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A CONVERGENCE THEOREM FOR MARKOV CHAINS
ARISING IN POPULATION GENETICS
AND THE COALESCENT WITH SELFING
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Abstract

A simple convergence theorem for sequences of Markov chains is presented in order
to derive new ‘convergence-to-the-coalescent’ results for diploid neutral population
models.
For the so-called diploid Wright–Fisher model with selfing probability s and mutation
rate θ , it is shown that the ancestral structure of n sampled genes can be treated in the
framework of an n-coalescent with mutation rate θ̃ := θ(1− s/2), if the population size
N is large and if the time is measured in units of (2− s)N generations.
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1. Introduction

Continuous-time Markov chains are usually characterized by their transition matrix
�(t) = et G , where G is the so-called infinitesimal generator. Note that �(0+) = I , i.e.
this characterization is only satisfied for Markov chains which have no instantaneous jumps at
time t = 0. In Section 2 a simple time-scaling convergence theorem for sequences of discrete-
time Markov chains on the same finite state space is presented. The transition matrix of the
corresponding limit process has the more general form �(t) = P − I + et G = Pet G . The
matrix P describes the instantaneous jumps at time t = 0.

The theorem is, for example, useful to derive convergence results for ancestral processes
arising in population genetics. A special stochastic process, called the coalescent, is of fun-
damental interest in population genetics. For a large class of haploid population models this
process is the appropriate tool to analyse the ancestral structure of a sample of n genes (or
individuals), if the total number of genes in the population is sufficiently large. A corres-
ponding convergence theorem for a large class of exchangeable population models was first
proved by Kingman (see [6, 7, 8]). More recently the coalescent-theory has been extended to
more general and more complicated models, for example for models with underlying mutation,
selection or recombination, for models with variable population size or for non-exchangeable
models. Only some of the publications are listed here: [14, 5, 3, 4, 10]. One speaks of the
robustness of the coalescent, as this process appears in a lot of quite different models when the
total population size tends to infinity.
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The purpose is to illustrate how the convergence results given in Section 2 can be used to
extend the coalescent-theory to more complex, for example, diploid population models (this
paper) or two-sex population models (see [11]).

In Section 3 a typical diploid plant population system with a mixture of self-fertilization and
random mating ([1, 9]) is studied. An application of the convergence results of Section 2 leads
to the so-called coalescent with selfing. Previous applications of the coalescent to diploid
models [9] ignored the correlations in offspring numbers between genes within individuals.
The results presented here now provide a formal justification of this problem.

2. A simple but useful convergence result

The convergence results presented in this paper are all based on the following Lemma 1,
which is a generalization of the well known matrix equation limN→∞(I + A/N)N = eA . A
proof is given in the appendix. Throughout this paper, for the matrix A = (ai j ), the norm
‖A‖ := maxi

∑
j |ai j | is used. Note that ‖AB‖ ≤ ‖A‖ ‖B‖ and that ‖A‖ = 1 if A is a

stochastic matrix.

Lemma 1. Let t, K ≥ 0 be fixed and let (cN )N∈N be a sequence of positive real numbers with
limN→∞ cN = 0. Further let A be a matrix with ‖A‖ = 1 such that P := limm→∞ Am exists.
Then

lim
N→∞ sup

‖B‖≤K
‖(A + cN B)[t/cN ] − (P + cN B)[t/cN ]‖ = 0.

If (BN )N∈N is a matrix sequence such that G := limN→∞ P BN P exists, then

lim
N→∞(A + cN BN )[t/cN ] = P − I + et G ∀ t > 0.

Remarks.

1. Note that P is a projection, i.e. P2 = P and therefore G P = PG = G and P − I +
et G = Pet G = et G P.

2. The convergence of the sequence (BN )N∈N is not required. Of course, if

B := lim
N→∞ BN

exists, then G = P B P.

Lemma 1 can be used to derive time-scaling convergence results for sequences of Markov
chains with the same finite state space, which appear in many fields in applied probability,
especially in population genetics.

Theorem 1. Let X N = (X N (r))r∈N0 be a sequence of time homogeneous Markov chains on a
probability space (	,F , P) with the same finite state space S and let �N denote the transition
matrix of X N . Assume that the following conditions are satisfied.

1. A := limN→∞ �N exists and �N �= A for all sufficiently large N.

2. P := limm→∞ Am exists.

3. G := limN→∞ P BN P exists, where BN := (�N − A)/cN and cN := ‖�N − A‖ for
all N ∈ N.
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If the sequence of initial probability measures PX N (0) converge weakly to some probability
measure µ, then the finite-dimensional distributions of the process (X N ([t/cN ]))t≥0 converge
to those of a time continuous Markov process (Xt )t≥0 with initial distribution

X0
d= µ,

transition matrix �(t) := P − I + et G = Pet G , t > 0, and infinitesimal generator G.

Remarks.

1. The equation �(t) = Pet G , i.e.

πi j (t) =
∑
k∈S

pik (et G)kj ,

leads to a helpful interpretation. The limit process jumps instantaneously from a state
i ∈ S at time t = 0 to a state k ∈ S at time t = 0+, with probability pik , i.e. the matrix
P describes the instantaneous jumps. Then the evolution behaves like a Markov chain
with initial value k and infinitesimal generator G. In most applications only a few entries
of the projection P are not equal to zero. Hence the process moves instantaneously to a
state k belonging to some ‘small’ subset S′ ⊂ S.

