Let f,, be the indicator function of the interval I, 4,_,). Then Zn21 In
is the indicator function of the open interval (a,ag) which is not right continuous.

Recall that an ordered set is called well-ordered if any its non-empty subset has a minimal
element. For an element a of a well ordered set such that a is not the maximal element one defines
the next element a4 as the minimum of the set of elements greater than a.

Definition 3.5.5 [t1subset/ Let I be an interval of R which is closed from the below (i.e. an
interval of the form [u,v) or [u,v]). A subset A of I is called a T1 subset if it is closed (in I) ,
well-ordered (by the induced ordering) and contains inf(I).

The minimal element of a T1 subset A is necessarily inf(I). If I is closed then a T1 subset has a
maximal element Gpae. If Gmeq exists we will write (amar)+ = sup(l). We denote the set of T1
subsets of an interval I by Sp1(I). This set is partially ordered by inclusion. For a closed from
below subinterval J of I and A € Sp1(I) set Ay = {inf(J)} U (AN J). One observes easily that
Ay € St1(J). For a function F' on Sp1(T') we will write lim scg,., () F(A) = z if for any € > 0 there
exists A’ € S71(T') such that for any A € Sp1(T) such that A" C A one has |F(A) — z| < €.

Lemma 3.5.6 [2009.05.16.3/ Let A;, Ay be two T1 subsets of I. Then Ay N Ag and A; U Ag are
T1 subsets.

Proof: Straightforward.

Lemma 3.5.7 [2009.05.16.8/ The following conditions on a subset A of I are equivalent:
1. Ais a T1 subset,

2. A contains inf(I) and for any non-empty subset B of A one hasinf(B) € B and if sup(B) €
I then sup(B) € A,

3. for any x € I such that x # sup(I) there exists y > = such that (z,y) N A =0 and for any
x € I such that z is a limit point of {a € A|a < x} one has x € A.

Proof: The equivalence of the first two conditions is straightforward. The third condition clearly
implies the second. Suppose that A is a T1 subset. If x < sup(l) is such that for all y > x one
has (xz,y) N A # 0 then the set {a € A|a > z} has no minimal element which contradicts the
well-orderness of A. If z is such that z is a limit point of {a € A|a < x} then a € A since A is
closed. We conclude that the first condition implies the third one.

For a € A set: '
I(A,q) = { [a,a4) if a # amax

{rel|r>ane} ifa=anu

When no confusion is possible we will write I(a) instead of I(A4,a).
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Proposition 3.5.8 [2009.05.16.1/ Let A be a T1 subset of I. Then I(A,a) NI(A,d') = 0 for
a#a and
[2009.05.16.2]1 = IT,c4l(A, a) (21)

Proof: The fact that I(A4,a)NI(A,ad’) = 0 follows immediately from the definition of a4 and holds
for any well-ordered A in I. To see that (21) holds consider an element x € I and let A, = {a €
Ala < z}. Since inf(I) € A this set is non-empty and since A is closed, A, = ANIN[inf(I),z] is
a closed subset in [inf(I), z]. Therefore it has a maximal element a(x) and one verifies immediately
that x € I(A,a(z)).

Corollary 3.5.9 [2009.05.16.6/ A T'1 subset is countable.

Lemma 3.5.10 [2009.05.16.5/ Let A be a T1 subset. The there exist a T1 subset A" such that

A C A" and for any o/ € A there exists a € A such that the closure I1(A';a') of I(A',d') in R is
contained in I(A, a).

Proof: For any a in A choose a monotone increasing sequence a < a1 < -+ < an < - -+ < a4 which
converges to ay. Then the subset A" = AU {ay, }qcan>1 satisfies the condition of the lemma.

If A’ satisfies the condition of Lemma 3.5.10 relative to A we will write A’ > A. The smallest T1
subset of I is {inf(I)}. A subset A satisfying A > {inf(I)} will be called a T2 subset. Equivalently,
a T1 subset A is a T2 subset if for each a € A one has sup(I(a)) € I. If I is closed from the above
this condition holds for any T1 subset and if I is open from the above it holds if and only if
sup(A) = sup(I). Lemma 3.5.10 implies among other things that the subset Spo(I) of Spi(I) is
co-final.

For a function f : I — R and € > 0 let Ag(f, €) be the set of points a € I such that for all x < a
in I there exists 2/, x < 2’ < a such that |f(a) — f(2')| > €.

Proposition 3.5.11 [2009.05.16.7/ Let f be a right continuous function. Then for any € > 0,
Ao(f,€) is a T1 subset.

Proof: Let us verify the third condition of Lemma 3.5.7. Since f is right continuous, for any
x € I such that x < sup(I) there exists y > x such that f([z,y]) C (f(x) —€/2, f(x) + €/2)}.
Let us show that (x,y) N Ao(f,e) = 0. Indeed, if a € (z,y) then for all 2’ € [x,a] we have
|f(a) = f(@)| <|f(a) = f(z)| + |f(a') — f(x)] < e and therefore a is not an element of A (f,€) this
proofs the first half of the condition. The second half of the condition follows immediately from
the definition of Ag(f,e€).

Corollary 3.5.12 [2009.05.16.09/ Let f be a right continuous function on an interval. The the
set of its points of discontinuity is countable.

Proof: It follows from the proposition and Corollary 3.5.9 since f is continuous outside of the
subset Up>140(f,1/n).

Proposition 3.5.13 [2009.05.16.4/ Let f : I — R be a right continuous function. Then for any
€ > 0 there exists a T1 subset A = A1(f,€) such that for any a € Ay one has

[2009-05-16-10]3’&]%6[((1) (f((l?)) - Z.nfaﬁel(a) (f((l?)) <e€ (22)
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Proof: For any x € I the set {y| f([z,y]) C (f(x) —¢, f(x) +€)} is of the form [z,z,) for some
x4 > x or of the form [z, sup(I)]. Set inductively x40 = = and x{ (1) = (T44)+ assuming that

sup(l)y = sup(I). For any x, the sequence x,, is monotone increasing and must converge to some

2’. One observes immediately that either this sequence stops at sup(I) after a finite number of

steps or 2’ € Ag(f,€). Let A1(f,€) be the set of points of the form x,, for z € Ay and n > 0. Then
it is a T1 set which satisfies (22).

Corollary 3.5.14 [2009.05.16.15/ Let f : I — R be a right continuous function. Then for any
€ > 0 there exists a T2 subset A = As(f,€) such that

[2009.05.16.ll]supxem(f(a:)) —in mem(f(:c)) <€ (23)

Proof: It follows immediately from the proposition and Lemma 3.5.10.

Proposition 3.5.15 [2009.05.16.13/ Let f be a non-negative right continuous function on I.
Then for any bounded measure o on I one has

/ F@)da = limacsyn) 3 all(@)f (sup(1(@)
ye a€A

Proof: Follows immediately from Corollary 3.5.14.

3.6 Path system defined by a multi-graph

An important class of path systems arises from multi-graphs. A reflexive multi-graph X is a
diagram of sets of the form (Jp,0; : X1 — Xo,0 : Xg — X1) such that dp oo = 0y 0o 0 = Id. The
set Xo is the set of vertices of X and X is the set of edges. Edges lying in X'¢ = X;\o(Xp) are
called non-degenerate.

We let X[u,v] denote the set of triples

({x1,..., 2.} C [u,v],p: [u, 0] — Xo,e: {z1,..., 20} — X7
such that:
lLLu<y <<z, <0,
2. p is right continuous and continuous outside {z1,...,z,},

3. for each ¢ = 1,...,n one has p_(x;) = dp(e(x;)) and p(x;) = 0i(e(x;)) where p_(z) =
limy 1z p(y)-

For u < v’ < v’ < v the obvious restriction defines a map of sets
resy s Xu,v] — X[u', 0]
such that res;)y = Id and for v < u' < u” <v” <v' < v one has

= res“? res?
,U// - u//,UI, /u//7,U/

u,v
7"€Su,,7

Let X,, = X109, %0, - --0,Xa, X1 be the set of paths of length n in X and X7 the subset of paths
(e1,...,ep) such that e; € X{Ld for all s.
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Let
Al ={u<z < <ap < v}

and
A?u,v] {lu<z < - <axp, <v}
We assume that A?u w = A?u W =Pt and A(u W = Aéu u = () for i > 0. For u > v and n > 0 we
have
n _ n n—1
A(u,v} - =(uyv) il A(u,v)

With this notation X [u,v] can also be written as

X[’U,,U] = anoA?u,U} X ng

If X is countable then this description provides an obvious choice of o-algebras on X|[u,v]. With
respect to these o-algebras the maps TesZ}f}v/ are measurable and the resulting structure is a path
system in the sense of Definition 3.3.1. Our definition implies that X[u,u] = Xy and therefore
X [*, %] is naturally a path system over Xj.

If there is at most one edge e € X7 connecting any pair of vertices p,p’ € Xy then X|[*, ] is a
sub-system of the canonical path system of Xy but in general it is not the case.

A (deterministic) morphism f: X — X’ of reflexive multi-graphs defines a morphism of associ-
ated path systems as follows. For ({z1,...,z,} C [w,v],p: [u,v] — Xo,e: {z1,...,2,} — X79) in
Xu,v] let ¢: I C {1,...,n} be the subset which consists of i such that f(z;) € (X})"?. Then

f:j({xl}?:hp: 6) - ({xi}iéfvfo °p, fl ceo l’)

The compatibility of these maps with the restriction maps is obvious and we get a morphism of
path systems over the map Xo — X{).

When no confusion is possible we will write A¢

J for the simplex in X|[u,v] corresponding to

(u,
an element e = (e1,...,e,) € Xﬁd. For any © < w < v the product resqujg X resﬁ,’f{, restricted to
A?u,v] maps it bijectively to
) 3 — PRREE L= (ei 7~-~)en)
(resit, x resiyt) (A%, ) = (Al x A 1))
such that

(€14e-05€4) « A(ei+l7"'7en)) —

-1
(resym X Tesy’,) (A(%w] (w.0]

={(z1,..., %) GAfu7v]|u<x1 < < x Sw< gy < - < xpy <0}
In particular, for a reflexive multi-graph X the ”cutting maps” resyyw X resy. define a bijection
TeSy T X TSy - X [u,v] = X[u, w] X x, X[w,v]

Let us call a sequence of measurable subsets I1, ..., I, of R admissible if for allt =1,...,n —1
one has sup(l;) < inf(li11). Foru < vin T, e € X" and an admissible sequence Iy, ..., I, of
measurable subsets in (u,v] let

U;u(fl,...,fn):{(931,...,1'”)EA" ]>< {6}’1'16],}

(u,v

For n =0 we set U?, = {e} = A?, = x{e}.

(u,]
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Lemma 3.6.1 [2009.05.27.2//generationl/ For any u < v in T and p € Xy the set of subsets of
the form Ug, (I, ..., I,) where I; are closed intervals of (u,v] is closed under finite intersections
and generates the Borel o-algebra of X [u, v]p «.

Proof: We have

U (hny,....I,N1I,) fore=¢

v v !
Ue7u(Il,.--;In)mU W1y 1) = {@ for e # €'

which shows that our class of subsets is closed under finite intersections. The fact that it gen-
erates the Borel o-algebra of X[u,v],. is equivalent to the assertion that subsets of the form
{(x1,...,2p) € Al | z; € I;} generate the Borel o-algebra of the simplex Af,.p- This is a corol-
lary of the theorem Wthh says that the Borel o-algebra of R™ coincides with the product of Borel
o-algebras on R!.

Let T be a time window which we assume to be of the form T = [T}in, Taz]- Let P = (ul |u <
v, u,v € T') be a pre-process on (X [*,x],T). Let us introduce the following notation. For v < v in
T and p € Xg we set

hp(u, v) = i (Upu)

d ot 1
and for e € X7 we let A\{, denote the co-restriction of ugo(e)’u to A(

u,v]
measure on (u,v]. For convenience we will often consider \! ,, as measures on [u,v] which are zero
2

on {u}.

We will also consider for p,p’ € X and u, v as above the functions

x {e} considered as a

¢£/ (u,v) = HZ,p(X[ua U]*,p’)

and

Up(u, v) = pp o (X[, V] ) Z (u,v)
p/

which are defined in the context of any path system.

3.7 Renewal pre-processes on multi-graphs

For a multigraph X and p € X we let X"¢(p) denote the subset of e € X"¢ such that 9% (e) = p.

Definition 3.7.1 fthetagenerator/ Let X be a multi-graph and T = [Tyin, Tinaz] @ time window.
A generating kernel on (X, T) is a probability kernel

0: XoxT — (Xox {x) (XM xT)
such that for any p € Xo and u € T the measure 0(p,u) is supported on ({p} x {x HNIT(X]4(p) x Ts.,).

For a generating kernel 0, e € X ?d and u € T" we let 0., denote the co-restriction of the measure

0(0o(e),u) to T ={e} xT.

Theorem 3.7.2 [2009.06.30.3/ Let X be a countable multi-graph, T = [Tin, Timaz] a time win-
dow and € a generating kernel on (X,T). The there exists a unique pre-process P = {jup,} on
(X,T) such that
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1. foranyu <wv inT and p € Xg one has

M;)J,u(U;;,u) =1- Z HQ,U(TS’U)

e€X | 9y (e)=p

2. foranyu<vinT,n>1,e€ X™ and any admissible sequence Iy, ..., I, of closed intervals
in (u,v] one has

M;,u(Uéu(Ih s ’In)) = / s M;)J’,xl (Ugl(e)@l (IQ’ ) In))dgag_l(e)m
xr1€ll

where

p=3(e), P =0 0ile)

Proof: The uniqueness part follows immediately from Lemma 3.6.1. The proof of the existence
part will be finished in Proposition 3.7.10.

Definition 3.7.3 [renewal] A pre-process is called a renewal pre-process if it corresponds accord-
ing to Theorem 3.7.2 to a generating kernel.

Definition 3.7.4 [2009.06.02.3/ Let X be a multi-graph and T = [Tyin, Tmaz| @ time window. A
generating map on (X,T) is a measurable map

[egenerator|E : Xo x T x [0,1] — (Xo x {*}) I (X7¥ x T) (24)
such that for any p € Xo, u € T one has
Im(E(p,u, —))  ({p} x {x}) I (XT(p) x T>u).
A generating map is said to represent a generating kernel 6 if for allp € Xy and u € T one has
E(p,u,—)«(dx) = (e, u)
where dz is the Lebesque measure on [0, 1].

For a generating map F, p € Xg and u € T we let E,, denote the map r — E(p,u,r) from [0, 1]
to ({p} x {x}) I (X7(p) x Tsu).

