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Abstract

‘Convergence-to-the-coalescent’ theorems for two-sex neutral population models are
presented. For the two-sex Wright–Fisher model the ancestry of n sampled genes
behaves like the usual n-coalescent, if the population size N is large and if the time
is measured in units of 4N generations. Generalisations to a larger class of two-sex
models are discussed.
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1. Introduction

A special stochastic process, called the coalescent, is of fundamental interest in population
genetics. For a large class of haploid population models this process is the appropriate tool
to analyse the ancestral structure of a sample of n genes (or individuals), if the total number
of genes in the population is sufficiently large. A corresponding convergence theorem for a
large class of exchangeable population models was first proved by Kingman [4, 5, 6]. During
recent years a variety of publications have appeared in order to extend the coalescent-theory to
more general and more complicated models, for example, models with underlying mutation,
selection or recombination, models with variable population size or non-exchangeable models.
See, for example, Donnelly and Tavaré [1], Griffiths and Majoram [2], Hudson and Kaplan [3],
Möhle [9], Tavaré [11] and references therein. One speaks of the robustness of the coalescent,
as this process appears in a lot of quite different models as the total population size tends to
infinity.

The purpose here is to illustrate how the coalescent-theory can be extended to two-sex
neutral population models. The standard two-sex Wright–Fisher model with fixed population
size [7] is studied in Theorem 1. For a larger class of two-sex models a convergence res-
ult is given in Theorem 2. Both theorems are based on a more general convergence result
for sequences of Markov chains with the same finite state space, which can be found in
[10, Lemma 1 and Theorem 1].

2. Two-sex population models

Consider a two-sex population model with non-overlapping generations, numbered, as
usual, backwards in time by r ∈ N0 := {0, 1, 2, . . . }. Assume a fixed number of N pairs
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of individuals consisting of a male and a female. The N pairs of a generation r produce N
daughters and N sons altogether, and these 2N children form the N pairs of the next generation
r −1 at random. Let α

(r)
i and β

(r)
i respectively denote the number of daughters and sons of the

pair i in generation r, i ∈ {1, . . . , N}, r ∈ N. The offspring vectors (α
(r)
1 , β

(r)
1 , . . . , α

(r)
N , β

(r)
N )

are required to be independent and identically distributed for different generations and to
satisfy

N∑
i=1

α
(r)
i = N =

N∑
i=1

β
(r)
i .

The total number of children born to the pair i of generation r is given by ν
(r)
i := α

(r)
i + β

(r)
i .

Write νi for ν
(0)
i and call a pair (or individual) alive in generation r an r-pair (or an r-

individual) for convenience.
Consider a single diploid gene locus and assume that each individual chooses one gene

from its mother and the other one from its father randomly and independently of the rest of the
process. Number the four genes of each pair (for example) in such a way that the genes 1 and
2 are the genes of the female and the genes 3 and 4 are the genes of the male.

Let g(r)
i j , i ∈ {1, . . . , N}, j ∈ {1, 2, 3, 4} denote the number of genes in generation r − 1

descended from the j th gene of the ith pair alive in generation r. Obviously

g(r)
i1 + g(r)

i2 = ν
(r)
i = g(r)

i3 + g(r)
i4 .

Conditional on ν
(r)
i the variable g(r)

i j has a binomial distribution with parameters ν
(r)
i and 1/2.

Hence the descending factorial moments are given by E((g(r)
i j )k) = (1/2)kE((ν

(r)
i )k ) for all

k ∈ N0, where the notation (x)0 := 1 and (x)k := x(x − 1) · · · (x − k + 1) for all k ∈ N is
used. The common distribution of the g(r)

i j , i.e. the probabilities

P

( N⋂
i=1

4⋂
j=1

{g(r)
i j = mi j }

)
, (1)

(0 ≤ mi j ≤ 2N ), can be expressed in terms of the ν
(r)
i , i ∈ {1, . . . , N}, as follows. Each

child chooses one gene from its father with probability 1/2 and one gene from its mother with
probability 1/2. Thus given ν

(r)
i = mi1 + mi2 = mi3 + mi4 (for all i) the above probability is

N∏
i=1

(
mi1 + mi2

mi1

)(
1
2

)mi1+mi2

·
(

mi3 + mi4

mi3

)(
1
2

)mi3+mi4

and hence (1) can be calculated via,

P

( N⋂
i=1

{ν(r)
i = mi1 + mi2 = mi3 + mi4}

)(
1
2

)4N N∏
i=1

(
mi1 + mi2

mi1

)(
mi3 + mi4

mi3

)
. (2)