2. Obviously ‖�N‖ = 1 for all N ∈ N. Hence there exists at least a subsequence (Nk)k∈N
with limk→∞ Nk = ∞ such that A := limk→∞ �Nk exists. Now ‖BNk ‖ = 1 for all
k ∈ N and hence (eventually, after changing to another subsequence) B := limk→∞ BNk

exists. Thus the assumptions 1 and 3 of the theorem are not as strong as they seem to be
at the first glance.

Proof of Theorem 1. From Lemma 1 it follows that

lim
N→∞�

[t/cN ]
N = lim

N→∞(A + cN BN )[t/cN ] = P − I + et G = �(t)

for all t > 0. Hence the finite-dimensional distributions of (X N ([t/cN ]))t≥0 converge to those
of a Markov process, (Xt )t≥0, with initial distribution µ and transition matrix �(t), t > 0.
The infinitesimal generator of the process (Xt )t≥0 is given by

lim
t↘0

�(t)−�(0+)

t
= lim

t↘0

P − I + et G − P

t
= lim

t↘0

et G − I

t
= G.

The next section is the applied part of this article. The ancestral structure of a special diploid
plant population model is studied in detail. An application of the above convergence results
leads to the so-called coalescent with selfing.

3. The coalescent with selfing

The mechanism of reproduction in plant populationmating systems often involves a mixture
of self fertilizations and out-cross fertilization. Several models have been suggested to charac-
terize such population systems [1, 2]. Most of them are based on the fraction s of individuals
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produced by self fertilization. The parameter s is called the selfing probability or the selfing
rate.

Here the standard Wright–Fisher model with a fixed number of N diploid individuals is
assumed. This means that genes belonging to different individuals choose independently their
parent genes, and that the parent genes of two genes of the same individual belong with
probability s to the same parent individual, and with probability 1 − s to different parent
individuals.

Consider a single diploid locus. Fix n ≤ 2N and choose n genes (without replacement)
from the current generation 0. Label these n genes randomly from 1 to n and consider the set
of ancestral genes at time r ∈ N0 := {0, 1, 2, . . . }, i.e. r generations backwards in time.

3.1. The case of n = 2 sampled genes

For simplicity the case n = 2 is considered for the moment. The general case will be
studied later. Define

Dr :=




1, if the two ancestral genes are the same (identical by descent),

2, if the genes belong to different individuals,

3, if the genes are distinct, but belong to the same individual.

Obviously the so-called backward process (Dr )r∈N0 is a Markov chain with state space S2 =
{1, 2, 3}, initial distribution

(P(D0 = 1), P(D0 = 2), P(D0 = 3)) = (0, (2N − 2)(2N − 1)−1, (2N − 1)−1)

and transition matrix

�N = (πi j )i, j∈S2 =

 1 0 0

1/(2N) 1− 1/N 1/(2N)

s/2 1− s s/2


 .

Here s is the probability that the ancestral genes of the two genes of an individual belong to
the same ancestral individual. Obviously 1 is an absorbing state. The transition matrix has a
decomposition of the form �N = A+ B/N , where

A :=

 1 0 0

0 1 0
s/2 1− s s/2


 and B :=


 0 0 0

1
2 −1 1

2
0 0 0


 .

The matrix A contains the transition probabilities due to the underlying ‘selfing mechanism’,
while the matrix B contains the transition probabilities coming from the ‘random mating
mechanism’ due to the assumed Wright–Fisher model. The second mechanism is of order
N ‘slower’ than the first one. Note that

P = lim
m→∞ Am = lim

m→∞




1 0 0
0 1 0

s

2
1− (s/2)m

1− s/2
(1− s)

1 − (s/2)m

1− s/2

(
s

2

)m


 =


 1 0 0

0 1 0
p q 0


 ,

with

p := s

2− s
and q := 1− p = 2(1− s)

2− s
. (1)
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Now apply Lemma 1 to show that

lim
N→∞�

[Nt ]
N = lim

N→∞(A + B/N)[Nt ] = P − I + et P B P = Pet P B P ,

or equivalently,

lim
N→∞�

[(2−s)Nt ]
N = P − I + e(2−s)t P B P = Pe(2−s)t P B P =: �(t)

for all t > 0. Hence the finite-dimensional distributions of the process (D[(2−s)Nt ])t≥0 con-
verge to those of a time continuous Markov process (Dt )t≥0 with initial distribution (0, 0, 1),
transition matrix

�(t) = P − I + e(2−s)t P B P =

 1 0 0

1− e−t e−t 0
1− qe−t qe−t 0


 .

and infinitesimal generator

G = lim
t↘0

�(t)−�(0+)

t
= (2− s)P B P =


 0 0 0

1 −1 0
q −q 0


 .

Call this process the 2-coalescent with selfing probability s. The state 3 is instantaneous.
Eliminating this state leads to the usual 2-coalescent (see [6, 7, 8]).

Remarks.

1. The effective population size is (approximately) given by Ne = N(2 − s)/2 [13, 15].
Thus it is reasonable to measure the time in units of 2Ne = (2 − s)N generations.

2. In applications it is often assumed that the selfing probability is not a constant s but
something of the form s + O(N−1), for example s + (1 − s)/N (see [9, 12]). In this
case an appropriate decomposition of �N is given by �N = A + C/N with A defined
as before and

C :=

 0 0 0

1
2 −1 1

2
(1− s)/2 s − 1 (1− s)/2


 .

C divers slightly from B but PC P = P B P and hence the limit process is the same.
Nordborg and Donnelly [12] present an informal proof of this result. They also discuss
its application to the problem of estimating simultaneously the selfing probability and
the mutation rate.