Proposition 3.7.5 [2009.06.02.2] Let 0 be a generating kernel for (X,T). Then there exists a
generating map
E:XoxTx[0,1] — (Xo x {x}) I (X} x T)

which represents 6.

Proof: Let ©., : T'— [0, 1] be the right continuous distribution function of 6., i.e.
Oc,u(v) = Oeul[u, v]).

For each p € Xp let us choose a linear ordering on X7¢(p) and let e(p,n) be the n-th element of
X74(p) relative to this ordering. Let xo(p) = 1 and for each n > 1 let

$n(p) =1- Z ee(p,n),u(T)'
=1
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Let further
Too(p) = limn—oco®n(p) = inf{zn(p), n >0}
Then
[0,1] = [0, zoo] I (> 1 (@, Tn—1])

For n > 1 define a map Ee(;pn)u ¢ (Tn, Tn—1] — T by the rule

Ee(p,n),u(x) = mf{v ’ @e(p,n),u(v) > T — xn}

Note that E,
Let

(pn),u 18 @ well defined monotone increasing map whose image lies in {e(p,n)} x T5,.
Epu: [0,1] = (Xo x {+}) I (XP? x T)

be the map given by the conditions

(Ep,u)\[(),xoo] = {p} X {*}

and
(EP,U)\(menfl] = {6(p7 n)} X Ee(p,n),u
for all n > 1. We claim that the map

E:XoxTx[0,1] — (Xo x {+}) T (X xT)

given by E(p,u,x) = E, () is a generating map which represents #. This is proved in the following
two lemmas.

Lemma 3.7.6 [2009.05.30.1/ One has (E, )« (dx) = 0p4.

Proof: (cf. [12, §3.12]) It is clear from the construction that in order to prove the lemma we have
to verify that
(Ee(p,n),u)*(dxmn’xn_l]) =bpu

Since O, are monotone increasing and right continuous we have
{v1Oc(pn)u(v) =2z =20} = [Ee(pn)u(®), Timaz]
Therefore, Ee(,pn)u(z) < w if and only if O, ) o (w) > 2 — 2, and we have
{z € (zn, Tn-1]| Ee(p7n)7u(ac) <w}={z|x >z, and z <z, + @e(p7n)7u(w)}
and
dx({r € (Tn, Tn—1] | Eepn)u(®) S w}) = O(p ) u(w)
Lemma 3.7.7 [2009.06.01.4/ The map E is a generating map i.e. it satisfies the conditions of

Definition 3.7.4.

Proof: The only non-trivial condition is that E is measurable. Since all subsets of Xy and X4
are assumed to be measurable, in order to prove that E is measurable it is sufficient to show that
for any p € Xg and n > 0 the map

F:Tx[0,1] —*IT
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given by

Plu,z) = Ee(p,n),u(x) if 2,—1(p,u) < x> xh(p,u)
’ * otherwise

is measurable i.e. that for any w the subset U, = {(u,z)|F(u,z) € T and F(u,z) < w} is
measurable. By the same reasoning as in the proof of Lemma 3.7.6 we see that (u,x) € U, if and
only if # > xn(p,u) and z < x5 (p,u) + Oc(pnyu(w). Since 6 is a kernel the functions O ,(v) are
measurable as the functions of u € T. By one of the standard properties of the product o-algebras
the area under the graph of a measurable function is measurable which implies the statement of

the lemma.

Let E be a generating map representing 6. Denote the measurable space [0, 1] by Rnd and the

Lebesgue measure by Pg,q. For n > 1 define maps
Ep: Xox T x Rnd™ — (Xg x {}) I (X4 x T)
inductively as follows:
1. B1=F

2. Ifn>1

(a) if Bp_1(p,u,r1,...,r—1) = (e,t) then E,(p,u,r1,...,1) = E(01(e),t, 1),

(b) else if Ep—1(p,u,m1,...,7n—1) = (p/, %) then E,(p,u,r1,...,rm) = (p/,%).

Foru<ovinT,pe Xgand n>1let

Qpum =101, 10, .) € Rnd™ [ Epy1(p,u,r1, - mng1) € (Xo x {}) 1 (X7 % T9,)}
For convenience we will write ), _; for §. We have Qp ., C Qp . and Qg:um C Q) un

v > .
Foru <vinT, p € Xg and n > 0 define a map

M;J),u,n : Qz,u,n\ﬂz,u,n—l - HeGX;}d(p)A?u,v] X {6}

setting
My 0(r) = {p}
and for n > 1,
M;j’u,n(z) ={(z1,...,xn)} x{(e1,...,en)}

where E;(r1,...,1;) = (€5, ;). Let

QY = Unzogv = ano QY \QU C Rnd™®

p,u,00 pu,n pb,u,n pu,n—1

Taking the disjoint union over n > 0 we get a map

M;;vu : QZ,U,OO - X[u7 v]p*

and the map B
M, - Rnd™ — {} 11 X[u, o).
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which equals My, on Q) , . and sends Rnd>\(2} , ., to *. This map is clearly measurable and we

define measures p,, on X[u,v]p . by the formula
M;,u = ((M;u)*(P]%;L);))‘X[uvv]p,*

Since X is assumed to be countable these measures define kernels p) : Xo — X[u, v] which form
a pre-process P = P(FE) on (X,T). We will call it the pre-process defined by a generating map FE.

Remark 3.7.8 [2009.06.17.1/The maps M, commute with the restriction maps resy i.e. for
u<w<wvinT and p € X( the square
M.,

Qg,u,oo — X[u,v]ps

u,v
TeSyw

M’LU
w p,u
Qp,u,oo X[uﬂ w]P»*

commutes. However, the square

My,
Rnd>*® —— {} I X[u,v]p«

:l J{{*}HT&SZ%
MY,
Rnd> —=% {x} 11 X[u, w],

does not commute in general since for r € 27,  \Q . we have M;}u(f) = {*} while M;‘ju([) €
Xu, wlp .

Foru<w<wvinT, let
e X[w,v] — X[u,v]

Jw,w
be the embedding which sends (z;...,z,) € A?w o X {e} to (z1...,2,) € A?u o X {e}. ForveT
and p € Xy define a map

My : T x Rnd™ — {*} X X[Tnin, v]p
by the formula

My (z,r) = (Idpg ) (M, (r))

p p,x

Lemma 3.7.9 [2009.06.17.2] The maps M} are measurable.

Proof: We have to prove that for any e € X?(p) and any measurable V in Al i) X {e} the subset
(MY)~*(V) is measurable. Since the Borel o-algebra on R™ coincides with the product of Borel

o-algebras on R it is sufficient, for n > 1, to consider subsets of the form V = {(z1,...,z,) |21 €

I, (zg9,...,z,) € U} where I is a measurable subset of (T)in,v] and U a measurable subset of
n—1

Alsup(n).0)°

Let us proceed by induction on n. For n = 0 we have X"(p) = {p} and M2 (z,r) = {p} if and
only if E(p,z,71) € ({p} x {x}) I (X{* x T%,). Therefore (M})~'({p}) is measurable since E is
measurable. Suppose that n > 1 and let I and U be as above. Then My (z,r) € I x U if and only
if B(p,2,r1) = (33 '(e),2'), 2’ € I and ]\Zf];’,(a;’, (ro,...,)) € U where U is considered as a subset

of A’(;jm i % {91(e)}, where p' = 95~ (01(e)). Consider the map

f:T x Rnd® — (X x {+}) I (X7 x T)) x T x Rnd™®
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of the form
f(l‘,ﬁ) = (E(p,a:,rl),y, (727 v 7))

This map is clearly measurable. Let Z. be the subset of elements of the form ((e,z),z,r) of
(Xo x {(*}) T (X749 x T)) x T x Rnd>. Tt is measurable since the diagonal of T x T is measurable.
On the other hand we have

(M)™HI x U) = f7H(Ze 0 ((Xo x {+}) L(X] % T)) x (M) "))
which together with the inductive assumption shows that (M?)~!(I x U) is measurable.

The second statement of the following proposition is a reformulation of the second condition of
Theorem 3.7.2 and therefore the proof of this proposition finishes the proof of Theorem 3.7.2.

Proposition 3.7.10 [/2009.06.03.1/ Let P be a process defined by a generating map E. Then for
any p € Xo, any u < w <wv in T and any measurable U C X|w,v], the function

[2009.06.03.eql]x +— pup ,((T€Szw X reswy)”  ({p} x U)) (25)
on [u,w] is measurable.
Proof: Observe that we have
(resew X reswp) " ({p} x U) = ji(U)

and
(M) GEa(U)) = (M)~ (et (U) N {a} x Rnd™

p,x

therefore

Hpa((resaw X Teswo) ™ ({p} x U)) = Pheg((My) ™ (ju" (U)) N {z} x Rnd™)
which is a measurable function since (M)~ ( jw”{)m “(U)) is a measurable subset by Lemma 3.7.9.
Corollary 3.7.11 [2009.05.28.1] For P as above, the functions hy(—,v) are measurable.

Proof: The function hy,(—,v) is the function (25) for w = v and U = {p}.

Lemma 3.7.12 [2009.05.27.4] For u < v in T, n > 1, e € X

IC (u,v] and U C A?Su; (D] X {01(e)} let

e and two measurable subsets

We (LU) ={(21,...,2n) € A{, ;) x {e} |21 € I and (z2,...,2,) € U}

(u,v]

Let further e; = 86“1(6), p = do(er) and p' = O1(e1). Then for the pre-process defined by a
generating map E one has

[2009.06.17.eq3]p;7u(W:’u(I, U)) :/ IMZ/,I((T@’% sup(1) X T€Ssup(I) w) ({p} x U))dbe, . (26)
pAS
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Proof: Let Q, = E,.({e1} x T) and let g : Q; — T be the map defined by the condition
E,u(r) = (e1,9(r)). We have )
(M)~ (W1, U)) =

={r € Rnd> | E(r1) = (e1,) € {e1} xI and My ,(r2,...) € (resy sup(1) X T€Ssup(D)v) L'y xU)}
By definition of M;j we have
[2009.06.17.eq2](M,) )~ Y(res, sup(I) XT€Ssup(I)w) L' yxU)) = (M;)fl(U)ﬁ{x}andoo (27)

where on the right hand side, U is considered as a subset of A7, x {01(e)}. Therefore,

( min,U

Hpu(Wen (1, U)) = P (M)~ (W, (1,U))) =
Qe [e’] e 00 U\ —
= (Pt @ PRz (g  Tdpna=) ™ (I x Rnd™) 01 (1)1 (1)) =
= (Be,u ® Ppg) (1 x Rnd™) N (My)~H(U))
By Fubini’s theorem we have
(Oeu ® Pos) (I x Rnd™®) N (M)~ (U)) = /EI PESS(MY)™HU) N {z} x Rnd™)dfe,y
and applying again (27) we conclude that (26) holds.

Proposition 3.7.13 [2009.05.27.3/ For the pre-process on (X, T) defined by a generating map E
with the underlying kernel 8 and v < v in T one has

1. for any p € X,

pu W) =1- Z Oe,u((u, v])

e€ X4 | do(e)=p

hp(u, 0) = iy, (U,

2. foranyn >1, e¢€ ng and any sequence of measurable subsets I, ..., I, in (u,v] such that
sup(I;) < mf( Iiy1) one has
M;OﬂL(U:,u(Ilv cee ’ITL)) =

= / .. / hp,, (n, 0)d0c,, 20 1 - Oci
1€l Tn€lyn

U:,u([la---;fn):{l’l,-- (lZnEA

where
o X e}z € I}

ei =8, (e), po=f(e), pn =T (e)
Proof: To prove the first part observe that
(M)~ ({p}) = Qo = {r € Rnd™® | E(u,p,11) € (Tsy x X{9) I ({#} x Xo)

and therefore

Hpu({P}) = Praa(Bnd\E;((u, o] x X{)) =1— > feul(u,0])

eeXpd | B (e)=p
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To prove the second part observe that for e € X fd one has

Ugu(lr) = W, (I1,{p1})

and
(Tesxl,sup(h) X ressup(ll),v)_l({pl} X {pl}) = {pl}

and for n > 1
U;iu(117 ey In) == W;u(ll, Ugl(e)75up(11)(12, o e 7ITL))

and
(Teswl,sup(h) X Tessup(ll),v)fl({pl} X Ugl(e),sup(ll)(127 o Iy)) = Ugl(e)’m (Iy..., 1)

Therefore, by Lemma 3.7.12 we have for e € X¢

2009.05.27.eq1]1l, (UL, (I1)) = 11 (W (I1, {p1})) = / Py ({P1})dOc (28)

x1€lh

and for e € X¥ where n > 1,

M;O,U(Ug,u(llv s 7In)) = M;O,U(W;u(‘[b Ugl(e),sup(ll)(l% s In))) =

= / MZI7ZI(U51(€),I'1 (12’ s 7In))d061,u
x1€l

which by easy induction implies the second part of the proposition.

Corollary 3.7.14 [2009.05.27.7] For any renewal pre-process the functions h,(u,—) are right
continuous.

Proof: It follows from the first part of the proposition since the distribution function defined
through closed intervals is right continuous and the difference of two right continuous functions is
right continuous.

Corollary 3.7.15 [2009.05.27.5/ Under the assumption of the proposition we have for any u < v
in T and e € XD,
)‘Z,u = 96# * hal(e)(_v U)

Proof: It is the equivalent to (28).

Proposition 3.7.16 [2009.06.19.1/ Let P be a process defined by a generating kernel 6. Then
for anyu <wv inT and any e € bed one has

ee,u([ua U]) = limAGSTl([u,v]) Z Aifﬁp(l(a))(f(a))
acA

Proof: Let p = dy(e) and p’ = d1(e). We have
Nt (1(a)) = Pieg (M) ™M (I(a) € Al guprayy X {e}) =

= ngg({ﬂ Epu(r1) = (z,€e) s.t. x € I(a) and Ey (ro) € {p x #}1I (X{Ld X TS gup(1(a)))}) =
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= Ppng({(r1,72) | Bpu(r1) = (z,€) s.t. 2 € I(a) and By o(r2) € {p" x +} (X[ x T gup(r(a))})
Since intervals I(a) are disjoint so are the subsets (Mpq (I(a)))_l(l (a)) and therefore
Z Agjgv(l(a))([(a)) —
acA
= Phng({(r1,72) | Bpu(r1) = (w,€) st. @ < v and By o(r2) € {p x #} I(X] X T g))})
where a(z) = sup(I(a)) for a such that = € I(a). On the other hand
[2009.0616.eq2]0é’7u([u,v]) = Pppa({r1| Epu(r1) = (e,x) st. z <wv}) (29)
Let A be such that for all a € A one has sup(I(a)) —inf(I(a)) < e. Then

1004 ([w,0]) = Y AU (1(a))] < PRz ({(r1,72) | Epu(r) = (z,€) and Ep 4(r2) — x < €})
acA

We have
M1 Piong({(r1,72) | Epu(r1) = (2, €) and Ep 4 (r2) —x < 1/n}) =0
and from o-additivity of P]%fd we conclude that

lim ae Sy (u)) |0 ([, 0]) = Y AP (1(a))] = 0.
a€A

Corollary 3.7.17 [2009.07.13.1] The pre-processes defined by generating maps E, E' coincide if
and only if the generating kernels 0, ' defined by E and E' coincide.