The probability that two randomly chosen genes belonging to different (r − 1)-pairs have a
common ancestor in generation r is given by cr = wr/4, where

wr :=
N∑

i=1

(
E((ν

(r)
i )2)

4(N)2
− E(α

(r)
i β

(r)
i )

2N(N)2

)



Coalescent results for two-sex population models 515

is the probability that two randomly chosen individuals belonging to different (r −1)-pairs are
children of the same r-pair (See [8]). Note that α

(r)
i β

(r)
i ≤ (ν

(r)
i )2. Hence

wr ∼ 1

4N2

N∑
i=1

E((ν
(r)
i )2)

for large N and

cr ∼ 1
(4N)2

N∑
i=1

E((ν
(r)
i )2) = 1

(4N)2

N∑
i=1

4∑
j=1

E((g(r)
i j )2)

which corresponds to the ‘coalescence probability’ used in haploid population models (See
[9]).

Example 1. In the two-sex Wright–Fisher model it is assumed that α(r) := (α
(r)
1 , . . . , α

(r)
N )

and β(r) := (β
(r)
1 , . . . , β

(r)
N ) are independent and both multinomially distributed according to

Mn(N , 1/N , . . . , 1/N). In this case the joint distribution of the children offspring variables
is a multinomial distribution,

(ν
(r)
1 , . . . , ν

(r)
N )

d= Mn(2N , 1/N , . . . , 1/N)

and g(r)
i j

d= B(2N , 1/(2N)). Note that the joint distribution of the gene offspring variables is
not a multinomial distribution. Further,

wr = N

(
(2N)2(1/N)2

4(N)2
− 1

2N(N)2

)
= 1

N

and hence cr = 1/(4N).

3. The ancestral process and the coalescent

Fix n ≤ 4N and choose n genes at random (without replacement) from the current gen-
eration 0. For r ∈ N0, let Rr denote the equivalence relation which contains (i, j ) iff the
ith and the j th gene have a common ancestor in the rth generation. In contrast to the well-
developed theory for haploid population models, the so-called backward process (Rr )r∈N0

is not time-homogeneous, which makes it much more complicated to analyse the ancestral
structure for diploid population models. So far the author was able to derive a ‘convergence-
to-the-coalescent’ theorem for the case of the two-sex Wright–Fisher model. For other models,
only results for the case n = 2 are derived.

Theorem 1. For the two-sex Wright–Fisher model the finite-dimensional distributions of
(R[4Nt ])t≥0 converge to those of the n-coalescent.

Proof. The basic idea is to apply the convergence theorem given in [10, Lemma 1 and The-
orem 1]. Define a finer, more detailed ancestral structure which distinguishes so many states
that the corresponding backward process becomes a time-homogeneous Markov chain, which
can be analysed more easily than the non-time-homogeneous process (Rr )r∈N0. Consider
the ancestral genes of the n sampled genes r generations backwards in time. A pair has by
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definition the type k ∈ {0, 1, 2, 3, 4}, if exactly k genes of the ancestral genes belong to this
pair. For a pair of type 2 we distinguish further two sub-types. The first, ‘21’, applies if the two
genes belong to different individuals and the second, ‘22’, if both genes belong to the same
individual.

Now let Xrk denote the number of pairs in generation r of type k ∈ {0, 1, 21, 22, 3, 4}.
Define Xr := (Xrk )k∈{0,1,21,22,3,4} and consider the time-homogeneous Markov process
(Cr )r∈N0 := (Rr ,Xr )r∈N0. The state space of this process is of the form S = ⋃

ξ∈En
Sξ ,

where
Sξ :=

⋃
x∈Cξ

{(ξ, x)}

and Cξ is the set of all x = (x0, x1, x21, x22, x3, x4), with
∑4

i=0 xi = N and
∑4

i=0 ixi = b :=
|ξ |, where x2 := x21 + x22 and |ξ | denotes the number of equivalence classes of ξ . Note that
for N ≥ b,

|Sξ | = |Cξ | =
∑

x0,x1 ,x2 ,x3,x4∈N0
x0+x1+x2+x3+x4=N
x1+2x2+3x3+4x4=b

(x2 + 1) =
∑

X1,X2,X3,X4∈N0
x1+x2+x3+x4≤N

x1+2x2+3x3+4x4=b

(x2 + 1)

