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1 Introduction

The goal of this paper is to solve the following problem. Consider a population of identical age-less
individuals (singletons) where each individual can go through one of the two possible transforma-
tions - it can die or it can divide into two. Suppose that the past history of the population was
determined by the conditions that the birth (division) rate was constant and equal to 1 and the
death rate was an unknown function of time d(t). Suppose further that we know the ancestral
tree of the present day population i.e. for each pair of singletons we know the time distance from
the present to their ”last common ancestor”. Given this data what is the maximal likelihood
reconstruction of the death rate function?

My interest in this problem originated from multiple recent papers which attempt to use the
variation in the non-recombinant genetic loci to reconstruct histories of populations. While there
are several standard models which the authors use to interpret the experimental data none of these
models is adapted to address the most interesting question - how the population size changed in
time? The singleton model outlined above is clearly the simplest possible one where the time is
continuous and the population size is allowed to vary. While for the actual reconstruction problems
one may need to consider more sophisticated models it seems clear that all the negative results
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obtained in the framework of singletons are likely to remain valid in more complex cases. For
example, if one can show that for a given size of the present date population the uncertainty in
the reconstruction of the population size T time units ago is large in the singleton model then it is
likely to be even larger in more complex ones.

The precise mathematical problem which we address looks as follows. The ancestral tree of the
present day population is a finite balanced weighted tree Γ̃1. For a given function d(t) we want to
compute the ’probability’ of obtaining Γ in the environment determined by d(t) and then find the
function which maximizes this value.

We face several technical difficulties here. First of all in order to get a measure on the space of
ancestral trees we have to fix the time point T < 0 when we start to trace the development of
the population and the number N of population members at this time. These data together with
the restriction of d(t) to [−T, 0] defines a (sub-)probability measure on the set of ancestral trees of
depth ≤ T 2.To deal with the case T = ∞ which we are interested in we have to find for a given Γ̃
and T > t1(Γ̃) the most likely reconstruction of N at −T and d(t) on [−T, 0] and then to take the
limit for T →∞.

The second problem is that the space H of ancestral trees is continuous and the probability of
getting any particular tree is zero. Therefore, we have to consider sufficiently small neighborhoods
of Γ̃ instead of Γ̃ itself and then show that there exists a well defined limit when the neighborhoods
shrink to one point.

The third problem arises from the fact that our function does not reach its maximal value on the
space of actual functions d(t) and in order to obtain the solution we have to allow for δ-functions.
In fact, our first result (see ??) states that for any initial Γ̃ the maximal likelihood reconstruction
of d(t) is a sum of δ-functions (with coefficients) concentrated at some of the time points which
occur as vertex labels in Γ̃.

We further present an algorithm for the computation of this maximal likelihood d. This algorithm
was implemented and I ran multiple reconstructions with it starting with trees obtained with a
constant death rate function. In all the trials the maximal likelihood reconstruction turns out to
be a series of ’tall’ δ-functions separated by long time intervals. In other words we observe that the
most likely reconstruction of history from the ancestral tree which formed in constant environment
looks like a series of widely spaces catastrophes.

1Recall that a weighted tree is a tree whose edges are labeled by non-negative numbers. A weighted tree is called
balanced if there is a function on the vertices such that the label on an edge is the difference of the values of this
function on its starting and ending vertices.

2We define the depth t1(Γ̃) of Γ̃ as the time to the oldest coalescence event.
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1 Singleton processes

1 Singleton histories

A singleton history on time interval [s, t] is a set of data of the form:

Γ = (V ;E ⊂ V × V ;φ : V → [s, t];ψ : φ−1(t) → N)

where (V,E) is a finite directed graph with the set of vertices V and the set of edges E and
φ : V → [s, t] is a function satisfying the following conditions:

1. given an edge from v to v′ one has φ(v) < φ(v′),

2. if φ(v) = s there is exactly 1 edge starting in v,

3. if φ(v) 6= s there is exactly one edge ending in v and 0 or > 1 edges starting in v.

Need a picture here

Intuitively, the set φ−1(s) is the set of the population members at the initial time s. The graph,
which is necessarily a union of trees in view of the condition (3), is the genealogy of these members.
Its vertices correspond to the transformation events with φ(v) being the time of the corresponding
event. The subsets ψ−1(i) of the final population φ−1(t) consist of members which transform into
i new members at the exact moment t. We let H[s, t] denote the set of isomorphism classes of
singleton histories over [s, t].

Given a singleton history Γ over [s, t] and u ∈ [s, t] one can cut Γ at u obtaining two histories
Ru(Γ) ∈ H[u, t] and Lu(Γ) ∈ H[s, u]. If there is a vertex v with φ(v) = u and n edges starting in
it then it appears as one vertex v′ in Lu(Γ) with ψ(v′) = n and as n vertices in Ru(Γ).

A singleton history is called death free if ψ−1(0) = ∅ and for any v such that φ(v) < t there exists at
least one edge starting in v. We let H̃[s, t] denote the set of death free histories over [s, t]. Given a
general singleton history we can ”reduce” it to a death free history by removing all v with φ(v) = t
and ψ(v) = 0 and with φ(v) < t and no edges starting at v. This gives us a projection

r : H[s, t] → H̃[s, t]

for which the natural inclusion H̃[s, t] → H[s, t] is a section. From the population point of view r
corresponds to the passage from the full genealogy of a population to the ancestral genealogy of
the present day survivors.