Lemma 3.7.18 [2009.05.27.6/ A for a renewal pre-process the functions vy(u,—) are right con-
tinuous and vp(u,u) = 1.

Proof: By construction we have

vp(u,v) = PEoS(Q ., o)

p7u7oo
and one observes easily that

[2009.05.27.eq2] Us o Q210 = QY (30)

p7u7n p7u7n

for all n > 1 and all p. Therefore by o-additivity of P]‘?O; we conclude that

n
limejgvp(u, v + €) = vp(u,v)
i.e. wp(u,—) is right continuous. The fact that v,(u,u) = 1 follows from the obvious equation

Qv ., = Rnd>.

p7u7n

Recall that for e € X7¢ and u < v in T we let ag,, denote the measure

[u,v] x{e}

v

ey = (@1, 1) (14 () )

where

(931,61) : X[”?”] - ([uv U] X X{Zd) 1T «
is the "first event” map. For p € X set:

v v
Olp’u - Z ae,u

eGX{“j | Bo(e)=p
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Proposition 3.7.19 For any renewal pre-process P, any e € X{’d, anyu < w < vinT, any
measurable I in [u,w] and any measurable U C X[w,v] one has

[2009.05.28.eq1],u,207u((xl,el)_l(U>< {e})ﬂ(res%’fj))_l(U)) —/ Mgl7x((resﬁfj))_l(U))d6€,u (31)

zel
where po = Op(e) and p1 = 01(e).
Proof: We have
Hpou (21, e1)HU X {e}) N (resyt) H(U)) = Pag(Mp, )™ (21,e1)7HU x {e}) N (resyyt,) 1 (U)
and B
(Mpy o)™ (21,e1) 71U x {e}) N (resyyy) ™ (U) =
= {r € Rnd™ | E(po,u,m1) = (v,e) € I x {e} and (rg,...,) € Qy . - and
My, o(r2,...,) € (resiy) " (U)})

which implies (31) by Fubini’s theorem.
Corollary 3.7.20 [2009.05.28.3/ Under the assumptions of the proposition one has
[2009.05.28.eq2]a ,, = Oy * Up, (—, V) (32)

Proof: The equation (32) is equivalent to equations
[ onleo)dse, = a,(fuo)
€lu,w]

for all w € [u, v], which follows from the proposition for U = X [w, v].

Let us consider the following conditions on pre-processes on (X, T):

C1 For any p € Xo, any u < w < v in T, any measurable U in X[u, w], « one has
tp((resin) HU)) < iy (U),

C2a For any p € X the function hy(u,v) = py ,,({p}) is measurable in u,

( =
C2b For any p € X the function hy(u,v) = up ,({p}) is right continuous in v,
( =

C3a For any p € X the function vy (u,v) = py (X [u, V], ) is measurable in u,

)

C3b For any p € Xj the function vy(u,v) = py,,(X[u,v], ) is right continuous in v,
C4a For any e € X7? and any w < v in T the function
w s ALy ([, v])
on [Tin, w] is measurable,
C4b For any e € de and any v < w in T the function

v = A ([u, w])

on [w, Tynaz] is right continuous.
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Proposition 3.7.21 [2009.06.19.2/ Any renewal process satisfies conditions (C1), (C2a), (C2b),
(C4a), (C4D).

Proof: For any p € Xy and v < w < v in T one has
(My,) " (resuw) M (U)) = (M) " (U) N Q4 o
and therefore, for any measurable U C X [u, w],
tpa((resuw) " (U)) = Phag (M) ((resuw) " (U) < Png (M) "1 (U) = py (U).

This shows that a renewal process satisfies (C1). (C2a) is proved in Corollary 3.7.11. (C2b) is
proved in Corollary 3.7.14. (C4a) follows from Proposition 3.7.10 since

Nea((w,0]) = gy (resuw X reswe) ™ ({p} X (A, x {e}))
where p = Jyp(e) and for v < w
Acullw, v]) = limgruwAe (2, v])

To prove (C4b) observe that
N ([u,w]) =

= P}%fg{r | Epu(r1) = (z,€e) € [u,w] By 5(r2) € (Xo x {x}) I (X{Ld X Tsyte)}
and o-additivity of Rnd®> implies immediately that
llmeLO)‘U+E([ ]) = Ag,u([“? w])

Lemma 3.7.22 [2009.05.28.5] Let P be a pre-process satisfying (C1). The for any p € Xy and
anyu < xpg<x1 <<z inT one has

Z azH_ .’I,'Z, xi-l—l]) < hp(ua .’IJO) - hp(“v [En)

Proof: By obvious induction it is sufficient to show that for u < w < v one has o ,((w,v]) <

hy(u, w) — hy(u,v). We have DU
ap (W, v]) + hp(u,0) = pp  ({p} 1T (1, €1) ™ ((w, v])) =
=12 ((resws) " ({p}) < 12, ({p}) = hylu, w).

Proposition 3.7.23 [2009.05.28.4/ Let P be a pre-process satisfying (C1). Then for any e € X7?
and any u < v the limit

2009.05.28.e3]0. 4, (v) = lim acspy(ua) Y AP (I(a)) (33)
a€A

exists and for p € Xg

2009.05.28.eqd]hy(u,v) + D Ocu(v) < (34)
e€ X1 (p)

In particular, O, (—) is a non-negative monotone increasing function bounded by 1.
If P in addition satisfies (C2b) then O, (—) is right continuous.
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Proof: To show that the limit (33) exists in R U {oo} it is sufficient to show that the expression
under the limit is a monotone function of A. Let us show that it is monotone increasing, i.e. for

A’ C A we have
> AgupAa) (1(A, a)) > > A AL (1A d))
a€A a’'cA’

One observes easily that in order to prove this assertion it is sufficient to show that for an interval
I in [u,v] which is closed from the below and B € Spa(I) we have

Z )\sup(l b) ) > Azuf(l) (I)
beB 7

From condition (C1) we have

NETONI(0)) 2 gD (resy s ilyy) ™ T0)) 2 XD IB))

and therefore

Z Asup (1(b)) Z )\sup([ )\gué?(l) (I)

beB beB

This proves that O, is well defined. Let us show that it satisfies (34) and in particular that it is
bounded.

Lemma 3.7.24 [2009.05.29.1] For any w € [u,v] and A € Sta([w,v]) one has

(u,v JrZozs“p a)) < hy(u, w) + ap),({w})
acA

Proof: Since the infinite sum on the left is the limit over the sums over finite subsets of A it is
sufficient to show that for a sufficiently large finite subset A" C A one has

> gt e)(I(a)) < hy(u,w) — hy(u,v) + o, ({w})
acA’
Without loss of generality we may assume that A’ = {xy,...,z,} where o = w and 2, = v. Then

> apte ZMH%WMH@WMMW:

acA’

n—1
_Zam (24, Tis1] +Za%+l {z:}) = > ari,({z:})
=1

By condition (C1) we have ag?,({7i}) > ax”l({xz}) Therefore

> agutt ) < ZO‘M (zi, zit1]) + ap%({zo}) < hp(u, w) — hy(u,v) + o), ({w})

acA’

where the last inequality holds by Lemma 3.7.22.
Since a¢’,({w}) = A¢,({w}) and

g1 (1(a)) = NP (1(a))
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we conclude from Lemma 3.7.24 that

2009.05.28.eq5] 1, (u,v) + Y Y APUO)(I(a)) < + ) A (w))  (35)

a€A ec X7 (p) e€ X4 (p)

which for w = u implies (34).
Let us consider the question of when O, is right continuous. For v’ > v one has

@e,u( ) — lzmAGSTQ( fu,v) Z )\sup (I(a) )( ( )) —+ lszGSTQ ([v,v']) Z )\SUP )(I(b))
acA beB
Therefore,

GE,U(U +€) = Ocu(v) = limBGSTQ([U,U+€D Z Ai?f(l(b))(f(b)) - )‘Z,u({v})
beB

Since all this differences are non-negative it is sufficient to show that their sum over all e € X7%(p)
goes to zero with e. By (35)

lszeSTQ(UU+€)Z Z )\S“p(I o) Z Aew({v}) < hp(u,v) — hy(u,v + €)

beB e X7 (p) ee X7 (p)

and we conclude that O ,(—) is right continuous if hgj ) (u, —) is.

Definition 3.7.25 [condn/ Let X be a countable multi-graph and T' = [Tnin, Tmaz] @ time window.
A pre-process on (X, T) is said to satisfy condition (N) if it satisfies condition (C1) and for any
p€ Xgandu <vinT one has

[2009.05.28.eq6]h,(w,v) + > Ou(v) =1 (36)
e X% | 9o (e)=p

Consider a collection of monotone increasing, right continuous functions O, : 7%, — R>g such
that O, (u) = 0, given for all e € X{Ld and u € T. Such a collection corresponds to a collection of
measures 0, on I determined by the condition

Oc(v) fu<w
067u([Tmin7U]):{ 0 7 ( ) ifu>w

Assume in addition that the condition

1— ) Oeulv) =0

ee X | 8o (e)=p

holds. Then there is a unique probability measure 6,,,, on (Xo x {*}) I (X9 x T') such that

(9 )|{e}><T _ { He,u if 80(6) =Pp
p7u -

0 otherwise

and /
CRCEE O D eexnd | ap(e)=p Peu(T) for p=p
" 0 for p' # p
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Lemma 3.7.26 [2009.06.01.2] Let P be a pre-process satisfying (C1) then fore € X2, u < w <
v in T and U measurable in [u,v] one has

Aew(U) = A,(U)
Proof: We have
)‘gju(U) = :ugo( ),u (U - A(u w] x {8}) 2 :U’go(e),u((resufw) (U - A(u w] x {6})) =

> Mgo(e),u(U - A%u,v] x {6})

Lemma 3. 7 27 [2009.06.01.1] Let P be a pre-process which satisfies condition (C1) and (C4b).
Lete € X2 v <w <winT and let Q be a dense subset of [w,v] which contains w and v. Then

Ocu(v) = Ocu(w) = limacpin, @ Y_ AU (I(a)) — AL, ({w})

a€A

where F'in,, (Q) is the set of finite subsets of QQ which contain w, considered as a subset of Sta([w,v]).

Proof: It follows easily from the definition of © that

@e,u(v) - @e,u(w) = limAESTQ([w,U]) Z Az%)(l(a)) (I(a)) - )‘gju({w})

a€A

It remains to show that

M acping @) D MO (I(a)) = limacsyy(waey Y X (1(a))
acA a€A

Since the function F(A) = 4 )\SUP( (a ))(I(a)) has the property that F(A) > F(A’) for A C A’
the limits on the right and left hand sides are supremums of the sets of values of F' on Spo([w, v])
and Fin(Q) respectively. In addition since the sum of an infinite set of non-negative numbers is
the supremum of the sums over the finite subsets of this set we have

lzmAESTg([w v]) Z )\sup I(a) )( ( )) - lzmAGanw ([w,v]) Z )\sup(l )(I(a))
acA acA

where Fing,([w,v]) is the set of finite subsets of [w,v] which contain w. It remains to shows that
under the assumption of the lemma one has:

2009.06.01.eq1limacpin, @) Y _ M (I(a)) = limacpin, o) P Me? "D (I(a))  (37)
a€A acA

Let A = {xzo,...,x,} be a finite subset of [w,v] such that o = w and z,, = v and let ¢ > 0. We
will show that there exists a finite subset A" = {x{, ..., z),} such that z{, = w, =), = v, z; € Q and
F(A’") > F(A) — €, which together with the previous comments implies (37).

Since P satisfies (C4b), the functions A, ([x;, 7;41] and AL, ([z;41, i11] are right continuous on
Y € [%it1, Tmaz) and therefore A, ([z;,xi4+1) is right continuous. Therefore, for any § > 0 there
exist «),...,z),_; such that 2} > z;, 2, € Q and for i =0,...,n — 2

N (i, i) — Nl ig))] < 8
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Set z(, = w, X], =v and A" = {z{,2,..., 2], }. Then one has

oo (2 2l 0) = Mt (i) — est™ ([0, 29) + Mot ({21, 204 )

fori=0,...,n—2 and
M@y, 2p]) = Au([wn-1, @) = Nor([wn—1,20_1))

(since z,, = z,). Therefore,

n—2 n—2
= S A (i i) + A (a1, wal) + 3 (O (i, 0h) = Mo (i1, 2040)) ) =
=0 =0

n—1
> >N ([ wia1)) = F(A) =06
where the first inequality holds by Lemma 3.7.26 and the second one by our choice of 2/’s.

Lemma 3.7.28 [2009.05.30.2/ Let P be a pre-process on (X,T) which satisfies (C1), (C2b) and
(C4a), (C4b). Then the functions O, (v) are measurable as functions of u € T<,,.

Proof: It is sufficient to show that for any y € Rxo the subset {u € T<,|Oc,(v) > y} is
measurable. Let us fix v. For w € T, set

f Oeu(v) = Ocy(w) fw>w
Fu,w) = { 0 otherwise

Since Oy (u) = 0 we have
{u]Ocu(v) >y} = {u| Fu,u) >y}

Since O, (w) is right continuous in w, F(—, —) is right continuous in the second argument and for
any u such that F'(u,u) > y there exists € such that for all w € [u,u + €] we have F(u,w) > y. In
particular, if () be a dense countable subset in 1" then

{u| F(u,u) >y} = Uge{u| F(u,q) > y}.

It remains to show that the function F'(u,w) is measurable in u for u < w. Let @ be a countable,
dense subset of [w,v] which contains w and v. Then by Lemma 3.7.27 we have

F(u w) - lzmAEan (@) Z )‘SUP([ ))(I(a)) - )‘gju({w})

acA

For each A the function u — > )\SW( (a ))(I(a)) is measurable as the sum of finitely many
measurable functions and we conclude that F'(u,w) is measurable as the supremum of a countable
family of measurable functions.
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3.8 Markov pre-processes on multi-graphs

Lemma 3.8.1 [2009.06.14.1/ Let X be a multi-graph and T = [Tin, Timaz) @ time window. A
pre-process P = {uk} on (X,T) satisfies condition (M) if and only if for any v < w < v in T

and e € XM, ¢’ € X4 such that O%(e) = 95 (e') and any admissible intervals I, ..., I, in (u,w],
J1,- oy Im in (w,v] one has

Mg,u(Uéﬂ",uUh B O N MZu(Ugu(Ilv e 7In))/1’;’,w(U:’,w(J17 ceydm))
where p = 0% (e), p' = 07 (€') and €” € X1, is such that O\ (e") = e and (") = €.