=
∑

x1,x2 ,x3 ,x4∈N0
x1+2x2+3x3+4x4=b

(x2 + 1) =
∑

x2 ,x3,x4∈N0
2x2+3x3+4x4≤b

(x2 + 1) =: Lb,

depends only on b. Thus for N ≥ n it follows that

|S| =
∑
ξ∈En

|Sξ | =
n∑

b=1

S(n, b) Lb,

where the S(n, b) are the Stirling numbers of the second kind.

b Lb b Lb

1 1 6 17
2 3 7 21
3 4 8 32
4 8 9 39
5 10 10 55

n |S| n |S|
1 1 6 1 141
2 4 7 5 972
3 14 8 33 496
4 54 9 200 411
5 236 10 1 274 293

It is shown later that there is a high probability that the process stays in states of the form
(ξ, x(b)) with x(b) := (N − b, b, 0, 0, 0, 0). This means that the b ancestral genes belong to
different pairs. For i = (ξ, x), j = (η, y) ∈ S define the transition probability

πi j := P(Cr = j | Cr−1 = i),

and analyse the transition matrix N = (πi j )i, j∈S . It is convenient to divide the transition
matrix N into |En |2 sub-matrices,

N = (Nξη)ξ,η∈En ,
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where Nξη := (π(ξ,x),(η,y))x∈Cξ ,y∈Cη is a (|Sξ | × |Sη|)-sub-matrix. In the Wright–Fisher
model, conditional on Cr−1 = (ξ, x) with probability 1 + O(N−1), no coalescence will occur
while proceeding from generation r −1 to generation r, i.e. one generation backwards in time.
Furthermore with probability 1 + O(N−1),

(1) the ancestral genes of genes belonging to different (r − 1)-individuals will belong to
different r-pairs and,

(2) the ancestral genes of the two genes of a (r − 1)-individual will belong to different
r-individuals.

Thus travelling two (or any other fixed number of more) generations backwards in time, with
probability 1 + O(N−1), all ancestral genes will belong to different pairs and no coalescence
will occur. Thus the transition matrix N has a decomposition of the form

N = A + cN BN ,

where A := limN→∞ N does not depend on N , cN := 1/(4N) and (BN )N∈N is a bounded
matrix sequence. More detailed (in terms of the sub-matrix structure) this decomposition is
given by

N = (Aξη )ξ,η∈En + cN (BN,ξη )ξ,η∈En ,

where Aξη = 0 for ξ �= η and

lim
m→∞ Am

ξξ =



0 · · · 0 1
...

...
...

0 · · · 0 1


 =: Pξ ,

which corresponds to the fact that after two (or any other fixed number of more) steps back-
wards in time the ancestral genes will belong to different pairs with probability 1 + O(N−1).
Hence it follows that

P := lim
m→∞ Am = (Pξη)ξ,η∈En ,

with Pξη := 0 for ξ �= η and Pξξ := Pξ . Now, it is straightforward to verify that

G := lim
N→∞ P BN P = lim

N→∞(Pξ BN,ξη Pη)ξ,η∈En

= lim
N→∞






0 · · · 0 sξη

...
...

...

0 · · · 0 sξη






ξ,η∈En

,

where sξη denotes the sum of all the entries of the last row of the matrix BN,ξη . That is,

sξη =
∑

y∈Cη\{x(a)}

π(ξ,x(b)),(η,y)

cN
+ π(ξ,x(b)),(η,x(a)) − δξη

cN

= c−1
N

(∑
y∈Cη

π(ξ,x(b)),(η,y) − δξη

)

= c−1
N

(∑
y∈Cη

P(Cr = (η, y) | Cr−1 = (ξ, x(b))) − δξη

)

= c−1
N (P(Rr = η | Cr−1 = (ξ, x(b))) − δξη),
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where a := |η| and b := |ξ |. Note that Xr−1 = x(b) means that the b ancestral genes in
generation r −1 belong to different (r −1)-pairs. Now consider the b individuals of generation
r − 1 where these b genes are located. In the Wright–Fisher model, each of these individuals
chooses randomly his parent pair. Thus in the Wright–Fisher model the b genes choose their
ancestral genes randomly under the 4N genes of the previous generation r. As in a haploid
Wright–Fisher model with population size 4N , it follows that

P(Rr = η | Cr−1 = (ξ, x(b))) = (4N)a

(4N)b = δξη + cN qξη + o(cN ),

where

qξη :=



−|ξ |(|ξ | − 1)/2 if ξ = η,
1 if ξ ≺ η,
0 otherwise,

and ξ ≺ η :⇐⇒ ξ ⊆ η and |ξ | = |η| + 1. Note that the qξη are exactly the entries of the
infinitesimal generator of the n-coalescent. Hence limN→∞ sξη = qξη and

G =





0 · · · 0 qξη

...
...