3.2. The general case of n sampled genes

In principle the arguments given above can be carried over to a sample of size n. Un-
fortunately the state space is more complicated and hence the formal proof becomes more
difficult. Call an individual of type k ∈ {0, 1, 2}, if exactly k of the two genes of this individual
belong to the set of all the ancestral genes. Now consider the Markov process (Dr )r∈N0 :=
(Nr ,Xr )r∈N0, whereNr denotes the number of ancestral genes and Xr denotes the number of
individuals of type 2 in generation r, i.e. r steps backwards in time. A typical state is of the
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form i = (b, x) with b ∈ {1, . . . , n} and x ∈ {0, . . . , [b/2]} and the state space Sn has size
|Sn| = ∑n

b=1([b/2] + 1) = [n(n + 4)/4]. In order to analyse the initial distribution of the
process (Dr )r∈N0, i.e. the distribution of D0, let p(N , n, x) := P(D0 = (n, x)) = P(X0 = x)

denote the probability that the n genes of the current generation 0 are sampled in such a way
that there are exactly x individuals of type 2 involved. Obviously p(N , 1, x) = δ0x and

p(N , n + 1, x) = n − 2x + 2
2N − n

p(N , n, x − 1) + 2(N − n + x)

2N − n
p(N , n, x),

for n ≥ 1. The solution of this recursion is given by

p(N , n, x) = (n)2x

2x x !
2n−x (N)n−x

(2N)n
, (2)

=




1− qn/(2N)+ O(N−2) if x = 0,

qn/(2N)+ O(N−2) if x = 1,

O(N−2) if x ≥ 2;

where the notation (n)0 := 1 and (n)k := n(n − 1) · · · (n − k + 1) for all k ∈ N is used and
qn := (n)2/2 = n(n− 1)/2. For i = (b, x), j = (a, y) ∈ Sn let πi j := P(Dr = j |Dr−1 = i)
denote the transition probabilities of the process (Dr )r∈N0. Transitions from i to j occur with
probability

πi j =
(

x

b − a

)(
x − (b − a)

y

)
(1− s)x−y−(b−a)

(
s

2

)y+b−a

+ O(N−1). (3)

The exact form of πi j is not very important except for the case x = 0, where it can be shown
that

πi j = S(b, a)(2N)−b(2N)a p(N , a, y),

=




1− qb/N + O(N−2) if j = i,

qb/(2N)+ O(N−2) if j = (b − 1, 0) or j = (b, 1),

O(N−2) otherwise,

(4)

where S(b, a) denotes the Stirling numbers of the second kind. From (3) it follows that the
transition matrix �N = (πi j )i, j∈Sn of the process (Dr )r∈N0 has a decomposition of the form
�N = A + BN /N where A := limN→∞ �N and BN := N(�N − A). The matrix-sequence
(BN )N∈N is bounded and the entries ai j , i = (b, x), j = (a, y) ∈ Sn , of A are given by

ai j =
(

x

b − a

)(
x − (b − a)

y

)
(1− s)x−y−(b−a)

(
s

2

)y+b−a

.

These are exactly the probabilities of the trinomial distribution Mn(x, 1− s, s/2, s/2) evalu-
ated at the point (x − y− (b−a), b−a, y). Note that for given (b, x) ∈ Sn these probabilities
are positive only if 0 ≤ x ≤ b − a and 0 ≤ y ≤ x − (b − a). Thus ai j can be positive only if
1 ≤ a ≤ b and

y ≤ x − b + a = x − b/2+ (a − b)/2+ a/2 ≤ 0+ 0+ a/2 = a/2.
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A is a lower triangular matrix if the states are ordered such that i ≤ j :⇐⇒ a < b or (a = b
and x ≤ y). It is not easy to find closed forms for all the entries b(N)

i j of BN . For the special
case i = (b, 0) it follows from (4) that

bi j := lim
N→∞ b(N)

i j =



−qb if j = i,

qb/2 if j = (b − 1, 0) or j = (b, 1),

0 otherwise.

As A is a stochastic matrix there exists a Markov process (Zm)m with corresponding
transition matrix A. Note that aii = 1 if and only if i = (b, 0), i.e. the states (b, 0),
b ∈ {1, . . . , n}, are the absorbing states of the process (Zm)m . For i, j ∈ Sn define pi j :=
P(Zm = j finally | Z0 = i). From P = AP, i.e. pi j = ∑

k∈Sn
aik pkj = ∑

j≤k≤i aik pkj , it
follows that the pi j can be recursively (recursion on i) calculated via

pi j =




δi j if aii = 1,
1

1− aii

∑
j≤k<i

aik pkj if aii < 1,

where δi j denotes the Kronecker symbol. It is shown below that the solution of this recursion
is given by

pi j =



(
x

b − a

)
pb−aqx−(b−a) if y = 0,

0 otherwise,
(5)

where i = (b, x), j = (a, y) ∈ Sn and p and q are given by (1). Thus if y = 0 then pi j
is equal to the binomial probability B(x, p, b − a) with the parameters x and p evaluated at
b − a. Now the proof of (5) is given. From the recursion it follows that there is only one
solution of the equation P = AP. Thus one has only to verify that the pi j , as given in (5),
solve the equation

∑
k∈Sn

aik pkj = pi j . This is obviously the case for y > 0. Assume now
that y = 0. Then it follows that

∑
k∈Sn

aik pkj =
b∑

c=a

x−(b−c)∑
z=c−a

(
x

b − c

)(
x − (b − c)

z

)

× (1− s)x−(b−c)−z
(

s

2

)z+b−c( z

c− a

)
pc−a qz−(c−a).