Proof: For u <w <wvin T, p,p’ € Xo, e € X" ¢ € X" and admissible intervals I1,..., I, in
(u,w], Ji,..., Iy in (w,v] we have

(resyw X resw,v)_l(Ugu(Il, v dn) X UG (1, In)) =
_ U§,7U(Il,...,ln,J1,...,Jm) if 97 (e) = g (€')
if 07 (c) £ 0 (¢)

where e’ € X4 is such that 9f*(e”) = e and 97 (e”) = €. Together with Lemma 3.6.1 it implies

n+m
the claim of the lemma.

Note that for any U;u(ll, ..., I,) as above, there exist points w;, i = 1,...,n — 1 such that
sup(I;) < w; < inf(l;+1) and for any choice of points satisfying these conditions we have

[cutl]U:’u(Il, ooy Iy) = (resyn X ooee X res%’:_w)*l(le (I1) x ---x U? (1)) (38)

U, w1 €1,u €n,Wn—1

where e = (eq, ..., e,). This observation immediately implies that it is sufficient to verify conditions
of Lemma 3.8.1 for n < 1 or m < 1 and that any pre-process on (X, T') satisfying condition (M) is
determined by the corresponding functions h,(—, —) and measures A¢ .

From property (M) we get for all p € X and all v < w < v the equations

vp(u,v) = Z (Z)ﬁl(u,w)vp/(w, v)

pl

and
[obl]h,(u,v) = hy(u, w)hy(w, v) (39)

Since hy(u,v) < vp(u,v) < 1 we conclude that hy,(u,v) is monotone increasing in u and monotone
decreasing in v and vy (u,v) are monotone decreasing in v. We will see from examples below (77?)
that vy,(u,v) need not be monotone in w.

Lemma 3.8.2 [ob00/ Let P be a pre-process on (X,T) satisfying condition (M). Then for any
p,p € Xo and any u < w < v in T one has:

1. the function h,(u,w + 6)¢§/(w + €,v) is monotone decreasing in € and one has

hﬁr)l hyp(u, w + e)qbgl(w +¢e,0) = hP(u, w)qbgl(w, v)
2. the function hy(u, w + €)vy,(w + €,v) is monotone decreasing in € and one has
lim Ay (u, w + €)vp(w + €,v) = hP (u, w)v,(w, v)

€l0
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3. the function qbg (u, w4 €)hy (w + €,v) is monotone increasing in € and one has

lim O (u, w + €)hy (0 + €,0) = ¢ (u, w)hy (w, v)

Proof: Applying property (M) to U = {p} and V = X[w + €, v], ,y we get
hp(u,w + €)@ (w + €,v) = pt,(resuuwre X resuien)  ({p} X X[w + €] ).
Since for € > € one has
(resumwre X resuie ) T({p} X X[w+ €, v]p) C (resuwre X TeSwren) ({0} x X[w + €,v]p,)
and
Ueto(resu,wte X T€suew)  ({P} X X[w + € v]p) = (resuw X reswe) ™ ({p} x X[w, vlp,)

we conclude that that the first assertion holds. The second assertion follows by the same argument
applied to U = {p} and V = X[w + €, v], « and the third to U = X[u,w + €],y and V = {p'}.

Recall that P is called non-degenerate v,(u,u) = 1 forall p € Xp and u € T. Since X|[u,u] = X,
a process on (X[*,*],T) is non-degenerate if and only if h,(u,u) = 1 for all p € Xy and u € T.
A pre-process satisfying condition (M) is non-degenerate if and only if for any p € Xy and u € T,
hp(u,u) # 0 or, equivalently, vy (u,u) # 0.

Proposition 3.8.3 [thl] Let P be a non-degenerate pre-process on (X [x, x|, T) satisfying condition
(M). Then the following conditions are equivalent:

1. for any p € Xo the function v,(u,v) is right continuous on T' as a function of u and for all
U < Tinag there exists v > u such that vy(u,v) # 0,

2. for any p € Xo the function hy(u,v) is right continuous on T as a function of u and for all
U < Tinag there exists v > u such that vy(u,v) # 0,

3. for any p,p’ € Xo the function gbg(u, v) is right continuous on T as a function of u and for
all uw < Tipaq there exists v > w such that vy(u,v) # 0,

4. for any p € Xy the function v,(u,v) is right continuous on T' as a function of v,
5. for any p € Xo the function hy(u,v) is right continuous on T as a function of v,

6. for any p,p’ € Xy the function gbg (u,v) is right continuous on T as a function of v,

Proof: Observe first that if for u < Tjpq, there exits v > w such that vy,(u,v) # 0 then, applying
Lemma 3.8.2(2) for w = u we get

[feapllimejohy(u, v+ €)vp(u + €,v) = vy(u,v) # 0 (40)

which implies that there exists v > u such that hy(u,v) > 0. For any such v we also have
vp(u,v) > 0 and ¢h(u,v) > 0.
(1) = (2) Let u < Tpae and let v be such that h,(u,v) > 0 and vy(u,v) > 0. Since vp(u,v) is
right continuous in u, the equation (40) implies that

(limeohp(u, u + €))vp(u, v) = vp(u,v)
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and since v,(u,v) > 0 we conclude that lim¢jg hy(u,u+€) =1 for all uw € T, u < Tyqz. Therefore
by (39)
lime ohy(u + €,v) = lim¢|ohy(u, u + €) L hy(u,v) = hy(u,v)

i.e. (2) holds.

(3) = (2) Same as (1) = (2) with the use of Lemma 3.8.2(1) for u = w and p = p/.

(2) = (5) Follows from (39).

(5) = (3) Since hp(u,u) = 1, condition (5) implies that for any u < Tjne, there exists v > u
such that hy(u,v) > 0 and therefore vy,(u,v) > 0 since v,(u,v) > hy(u,v).

By Lemma 3.8.2(3) for w = u we get

limejohp(u, u + e)qbg (u+e€,v) = gbg(u, v)
for all v > u which together with condition (5) implies that
limeloqbg (u+€v) = qbg (u,v)

i.e. that ¢£/(u, v) is right continuous in u.

(5) = (1) Same as (5) = (3) using Lemma 3.8.2(2) instead of Lemma 3.8.2(1).

(2) = (6) Let u < w < Tipae and let v be such that hy(w,v) # 0. By Lemma 3.8.2(2) for u, w, v
together with the condition that h, (—, —) is right continuous in the first variable we get

=
=

(lz’mewﬁl(u, w+ €))hy (w,v) = limelotbg(u, w+ €)hy (w4 €,v) = qﬁzl(u, w)hy (w,v)
which implies that
seap] lim 81 (. + ©) = 67 (u, ) (41)

or equivalently that gbg(u, v) is right continuous in v.

(6) = (4) Follows from the fact that vy(u,v) = >, @5 (u,v) by Lemma 3.5.3. ???? wrong
argument?

(4) = (2) Since functions vy (u,v) are right continuous in v and vy (u,u) = 1 there exists v > u
such that vy (u,v) > 0 and hy (u,v) > 0. Taking in Lemma 3.8.2(3) p # p’ and w = u we get

limewqbg (u,u+ €)hy(u+ev)=0
and since hy (u 4 €,v) > hy(u,v) > 0 for all € we conclude that
[eq020]lim. 0¥ (u,u + €) = 0 (42)

ie. qﬁg (u,v) are right continuous in v at v = u for p’ # p. Applying Lemma 3.5.3 we conclude
that the same holds for > ., d)g(u, v) and since it holds for

vp(u,v) = ¢h(u,v) + Z qbg (u,v)
p'#p
we conclude that it holds for ¢b(u,v) i.e. that
[teqplime|odh(u,u +¢€) =1 (43)
Applying Lemma 3.8.2(3) for p’ = p and w = u together with (43) we conclude that for all v > u
limejohy(u + €,v) = lime odh (v, u + €)hp(u + €,v) = hp(u,v)

i.e. that h,(u,v) is right continuous in w.
Proposition is proved.
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Definition 3.8.4 [rcont] A pre-process P on (X[*,%|,T) is called right continuous if for any
p € Xo the function vy(u,v) is right continuous in v.

Note that any process on (X[*, |, T") is automatically right continuous.

Example 3.8.5 [nonrc| Consider a pre-process P on X[, ] such that the measures p,, (P) are
concentrated on {p}. Such a pre-process is simply a collection of functions v,(u,v) on T'. It satisfies
property (M) if and only if for all v < w < v and all p € X one has v,(u,v) = vp(u, w)vy(w,v).
From this it is easy to construct an example of a non-degenerate pre-process satisfying (M) such
that the functions v, (u,v) are right continuous in « but not in v and an example of a degenerate
pre-process satisfying (M) for which functions v, (u,v) are right continuous in v but not in w.

For a pre-process P on (X[*,%],T) and p € Xy define A(P;h,) (abbreviated to A(hy)) as the
subset of 7" which consists of points x such that for all y € T', y < x one has hy(y,z) = 0.

Proposition 3.8.6 /ob2/ Let P be a non-degenerate right continuous pre-process satisfying condi-
tion (M) and p € Xo. Then for any x € T' one has hy(x, Tae) > 0 or there exists a unique element
a(x, hy) in A(P;hy) such that a(z, hy) > x and for all y € [x,a(x, hy)) one has hy(x,y) > 0.

Proof: We may assume that hy,(x, Tine,) = 0. By Proposition 3.8.3 the function h,(x, —) is right
continuous and since it is non-negative and monotone decreasing the set of zeros of hy,(x, —) is of
the form [a, Tinqz] for some a = a(x, hy) in (2, Tingz). It remains to show that a € A(h,). Let y < a.
If y <z then hy(y,a) = hy(y, x)hy(z,a) = 0. If y > = then

hyp(z,y)hp(y,a) = hp(z,a) =0
and since h,(x,y) > 0 we conclude that hy(y,a) =0 and a € A(hp).

Corollary 3.8.7 Job2a/ Let P be as above and p € Xy. Then one has:
1. hy(u,v) =0 if and only if (u,v] contains an element of A(hy),

2. A(hp) is a T1 subset, in particular it is countable, has a mazimal element apqq and
T= (erA(hp), THAmaz [z, a(z, hp)) U [@maz, Tina]
For any u < v consider the map
(z1,e1) : X[u,v]\Xg — [u,v] x X14

which sends (z1,...,z,) € Agzlg]"’e") to x1.

For a pre-process P on (X, T), e € X{'Y and u < v denote by af ,(P) the measure
al (P) = (z1, 61)*((Mgo(e)m(]a))IX[u,v]\Xo)|(u,v]><{e}

e,u

For a measurable subset I C [u,v] we have
('7317 61)_1(1) = (Tesu,sup(l) X Tessup([),v)_l((l - A?u,sup([)]) X X[Sup([), v]81(e),*) il Dg,u(l)
where D¢, (I) C X[u,v]gy(e),« is of the form

Dg,u(-[) = Hn22 H(eg,...,en)EX"d Bo(e2)=01(e) {Q S AEZ’ZTM’en) ‘ T € Iand T9 € 7}

n—17

and therefore

[2009.06.15.18]a?, (P, I) = A3 (P, T)wg, () (sup(1),v) + 1y . (Du(D))  (44)
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Lemma 3.8.8 [2009.05.20.2] For any u < v, e € X! one has:

12009.05.20.3]limacs, () S #(0)0( Dl I(4,0))) = 0 (45)
acA

Proof: For any ¢ > 0 the class of T1 subsets A of [u,v] such that such that for any a € A one has
sup(I(A,a)) —inf(I(A,a)) < ¢ is co-final among all subsets. Let

sk:>175X[u,v] =1II,>2 HeeX;LLd {Q S A?u,v] |l‘2 —x1 < 5}
Then for A as above
Uaea D¢, (1(A, a)) C sksi X [u,v]
Since subsets Dy, (I(A,a)) are disjoint for different a we conclude that
D tpou(DEW(I(A ) < pipy o (sk=1,6X [u, 0])
acA

On the other hand
Nsposks1,X [u,v] =0

and by o-additivity of ug (¢).u We conclude that (45) holds.

Lemma 3.8.9 [2009.05.20.4/ Let I be closed from the below interval of T<,, such that hy, (inf(I), sup(I)) >
0. Then

2009.05.20.5]lim gy, (1) Y oD (1(0))vp, (sup(I(h)), sup(1)) ™" = limpesy, (1) y_ MO (1 (b))
beB beB
(46)
i.e. the corresponding limits exist and are equal.

Proof: By (44) we have
' gD (1(b))vp, (sup(I (b)), sup(I)) " =
= ALPIONL(0)) + D (DEPD (T (B))) vy (sup(1(b)), sup(1) ™"

po,u

By our assumption vy, (sup(I(b)), sup(I))~! is bounded from the above on I which together with
Lemma 3.8.8 shows that

limpesy, 1) Y My (DD I () vy, (sup(1 (b)), sup(1)) ™ =0
beB

and therefore (3.8.9) holds.

Lemma 3.8.10 [2009.05.20.6/ Let I be an interval closed from the below such that inf(I) = u
and sup(I) = v and hy, (u,v) > 0. Then

[2009.05.20.7]lim ey, (1) 9 b, (L) vy, (sup(1(5)),0) " = limpesy, oy asr I (1(b)
beB beB

i.e. the corresponding limits exist and are equal.

50



Proof: In the view of Lemma 3.8.9, it is sufficient to show that

limpes,, (1) Z Sup([ (I (b)) - Ai?‘f(’("”(f(B,b))) =
beB

By definition,
@I (1(0)) = NPT (1(0)) = gV (DD (1 (b))

and since
Dzzp(I(B,b)) (I(B,b))
Proposition 3.8.11 [2009.05.16.12/ Let P be a non-degenerate right continuous pre-process on
T = [Tomin, Trmaz] which satisfies (M). Then for any u < w < v and any e € X% one has
[2009.05.16.16](a? )™ x vy, (=, w) = A%, * Uy, (=, V) fuw] (48)
where p1 = 01(e).

