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Abstract. A class of two-sex population models is considered with N females and equal
number N of males constituting each generation. Reproduction is assumed to undergo three
stages: 1) random mating, 2) exchangeable reproduction, 3) random sex assignment. Treat-
ing individuals as pairs of genes at a certain locus we introduce the diploid ancestral process
(the past genealogical tree) for n such genes sampled in the current generation. Neither mu-
tation nor selection are assumed. A convergence criterium for the diploid ancestral process is
proved as N goes to infinity while n remains unchanged. Conditions are specified when the
limiting process (coalescent) is the Kingman coalescent and situations are discussed when
the coalescent allows for multiple mergers of ancestral lines.

1. Introduction

The celebrated Wright-Fisher model describes an asexual (haploid) population with
non-overlapping generations and fixed population size N . The reproduction law is
defined by specifying the joint distribution of numbers of offspring (ν1, . . . , νN)

as the symmetric multinomial distribution Mn(N, 1/N, . . . , 1/N). For this model
the past genealogical tree of n sampled individuals converges as N tends to infin-
ity to the Kingman coalescent (Kingman, 1982a,b,c). This asymptotic result says,
in particular, that in a large Wright-Fisher population the sampled ancestral lines
merge only pairwise when followed backward in time.

A similar convergence result holds (Möhle, 1998b) for the two-sex Wright-
Fisher population model based on the following assumptions.

a) Each generation consists of 2N individuals, N females and N males,
b) N couples are formed by random mating, and the couple i produces di daughters

and si sons, i ∈ {1, . . . , N}, and
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c) the two offspring vectors d := (d1, . . . , dN) and s := (s1, . . . , sN ) are indepen-
dent and they have both the symmetric multinomial distribution
Mn(N, 1/N, . . . , 1/N).

Let νi := di + si denote the total number of offspring of the couple i. Then the off-
spring vectorν := (ν1, . . . , νN)has the multinomial distribution Mn(2N, 1/N, . . . ,

1/N). Once the di and si are given, sex assignment for the children within a gen-
eration is assumed to be performed at random under the restriction that the total
number of daughters is equal to the total number of sons (and hence equal to N ).

In an extension of the haploid Wright-Fisher model, introduced by Cannings
(1974, 1975), the symmetric multinomial distribution Mn(N, 1/N, . . . , 1/N) is
replaced by an arbitrary exchangeable joint distribution for the offspring sizes
(ν1, . . . , νN) satisfying the restriction ν1 + · · · + νN = N . The analysis of the
ancestral trees for this class of population models, started by Kingman (1982a,b,c),
has led to more general coalescent processes allowing for multiple mergers (Sagitov,
1999) and simultaneous multiple mergers (Möhle and Sagitov, 2001) of ancestral
lines.

The coalescent has been proven to be an appropriate process to analyze the
ancestral history of a sample of particles, individuals, genes or DNA-sequences
chosen from a large haploid population. Coalescent theory is widely used to es-
timate biological population parameters, for example effective population sizes
or migration-, mutation- and recombination-rates (Beerlin and Felsenstein, 1999;
Griffiths and Tavaré, 1994; Stephens and Donnelly, 2000). Furthermore, the coa-
lescent provides a basis to test the hypothesis of selective neutrality against either
balancing selection or the presence of advantageous alleles (Fu, 1996; Slatkin,
1994, 1996; Tajima, 1989).

Kingman, (1982a) already mentioned that it would be of great interest to seek a
comparable analysis of truly diploid genealogies. In the following we analyze the
ancestry of a class of diploid population models and we verify results on conver-
gence to the coalescent. These results hence justify the usage of coalescent theory
for diploid genealogies.

Combining the two features, gender and exchangeable offspring distribution,
we consider a class of two-sex population models retaining three properties from
the two-sex Wright-Fisher model: random mating, exchangeable joint distribution
for the offspring sizes (ν1, . . . , νN) such that

ν1 + · · · + νN = 2N, (1)

and random sex assignment.
The key idea leading to an appropriate diploid coalescent is to consider an ad-

ditional genetic level. We think of individuals as pairs of genes at a certain locus.
Our focus is on the past genealogical tree (ancestral process) of n genes sampled
from the current generation.

In Section 2 we recall Kingman’s definition of the haploid ancestral process
(Rr )r∈N0 as a Markov chain where the states are equivalence relations for n sam-
pled genes. We introduce the diploid ancestral process (R̃r )r∈N0 as a Markov chain
where the states are extended three-level equivalence relations incorporating the
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information that genes belong to individuals and individuals form couples. The
one-step transition probabilities for the diploid ancestral process are calculated in
Section 3.