From (
x

b − c

)(
x − (b − c)

z

)(
z

c − a

)
=

(
x

b − a

)(
b− a

c− a

)(
x − (b − a)

z − (c − a)

)
and

(1− s)x−(b−c)−z (1
2 s)z+b−c pc−a qz−(c−a)

= ((1− s)(1 + p))x−(b−c)−z (1
2 s(1 + p))z+b−c (1+ p)−x pc−a qz−(c−a)

= qx−(b−c)−z pz+b−c (1 + p)−x pc−a qz−(c−a)

= pz+b−a qx−(b−a) (1 + p)−x , (6)
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it follows that

∑
k∈Sn

aik pkj =
(

x

b − a

)
pb−aqx−(b−a)(1+ p)−x

b∑
c=a

(
b − a

c − a

) x−(b−c)∑
z=c−a

(
x − (b − a)

z − (c − a)

)
pz

= pi j (1+ p)−x
b∑

c=a

(
b − a

c − a

) x−(b−a)∑
l=0

(
x − (b − a)

l

)
pl+(c−a)

= pi j (1+ p)−x
b∑

c=a

(
b − a

c − a

)
pc−a(1+ p)x−(b−a)

= pi j (1+ p)−(b−a)
b−a∑
l=0

(
b − a

l

)
pl = pi j ,

and (5) is proven. Because the state space is finite and from each state i there is at least one
absorbing state reachable with positive probability, it follows that limm→∞ a(m)

i j exists and is
equal to pi j . Thus the entries of P = limm→∞ Am are given by (5). For example for the case
n = 4 it follows that

A =




1
0 1

s/2 1− s s/2
0 0 0 1
0 s/2 0 1− s s/2
0 0 0 0 0 1
0 0 0 s/2 0 1− s s/2
0 s2/4 0 s(1 − s) s2/2 (1− s)2 s(1 − s) s2/4




and

P =




1
0 1
p q 0
0 0 0 1
0 p 0 q 0
0 0 0 0 0 1
0 0 0 p 0 q 0
0 p2 0 2pq 0 q2 0 0




.

The calculation of the entries hi j of the matrix H := limN→∞ P BN P is now straightforward.
Obviously hi j = 0 for y > 0. Assume now y = 0. Then it follows that

hi j = lim
N→∞

∑
k,l∈Sn

pik b(N)
kl pl j

=
∑

k=(c,0)∈Sn

pik

∑
l=(d,v)∈Sn

bkl plj

=
∑

k=(c,0)∈Sn

pik(
1
2 qc p(c−1,0), j − qc pkj + 1

2 qc p(c,1), j)
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= pi j (
1
2 qa p(a−1,0), j − qa p j j + 1

2 qa p(a,1), j )

+ pi,(a+1,0)(
1
2 qa+1 p(a,0), j − qa+1 p(a+1,0), j + 1

2qa+1 p(a+1,1), j)

= pi j (0− qa + 1
2 qaq)+ pi,(a+1,0)(

1
2 qa+1 − 0+ 1

2 qa+1 p)

= pi j qa(
1
2 q − 1)+ 1

2(p + 1)qa+1 pi,(a+1,0)

= 1

2− s
(qa+1 pi,(a+1,0) − qa pi j )

= 1

2− s
(qa+1 B(x, p, b− a − 1)− qa B(x, p, b− a)).

As for the case n = 2, it follows from Lemma 1 that limN→∞ �
[(2−s)Nt ]
N = P − I + et G =:

�(t), where G := (2 − s)H . Thus the following theorem holds.

Theorem 2. The finite-dimensional distributions of (D[(2−s)Nt ])t≥0 converge to those of a
continuous time Markov process (Dt )t≥0, with transition matrix �(t) = P− I +et G = Pet G ,
t > 0, where the entries of P are given by (5), and the entries of the infinitesimal generator G
are given by

gi j = qa+1 B(x, p, b− a − 1)− qa B(x, p, b− a),

i = (b, x), j = (a, y) ∈ Sn,

where

qa := a(a − 1)/2,

p := s/(2− s)

and

B(x, p, k) :=
(

x

k

)
pk(1− p)x−k .

Remarks.

1. For the special case x = 0 the entries of the infinitesimal generator G are given by

gi j =



−qb if y = 0 and a = b,

qb if y = 0 and a = b− 1,

0 otherwise.

(7)

These are exactly the entries of the infinitesimal generator of the death process of the
usual n-coalescent. Thus it is reasonable to call the process (Dt )t≥0 the death process of
the n-coalescent with selfing probability s. (It is shown later that there exists a process,
called the n-coalescent with selfing probability s.)

2. From �(0+) := limt↘0 �(t) = P it follows that the process moves instantaneously
from a state i to a state j with probability pi j given by (5). Then the process will be
in a state of the form j = (a, 0) with a ∈ {1, . . . , n}. From (7) it follows that after
reaching such a state j = (a, 0) the process behaves like the death process of the usual
a-coalescent.
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3.3. The n-coalescent with selfing

So far only the number of ancestral genes has been studied which leads to the so-called
death process of the n-coalescent with selfing. Now the n-coalescent with selfing will be
introduced.

The n-coalescent [6, 7, 8] is a Markov chain with state space En , the set of all equivalence
relations on {1, . . . , n}. A typical state ξ ∈ En can be written in the form ξ = {C1, . . . , Cb},
where C1, . . . , Cb are the equivalence classes of ξ and b = |ξ | denotes the number of equi-
valence classes of ξ . By definition, i and j belong to the same equivalence class of ξ , if and
only if the genes i and j have a common ancestor (identical by descent) in generation r, i.e. r
generations backwards in time.