Proof: Let po = Jp(e). Since the measures on both sides of (48) are bounded, their equality is
equivalent to the condition that for any x € [u, w] one has

/ vp (s w)dal, = / op (9, 0)da?,
yE[u,z] y€[u,z]

In view of Proposition 3.5.15 it is sufficient show that

12009.05.15.17]1im 4cy ()] 3 0 (1(@))0y, (sup(1(@)), )= > @, (1(@))vy, (sup(I(a)), w)| = 0
acA a€A
(49)

For an interval T C [u,y] let U¥Z (I) be the subset in X[u, Ylpo,p given by

Ué{’f (1) = (z1, 61)_1(1) N Tess_u;([)’sup(l)({p/})

If sup(I) < w then by condition (M) we have

/

[2009.05.16.19]y, (1) = iyt (U (1) oy, (sup(D), w) + pipy o (o UF (1)) (50)

and
[2009.05.16.20]a (1) = e (U DP (1)) vy, (sup(1),v) + py o Wy Ui (1)) (51)
Therefore
1> alu(I(@))up, (sup(! = aly(I(@)vp, (sup(I(a), w)| <
a€A acA
=¥ 18 ULy U (1(0)) iy (50 (1(0)),0) + 1y o (T U (@) s (sp(T (@), )] <
a€

<> [M}é”o,u(ﬂp'#pl ULP (1(a))) + pipy (U, USE (I(a)))
a€EA
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and since we have

Uy, UL (I) € DE(1)

and
Hp?éperu (I) - DU (I)
we conclude by Lemma 3.8.8 that
limacsry(ua)| D au(I(a))vp, (sup(] =Yl (@)vp (sup(I(a)),w)] = 0
a€A a€A

For u € T and e € X7¢ let A be a T1 subset of T, satisfying the condition of Lemma 3.5.10
relative to the T1 subset Az, (hg(e)). Then for any a € A we have

op, (inf(I(a)), sup(I(a))) = hy, (inf(I(a)), sup(I(a))) >0

and therefore we may consider the measure
Oc,u,n = Baca(afP! ) s vy, (=, sup(I(a))) ")

Proposition 3.8.12 ftheta/ Let P be a non-degenerate right continuous pre-process which satisfies
(M). Then for any w € T and e € X{‘d there ewists a unique measure Oc,, on T, such that for any
v > u one has

2009.05.17.2]a , = (0e,0)/ ™" % vy, (o) (=, V) un] (52)

i.e. for anyu <w <,
Ll = [ )i,
re(u,w

Proof: By Lemma 3.5.1 and our assumtion that P is right continuous we know that v,(—,v) is
measurable for all p and v. Let pg = dp(e) and p; = 0i(e). In view of Corollary 3.8.7 and Lemma
3.5.10 there exists a T'1 subset A of T>,, such that for any a € A one has hy,, (inf(I(a)), sup(I(a))) >
0. Consider the corresponding partition 7>, = l,cal(A, a) of T>,.

Our condition (52) on 6., implies that for any a € A we have

(Oe,)" 5 vy (=, sup(1(a)))1(a) = (aZFT @)
and since vy, (—, sup(I(a)))|7(a) > 0 we conclude that
[2009.05.17.4] (0,,.)"”) = (agP "D s (v, (=, sup(1(a))) 1(a)) ™" (53)

One observes immediately that there exists a unique measure 6., on T, which satisfies (53) for
all a € A. It remains to check that it satisfies (52) for all v > w. It follows from Proposition 3.8.11.

Lemma 3.8.13 [2009.05.21.1] Let I be a closed from the below interval of >, such that hy, (inf(I), sup(I)) >
0. Then one has

0,,(I) = i ASePU ) (1(p
all) BESHTI;(”beB e (1(b))
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Proof: Note first that since hy, (inf(I), sup(l)) > 0 we have vy, (—, sup(I)) > 0 on I and

O = [ o (= sup()) a2y
zel
By Proposition 3.5.15 we conclude that

Oc (1) = limpesyry Y @D (1(b))vp, (sup(I(b)), sup(1)) ™"
beB

and by Lemma 3.8.9 that

O, () = i 2supU (D) (1(p)).
w(l) Beé;g(l); o (1(b))

Lemma 3.8.14 [2009.05.21.3/ Let I = [x,y) be an interval of T<, and p € Xo. Then for any
B € Spa(I) one has

limy<yhp(u,6)+ > NUOUO) < hplwz)+ Y ALL({a)

bEB ee X1 | dy(e)=p e€ X4 | 9p(e)=p

Proof: Note first that for any © > a < @’ > y we have

[2009.05.22.1])\Y ,((a, a)) = hag(e) (1, a) A, ((a, a)) (54)
and
[2009.05.22.1b],, ({a}) = haye) (1, )AL, ({a'}) (55)
for any e € X{‘d, and
2009.05.22.2]hy(a,a)) + > A ((a.d) Svplad)— D> ML) (56)
ec X% | 8o(e)=p eeXnd | dy(e)=p

for any p € Xo.
Consider the function on B given by

FW)y= ) Yoo IO+ hy(u )+ D> ALY
beB, bV ee X7 | 9y(e)=p ee X | 8o (e)=p

Then
F(z) =hy(u,x)+ > X,({z})

eGX?d | o(e)=p
and using (54), (55) and (56) we get:
bl bl
FW)—FW) = > Al VD)) +hp(w )+ > Ah({)})

eeX 4| do(e)=p e€X 74| (e)=p

—hp(u, )= Y ALY} =

eeXd| 9 (e)=p

— S AW ) Y AR H) + Ayl By B+
eeX{’d | Oo(e)=p eGX{"d | Oo(e)=p
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S N k) - S AL <

eeX 4| do(e)=p ee X4 | dy(e)=p
< Y NRAD R0 — Y A+
e€ X | do(e)=p eeX 7| 8o (e)=p
b’ /
S - hy) - Y N =
eeXpd |30 (e)=p e€Xp? | By (e)=p

= hp(uw ) (op (0,0 =)+ > AL (D (oo, y) = 1) <0

eeX 74| 8o(e)=p

Let now b” be a limit element of B i.e. b = sup({b/ € B|V' < b}). Then a similar computation
shows that

limyay FO) = 30 30 X)) + limy by (u. )
bEB, b<b” ce X | 9y (e)=p
and therefore
F") = limy cp (V) = hy(u, 0"+ > AL ("} = limy <y (u, V)
eGX{’d | Oo(e)=p
On the other hand we have
hp(u, b))+ 3 ALY} = limeohp(u, b — €)up(b” — €, b") < limy <yl (u, b)

ee X[ do(e)=p

and therefore F(b") — limy <y F(b') < 0. We conclude that for all ¥’ € B one has
FU) <hplw)+ Y A.({a})
eEX{Ld | Oo(e)=p

On the other hand a simple computation shows that

limyepP(0) =Y Y XPUO(I0)) + Limy <yhp(u, V)

beB ec X4 | 9y (e)=p

which finishes the proof of the lemma.

Proposition 3.8.15 [2009.05.22.3] For anyy >z > u in T and any e € X7 one has

2009.05.22.4]0. ,(|x,y)) = lim E Ag“ﬁ““ﬂ I(a 57

[ [0cu([2,y)) esm(lma) 2 (Z(a)) (57)
and

2009.05.22.5]0, ,(|z,y]) = lim g A?ﬁf’(“a)) I(a 58

[ 10e.u([z,9]) esm(eal) =4 (I(a)) (58)

Proof: The second equation follows from the first one since

Oe.u({y}) = Au({y})

The first one follows from Lemma 3.8.13 since [z, y] has a T1 subset such that the corresponding
partition splits it into a disjoint union of countably many intervals which satisfy the condition this
lemma.
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Corollary 3.8.16 [2009.05.22.6/ For any x > u and any p € Xy one has

[2009.05.22.7] > beullu,x]) 1= hy(u, ) (59)
e€X |8y (e)=p

Proof: From (3.8.15) and Lemma 3.8.14 we have

Z Ocu([t, ) <1 —1limacg,, (juw)liMacaa<ahp(u, a) =1 = lima<ihy(u, a)
eeX | 8p(e)=p

and since
limacop(u,a) > hp(wa) + S AL (D =hlwa)+ Y 62,({a))
e€Xp4|do(e)=p e€ X1 | 8o (e)=p
we get (59).

Proposition 3.8.17 [2009.05.22.8] For any v > u in T and e € X7 one has
)‘Z,u = 0€7u * h81 (e)(_7 U)

Proof: For v > x > u we have, by Proposition 3.5.15:

(He,u*hc’h(e)(_7 U))([uv .7}]) = / 2] hﬁl(e) (y7 U)d‘ge,u = limaeSTg([u,a:]) Z He,u(l(a))hﬁl(e)(Sup(l(a»v U)
yeu,z acA

which equals by (57) and (58) to

M e Sy ([ua]) Z AT @) (I(a))ha, (o) (sup(I(a)),v) = liMye 5y (jua)) Z Aew(I(a)) =
a€A acA

= Acu([u,2])

e,u

Theorem 3.8.18 [2009.06.02.5/ Let X be a countable multi-graph, T = [Tpin, Tmaz] a time
window and P = {pp} a pre-process on (X, T') which satisfies condition (M). Then P is a renewal
process if and only if it is non-degenerate, right continuous and satisfies condition (N).

Proof: By Lemma 3.7.18 any renewal process is non-degenerate and right continuous and by
Lemma ?? and Proposition 3.7.13(1) it satisfies condition (N). It remains to show that a non-

degenerate right continuous pre-process P = {4}, satisfying condition (M) is a renewal pre-process.

3.9 rl-sets

To accommodate a number of important examples the constructions of the previous section has to
be generalized from reflexive multi-graphs to objects of a wider class which we call ri-sets.

Let A be the usual category of finite non-empty ordered sets and let © be the subcategory in
A with the same objects and morphisms being non-decreasing maps f : [{] — [j] whose images
are segments i.e. such that if a,b € Im(f) and @ < ¢ < b then ¢ € Im(f). In particular all the
non-decreasing surjections are in © and for i < j there are exactly j — i + 1 injections [i] — [j]
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in ©. One verifies easily that © can also be described as the subcategory in A generated by the
injections d? : {0,...,n — 1} C {0,...,n — 1,n}, d° : {1,...,n} C {0,1,...,n} and surjections
st :{0,...,n+1} = {0,...,n} where s'(i) = s'(i + 1) = i.

A O-set X, is a contravariant functor from © to Sets. We let 0y, 91 : X,, — X,,_1 denote the
maps corresponding to d” and d° and o' : Xp—1 — X, the maps corresponding to st . In what
follows we will write J; instead of 9;'. With this abbreviation, we get the equation

0001 = 0100

which implies that any composition of the maps 9 going from X,, to X,,_; can be written in a
unique way as (988{ where i + j = k.

An element x € X, is called degenerate if it belongs to the image of one of the degeneracy maps
a;‘_l : Xn—1 — X,. We denote the subset of non-degenerate maps of X,, by Xﬁd. A O-set is called
an rl-set if it satisfies the Eilenberg-Zilber condition i.e. for any x € X,, there exists a unique pair

(2',5) where s : [n] — [m] is a surjection, ' € X"? and s*(z2') = 2.

Example 3.9.1 [dgrl/ Let (9,01 : X1 — Xo,id : Xo — X1;00 0id = 01 oid = Id) be a reflexive
multi-graph. Define maps 95,97 : X,, — X,,—1 by 8} = 9; and

ayler,....,en) = (e1,...,en_1)

or(er,....,en) = (e2,...,6n)

for n > 1 and maps o' : X;,,—1 — X, by

O'?(el? . .,6n_1) = (617 B 7ei—170(pi)7ei7 s 7en—1)

where p; = Jp(e;) for i =1,...,n and pp+1 = 01(en).
One verifies easily that the resulting system of sets and maps is an rl-set.

Example 3.9.2 The first two terms X1, Xy of any ri-set form a reflexive-multigraph. We denote
the ri-set defined by this multi-graph by X, i.e. Xy = Xo, X; = X1 and for n > 1 we have X, =
X106, %0y -+ -0, %9, X1. The rl-set generated by this multi-graph coincides with the original one if
and only if the segments of non-degenerate elements are non-degenerate, non-degenerate elements
are determined by their one dimensional segments and any finite sequence of one dimensional
segments with compatible end-points defines an n-dimensional segment.

Example 3.9.3 [srl/ Let Y, be a simplicial set. A collection of subsets X, of Y;, which is closed
under the boundaries 87 and 9% and such that (o%)~1(X,) C X, defines an ri-set. In the rest
of this section we show that any ri-set can be obtained by this construction from an 7l-set.

Let ¢ : © — A be the obvious functor. It defines a pair of adjoint functors (¢*, ¢«) between ©-
sets and simplicial sets. For any simplicial set Y the ©-set ¢.Y is an rl-set by the Eilenberg-Zilber
Lemma. The following proposition shows that any rl-set can be obtained from a simplicial set by
the construction of Example 3.9.3.

Proposition 3.9.4 [dlin/ Let X be an rl-set. Then the natural morphism X — ¢.¢*X is a
monomorphism and an element x € X, is degenerate in X if and only if its image in ¢* X, is
degenerate in ¢* X . In addition, any non-degenerate element of ¢* X, is the boundary of a non-
degenerate element of X,, for some m > n.
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Proof: Let Ay,-; be the subcategory of surjective maps in A. Since all morphisms in Ag,,; are
epimorphisms the category [m]\Agyr; of arrows [m] — [n] under a given object [m] is a partially
ordered set. This partially ordered set is isomorphic to the cube (0 — 1) or, equivalently, to the
partially ordered set of subsets of {1,...,m}. To establish this isomorphism, a surjection [m] — [n]
is viewed as a partition of {0,...,m} into n sequential non-empty segments which is obtained by
"erasing” n — m of the elementary intervals [i,i + 1], ¢ = 0,...,m — 1. For example, the standard
generating surjections s : [n + 1] — [n] correspond to the subsets {i} of {0,...,n}.

For a surjection p : [n] — [m] in A define the minimal section s, : [m] — [n] of p setting
sp(i) = min{p~'(i)}. One verifies easily that for a composable pair of surjections [n] 2 [m] % [k]
one has

[2009.04.20.1]s,5, = Sgp (60)

Let p : [n] — [m] be a surjection and f : [m'] — [m] a morphism. Define commutative square

n(p, f)] —— [m]

| I
(] —— [m]

by the condition that for k € {0,...,m} such that p~(k) = {1,...,4;} and f=! = {1,..., 5.}
where ji > 1 one has (fp) (k) = () "2(k) = {14} Oy {is- -k + i}, the map to
{1,...,ix} maps the first segment to {1} and the rest bijectively and the map to {1,...,jx} maps
the first segment bijectively and the second one to jg:

{0, e Oy Lo -0 e+ it —— {1, My Gkt
| | (61)
{1} H{l} {1,...,ik} — {k}

Then
[msec]fpspf = spf (62)

We have n+1=>7" jig, m'+1=>7" ji. Therefore, if f is a surjection then
m
n(p, f) =—1+Z(ik+jk—1) = 14+n+l1+m'+1-m—-1=n+m'—m.
k=0

Let X, be a ©-set. A pair (p,x) where p : [n] — [m] is a surjection and z € X,, defines an
element s;(x) € ¢*(X)m. In view of (60) this construction defines a map

[phiuppereql] lim X, — ¢"(X),, (63)

[n]—[m]
where the limit is taken over the category of surjections over [m] in A.