Section 4 contains our main theorem on convergence to the diploid coalescent.
An important corollary of this main result gives a criterion for the weak convergence
to the Kingman coalescent (Section 5). The necessary and sufficient condition of
this criterion uses only the second and third moments of the marginal offspring
distribution:

lim
N→∞

E((ν1)3)

N E((ν1)2)
= 0, (2)

where (ν1)k := ν1(ν1 − 1) · · · (ν1 − k + 1).
In Section 6 we discuss diploid coalescent patterns allowing for multiple merg-

ers of ancestral lines. Loosely speaking, multiple mergers of ancestral lines are
only possible when large families (with the number νi of children of order N ) oc-
cur sufficiently often. Examples of real populations whose past genealogical trees
might have multiple mergers of ancestral lines are fish populations, populations
with dominant males or populations with artificial insemination.

Finally, Section 7 comments on a number of related papers.

2. The diploid ancestral process

We start this section with the forward description of the population models un-
der consideration and proceed with the backward structure of the gene inheritance
process. Afterwards we introduce the ancestral process R as well as the diploid
ancestral process R̃ which is a convenient tool to analyze the ancestral process.

We consider a class of two-sex population models with random mating, with
exchangeable joint distribution for the offspring sizes (ν1, . . . , νN) satisfying (1),
and with random sex assignment, conditioned that the number of sons and the num-
ber of daughters in each generation is equal to N . To be precise, this conditional
random sex assignment means that the joint distribution of the daughter and son
offspring vectors (d, s) satisfies

P(d = k, s = l) =
(
k1+l1

k1

) · · · (kN+lN
kN

)

(2N
N

) P(ν = k + l),

where k = (k1, . . . , kN), l = (l1, . . . , lN ) ∈ {0, . . . , N}N . In particular,

P(d1+· · ·+dj = a, s1+· · ·+sj = b) =
(
a+b
a

)(2N−a−b
N−a

)

(2N
N

) P(ν1+· · ·+νj = a+b)

for all j ∈ {1, . . . , N} and a, b ∈ {0, . . . , N}. Hence d1+· · ·+dN = s1+· · ·+sN =
N almost surely, i.e., each generation consists of exactly N daughters and N sons
almost surely.

We view individuals as pairs of genes (since we are in the one-locus case)
so that the corresponding backward dynamics of the gene inheritance process is
described as a three-level combinatorial experiment: first, on the generation level,
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individuals choose parent couples according to the distribution of the offspring
sizes (ν1, . . . , νN); then, on the family level, genes make a mother-or-father choice
at random; finally, on the individual level, genes choose at random one of the two
available gene copies.

Following Kingman (1982a,b,c) we introduce the ancestral process as a chain
R = (Rr )r∈N0 with the state space

En = the set of all equivalence relations on {1, . . . , n}.
Here n stands for the number of genes sampled from the current generation and Rr

is the equivalence relation such that i ∼ j if and only if the genes i and j in the
sample have a common ancestor r generations backward in time.

The process R is a mathematical description of the past genealogical tree trac-
ing the ancestral lines of the sampled genes. To visualize such a tree we can think
of the sampled genes and their ancestors as being marked. Obviously the graph
linking the marked children to the marked parents has a tree structure.

Observe, that the process R is not necessarily a Markov chain in the diploid
case. The Markov property can be recovered by grouping the marked genes on the
individual level as follows. Consider a state

ξ = {C1, . . . , Cβ}
of the process R, where the Ci’s are the equivalence classes representing β (≤ n)
marked genes. Suppose that the ordering of these genes is such that the genes
{C2i−1, C2i} belong to the same individuals for all 1 ≤ i ≤ β − b and the rest of
the marked genes stand alone on the individual level. The notation

Ĉi :=
{ {C2i−1, C2i} for 1 ≤ i ≤ β − b,

{Cβ−b+i} for β − b + 1 ≤ i ≤ b,
(3)

will be used for representing the marked individuals – individuals hosting at least
one marked gene. Here β − b is the number of 2-marked individuals, hosting two
marked genes, and 2b − β is the number of 1-marked individuals, hosting one
marked gene. Going from the state ξ to the enriched version

ξ̂ = {Ĉ1, . . . , Ĉb}
we arrive at a process R̂ = (R̂r )r∈N0 which can be viewed as the ancestral process
on the individual level.