As the diploid population model considered here is more complex, some additional inform-
ation is needed in order to analyse the backward structure. Recall that an individual is of type
k ∈ {0, 1, 2}, if exactly k of the two genes of this individual belong to the set of ancestral
genes. Looking now r generations backwards in time, one can distinguish between ancestral
genes belonging to individuals of type 2 and ancestral genes belonging to individuals of type
1. Thus the typical state of a new backward process (Cr )r∈N0, with more detailed information,
can be written in the form

ξ = {{C1, C2}, . . . , {C2x−1, C2x}, C2x+1, . . . , Cb
}
, (8)

where the classes C1, . . . , Cb are given as before and x := ‖ξ‖ ∈ {0, . . . , [b/2]} denotes the
number of individuals of type 2. Obviously En is a subset of Sn. Note that for given classes
C1, . . . , Cb and for given x ∈ {0, . . . , [b/2]} there exist exactly

1
x !

x−1∏
k=0

(b − 2k)(b − 2k − 1)

2
= (b)2x

2x x !

states ξ of the form (8). Hence the state space Sn has size

|Sn| =
∑
ξ∈Sn

1 =
n∑

b=1

∑
ξ∈En|ξ|=b

[b/2]∑
x=0

(b)2x

2x x ! =
n∑

b=1

S(n, b)

[b/2]∑
x=0

(b)2x

2x x ! ,

where S(n, b) denotes the Stirling numbers of the second kind. The values of |Sn| are shown
below.

n |Sn| n |Sn|
1 1 6 1 539
2 3 7 10 299
3 11 8 75 905
4 49 9 609 441
5 257 10 5 284 451



A convergence theorem for Markov chains 503

The initial distribution of the process (Cr )r∈N0 can be calculated using (2). For ξ ∈ Sn with
|ξ | = n it follows that,

P(C0 = ξ ) = p(N , n, x)
2x x !
(n)2x

= 2n−x (N)n−x

(2N)n

=
n−x−1∏

k=0

2N − 2k

2N − k

n−1∏
k=n−x

1

2N − k
,

=




1− qn/(2N)+ O(N−2) if x = 0,

1/(2N)+ O(N−2) if x = 1,

O(N−2) if x ≥ 2,

where qn = n(n − 1)/2 and x := ‖ξ‖ is the number of individuals of type 2 in the current
generation 0. Note that for large N the process starts with high probability in the state
ξ = � := {{1}, . . . , {n}}, i.e. if N is large, the n sampled genes belong to different individuals
with high probability.

Let πξη := P(Cr = η | Cr−1 = ξ ) denote the transition probabilities of the process
(Cr )r∈N0. Transitions from

ξ = {{C1, C2}, . . . , {C2x−1, C2x }, C2x+1, . . . , Cb}

to

η = {{D1, D2}, . . . , {D2y−1, D2y}, D2y+1, . . . , Da}
occur with probability

πξη = (1 − s)x−y−(b−a)(s/2)y+b−a + O(N−1), (9)

if ξ � η, and with probability πξη = O(N−1) otherwise; ξ � η denotes that there occur
x− y− (b−a) non-selfing events ({Ck, Cl } �→ Ck, Cl ), b−a selfing events with coalescence
({Ck , Cl} �→ Ck ∪ Cl ) and y selfing events with no coalescence ({Ck , Cl } �→ {Ck , Cl }), i.e.
Di := Ci for all i ∈ {1, . . . , 2y}, Di := C2i−2y+1 ∪ C2i−2y for all i ∈ {2y + 1, . . . , 2y
+ (b − a)} and Di := Cb−a+i for all i ∈ {2y + (b − a)+ 1, . . . , a}.

The exact form of the transition probabilities πξη is not very important except for the case
‖ξ‖ = 0, where it can be shown that

πξη = (2N)a

(2N)b p(N , a, y)
2y y!
(a)2y

= 2a−y (N)a−y

(2N)b ,

=




1− qb/N + O(N−2) if ξ = η,

1/(2N)+ O(N−2) if ξ ≺ η or ξ ; η,

O(N−2) otherwise,

(10)

where

ξ ≺ η :⇐⇒ ξ ⊆ η, |ξ | = |η| + 1 and ‖ξ‖ = ‖η‖,
ξ ; η :⇐⇒ ξ ⊆ η, |ξ | = |η| and ‖ξ‖ = ‖η‖ − 1,



504 M. MÖHLE

and the notation ξ ⊆ η is used for the case when each class of ξ is a subset of a class of η.
From (9) it follows that the transition matrix �N := (πξη)ξ,η∈Sn has a decomposition of the

form

�N = A+ 1

N
BN , (11)

where BN := N(�N − A) defines a bounded matrix-sequence (BN )N∈N and the entries of
A := limN→∞ �N are given by aξη = (1 − s)x−y−(b−a)(s/2)y+b−a, if ξ � η and aξη = 0
otherwise. Note that for given ξ ∈ Sn , given a and given y, there exist exactly(

x

b− a

)(
x − (b − a)

y

)

states η ∈ Sn with |η| = a and ‖η‖ = y such that ξ � η. Hence

∑
η∈Sn

aξη =
b∑

a=b−x

(
x

b − a

) x−(b−a)∑
y=0

(
x − (b − a)

y

)
(1− s)x−y−(b−a)

(
s

2

)y+b−a

=
b∑

a=b−x

(
x

b − a

)(
s

2

)b−a x−(b−a)∑
y=0

(
x − (b − a)

y

)
(1− s)x−y−(b−a)

(
s

2

)y

=
b∑

a=b−x

(
x

b − a

)(
s

2

)b−a(
1− s + s

2

)x−(b−a)

=
x∑

c=0

(
x

c

)(
s

2

)c(
1− s

2

)x−c

= 1,

i.e. A is a stochastic matrix, which is also directly clear from (11) by taking N → ∞. It is
not easy to find closed forms for all the entries b(N)

ξη of BN . For the special case ξ ∈ Sn with
‖ξ‖ = 0 it follows from (10) that

bξη := lim
N→∞ b(N)

ξη =



−qb if ξ = η,

1/2 if ξ ≺ η or ξ ; η,

0 otherwise.