Lemma 3.9.5 /phiupperl] For any ©-set X the maps (63) are bijections. For (p,z) € ¢*(X)m
and f : [m'] — [m] in A one has

[phiuppereq2|f*(p,z) = (py, f, () (64)
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Proof: The set ¢*(X);, is the quotient set of the set I, [, X» by the equivalence relation

defined by the condition that for [m)] EA [no] 2 [n1] where g is in © and zg € X,,, ©1 € Xp, one
has (f,zo) « (9, 1)

Let f : [m] — [n] be a morphism in A. One can easily see that it can be written as [m)] LS
[n'] 2 [n] where g a morphism in © and p : [n/] — [m] is a surjection such that p~*(m) = {n’}.
This shows that the map (63) is surjective. To show that it is injective it is sufficient to verify that
for two such representations f = g15,, = g25p, of a morphism f of this form there exist surjections
q : [n"] = [n)], g2 : [n"] — [n}] such that ¢191 = g2g2. We have

91(0) = 91(5p, (0)) = g2(sp,(0)) = 92(0)

g1(n1) = g1(sp, (M) = ga(sp,(m)) = g2(n3)
Since g1, g2 are in © we conclude that Im(g;) = In(g2) and therefore surjections with the required
property exist.
The equation 64 follows immediately from (62).

Lemma 3.9.6 /maintd/ Let X be a ©-set. Then X is an rl-set if and only if the maps X,, —
¢*(X)m are injective and any v € X,,, which is degenerate in ¢*(X) is degenerate in X.

Proof: "If” Follows immediately from the fact that any simplicial set has Filenberg-Zilber property.

"Only if” By Lemma 3.9.5 we have ¢(X )y, = limn) () Xn- Suppose that X is an rl-set. Then
all maps X,,, — X, for surjections [n] — [m] are injective and therefore X,,, — ¢*(X ), is injective.

Let f : [m] — [k] be a surjection and (p : [n] — [k],z € X,,) € ¢*(X)k. By Lemma 3.9.5 we have
f*(p:[n] — [k],z € Xy) = (py, f; (x)). Suppose that this element lies in X, i.e. f7(z) = p}(y) for
y € X;n. We need to show that y is degenerate in X,. If y is non-degenerate then there is a map
(necessarily surjective one) h : [m'] — [n] such that f, = hps. From the construction of f, we see
that it is possible only if p is an isomorphism in which case y = f*(z) which is impossible since f
is a surjection and we assumed y to be non-degenerate.

To finish the proof of the proposition it remains to show that any non-degenerate simplex of
¢*X is the boundary of a non-degenerate simplex of X. It follows easily from the fact that any
morphism in A can be represented by an injection followed by a morphism from © and also by a
surjection followed by an injection.

Example 3.9.7 Let A,,-; be the subcategory of surjective maps in A. A ©-set X is an rl-set if
and only if it takes push-out squares in Ay,,; to pull-back squares in sets. In view of the description
of [m]\Asur; given below we know that any push-out square is a ”composition” of squares which
are push-outs of pairs of maps of the form o},. Therefore, X is an rl-set if and only if the maps
sfl : X, — X4 are injective and for 0 <4 < j < n one has
. . 1 g . 1
Im(s4180, = spy15n) = Im(sy 1) N Im(s}3)

Example 3.9.8 [univrl/ Since any representable functor takes push-out squares to pull-back
squares the ©-sets O™ represented by objects [n] of © are ril-sets. These sets correspond by the
construction of Example 3.9.1 to the "linear” reflexive graph with non-degenerate base of the form
1 — 2 — ... — n. These rl-sets are universal in the same way as simplexes A" are universal among
simplicial sets. There is a unique element y,, € (0")"? and for any ri-set and any element x € X,,
there exists a unique morphism f : ©" — X such that f(y,) = .
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The rl-sets ©™ can be obtained by the construction of Example 3.9.3 as follows. Take Y = A™.
The non-degenerate simplexes of A" correspond to non-empty subsets of {0,...,n}. The non-
degenerate simplexes of ©" consists of non-empty segments {i,...,i+ j} of {0,...,n}.

3.10 Path systems defined by countable ri/-sets

Note: that X, is a path system over Xy, notation X[u, v]p ., X[u,v]s, and X[u,v]p .
Let X, be an rl-set and
X[U,’U] = anoAn ] X ng

(u7/U

(note that for u = v we get X[u,v] = Xp). For u < o/ < o' < v define maps res,;", as follows.
Consider a point (z1,...,%,;7) of X[u,v]. Then we have

{1, ..., 2.} N (u, '] = {z1, ..., 2}

{21,..., 2} N (V0] = {Zj41,. -, xn}

for some well defined values of ¢ and j (note that j > i and for v/ = v’ we get i = j). Since
X, satisfies the Eilenberg-Zilber condition there exist a unique pair (1, s) where s : [j —i] — [m]
is a surjection and 1’ € X is an element such that 9:9) 7’ (r) = s*(1’). As noted below order
preserving surjections [m'] — [m| correspond to (m’ — m)-element subsets I in an ordered set with
m’ elements. In particular, s corresponds to a subset I of {i+1,...,5}. Weset J ={i+1,...,5}\
and

resﬁ}f}v, (1, .y wp;r) = (@i tics; )

In the case when X, is generated by a reflexive multi-graph this construction agrees with the one
given above in terms of right continuous maps. Together with the universal property of the ri-sets
O™ given in Example 3.9.8 it implies that for u < v/ < v’ <v” < v < v we have

!’ u

u', KO u,v
Tesu/’,U//TeSu/,U/ - TeSu”,'U//
In the case when X is countable, the sets X[u, v] have obvious structures of measurable spaces, the
kK .
maps res are measurable for these structures (X[*, %], resy) is a path system.

Example 3.10.1 Let X be a simplicial set. Define the [u,v]-geometric realization of X as

’X‘[u,v] = HnAn X X:LLd

(u,v)

for u < v and | X/}, ) = mo(X) for v = u. For [u,v] = [0,1] we get the usual geometric realization
considered as the disjoint union of the open simplexes of its canonical triangulation.

Let EX be the simplicial set which is the composition of X with the functor {0,...,n} —
{0,...,n} I {n + 1} such that (EX), = Xn4+1 and (EX)"? = X4 1T X749 (cf. [?]).

Then ¢, X[u,v] = |[EX]|,). Indeed, for u < v we get

|EX ) = TnAp, ) % (BX)p =T, A7, x Xid X7 =

= 1L,(Af, ) 1T ALY o xnd — 0, A7, ) X X" = ¢, X [u,v]

(u,0)

and for v = u
|EX|[u,u] = WO(EX) =Xo = Qb*X[’LL, u]
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Example 3.10.2 [univrlp| For u < v we have

©"[u,v] = Al L2 AU T (n+1) - AQ,

For any ri-set X such that the boundaries of non-degenerate elements are non-degenerate, any

e € X and any u < w < v the product res; s, X Tesy.y restricted to Afu , aps it bijectively to

(restit, x resis) (A7, ) = ITg(A% (D A%
such that , _
(Tesym X Tesy )" I(Afi;l](e) X A?ifa) N AL = Vew(w, i)
where

Vou(w,i) ={z1,.. ,opfu<z) < <3 Sw<wipg < <y S0}

For e € X"d, e e X , v < w < v and again under the assumption that boundaries of non-
degenerate elements are non-degenerate, we get

[preim1](resyy, x resty’) (Af, 4 X Af,.) = e xna 16 (P=e on(fy=er Viu(win) — (65)

n+n

As in the case of X corresponding to a directed multi-graph let
Ueu(lty o In) ={(z1,...,2 )EA ]|asZ €}

where I; is a sequence of sub-intervals [y; —, ;| of (u,v] such that y; + < y;41,—. For any such
sequence there exist points w;, ¢ = 1,...,n — 1 such that y; 1 < w; < y;41,— and for any choice of
points satisfying these conditions we have

(resiu, X+ xresi? ) UG (T) X U,y (In) = Wy peepa pio1 (py=e U Tt In)
The following lemma is straightforward.

Lemma 3.10.3 [2009.04.28.1] For any countable rl-set X and any u < v the o-algebra on X [u, v]
is generated in the strong sense by points {p} € Xo and subsets U, (I1,..., 1) where n > 0 and
e€ Xnd,

Let fy : Xy — Y, be a morphism of rl-sets. Then f defines a deterministic morphism of the
corresponding path systems as follows. Let u < v. By definition we have

X[U,’U] = n>0A(u 1}] X X,:;Ld

Since Y, satisfies the Eilenberg-Zilber condition, for any y € Y, there exist a unique surjection
sy ¢ [n] = [m] and y"? € Y;* such that f(x) = s*(y). As explained in the proof of Proposition 3.9.4

surjections [n] — [m] are in a bijective correspondence with n — m element subsets of {1,...,n}.
Let I be the subset corresponding to s and CI be its complement. For a sequence (z1,...,2,)
denote by s*(z1,...,x,) the sequence which consists of x; with i € C1;.

Forr = (x1,...,2n;2) € X[u,v] define f2(r) as the element (s}(x1, ..., zn); y"%) of Al % {y"d}
in Yu,v].

Lemma 3.10.4 [2009.04.29.6] The family of maps f corresponding to a map of rl-sets f : X, —
Y, is a deterministic morphism of path systems.
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Proof: 777
Lemma 3.10.5 [2009.04.29.7] If f, : X, — Y4, g« : Yi — Z, is a composable pair of maps of
rl-sets then (go f)i = gl o fr.

Proof: 777

Let now fi : X, — Y, be a family of probability kernels of the form

= Z f(l‘,y)5y

IS

Define kernels f : X[u,v] — Y[u,v] setting
fu(@1, .. ap;m) = Z f(z,y) - 6(s§(x1,...,zn);y"d) =

yEYn
=2 Z > f@ s W) O i)
m<n s:[n]—»[m] yeY,nd
The first representation of fU(x1,...,2zn;x) shows that it is a probability measure on Y[u,v] and

therefore f is a probability kernel.
Let us re-write f; in the form

fo(@r, .. anx) = Z Ja((@1s o2 ), (Y15 Yms YD) Oy ymiy)

W1 ym3y) €Y [u,0]

where fU((x1,...,2Zn;2), (Y1,---,Ym;y)) # 0 only if there exists a surjection [n] — [m] such that
(Y1, -+ sYm) = s*(21,...,Ty) in which case
[2009.04.30.1]f.((z1,- .-, Zn; ), (Y1s- -, Ym; y)) = f(z, 8" (y)) (66)

Let us assume that Y is regular i.e. boundaries of a non-degenerate element are non-degenerate.
Substituting our definition of f} definition into (20) we see that the collection f¥ is a morphism of

path systems if and only ifforallu<w<wv,ze X ¢ eYrd v eV (x1...,2;) € A%u W]’
(Tit1y---yTm) € A(w o Wi, Y) € A(uw]v (Y, ...,y € A?wv} one has:
Z f'g((xh [ 7$m§$)7 (yi7 e 7?/;/7%7 e 7y7/1/”7y)) =
{yeyd 105" (y)=y' and 3} (y)=y"}

= fu' (@1, 00 (@), Wy ¥ D Fa (@it s 01 (2), (- ynns ™))
Using (66) we see that f! is a morphism of path systems if and only if for all u < w < v, x € Xzﬂ’

s i) > [n'], s : [j] = [n”] one has

S @ (8 + ) ) = £r(05(), () () £5(0i (), (") O ()

{er nd //}

n+n

where s’ + 8" : [i + j] = [0/ +n"] is the surjection which corresponds to the subset C(CIy U CI,n).
Since

()08 (v) = B (s +5")" ()
(") (y) = i (s + ") (v)
and Y satisfies the Eilenberg-Zilber property we get the following result
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Lemma 3.10.6 [2009.04.30.2/ The kernels f. defined above form a morphism of path systems if
and only if for allu < w <w, 1,7 >0, x € X[fj, y1 €Y, y2 €Y one has

[2009.04.30.3] > fla,y) = f(0(x), y1) f(0}(x), y2) (67)

{(y€Yit; |8)(y)=y1 and 8:(y)=y2}

Applying the condition (3.10.6) for ¢ = j = 0 we conclude that for all z € Xy and y € Yy we have

f(.’E, y) - f(ac,y)2

Together with the condition that 3 f(z,y) =1 this implies that for each z € X there is exactly
one y € Yy for which f(z,y) # 0 and for this y we have f(z,y) = 1ie. fo: Xo — Yy is a
deterministic map.
Applying (3.10.6) for i = 0 and for j = 0 we further conclude that for z € X*? and y € Y,, we
have f(x,y) # 0 only if
fo(85 () = 95 (y)
and

fo(01' () = 97 (y)

Summing up the equations (3.10.6) over y; for a given y, and over y, for a given y; we get

> flay) = F((x), 1)
{YeVn | () =y1}

and

{yeYn |0} (y)=y2}

which is equivalent to commutativity of the squares

A kAl s
fnfj fn—i
Xn—j — Yn—j Xp—i —— Yo

Consider now two families of probability kernels
x. v, %z,

For u < v, x € X" and (x1,...,2,) € Al We have

ng:j(xla <oy T x) = Z f(x,y) Z g(ynd’ z)é(sj(sz(wl ..... Tn));2nd)

yEYn ZeZm<y)

where y™¢ € Yon(y), and

(g o f)g(mlv <o Ty :E) = Z Z f(l', y)g(x, y)é(sg(xh...,xn);z"d)
2€Zn ern
Therefore, the equation

[2009.05.01.1]g2 " = (g o )" (68)
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is equivalent to the condition that for all n > k, 2" € X4, 2" € 74 and s : [n] — [k] we have

> 3 S F@ st ®)gly vt (2m) =

n>m>k {JC{1,..,n}|CIsCJ and #J=m} yndcynd

2009.05.01.2] = > f(2,y)g(y, s&:1(z"%)) (69)
YyEYn

where 7 : [m]| — [k] corresponds to the inclusion CI; C J.

Let us look for the conditions on g which would imply that (68) holds for deterministic morphisms
of ri-sets f.