Due to the random mating feature of the model the process R̂ is a Markov
chain. However, it turns out that it is more convenient to work with a more detailed
Markov chain R̃ = (R̃r )r∈N0 built on the level of couples, which we call the diploid
ancestral process. Using the set ξ̂ of the marked individuals Ĉi we introduce the
set

ξ̃ := {C̃1, . . . , C̃B},
of marked couples – couples with at least one marked individual involved:

C̃i :=
{ {Ĉ2i−1, Ĉ2i} for 1 ≤ i ≤ b − B,

{Ĉb−B+i} for b − B + 1 ≤ i ≤ B
(4)
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(Note that the diploid ancestral process does not distinguish between males and
females.)

In order to indicate that a state ξ̃ has a structure corresponding to B marked
couples, b marked individuals and β marked genes we write ξ̃ ∼ (B, b, β). In the
important particular case where ξ̃ ∼ (β, β, β) we write ξ̃ = ξ (abusing somewhat
notation rules) and call such states simple states.

3. One-step transition probabilities

We illustrate the transition mechanism of the diploid ancestral process with
Figures 1 and 2. In the framework of the diploid population model Figure 1 depicts
an example of the one-step transition graph drawn on a mixed level: on the parent
side we have A = 4 couples and on the offspring side we have b = 7 individuals.
The corresponding transition graph on the gene level is a collection of A (maximal
connected) family subgraphs which contain all necessary information about gene
inheritance. Each subgraph (indexed by i) corresponds to an parental couple.

Each family subgraph for an parental couple (see Figure 2) is specified by six
parameters bi , βi , βi1, βi2, βi3, βi4, where bi is the number of marked offspring
individuals of the couple, βi is the number of marked offspring genes, while βij ,
j ∈ {1, 2, 3, 4}, denotes the number of edges coming from the parental gene j . It is
assumed that the parental genes 1 and 2 belong to the first parental individual and

four marked parental couples
� � � �

seven marked children
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Fig. 1. Example of a transition graph in the haploid case with A = 4, b = 7, b1 = 3, b2 = 2,
b3 = 1, b4 = 1.

four genes in a marked parental couple
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six genes in three marked children
� �����������

��
�

�
�

�

��
�

�
�

�

�����������

�

Fig. 2. Example of a family subgraph with bi = 3, βi = 4, βi1 = 0, βi2 = 2, βi3 = 1,
βi4 = 1.
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that the genes 3 and 4 belong to the other parental individual. Obviously

βi1 + βi2 + βi3 + βi4 = βi, i ∈ {1, . . . , A}, (5)

and
b1 + · · · + bA = b, β1 + · · · + βA = β. (6)

Using these parameters we are able to specify the number of the marked genes after
the transition as

A∑

i=1

4∑

j=1

I (βij �= 0) = α, (7)

as well as the number of marked individuals after the transition as

A∑

i=1

(I (βi1 + βi2 �= 0) + I (βi3 + βi4 �= 0)) = a. (8)

Note that if b = A holds then α = a = β due to the fact that individuals inherit
their two genes from two different sources.

Finally, a family subgraph might embrace up to four (possibly multiple) merg-
ers of gene ancestral lines, so that the total number of mergers of marked ancestral
lines equals

∑A
i=1

∑4
j=1 I (βij ≥ 2).

We write ξ̃ ≺ η̃ to indicate that the transition ξ̃ → η̃ in the diploid ancestral
process is possible and we denote the one-step transition probability for the diploid
ancestral process defined in the previous section by

p̃ξ̃ η̃ := P(R̃r+1 = η̃|R̃r = ξ̃ ).

Lemma 3.1. If ξ̃ ≺ η̃, ξ̃ ∼ (B, b, β), η̃ ∼ (A, a, α) and the transition ξ̃ → η̃ is
characterized by the decompositions (5), (6), then

p̃ξ̃ η̃ = 2A+a−β−b (N)A

(2N)b
E((ν1)b1 · · · (νA)bA

). (9)

Proof. The proof of (9) is based on the backward structure of the gene inheritance
process presented in Section 2. During the proof a parental couple with j children
is viewed as a box with j cells, and genes are called balls.