...

0 · · · 0 qξη






ξ,η∈En

.

Now apply Lemma 1 of [10] to verify that limN→∞ 
[t/cN ]
N = P − I + et G = Pet G =: (t)

for all t > 0. Thus the finite-dimensional distributions of the process (C[t/cN ])t≥0 converge to
those of a Markov process (Ct )t≥0 = (Rt , Xt)t≥0, with transition matrix (t) and infinitesimal
generator G. Note that

P(X0 = x(n)) = P(‘The n chosen genes belong to different pairs’)

= (4N)−1
n

n−1∏
i=0

(4N − 4i) = (4N)−1
n 4n(N)n ,

converges to 1 as N tends to infinity and hence X0 ≡ x(n). All the states (ξ, x) with x �= x(|ξ |)
are instantaneous. By eliminating all these states, it follows that the infinitesimal generator of
the ‘marginal process’ (Rt )t≥0 is given by Q = (qξη)ξ,η∈En , which is (by definition) equivalent
to the generator of the n-coalescent. Hence the finite-dimensional distributions of the ‘marginal
process’ (R[4Nt ])t≥0 converge to those of the n-coalescent.

We have been able to prove a ‘convergence-to-the-coalescent’ theorem for the larger class
of two-sex population models defined in Section 2, for the case of n = 2 sampled genes.

Theorem 2. For the case n = 2, the finite-dimensional distributions of (R[t/cN ])t≥0 converge
to those of the 2-coalescent if and only if limN→∞ cN = 0.

Proof. Consider the set of all ancestral genes r generations backwards in time. Define

Cr :=




1, if the two ancestor genes are the same (identical by descent),
2, if the genes are distinct, but belong to the same individual,
3, if the genes belong to different individuals of the same pair,
4, if the genes belong to different pairs.
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(Cr )r∈N0 is a time-homogeneous Markov chain with initial distribution

P(C0 = i) =



1/(4N) if i ∈ {1, 2},
1/(2N) if i = 3,
1 − 1/N if i = 4,

and transition matrix

N =




1 0 0 0
0 0 1 0

1
4 gN

1
4 gN

1
2 gN 1 − gN

1
4wN

1
4wN

1
2wN 1 − wN


 ,

where gN := N−2∑N
i=1 E(αiβi ) is the probability that two individuals of a pair are brother

and sister, and

wN := 1

(N)2

N∑
i=1

(
E((νi )2)

4
− E(αiβi )

2N

)

is the probability that two randomly chosen individuals of different pairs are children of the
same pair ([8], Lemma 4.5). Obviously N = A + cN BN , where cN = wN /4,

A :=




1 0 0 0
0 0 1 0
0 0 0 1
0 0 0 1


 and BN :=




0 0 0 0
0 0 0 0

gN /wN gN /wN 2gN /wN −4gN /wN
1 1 2 −4


 .

Furthermore

P := lim
m→∞ Am =




1 0 0 0
0 0 0 1
0 0 0 1
0 0 0 1


 .

From αiβi ≤ (νi )2 it follows that gN ≤ N−2∑N
i=1 E((νi )2) ∼ 4wN . Hence (BN )N∈N is

bounded. Further, it can be easily checked that

P BN P =




0 0 0 0
1 0 0 −1
1 0 0 −1
1 0 0 −1


 =: G

does not depend on N . If limN→∞ cN = 0, then by Lemma 1 of [10], it follows that 
[t/cN ]
N

converges to

(t) := P − I + et G = Pet G =




1 0 0 0
1 − e−t 0 0 e−t

1 − e−t 0 0 e−t

1 − e−t 0 0 e−t




for all t > 0 as N tends to infinity. Hence the finite-dimensional distributions of (C[t/cN ])t≥0
converge to those of a process (Ct )t≥0 with initial value C0 ≡ 4 and transition matrix (t),
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t > 0. The states 2 and 3 are instantaneous. Eliminating these states leads to the usual 2-
coalescent. Thus the finite-dimensional distributions of (R[t/cN ])t≥0 converge to those of the
2-coalescent.

Remark 1. Unfortunately I was not able to extend Theorem 2 to the case of n sampled genes.
Some additional, and so far, unknown conditions are necessary in order to prove the existence
of the limit P = limm→∞ Am for the general case. Finding the explicit form of P causes
further difficulties. Nevertheless I am convinced that the same theorem is valid for more
general models under some additional moment conditions similar to those given in [9].
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