As A is a stochastic matrix there exists a Markov process (Zm)m with corresponding transition
matrix A. Note that aξξ = (s/2)‖ξ‖ for all ξ ∈ Sn and that aξξ = 1 if and only if ‖ξ‖ = 0, i.e.
exactly the states ξ ∈ En are the absorbing states of the process (Zm)m . For ξ, η ∈ Sn define
pξη := P(Zm = η finally | Z0 = ξ ) and P := (pξη)ξ,η∈Sn . Note that P satisfies the equation
P = AP. The solution of this equation is given by

pξη =
{

pb−aqx−(b−a) if ‖η‖ = 0 and ξ � η,

0 otherwise,
(12)

where x := ‖ξ‖, a := |η|, b := |ξ | and p and q are given by (1). In order to verify (12), one has
only to prove that the pξη given in (12) solve the equation P = AP, i.e.

∑
ν∈Sn

aξν pνη = pξη



A convergence theorem for Markov chains 505

for all ξ, η ∈ Sn . This is obviously true except for the case that ‖η‖ = 0 and ξ � η. In this
case it follows that∑

ν∈Sn

aξν pνη

=
b∑

c=a

(
b− a

c− a

) x−(b−c)∑
z=c−a

(
x − (b − a)

z − (c − a)

)
(1− s)x−(b−c)−z

(
s

2

)z+b−c

pc−a qz−(c−a)

(6)= pb−aqx−(b−a)(1+ p)−x
b∑

c=a

(
b − a

c − a

) x−(b−c)∑
z=c−a

(
x − (b − a)

z − (c − a)

)
pz

= pξη (1 + p)−x
b∑

c=a

(
b − a

c− a

) x−(b−a)∑
l=0

(
x − (b − a)

l

)
pl+(c−a)

= pξη (1 + p)−x
b∑

c=a

(
b − a

c− a

)
pc−a(1 + p)x−(b−a)

= pξη (1 + p)−(b−a)
b−a∑
l=0

(
b − a

l

)
pl = pξη,

and (12) is proven. Using the same argument as the previous section it follows that

lim
m→∞ Am = P.

The calculation of the entries hξη of the matrix H := limN→∞ P BN P is somewhat technical.
Obviously hξη = 0 except for the case that ‖η‖ = 0 and ξ ⊆ η. In this case it follows that

hξη = lim
N→∞

∑
ν,µ∈Sn

pξν b(N)
νµ pµη =

∑
ν,µ∈Sn‖ν‖=0

pξν bνµ pµη,

= 1
2

∑
ν,µ∈Sn
ν≺µ

pξν pµη

︸ ︷︷ ︸
=: I

+1
2

∑
ν,µ∈Sn
ν;µ

pξν pµη

︸ ︷︷ ︸
=: I I

−qa pξη.

In the first sum only the state µ = η provides a contribution, i.e.

I =
∑
ν∈Sn
ν≺η

pξν .

The second sum can be split up into two parts, where the first part includes the summation
over all ν with |ν| = a (:= |η|) and the second part includes the summation over all ν with
|ν| = a + 1. For the first part, only ν = η provides a contribution, i.e.∑

ν,µ∈Sn
ν;µ
|ν|=a

pξν pµη =
∑
µ∈Sn
η;µ

pξη pµη = pξη q qa.
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For the second part, there is only one µ with µ ≺ η which provides a contribution, i.e.∑
ν,µ∈Sn
ν;µ
|ν|=a+1

pξν pµη = p
∑
ν∈Sn
ν≺η

pξν = p · I.

Thus I I = p · I + pξη q qa and hence

hξη = 1
2 · I + 1

2 · I I − qa pξη = 1+ p

2
I + (1

2 q − 1)qa pξη = 1

2− s

( ∑
ν∈Sn
ν≺η

pξν − qa pξη

)
.

Now apply Lemma 1 to verify the following theorem.

Theorem 3. The finite-dimensional distributions of (C[(2−s)Nt ])t≥0 converge to those of a
continuous-time Markov process (Ct )t≥0, with transition matrix �(t) = P− I +et G = Pet G ,
t > 0, where the entries of P are given by (12) and the entries of the infinitesimal generator
G are given by

gξη =
∑
ν∈Sn
ν≺η

pξν − |η|(|η| − 1)

2
pξη ∀ ξ, η ∈ Sn.

Remarks.

1. For ξ ∈ Sn with ‖ξ‖ = 0, the entries of the generator G are given by

gξη =



−|ξ |(|ξ | − 1)/2 if ξ = η,

1 if ξ ≺ η,

0 otherwise.

(13)

These are exactly the entries of the infinitesimal generator of the usual n-coalescent.
Thus it makes sense to call (Ct )t≥0 the n-coalescent with selfing probability s.

2. From �(0+) := limt↘0 �(t) = P it follows that the process moves instantaneously
from the state ξ to the state η, with probability pξη given by (12). Then the process will
be in a state η with ‖η‖ = 0. From (13) it follows that after reaching such a state η,
the process behaves like the usual |η|-coalescent. Especially, given C0 ≡ �, the process
behaves like the usual n-coalescent. In other words all the states ξ ∈ Sn with ‖ξ‖ > 0
are instantaneous. Eliminating all these states leads to the usual n-coalescent.