On the generation level 2N individuals are allocated at random among 2N cells
which are distributed in N boxes. If an individual belongs to the box i this means
that the individual is a child of the couple i, i.e. it belongs to the i-th family. Assume
that b of the 2N individuals are colored in A different ways so that bi objects have
color i, i ∈ {1, . . . , A}. For a favorable allocation individuals of the same color are
in the same box and no box contains two individuals of different color. The proba-
bility of a favorable outcome, conditional that the box i has νi cells, i ∈ {1, . . . , N},
is

N∑

k1,...,kA=1
all distinct

(νk1)b1 · · · (νkA
)bA

(2N)b
.



Coalescent patterns in diploid exchangeable population models 343

Taking the expectation and using exchangeability we arrive at the second factor in
(9)

(N)A

(2N)b
E((ν1)b1 · · · (νA)bA

).

On the family level (mother or father choice) it is crucial to distinguish two types
of individuals: β − b individuals are pairs of balls glued together (2-marked in-
dividuals) and 2b − β individuals are single balls (1-marked individuals). There
are A independent experiments performed on this level corresponding to the A

subgraphs, indexed by i ∈ {1, . . . , A}. We describe the i-th experiment. Consider
a box containing βi − bi single balls and 2bi − βi glued balls, corresponding to
bi individuals of color i. A single ball chooses one of the two individuals of the
parental couple i at random, glued balls are separated and choose different parental
individuals of the parental couple i at random. Every ball is labelled with a two-
digit number, where each digit is either 1 or 2. At this stage we are interested in the
outcome when balls with the same first digit choose the same parental individual.
For the i-th experiment the probability in question is 2 · 2−bi , so that the overall
contribution of the second level experiment is (cf. (6))

A∏

i=1

(2 · 2−bi ) = 2A−b.

Finally, on the third (gene choice) level, the balls which have chosen the same
parental individual, are separated in two groups at random. The probability that all
balls with the same second digit end up in the same group equals (cf. (5), (6), (8))

A∏

i=1

(2I (βi1+βi2 �=0)2−βi1−βi2 · 2I (βi3+βi4 �=0)2−βi3−βi4) = 2a−β.

To finish the proof of (9) it remains to multiply the three probabilities found so far.
	


Example. In the two-sex Wright-Fisher model the joint distribution of the offspring
sizes (ν1, . . . , νN) is Mn(2N, 1

N
, . . . , 1

N
) and therefore

E(s
ν1
1 · · · sνA

A ) =
(

s1 + · · · + sA

N
+ N − A

N

)2N

.

Hence E((ν1)b1 · · · (νA)bA
) = (2N)b/N

b and according to (9)

p̃ξ̃ η̃ = 2A+a−β−b (N)A

Nb
.

For simple states ξ̃ and η̃ (α = a = A and β = b = B) we obtain

p̃ξ̃ η̃ = 4α(N)α

(4N)β
.

This expression is asymptotically equal to (4N)α/(4N)β which corresponds to the
transition probability of the ancestral process in the haploid Wright-Fisher model
with population size 4N .
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4. General limit theorem

The main Theorem 4.2 is a weak convergence result for the diploid ancestral pro-
cess as the population size N tends to infinity. The time scale cN used in this result
is defined as the coalescence probability – the probability that two genes, chosen
randomly without replacement from different individuals of the same generation,
have the same parental gene one generation backward in time. According to (9),
with a = A = 1 and β = b = 2, we have

cN = N

4(2N)2
E((ν1)2) ∼ E((ν1)2)

16N
, N → ∞.

Note that E((ν1)2) ≥ (E(ν1))2 = 2 and hence cN > 0. We need a condition saying
that the limits

lim
N→∞

Nj E((ν1)k1 · · · (νj )kj
)

(2N)k1+···+kj cN

= φj (k1, . . . , kj ), k1 ≥ · · · ≥ kj ≥ 2 (10)

exist for all j ∈ N. This condition is an adjusted version of a similar assumption
for the haploid case from Möhle and Sagitov, (2001). By repeating the argument
from Möhle and Sagitov, (2001) it is shown that this condition implies the existence
of the limits in (10) also for the wider set of parameters k1, . . . , kj ∈ N, j ∈ N

satisfying k1 + · · · + kj > j . Furthermore, it is straightforward to verify that (10)
implies also the existence of the limits

γj := lim
N→∞

1 − (N)j
(2N)j

E(ν1 · · · νj )

cN

, j ≥ 1, (11)

which can be expressed in terms of the functions φi as

γj =
j−1∑

i=1

i · φi(2, 1, . . . , 1). (12)