Consider the case when z € X" and f,,(z) = y for a given y € Y;, (e.g. when f is the universal
morphism ©" — Y corresponding to y). Let y = sZ(y"d) for y"? € Y"® and let J = C1I sy~ Lhen
(69) implies that for all £ < m, I C J such that #I =k and all z € Z}C‘d one has

2009.05.01.4]g(y", 1*(2"%)) = g(y, s (r*(z"%))) (70)

where r : [m] — [k] corresponds to the inclusion I C J and for all I which are not contained in J
one has

[2009.05.01.5]g(y, s¢7(2)) =0 (71)
Since Z has the Eilenberg-Zilber property these conditions are equivalent to the commutativity of

the squares

y, -2, 7.

ypd 2, 7,

for all s: [n] — [m] and therefore to the commutativity of the squares

Yn gTL Zn
[2009.05.01.3;{ TS* (72)

Y,, -2, 7.

Assume that (70) and (71) hold. By (70), the left hand side of (69) equals
> @ y)gly, st (z")

yex/n,l

where Y, 1 is the subset of Y;, which consists of y such that I C C,, and by (71) the same hold
for the right hand side.

Example 3.10.7 [sr12/Let C be a small category and E be a class of morphisms in C which is closed
under compositions with isomorphisms. Each pair like that defines an rl-set X = X (C, E) as follows.
Consider the nerve N(C) of C. The set of n-simplexes N, (C) is the set of composable sequences
(f1,- -+, fn) of morphisms of C of length n. Define an equivalence relation = on N(C) saying that
(f1,.-., fn) is equivalent to (f1,..., f},) if there is a sequence of isomorphisms (g1, . . ., gn) such that
git1fi = [ g

One can easily see that this equivalence relation is compatible with the face and degeneracy
maps and the quotient sets N,,(C)/ = form a simplicial set NN (C). Consider the subsets X (E),
of NN, (C) which consist of equivalence classes which consist of elements (e, ..., e,) with e; € E.
These subsets satisfy the conditions of Example 3.9.3 and therefore define an ri-set X (C, E).
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Example 3.10.8 [slr3/More generally, one can define an ri-set starting with a ”gadget” which ...
A gadget can be defined in a several equivalent ways:

1. A gadget is a list of data of the form:

(a) sets X7 and X,

(b) mappings dy, 01 : X1 — Xp and id : X¢o — X1 such that 9y oid = 0y oid = Idx, (for
p,p' € Xo we let Xi(p,p’) denote the set 95 x 9, ({(p,p')})),

(c) a mapping G : Xo — Groups,

(d) a mapping which assigns to each p,p’ € Xy a right action X;(p,p’) x G(p) — X1(p,p’)
and a left action G(p') x X1(p,p") — Xo(p,p’) such that for all g € G(p) one has

[centereq|g - id(p) = id(p) - g (73)

2. A gadget is a pair of a (small) groupoid A and a functor F': A? x A — Sets together with a
mapping which assigns to any p € A an element id(p) € F(p,p) such that for any g € Aut(p)
one has F(g~", g)(id(p)) = id(p).

To a groupoid A and a functor F' : A x A°? — Sets one associates a gadget in the sense of the
first definition in the following way. Note that this construction is well defined only up to an
isomorphism of the resulting gadget. Let Xy be a set of objects of A which contains exactly one
representative of each isomorphism class. Let X1 = I, e x,xx, F'(P; p'). The maps 0y, &1 and
id are defined in the obvious way. For p € X set G(p) = Auta(p). The left and right actions are
given by

1. for g € G(p) and x € Xo(p,p’) one sets = - g = Xo(g, Id)(x),
2. for g € G(p') and x € Xy(p,p’) one sets g - x = Xo(Id, g)(x).

A large class of gadgets arises from pairs (C, S) where C'is a category and S is a class of morphisms in
C which contains identities and is closed under compositions with isomorphisms. The corresponding
gadget is the one associated with the groupoid Cjs, of isomorphisms in C' and the functor S which
maps p,p’ € ob(C) to

S(p,p") = Home(p,p') N S
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4 Tonus spaces

4.1 Tonus spaces

Definition 4.1.1 /conus/ A conus structure on a set C' is an abelian semi-group structure (with
unit 0) together with a map
m: RZO xC—C

which makes C' into a module over R>q i.e. such that

leqpol|m(r,xz +y) = m(r,x) + m(r,y) (74)
leqpo3]m(r + s, z) = m(r,z) + m(s, z) (75)
[eqpod|m(rs,z) = m(r,m(s,x)) (76)
[eqpo6]m(l,z) = x (77)
[eqpo5]m(0,z) =0 (78)

When no confusion is possible we write rx instead of m(r,x). A set with a conus structure is called
a conus space.

Definition 4.1.2 /dpol/ A tonus structure on a set C' is a topology together with a conus structure
such that the addition and the multiplication by scalars are continuous.

Definition 4.1.3 /dpo2/ Let C, Cy be two conus (resp. tonus) spaces. A morphism f: Cyp — Co
is a map (resp. a continuous map) which commutes with addition and multiplication by scalars.

We let T' denote the category of tonus spaces.

Proposition 4.1.4 /ppol] The category T has all limits. The final object of T is the one point
space. For any diagram D of tonus spaces the underlying topological space of lim(D) is the limit of
the corresponding diagram of topological spaces and the same is true for the limit of the underlying
diagram of conus spaces and abelian semi-groups.

Proof: Straightforward.

Proposition 4.1.5 [ppo2] The category T of tonus spaces has colimits. The initial object of T is
the one point space.

Proof: The statement of the proposition follows from Lemmas 4.1.6-4.1.8 below and the usual
reduction of general colimits to inductive colimits, reflexive coequalizers and finite coproducts.

Lemma 4.1.6 Ipo5/ Let (Cy, fop : Co — Cg) be an inductive system of tonus spaces. Let C be
the colimit of this sequence in the category of sets which we consider with the colimit topology and
the obvious operations of addition and multiplication by elements of R>q. Then C is a tonus space
and a colimit of our sequence in T .

Proof: It follows by direct verification using the fact that inductive colimits commute with finite
products in the category of topological spaces.
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Lemma 4.1.7 lpo6] Let C1,Cy be tonus spaces, f,g: C; — Cy two morphisms and s : Cy — C
a common section of f and g (i.e. f,g,s form a reflexive coequalizer diagram). Let C be the
coequalizer of f and g in the category of sets which we consider with the coequalizer topology and
the obvious operations of addition and multiplication by elements of R>q. Then C is a tonus space
and a coequalizer of f and g in T.

Proof: As in the proof of Lemma 4.1.6 everything follows by direct verification from the fact that
reflexive coequalizers commute with finite products.

Lemma 4.1.8 [lpo7] Let Cy, Cy be tonus spaces. Let C = C1 x Cy and consider C' with the
topology of the product and the obvious operations of addition and multiplication by elements of
R>o. Then C is a tonus spaces which is both the product and the coproduct of Ci and Cy in T

Proof: The only non-trivial part of the lemma is that C' is the coproduct of C; and Cs i.e. that
for any tonus space D the map

Hom(C,D) = Hom(C4, D) x Hom(C2, D)

given by the composition with the embeddings C; — C, Cy — C' is bijective. It is clearly injective
and to verify that it is bijective it is enough to prove that a map f : C; x Cy — D which is
compatible with the algebraic structures and whose restrictions fi, fo to C; x {0} and {0} x Cy
are continuous is itself continuous. This follows from the fact that f = mp o (fi x f2) and the
continuity of mp : D x D — D.

Definition 4.1.9 [grouplike/ A tonus space C' is called group-like if the underlying semi-group is
a group.

For the basic definitions related to the topological vector spaces and pre-ordered vector spaces we
follow [?].

Lemma 4.1.10 po3/ Let V be a group-like tonus space. Then there exists a unique extension of
m:R>oxV =V to a continuous map m : R xV — V satisfying the condition

m(r — s,x) = m(r,z) —m(s,x)
and with respect to this map V' becomes a topological vector space (over R).

Proof: The uniqueness is obvious. It is also obvious that if m as required exists then it makes V'
into a topological vector space. To prove the existence consider the map m : NR x R>o xV — V
of the form m(r,s,z) = m(r,z) — m(s,z). The algebraic properties of m imply that it has a
decomposition

RogxRsgx V=R xV 2V

where the first arrow is defined by (r,s) — r — s. Since the first arrow is a strict topological
epimorphism and the composition is continuous we conclude that m is continuous.

Lemma 4.1.11 [Ipo4] Let C be a tonus space and let C — Vi be the universal map from C as an
abelian semi-group to an abelian group. Then V has a unique structure of a tonus space such that
C — Vo is a morphism of tonus spaces. With this structure C' — Vg is the universal morphism
from C to a group-like tonus space.
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Proof: By (see e.g. []) we may describe Vi as the set of equivalence classes of pairs (x,y), z,y € C
such that (x1,y1) = (22,y2) if and only if there exists u such that x1 + y2 + u = x2 + y1 + u. As
usual we will write x — y for the equivalence class of (z,y). For r € R>¢ set r(x,y) = (rz,ry).
In view of 74 this defines a map R>¢ x Vo — V¢ which takes x — y to rz — ry and one verifies
easily that it satisfies the conditions 75-78. Let 7 : C' x C' — V¢ be the surjection (z,y) — z —y.
Consider V¢ as topological space with the topology defined by 7 i.e. such that U is open in V if
and only if 771(U) is open in C' x C. The universal properties of this topology imply immediately
that the addition and multiplication by elements from R>g are continuous for V' and we conclude
that V has a structure of a tonus space such that C' — V- is a morphism of tonus spaces. One can
see immediately that such a structure is unique.

Definition 4.1.12 /cancellable/ A tonus space C is called pre-group like if the universal map
C — Vg is an injection i.e. if the underlying semi-group is a semi-group with cancellation.

Definition 4.1.13 [reduced/ A tonus space C is called reduced if it is pre-group like and the
topology on C induced by the map C — Vo coincides with the original topology.

Definition 4.1.14 [closedts/ A tonus space C is called closed the corresponding universal map
C — Vi is a closed embedding.

Clearly any closed tonus space is reduced and any reduced is a pre-group like. It is also clear that
any group-like tonus space is closed. To produced counter-examples to other implications we will
use the following lemma.

Lemma 4.1.15 /needl/ Let f : C — V be a monomorphism from a tonus space C' to a group-like
tonus space V' and let Vi be the set of interior points of f(C) in V. Assume that the following two
conditions hold:

1. the map Co = f~1 (V) — Vg is a homeomorphism,
2. for any v € V there exist x,y € Vo such that v =x — y.
Then V(f) : Vo — V is an isomorphism.

Proof: Clearly V(f) is bijective as a map of sets and continuous. Let us show that it is open. Let
Vo be the set of interior points of f(C) it is open in V and the restriction of f to Co = f~1(V}) is
an isomorphism. Consider the diagram:

Co X C() — VO X %
al [
Ve V() v

where the vertical arrows map (u,v) to u — v and fy is the restriction of f to Cy. Our conditions
imply that qq is surjective. Since Vj is open in V and the subtraction map V x V — V is open
(follows from the fact that it is isomorphic to the projection V' x V' — V to one of the factors) we
conclude that gg is also open. This immediately implies that V'(f) is open.

Example 4.1.16 [contr2/Not all reduced tonus spaces are closed. Indeed let C be the subset in R?
which consists of points (x,y) such that x > 0 and y > 0 and the point (0,0). Considered with the
induced topology and the obvious addition and multiplication by scalars C'is a tonus space. Lemma
4.1.15 implies immediately that the embedding C' — R? coincides with the universal embedding to
a group-like tonus space. Therefore C' is reduced but not closed.
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Example 4.1.17 [contrl] Not any pre-group like tonus space is reduced. Consider the subset C
in R? which consists of (z,y) such that x,y > 0. Let further U be the subset of elements of C' of
the form (z,0) where x > 0. Consider the topology on C' which is generated by the usual topology
coming from R? together with the condition that U is open. One verifies immediately that the
addition and multiplication by scalars are continuous in this topology. On the other hand Lemma
?? again implies that the embedding C — R? is the universal one. Since in the topology on C
induced by this embedding U is not open we conclude that C' is pre-group like but not reduced.

Example 4.1.18 /expol/Not all tonus spaces are pre-group like. Indeed, consider the set {0,1}
with the discrete topology, the abelian semi-group structure given by 0+0=10,0+1=1,14+1=1
and m given by m(r,0) =0, m(r,1) =1 if » # 0 and m(0,1) = 0. These structures satisfiy all the
conditions of Definition 4.1.2 but the resulting tonus space C is not pre-group like since Vi = 0.
We will see below (Lemma 4.1.20) however that all Hausdorf tonus spaces are pre-group like. Note
that the spaces in Examples 4.1.16 and 4.1.17 are both Hausdorf. Thus a Hausdorf tonus space
need not be reduced or closed.

Sending C' to (Vi Creq)) where Cieq is the image of C' in Vi considered with the topology induced
from Vi we get (by Lemmas 4.1.10, 4.1.11) a functor from tonus spaces to pairs (V,C') where V is
a topological vector space and C' is a cone in V. Clearly this functor is a full embedding on the
subcategory of reduced tonus spaces and the pair (V,C) is in the image of this embedding if and
only if any element of V can be written as x — y where z,y are in C'. Recall that a pre-ordered
topological vector space is a pair as above such that C'is closed in V. Therefore, we get the following
result.

Proposition 4.1.19 fembedl] The category of closed tonus spaces is equivalent to the full sub-
category of the category of pre-ordered topological vector spaces (V,C') such that any element of V
is of the form x —y for x,y € C.

Lemma 4.1.20 [lpol/ Let C be a Hausdorf tonus space then one has:
1. C is pre-group like i.e. for any z,y,u in C such that x +u =1y + u one has x =y

2. m(r,0) =0

Proof: Let us denote m(r, z) by rz. Consider the first claim. By 77 and 75 for any positive integer
n we have nz = > ; x. From this by easy induction we get that for z,y,u as above one has
nxr +u=ny+ u. By 74 and 76 we get that

x4+ (1/n)u=y+ (1/n)u

Since C is Hausdorf a sequence may have only one limit and from the continuity of addition and
multiplication by a number and 78 we get

r=2x4+0u= lim (x4 (1/n)u) = lim (y+ (1/n)u) =y + 0u = y.

To get the second claim note that by 74 we have r0 4 r0 = r0 = 70 + 0 and we conclude from
the first part of the proof that 0 = 0.

Lemma 4.1.21 /hus/ Let C be a Hausdorf tonus space C. Then V¢ is Hausdorf.
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Proof: Consider the natural map 7 : C' x C — V. If C' is Hausdorf then by Lemma 4.1.20 we
have 771(0) = A where A is the diagonal. Since in a Hausdorf space the diagonal is closed and
since 7 is a topological epimorphism we conclude that {0} is closed in V. Since Vi is a topological
vector space this implies in the standard way that V¢ is Hausdorf.