3.4. Overlying mutations

Assume that mutations occur with probability µ per gene per generation. The state space
of the ancestral process then becomes more complex, as non-mutant and mutant equivalence
classes are distinguished. The non-mutant classes are sometimes also called ‘old’ classes and
the mutant ones ‘new’ classes. Proceeding one generation backwards in time, the following
two types of events may occur (perhaps several times).

1. Some of the non-mutant classes coalesce to form a ‘larger’ non-mutant class.
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2. A non-mutant class becomes a mutant class.

More precisely, the transition probabilities are given by πξη(µ) = µm(1 − µ)bπξη , where
m is the number of mutations, b + m is the number of old equivalence-classes of ξ and
the πξη = aξη + b(N)

ξη /N are the transition probabilities of the corresponding process with no
mutations (see (9) or (11)). If θ := limN→∞ 4Nµ exists, then it follows that

πξη(µ) =




aξη + (b(N)
ξη − θ b aξη/4)N−1 + o(N−1) if m = 0,

θ aξη/(4N)+ o(N−1) if m = 1,

o(N−1) if m ≥ 2.

Thus the transition probabilities are of the form

πξη(µ) = aξη(µ)+ 1
N

b(N)
ξη (µ),

where

aξη(µ) :=
{

aξη if m = 0,

0 if m ≥ 1,

and b(N)
ξη (µ) := N(πξη(µ)−aξη (µ)). For the special case ξ ∈ Sn with ‖ξ‖ = 0 it follows that

bξη(θ) := lim
N→∞ b(N)

ξη (µ) =




bξη − θ b aξη/4 if m = 0,

θ aξη/4 if m = 1,

0 if m ≥ 2.

In order to calculate the entries hξη(θ) of H (θ) := limN→∞ P(µ)BN (µ)P(µ) consider first
the case that there occurs exactly one mutation while the process jumps from ξ to η. Then it
follows that

hξη(θ) = lim
N→∞

∑
ν,µ

pξν(µ) b(N)
νµ (µ) pµη(µ)

=
∑
ν,µ

pξν (θ aνµ/4) pµη

= 1
4
θ

∑
ν,µ

pξν aνµ pµη = 1
4
θ

∑
ν

pξν pνη = 1
4
θpξη.

Now assume that there occurs no mutation while proceeding from ξ to η. Then

hξη(θ) = lim
N→∞

∑
ν,µ

pξν(µ) b(N)
νµ (µ) pµη(µ)

=
∑
ν,µ

pξν (bνµ − θc aνµ/4) pµη

= hξη − 1

4
θ

∑
ν

pξν c pνη = hξη − 1
4θa pξη.
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Here c denotes the number of old classes of ν and a the number of old classes of η. Multiplic-
ation with 2/(p + 1) = 2− s leads to

gξη(θ) := (2 − s)hξη(θ) =




gξη − 1
2 θ̃a pξη if m = 0,

1
2 θ̃ pξη if m = 1,

0 if m ≥ 2,

where θ̃ := θ(1− s/2). Note that for the special case ξ ∈ Sn with ‖ξ‖ = 0, the entries gξη(θ)

are given by

gξη(θ) =



−b(b + θ̃ − 1)/2 if ξ = η and m = 0,

1 if ξ ≺ η and m = 0,

θ̃/2 if ξ = η and m = 1,

0 otherwise.

These are exactly the entries of the infinitesimal generator of the usual n-coalescent with
mutation rate θ̃ = θ(1 − s/2).

Remark. Estimating the selfing probability s and the mutation rate θ is of major interest in
statistical population genetics. Several methods are known, most of them based on frequency
data [1], some others based on DNA sequence data [9], but all these estimators have, in some
sense, undesirable statistical properties. For a recent paper focusing on these problems see
Nordborg and Donnelly [12].

Appendix

Proof of Lemma 1. Assume K = 1 without loss of generality. (Otherwise choose B′ :=
B/K , c′N := KcN and t ′ := Kt .) Fix t ≥ 0 and ε > 0. Choose M ∈ N such that ‖Am − P‖ <

ε for all m ≥ M . For convenience, define n := [t/cN ]. Now

‖(A + cN B)n − (P + cN B)n‖

≤
n∑

k=0

ck
N

∑
m1,... ,mk+1∈N0

m1+···+mk+1=n−k

∥∥∥∥Am1

k+1∏
j=2

B Am j − Pm1

k+1∏
j=2

B Pm j

∥∥∥∥.

If m j ≥ M for all j ∈ {1, . . . , k + 1}, then

‖Am1 B Am2 B · · · B Amk+1 − Pm1 B Pm2 B · · · B Pmk+1‖

≤
k+1∑
j=1

‖Am j − Pm j ‖ =
k+1∑
j=1

‖Am j − P‖ < (k + 1)ε.

Otherwise the weaker inequality

‖Am1 B Am2 B · · · B Amk+1 − Pm1 B Pm2 B · · · B Pmk+1‖
≤ ‖Am1 B Am2 B · · · B Amk+1 ‖ + ‖Pm1 B Pm2 B · · · B Pmk+1‖,
≤ 1+ 1 = 2,
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is available. Thus it follows that ‖(A+cN B)n − (P +cN B)n‖ ≤ ‖An − P‖+ S1+ S2, where,

S1 :=
n∑

k=1

ck
N

∑
m1,... ,mk+1≥M

m1+···+mk+1=n−k

(k + 1)ε

≤ ε

n∑
k=0

(k + 1)ck
N

∑
m1,... ,mk+1∈N0

m1+···+mk+1=n−k

1 = ε

n∑
k=0

(k + 1)

(
n

k

)
ck

N

= ε(ncN (1 + cN )n−1 + (1+ cN )n) ∼ εet (t + 1);