To state the theorem we need to introduce four (Ẽn × Ẽn)-matrices. Write P̃N for
the one-step transition matrix with the elements p̃ξ̃ η̃. Let J̃ be the matrix of the

indicators 1{ξ̃≺η̃,b=A}. Put H̃ := J̃ 2 and observe that the elements of the matrix

H̃ are the indicators 1{η̃=η=ξ}. Let the entries of the matrix G̃ be defined by the
formula

g̃ξ̃ η̃ :=





−γb if ξ̃ ≺ η̃, b = A,
2A+a−β−bφA(b1, . . . , bA) if ξ̃ ≺ η̃, b > A,

0 otherwise.
(13)

Theorem 4.2. If the limits (10) exist for all j ∈ N, and cN → 0 as N → ∞, then

P̃N = J̃ + cNG̃ + o(cN), N → ∞, (14)

and, moreover, the weak convergence

(R̃[t/cN ])t≥0 → (R̃t )t≥0, N → ∞ (15)
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holds in the Skorohod sense, where the limit process (R̃t )t≥0 is a continuous time

Markov chain with the transition matrix H̃ etQ̃ with the generator Q̃ := H̃ G̃H̃ .
Conversely, if cN → 0 and if (14) holds for some G̃ then the limits (10) exist

for all j ∈ N and all k1, . . . , kj ∈ N with k1 + · · · + kj > j and the entries of G̃

are of the form (13).

Proof. According to (9), (10), (11)

p̃ξ̃ η̃ → 2A+a−β−bI (ξ̃ ≺ η̃, b = A) = I (ξ̃ ≺ η̃, b = A), N → ∞, (16)

and moreover

p̃ξ̃ η̃

cN

→ 2A+a−β−bφA(b1, . . . , bA), b > A, ξ̃ ≺ η̃,

and
1 − p̃ξ̃ η̃

cN

→ γb, b = A, ξ̃ ≺ η̃,

as N tends to infinity. Since p̃ξ̃ η̃ = 0 unless ξ̃ ≺ η̃, we conclude that the asymptotic

formula (14) holds with the matrix G̃ specified by (13).
Using Theorem 2.2 from Möhle (1998a) we derive from (14) that the limiting

Markov chain has the transition matrix H̃ etQ̃ with the generator Q̃ = H̃ G̃H̃ . Fi-
nally, the weak convergence in the Skorohod sense is obtained as in Möhle (1999a).

Conversely, assume now that (14) holds. Then the relation (9) ensures that the
limits (10) exist for all j ∈ N and all k1, . . . , kj ∈ N with k1 + · · · + kj > j . It
remains to apply the first part of the Theorem (which is already proven) to finish
the proof of the Theorem. 	

Remark. The special structure of the projection H̃ implies that the entries q̃ξ̃ η̃ of

the generator Q̃ = H̃ G̃H̃ have the form

q̃ξ̃ η̃ =
∑

x̃,ỹ

1{x̃=x=ξ}g̃x̃ỹ1{η̃=η=y} =
∑

ỹ

g̃ξ ỹ1{η̃=η}1{y=η} = 1{η̃=η}
∑

ỹ:y=η

g̃ξ ỹ .

(17)

This special form of the generator shows that the limiting process jumps instan-
taneously from a state ξ̃ ∈ Ẽn to the simple state ξ . To explain this effect note
that due to (14) we have P̃N → J̃ , where J̃ is a stochastic matrix. The Markov
chain with the one-step transition matrix J̃ transforms every non-simple state to its
simple counterpart in two steps (H̃ = J̃ 2). The following corollary concerning the
ancestral process (R[t/cN ])t≥0 follows from Theorem 4.2.

Corollary 4.3. Under the condition (10) the time-scaled ancestral process
(R[t/cN ])t≥0 converges weakly to the diploid coalescent process (Rt )t≥0 which
is a continuous time Markov chain with the generator Q with the entries

qξη =
∑

ỹ:y=η

g̃ξ ỹ , ξ, η ∈ En.
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5. Convergence to the Kingman coalescent

In this section we use Theorem 4.2 to verify that the process (R̃t )t≥0 is a diploid
version of the Kingman coalescent if and only if the limits (10) are equal to zero
whenever k1 + · · · + kj > j + 1. In this case the entries (13) of the matrix G̃ have
the simpler form

g̃ξ̃ η̃ =





−4 · (
b
2

)
if ξ̃ ≺ η̃, b = A,

21+a−β if ξ̃ ≺ η̃, b = A + 1,
0 otherwise.