Let C be a conus space and let f, : C — Cy be a collection of conus maps to tonus spaces C,.
Let t(f,) be the weakest topology on C' which makes all the maps f, continuous. It is easy to see
that with this topology C is a conus space. We will say that the topology on C' is defined by the
collection f,.

Lemma 4.1.22 fisredl1/ Let C be a pre-group like conus space and let f, : C — Cy be a collection
of morphisms to reduced tonus spaces. Then C with the induced topology is a reduced tonus space.

Proof: Let C — V¢ and C, — V,, be the universal morphisms to group-like spaces. By universality
we get commutative squares

c I c,

TP
v 2y,

such that g, are continuous. Let x € U C C' be an open neighborhood of z in C. We have to show
that there is an open neighborhood U’ of p(z) in V such that p~'(U’) C U. Since the topology
on C' is defined by (f,) there exists a finite set a1, ..., a, and open neighborhoods Wy, ..., W, of
fa;(z) in Cy such that U contains Nfy ' (W;). Since each C, is assumed to be reduced we have
W; = p;il(Wi’ ) for some W/ open in V,. The commutativity of our squares imply now that

np~'go (W) C U

Remark 4.1.23 [impo] It is important to note that (in the notations of Lemma 4.1.22) the uni-
versal topology on V defined by the topology on C need not coincide with the topology induced by
the maps g, : V — V,. For an example see 77.

In the following lemma we keep the notations of Lemma 4.1.22.

Lemma 4.1.24 fisclosed] Let C be a pre-group like conus space and fo, : C — Cy a collection of
maps to closed tonus spaces such that if x € V is an element satisfying go(x) € Cy for all o then
x € C. Then with the topology defined by (fa), C is a closed tonus space.

Proof: By Lemma 4.1.22 C' is reduced. It remains to check that the image of C' in V is closed.
Let € V be an element outside of C. Then by our assumption there exists « such that g,(x) is
outside Cy,. Since C, are closed this implies that there is a neighborhood W of g,(z) which does
not intersect C,. Then g, (W) is a neighborhood of = which does not intersect C.

4.2 Embedding KX — T

Let (X,fR) be a measure space and M T (X,%R) the set of non-negative measurable functions on
(X,R). It has an obvious structure of a conus space. Define the standard topology on M (X, R)
by the condition that a set Z is closed if and only if for any sequence f, of elements of Z such that
fn T f we have f € Z.

69



4.3 Embedding K — T

Let (X,%R) be a measurable space and let M, (X,R) be as above the set of all bounded measures
on (X,MR). Any (bounded, non-negative) measurable function f € M+ (X,9R) defines a map

fet M (X, ) — Rxo

Define the standard topology on My (X, ) as the weakest topology which makes all maps of the
form f, continuous.

Lemma 4.3.1 [lem4/ A map u from a topological space T to My (X,R) is continuous with respect
to the standard topology if and only if for any f € M*(X,R) the composition

frou:T — Rxg
18 continuous.

Lemma 4.3.2 [lem1/ The set M, (X,R) considered with the standard topology and the addition
and multiplication by elements of R>q defined in the obvious is a closed, Hausdorf tonus space.

Proof: The continuity of the addition and multiplication by scalars follow from Lemma 4.3.1. To
see that the standard topology is Hausdorf consider two measures p1 and ps such that p; # ue.
Then there is a measurable subset U € R such that p1(U) # pe(U). Let f be the indicator function
of U. Then for any p, fi(n) = p(U) and if V4, V; are two non-intersecting neighborhoods of u(U)
and p2(U) respectively then f!(V;) give us two non-intersecting neighborhoods of y; and ps.

To see that C' = My (X,9R) is closed in the corresponding vector space V we need to check that
if 1, po are two measures such that = p; — po is not in C then there exists a neighborhood N
of z in V such that NN C = (). By Lemma 4.1.11, V is universal and therefore any map of the
form f, extends to a continuous map f, : V — R. Since x is not in C there exists a measurable
subset U € R such that 2(U) = pu1(U) — u2(U) < 0. Let W be a neighborhood of x(U) which lies
in (—o0,0). Taking f to be the indicator function of U we get a neighborhood f (W) of  which
does not intersect C.

Remark 4.3.3 [dense/Unless R is finite the image of C' = M4 (X,R) in the corresponding uni-
versal group-like tonus space V' has no internal points i.e. the complement to C' in V is dense.

Lemma 4.3.4 [lem2/ Let ¢ : (X,R) — (Y, &) be a bounded kernel. Then the composition with ¢
defines a map

G M+(X? SR) - M+<Ya 6)

which is a morphism of tonus spaces.
Proof: Follows from Lemma 4.3.1.
Remark 4.3.5 [rem1/Consider the metric on M (X,9R) given by

leqem1]v(p1, p2) = supyem|ui(U) — p2(U)] (79)

Remark 4.3.6 The proof of Lemma 4.3.4 implies that if ¢ is a (sub-)stochastic kernel then the
corresponding map M, (¢) does not increase the distances between measures.
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Remark 4.3.7 [reml/For any point z of (X,%) we have the J-measure J, concentrated in z.
Evaluating ¢, on d, we get a measure ¢.(0,) on (Y, &) and one verifies easily that it is exactly
¢(x,—). This shows that for any (X,R), (Y, &) the map

HOmK((X, SR)a (Yv 6)) - HomT(M-l-(Xa m)> M—i—(}/v 6))
is a monomorphism. We will see below in Theorem 4.3.12 that it is in fact a bijection.

Let p be a measure on (X,R) and let X =[], X; be a partition of X into a disjoint union of
measurable subsets. For any § > 0 denote by U(y, d, (X;)) the set of all measures A on (X, %R) such
that for each ¢ = 1,...,n one has

|(Xi) — AMX5)| < 0.
Clearly U(p,d, (X;)) is an open neighborhood of u in the standard topology.

Lemma 4.3.8 [lem55/ Subsets of the form U(u, d, (X;)) form a fundamental system of open neigh-
borhoods of 1 in the standard topology.

Proof: If X = ][, X; and X =[], Yj are two measurable partitions of X then X = [[(X;NY})
is also a measurable partition of X. Let § > 0 be a real number and k£ be an integer such that
k>mn and k > m. Let A be an element of U(u,d/k, (X;NYj)). Then

(X~ MXD| = |3 (X Y) — A(XinY)) |<Zr (X: M) = AX; N Y)| < (m/k)5 < 6
j=1

ie. A e U(p,d,(X;)). Similarly A € U(y,d, (Y;)) and we conclude that the intersection of two
subsets of the type we consider contains a third subset of the same type.

The standard topology is generated by the maps fi : p +— [ fdu for bounded non-negative
measurable functions f. In particular for any g finite intersections of subsets of the form

Ulwe.s) = 3:| [ gan= [ far <)
form a fundamental system of open neighborhoods of u. It remains to show that any neighborhood

of the form U(u, €, f) contains a neighborhood of the form U(y,d, (X;)) i.e. that for any f and any
€ > 0 there exists a partition X = [[ X; and 6 > 0 such that for any \ satisfying

[1(Xi) — A(X3)| <6

[ fan- [ raxi<e

Without loss of generality we may assume that f(z) < 1 for all x € X. Let n > 0 be an integer.
For k=0,...,n—1set I = [k/n,(k+1)/n). Then

n—1
— H Iy
k=0

is a measurable partition of the interval [0,1). Let further X; = f~!(I}) and let

we have

n—1
fn = Z k/an
k=0
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where F}, is the indicator function of Xj. By construction we have f(z) > f,(z) and f(z)— fn(x) <
1/n for all z € X. For any A\ we have

[ gdn= [ san <1 [ g [~ fan+] [ fudu [ N <

n—1
<1 [ = gl 1 [(F = F)iN] + 3 b/l = M) <
k=0

n—1
< (X /n 4 MX) o+ 3 k(X)) — MX)| <
k=0
We also have:

n—1 n—1 n—1 n—1
MX) =Y MXR < D Iu(Xe) = AKX+ D u(Xp) = D 1u(Xn) = AXi)| + pl(X)
k=0 k=0 k=0 k=0

and therefore

n—1
| [ fdn= [ 14N < 20 m 30+ 1) mlu(X) = M) <
k=0

<op(X) /(14 1m) 3 Ju(Xi) — ACX)
k=0

To find n, § such that Uy, 8, (Xx)7—y) is contained in U (u, €, f) it is sufficient now to choose n such
that 2/4(X)/n < € and then choose d such that (n +1)d < e —2u(X)/n.

Let M. (X,R) be the universal group-like tonus space associated with M, (X, R) i.e. the space of
signed measures on (X, R) with the topology defined by the canonical map

p: M—i—(Xv%) X M—l—(va) - M*(X7£R)
For any f € MT(X,R) the map f. : M (X,R) — Rx¢ defines a map M,(X,R) — R which we
will also denote by f..

Lemma 4.3.9 [impl/ The topology on M.(X,®R) coincides with the topology defined by the linear
functionals f. for f € M*(X,%R).

Proof: Let pt = pi4 — p— be an element of M, (X,R) and U be a subset in M, (X, 9R) which contains
p and such that p~1(U) is open in M, (X,0R) x M, (X,R). We need to verify that there exists a
finite set fi,..., f, of elements of M T (X, %) and § > 0 such that for any A\ = A\, —A_ in M,(X,R)

satisfying
l/fidA—/fidu!d

for all i = 1,...,n, we have A € U. The condition that p~!(U) is open together with Lemma 4.3.8
implies that there exists ¢ > 0 and a measurable partition X = [[;", X; such that for any pair of
measures A, A_ satisfying

A4 (Xi) — pg (X)| <€l

A (X5) — p—(Xi)| < ¢
one has Ay —A\_ € U.
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Proposition 4.3.10 fteml1/ The map f — f. gives a bijection
M*(X, %) — Homp(M. (X, %), Rso).

Its inverse takes a map ¢ of tonus spaces to the function f such that for each x € X one has

f(z) = ¢(0z).
Proof: Let ¢ : M (X,R) — R>0 be a morphism.

Corollary 4.3.11 [definedby/ Let f,g : M (X,R) — R>o be two morphisms of tonus spaces
which coincide on measures of the form 6, for allz € X. Then f =g.

Theorem 4.3.12 [t1] The functor K — T sending (X,R) to M (X,R) is a full embedding. Ie.
For any measurable spaces (X,R), (Y, &) the map

[mm|Homi ((X,R),(Y,6)) - Homp(M(X,R), M(Y,5)) (80)

is a bijection. Its inverse takes a map ¢ of tonus spaces to the kernel 1 such that for each r € X
the measure ¢(xz, —) is f(dz)-

Proof: We already noted in Remark 4.3.7 that the map (80) is injective. To show that it is surjective
consider a morphism ¢ : My (X,R) — M, (Y, &) of tonus spaces. Let U be a measurable subset of
Y and let I;; be its indicator function. The composition of ¢ with the morphism My (Y, &) — R>o
defined by Iy is, by Proposition 4.3.10 a measurable function on (X,fR) whose value on x € X is
¢(9z)(U). Therefore, a map ¢ : X x & — R>q of the form ¢(z,U) = ¢(0;)(U) is a kernel. It
remains to show that the map ¢, : M4 (X,R) — M (Y,S) defined by this kernel is ¢. We know
that it coincides with ¢ on delta measures. Since the measurable functions on (Y, &) distinguish
elements of M (Y, &) it is sufficient to check that the compositions of ¢ and v, with any map
My (Y,8) — R>q coincide. This follows from Corollary 4.3.11.

4.4 Radditive functors on K

Recall that a contravariant functor F' from a category C with finite coproducts and initial object
0 is called radditive if F(0) = pt and F(X][Y) = F(X) x F(Y). We let R(C) denote the full
subcategory in the category of all contravariant functors formed by radditive functors. For general
properties of radditive functors see [], [].

Lemma 4.4.1 Irfl] Let C be a category as above and assume that finite coproducts in C' coincide
with finite products (in particular pt = 0). Then R(C) is equivalent to the category of contravariant
functors F' from C to the category of abelian semi-groups such that F(X [[Y) = F(X) x F(Y).

Proof: In the case of an additive C' (i.e. under the additional assumption that morphisms in C
can be subtracted) the statement is proved in [|. The same proof works without subtraction.

4.5 Accessible spaces

4.6 Accessible enrichment of K

Let (X,M), (Y,S) be measurable spaces. For any bounded measure p on (X,R) and a bounded
measurable function f on (Y, &) consider the map

1, f) : Homie (X, R), (Y, 6)) — Rxo
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sending ¢ to
fogou:l— (X, R) - (Y,8) - 1.

Define the standard topology on Homi((X,%R), (Y, &)) as the weakest topology with respect to
which all maps 7(u, f) are continuous.

Lemma 4.6.1 [lael] The set Homi((X,R), (Y,S)) with the standard topology and the obvious
operations of addition and multiplication by scalar is a closed, Hausdorf tonus space.

Proof: 777

Lemma 4.6.2 [lem0/ The composition of morphisms in IC defines maps of tonus spaces of the

form
Homi((X,R), (Y, 6)) @ Homg((Y, 6),(Z,%)) — Homi((X,R),(Z,%T)).

Proof: 777

Remark 4.6.3 [nottopen| Note that the maps of topological spaces
Homi((X,R),(Y,8)) x Homi((Y,6),(Z,%)) — Homx((X,R),(Z,%))

defined by composition of morphisms need not be continuous if we take the standard topology on
the right and the product of the standard topologies on the left.

4.7 Notes

To the relativistic Brownian motion. A physical formulation of the problem. There is a particle p
moving according to the Brownian motion pattern on a physical line L with a marked Borel subset
B. There are three observers X, Ny, No all moving inertially relative to each other. Observer X
fixes the act of observation of the particle by N7 and the result of the observation (particle is in
point /; € L). He further fixes an act of observation of the same particle by Ny and bets that Ny
observed the particle in B. What is the probability that he won?

The relative velocities of the observers with respect to each other and to the line are known.
Observer X has a clock. For simplicity assume that all the observers are moving along the line L.

Here is another version. There is a physical line L with a ’Brownian motion field” F. An
experimenter X which is located at point 0 of L and has a clock T creates an apparatus A which
moves along L with a constant speed v. At time s € T the experimenter emits a light signal. When
A receives this signal it places a particle p at its current location on L. From this point on the
movement of p is controlled by F. At time ¢t € T the experimenter emits a second light signal.
When A receives this signal it emits a light signal along L which when it reaches p reflects back.
When A receives the reflected signal it emits a light signal to X who notices the time of its arrival.
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