(note that
∑n

k=0

(n
k

)
xk = (1 + x)n and

∑n
k=0 k

(n
k

)
xk = nx(1+ x)n−1)

and

S2 :=
n∑

k=1

ck
N

∑
m1,... ,mk+1∈N0

m1+···+mk+1=n−k
∃ j with m j<M

2

≤
n∑

k=1

ck
N (k + 1)

∑
m1,... ,mk+1∈N0

m1+···+mk+1=n−k
mk+1<M

2

≤
n∑

k=1

ck
N (k + 1)

M−1∑
mk+1=0

∑
m1,... ,mk∈N0

m1+···+mk=n−mk+1−k

2

=
n∑

k=1

ck
N (k + 1)

M−1∑
mk+1=0

2
(

n − mk−1 − 1

k − 1

)

≤ 2M
n∑

k=1

(k + 1)

(
n − 1

k − 1

)
ck

N = 2McN

n−1∑
k=0

(k + 2)

(
n − 1

k

)
ck

N

= 2McN ((n − 1)cN (1+ cN )n−2 + 2(1+ cN )n−1)

∼ 2McN et (t + 2) = O(cN ).

As ε can be chosen arbitrarily the first part of Lemma 1 is established. Now fix t > 0 and
assume that N is large such that n = [t/cN ] > 0. If G := limN→∞ P BN P exists, then

(P + cN BN )n − P + I − et G

= Pn +
n∑

k=1

ck
N

( ∑
m1,... ,mk+1∈N0

m1+···+mk+1=n−k

Pm1

k+1∏
j=2

BN Pm j

)
− P + I −

∞∑
k=0

t k

k!G
k
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=
n∑

k=1

(
ck

N

∑
m1,... ,mk+1∈N0

m1+···+mk+1=n−k

Pm1

k+1∏
j=2

BN Pm j − t k

k!G
k
)
−

∞∑
k=n+1

t k

k!G
k

=
n∑

k=1

ck
N

∑
m1,... ,mk+1∈N0

m1+···+mk+1=n−k

(
Pm1

k+1∏
j=2

BN Pm j − (P BN P)k
)

+
n∑

k=1

(
ck

N

∑
m1,... ,mk+1∈N0

m1+···+mk+1=n−k

(P BN P)k − t k

k!G
k
)
−

∞∑
k=n+1

t k

k!G
k .

From P2 = P it follows that Pm1 BN Pm2 · · · BN Pmk+1 = (P BN P)k if m j > 0 for all j ∈
{1, . . . , k + 1}. Hence

(P + cN BN )n − P + I − et G

=
n∑

k=1

ck
N

∑
m1,... ,mk+1∈N0

m1+···+mk+1=n−k
∃ j with m j=0

(Pm1 BN Pm2 · · · BN Pmk+1 − (P BN P)k )

+
n∑

k=1

(
ck

N

(
n

k

)
(P BN P)k − t k

k!G
k
)
−

∞∑
k=n+1

t k

k!G
k .

The norm of the first sum is not larger than

n∑
k=1

ck
N

∑
m1,... ,mk+1∈N0

m1+···+mk+1=n−k
∃ j with m j=0

2 ≤
n∑

k=1

ck
N (k + 1)

∑
m1,... ,mk∈N0

m1+···+mk=n−k

2

= 2
n∑

k=1

(k + 1)

(
n − 1
k − 1

)
ck

N = 2cN

n−1∑
k=0

(k + 2)

(
n − 1

k

)
ck

N

= 2cN ((n − 1)cN (1 + cN )n−2 + 2(1 + cN )n−1)

∼ 2cN et (t + 2) = O(cN ).

The last sum,
∑∞

k=n+1(t G)k/k!, is the tail of the exponential series et G . Hence this sum
converges to zero as N tends to infinity. To finish the proof we show that

lim
N→∞

n∑
k=1

(
ck

N

(
n

k

)
(P BN P)k − t k

k!G
k
)
= 0.

Obviously ck
N (n)k ≤ (cN n)k ≤ t k and from t − cN = cN (t/cN − 1) < cN n, it follows that

ck
N (n)k =

k−1∏
i=0

cN (n − i) >

k−1∏
i=0

t − cN (i + 1)
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=
k∏

i=1

(t − cN i) ≥ t k − t k−1cN (1+ · · · + k)

= t k − t k−1cN k(k + 1)/2 = t k − (cN /2)k(k + 1)t k−1.

Thus ∣∣∣∣ck
N

(
n

k

)
− t k

k!
∣∣∣∣ ≤ (cN /2)(k + 1)t k−1/(k − 1)!

and∥∥∥∥ n∑
k=1

ck
N

(
n

k

)
(P BN P)k − t k

k!G
k
∥∥∥∥

≤
n∑

k=1

∣∣∣∣ck
N

(
n

k

)
− t k

k!
∣∣∣∣ ‖(P BN P)k‖ +

n∑
k=1

t k

k! ‖(P BN P)k − Gk‖

≤
n∑

k=1

∣∣∣∣ck
N

(
n

k

)
− t k

k!
∣∣∣∣+ n∑

k=1

t k

k! k‖P BN P − G‖

≤
n∑

k=1

cN

2
(k + 1)

t k−1

(k − 1)! + ‖P BN P − G‖
n∑

k=1

t k

(k − 1)!

≤ cN

2

n−1∑
k=0

(k + 2)
t k

k! + ‖P BN P − G‖
n−1∑
k=0

t k+1

k!
≤ cN

2
(t + 2)et + ‖P BN P − G‖ tet ,

which converges to zero as N tends to infinity.
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