(18)

The entries of the corresponding generator Q̃ satisfy the formula

q̃ξ̃ η̃ =





−(
β
2

)
if ξ = η = η̃,

1 if ξ̃ ≺ η̃, η̃ = η and β = α + 1,
0 otherwise.

(19)

According to Corollary 4.3 the corresponding diploid coalescent (Rt )t≥0 has inten-
sities of the Kingman coalescent:

qξη :=





−(
β
2

)
if ξ = η,

1 if ξ ⊆ η and β = α + 1,
0 otherwise,

ξ, η ∈ En. (20)

We verify the formula (19) using (17) with ξ̃ ∼ (B, b, β) and η̃ ∼ (A, a, α). If
ξ̃ ≺ η̃, β = A + 1, then the formulas (17) and (18) give β = α + 1 and

q̃ξ̃ η̃ =
∑

ỹ:y=η

g̃ξ ỹ1{η̃=η} = g̃ξ η̃1{η̃=η} = 21+a−β1{η̃=η} = 1{η̃=η}

since ξ ∼ (β, β, β), η ∼ (α, α, α) and only the term with ỹ = η contributes to the
sum. Thus, the second line of (19) is proved. The first line of (19) is obtained as
follows. If ξ̃ ≺ η̃ and ξ = η = η̃, then α = β and according to (18)

q̃ξ̃ η̃ =
∑

x̃∼(B ′,b′,β)

g̃ξ x̃ = g̃ξξ +
∑

x̃∼(β−1,β−1,β)

g̃ξ x̃ +
∑

x̃∼(β−1,β,β)

g̃ξ x̃

= −4
(
β
2

) + (
β
2

) · 21+β−1−β + (
β
2

) · 21+β−β = −(
β
2

)
.

Theorem 5.4. Condition (2) is sufficient for the weak convergence (15) to hold with
the limiting generator given by (19).

Conversely, if cN → 0 and if (15) is satisfied with the limiting generator given
by (19), then (2) holds.

Proof. Put

�A(b1, . . . , bA) := �
(N)
A (b1, . . . , bA) := (N)A

(2N)b
E((ν1)b1 · · · (νA)bA

) (21)
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so that cN = �
(N)
1 (2)/4. In the same manner as in Möhle and Sagitov, (2001) it is

shown that the functions (21) are monotone in the sense that

�j(k1, . . . , kj ) ≤ �l(m1, . . . , ml) (22)

whenever j ≥ l and k1 ≥ m1, . . . , kl ≥ ml . This monotonicity together with
the following Lemma 5.5 imply that under condition (2) all the limits (10) with
k1 + · · · + kj > j + 1 are equal to zero and according to Theorem 4.2 the weak
convergence (15) holds with the limiting generator given by (19).

The converse assertion follows from the fact that the limiting generator given
by (19) corresponds to the case φ1(3) = 0, which is equivalent to (2). 	


Lemma 5.5. If (2) holds, then

lim
N→∞

N

cN

P (ν1 > Nε) = 0 ∀ ε > 0, (23)

lim
N→∞

cN = 0, (24)

φ2(2, 2) := lim
N→∞

�
(N)
2 (2, 2)

cN

= 0. (25)

Proof. Given (2) we have

E((ν1)3) = o(N2cN), N → ∞. (26)

Fix ε > 0 and for i ∈ {1, . . . , N} define Ai := {νi ≤ Nε} and Bi := {νi > Nε}.
From

N P(ν1 > Nε) ≤ N

(Nε)3
E((ν1)3)

it is clear that (23) follows from (26). To verify (24) observe that

4cN = �
(N)
1 (2) = N

(2N)2
E((ν1)2)

= 1

(2N)2

N∑

i=1

E((νi)21Ai
) + 1

(2N)2

N∑

i=1

E((νi)21Bi
)

≤ Nε

(2N)2

N∑

i=1

E(νi1Ai
) + N

(2N)2
E((ν1)21B1)

≤ Nε

(2N)2
E(ν1 + · · · + νN) + N E(1B1)

= 2N2ε

(2N)2
+ N P(ν1 > Nε) ≤ ε + N

cN

P (ν1 > Nε).
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This inequality together with (23) leads to (24). Finally, to prove (25) use
∑

i �=j

E((νi)2(νj )21Ai
) ≤ 2N2ε

∑

j

E((νj )2)

= 2N3εE((ν1)2)

= 8N2(2N)2εcN ≤ (2N)42εcN

and
∑

i �=j

E((νi)2(νj )21Bi
) ≤ (2N)3

∑

i,j

E(νj 1Bi
)

= (2N)4
∑

i

E(1Bi
) = (2N)4NP(ν1 > Nε)

to see that

(N)2E((ν1)2(ν2)2) =
∑

i �=j

E((νi)2(νj )2) ≤ (2N)4 (2εcN + N P(ν1 > Nε)) .

This entails the inequality

�2(2, 2)

cN

≤ (2N)4

(2N)4

(
2ε + N

cN

P (ν1 > Nε)

)

which together with (23) shows that (25) holds. 	

Corollary 5.6. If the marginal distribution of the offspring sizes satisfies the con-
dition (2) then the time-scaled ancestral process (R[t/cN ])t≥0 converges weakly to
the Kingman coalescent.

6. The coalescent with multiple mergers

In the previous section we have seen that if multiple mergers involving three or
more ancestral lines do not occur, then the diploid coalescent coincides with the
Kingman coalescent. One has to leave the framework of the Kingman coalescent
to see the difference between the diploid coalescent and the haploid coalescent.
In this section we discuss general diploid coalescent patterns corresponding to the
coalescent generator (13) stated by Theorem 4.2. As in the haploid case (Möhle
and Sagitov, (2001)), in general, the coalescent tree in the diploid case allows for
multiple mergers of ancestral lines.

We return to condition (10) of Theorem 4.2 which regulates the joint distribu-
tion of offspring sizes within a generation. According to Möhle and Sagitov, (2001)
this condition has the following equivalent formulation. There exists a symmetric
measure Fj defined on the simplex


j := {(y1, . . . , yj ) ∈ [0, 1]j | y1 + · · · + yj ≤ 1}
such that

lim
N→∞

E((ν1)2 · · · (νj )2)

(4N)j cN

= Fj (
j ) (27)
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and

lim
N→∞

Nj

cN

P (ν1 > 2Nx1, . . . , νj > 2Nxj ) =
∫ 1

x1

· · ·
∫ 1

xj

Fj (dy1, . . . , dyj )

y2
1 · · · y2

j

,

(28)
holding for all points (x1, . . . , xj ) of continuity for the measure Fj . In particular,
if j = 1 then 
1 = [0, 1] and F1([0, 1]) = 4.

Observe that condition (28) deals with large families with offspring size of
order N . Whenever such a family is encountered in the history of the population,
then there is a positive probability that it hosts three or more marked individuals.
Formula (13) can be rewritten in terms of integrals over measures Fj in a similar
way as in Möhle and Sagitov, (2001).

If F2(
2) = 0 then (13) has the form

g̃ξ̃ η̃ :=






−4
∫

[0,1]

1 − (1 − x)b−1(1 − x + bx)

x2 F(dx) if ξ̃ ≺ η̃, b = A,

4 · 2A+a−β−b

∫

[0,1]
xb1−2(1 − x)b−b1 F(dx) if ξ̃ ≺ η̃, b1 ≥ 2,

b2 = · · · = bA = 1,

0 otherwise,
(29)

with F = F1 from (27). Now we can assume that the generator is given by (29)
with F being an arbitrary probability measure on the unit interval [0, 1]. In this
case it makes sense to call the corresponding diploid coalescent (cf. Corollary 4.3)
a diploid F -coalescent. The generator of the Kingman coalescent in Section 5 is
the special example of the diploid F -coalescent, where the measure F is the point
measure F = δ0 concentrated at zero.

It is interesting to see that the diploid F -coalescent in contrast to the haploid
F -coalescent with intensities

qξη =






∫ 1

0

1 − (1 − x)β−1(1 − x + βx)

x2 F(dx) if ξ = η,
∫ 1

0
xβ1−2(1 − x)β−β1 F(dx) if ξ ≺ η, β1 ≥ 2,

β2 = · · · = βα = 1,

0 otherwise

(30)

allows for simultaneous mergers of ancestral lines. One can encounter up to four
mergers within a large family.

7. Discussion

The model of Kämmerle (1991) describes a population of individuals without gen-
der. Individuals form couples and only couples produce offspring. Hence his model
is a two-parent model but not a two-sex model. He is mostly interested in the for-
ward process. He counts the number X

(i)
n of couples in generation n (forward in

time) which are descendants of a fixed number i of couples chosen randomly from
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the present generation 0. Under certain conditions the process (X
(i)
n )n behaves

asymptotically like a Galton Watson branching process as the population size N

tends to infinity. This convergence property leads to asymptotical results for the
extinction probability qi := P(X

(i)
n = 0 finally). In order to derive further results

he looks also backward in time, i.e., he counts the number of ancestral couples
and connects this backward process to the forward process (X

(i)
n )n using equations

which are based on the well developed principle of duality (Liggett (1985), Möhle
(1999b)). Kämmerle studies numbers of ancestral couples, but he does not trace
back ancestral lineages and he does not introduce coalescent structures.

Möhle (1994) generalizes the results of Kämmerle to models which distinguish
between females and males. The coalescent structures for these two-sex models
are introduced in Möhle (1998b). The same paper presents a convergence theorem
for the two-sex Wright-Fisher model which reveals the presence of instantaneous
states in the limiting two-sex ancestral process. The related question on relative
compactness for the convergence-to-coalescent problem was answered in Möhle
(1999a) by the modulus of continuity method.

Chang (1999) studies the two-parent Wright-Fisher model and derives asymp-
totical results for the number τN of generations back to the most recent common
ancestor (MRCA) for all N current individuals. It turns out that E(τN) is of order
log N if in the ancestral graph each child is connected to both of her/his two par-
ents. Recall that for haploid models E(τN) is of order N . In a finite population the
two-sex model produces more ancestor in comparison to a haploid model.

Pitman (1999) and Sagitov (1999) independently introduce the (haploid) F -
coalescent (cf. (30)) using different approaches. Pitman defines the F -coalescent
of an infinite population in the spirit of Kingman (1982a,b,c). A trajectory of such
a process is a tree followed from the top to the root with the number of branches
Dt decreasing as time t grows. The process (Dt )t≥0 starts at D0 = ∞ and has one
absorbing state 1. Among other things Pitman addresses the question of finiteness
of the transit time T = inf{t ≥ 0; Dt = 1}.

Sagitov (1999) derives the F -coalescent as a limiting process for the ancestral
process of a haploid exchangeable population model (note that the coalescent time
is counted as the scaled number of generations of the original population model).
He shows, in particular, that E(T ) < ∞ if F(dx) = dx1−α , 0 < α < 1. The
extreme case α = 1 corresponds to the Kingman coalescent with E(T ) = 2
(Kingman, 1982a). The other extreme case α = 0, where F is the uniform measure
on [0, 1], was first introduced, motivated by a problem from physics, by Bolthausen
and Sznitman (1998). It is known that in the Bolthausen-Sznitman coalescent the
transit time T is almost surely infinite.

Schweinsberg (2000a) solves the finiteness problem for the transit time T of
the haploid F -coalescent completely. Applying the theory developed by Pitman
(1999), Schweinsberg proves that T is almost surely finite if and only if E(T ) < ∞
which in turn holds if and only if

∑∞
β=2 r−1

β < ∞, where rβ := ∫ 1
0 (βx − 1 + (1 −

x)β)x−2F(dx).
The class of coalescent processes allowing for simultaneous, multiple colli-

sions of ancestral lines is introduced as a limiting process of the backward process in
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haploid exchangeable population models by Möhle and Sagitov, (2001). Schweins-
berg (2000b) in particular addresses the finiteness problem of the transit time for
these class of processes. Recently there is much research interest in the coales-
cent with simultaneous multiple mergers (Bertoin and Le-Gall, 2002; Möhle, 2001;
Sagitov, 2002; Schweinsberg, 2003). The present paper adjusts the convergence
results in Möhle and Sagitov, (2001) for diploid population models.
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[8] Griffiths, R.C., Tavaré, S.: Ancestral inference in population genetics. Statistical Sci-
ence 9, 307–319 (1994)

[9] Kämmerle, K.: The extinction probability of descendants in bisexual models of fixed
population size. J. Appl. Prob. 28, 489–502 (1991)

[10] Kingman, J.F.C.: On the genealogy of large populations. J. Appl. Prob. 19A, 27–43
(1982a)

[11] Kingman, J.F.C.: Exchangeability and the evolution of large populations. In: Koch, G.,
Spizzichino, F.: Exchangeability in Probability and Statistics. North-Holland Publish-
ing Company, 1982b, pp. 97–112

[12] Kingman, J.F.C.: The coalescent. Stoch. Process. Appl. 13, 235–248 (1982c)
[13] Liggett, T.M.: Interacting Particle Systems. Berlin: Springer-Verlag, 1985
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