Note that both H[s, t] and H̃[s, t] are commutative monoids wit respect to the disjoint union of
histories and that both the inclusion and the reduction map are homomorphisms of monoids.

We will need topology on spaces H[s, t] and H̃[s, t] which we get by identifying histories and death
free histories with the points of [s, t]-geometric realizations of two commutative simplicial monoids
F ∗(N) and F̃ ∗(N).

3



Recall that for a simplicial set X∗ = (Xi, σ
j
i , ∂

j
i )i≥0 its geometric realization |X∗| is the topological

space of the form
|X∗| = qi≥0(Xnd

i ×∆i)/ ≈

where Xi
nd is the subset of non-degenerate simplexes in Xi and ≈ is an equivalence relation defined

in the standard way by the boundary maps ∂j
i (see e.g. [?]). If ∆i

op is the open simplex for i > 0
and the point for i = 0 then there is a bijection of sets

|X∗| = qi≥0X
nd
i ×∆i

op

Let ∆i
[s,t] be the set of increasing sequences u1 < · · · < ui in (s, t) for i > 0 and the point for i = 0.

These spaces are canonically homeomorphic to the standard simplexes and we may consider the
topological realization functor | − |[s,t] based on ∆∗

[s,t] instead of ∆∗.

Recall further that for any monad M on a category C and any object X of C we have a simplical
object M∗(C) whose i-simplicies are given by Mi(X) = M◦(i+1)(X). Consider two monads on the
category of commutative monoids:

1. F takes a monoid A to the free monoid generated by A as a set, e.g. F (pt) = N,

2. F̃ takes a monoid A to the free monoid generated by (A, 1) as a pointed set, e.g. F̃ (pt) = pt.

Proposition 1.1 [top] There are natural isomorphisms of monoids

H[s, t] = |F∗(N)|[s,t]

H̃[s, t] = |F̃∗(N)|[s,t]
where the spaces on the right hand sides are considered as sets of points.

Proof: Let us consider only the case of H[s, t]. The case of H̃[s, t] follows by the same scheme.
We are going to show that H[s, t] can be identified with the set of points of the disjoint union

qi≥0F
nd
i (N)×∆i

(s,t)

where Fnd
i (X) is the set of on-degenerate simplicies of F∗(X) and ∆i

(s,t) is the point for i = 0 and
the open simplex s < u1 < · · · < ui < s for i ≥ 1.

For a set X let Symmn(X) be the n-th symmetric power of X and let

S(X) = qn≥0Symm
n(X)

Any element of S(X) is of one of the three types. If it belongs to Symm0(X) = pt we denote it
by ∗. If it belongs to Symm1(X) = X we denote it by [x] where x is the corresponding element of
X. If it belongs to Symmn(X) for n > 1 it can be written in a unique way as a commutative sum
[x1] + · · ·+ [xn] where xi ∈ X.
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Then
Fi(X) = S◦(i+1)(X)

where S◦i is the i-th iteration of the functor S(−). Elements of qiFi(X) which belong to Fi(X)
will be called elements of level i. We let ∗i denote the point Symm0(S◦(i+1)(X)). Then one has:

1. any element of level 0 is of the form ∗0 or
∑

[xi] where xi ∈ X,

2. any element of level i > 0 is of the form ∗i or
∑

[γi] where γi are elements of level i− 1.

Let us define a map π : H[s, t] → qiFi(N) as follows. For Γ ∈ H[s, t] let Supp(Γ) = Im(φ) ∩ (s, t).
It is a finite subset of (s, t) which we can write down as a unique increasing sequence u1 < · · · < ui.
The number i is called the level of Γ and will coincide with the level of π(Γ).

If l(Γ) = 0 i.e. Supp(Γ) = ∅ then Γ is a disjoint union of intervals, one for each point of φ−1(t). If
Γ is empty we set π(Γ) = ∗0. Otherwise we set

π(Γ) =
∑

v∈φ−1(t)

[ψ(v)].

If l(Γ) > 1 and Γ is connected set
π(Γ) = [π(Ru1(Γ))]

and in general set
π(Γ) = π(Γ1) + · · ·+ π(Γm)

where Γ1, . . . ,Γm are the connected components of Γ.

Let now γ ∈ Fi(N) be an element of level i and u1 < · · · < ui be an increasing sequence in (s, t).
Define Γ = Π′(γ;u1, . . . , ui) ∈ H[s, t] inductively as follows.

If i = 0 and γ = ∗0 we set Γ = ∅. If i = 0 and γ =
∑m

j=1[nj ] we define Γ as the disjoint union of m
intervals starting at s and ending at t with the function ψ defined by the numbers nj .

If i > 0 and γ = ∗n we set Γ = ∅. If γ = [γ′], consider

Γ′ = Π′(γ′;u2, . . . , ul) ∈ H[u1, t]

and construct Γ by contracting all the initial vertices of Γ′ to one vertex v and adding a new initial
vertex v0 and an edge from v0 to v. If γ =

∑
[γ′i] set

Γ =
∑

Π′([γ′i];u1, . . . , ui)

A graph created by this procedure need not satisfy the definition of a population history since it
may contain internal vertices where exactly one edge starts. By erasing all such vertices we get a
population history which we denote by Π(γ;u1, . . . , ui).

One verifies easily that for any Γ ∈ H[s, t] one has

Π(π(Γ);u1(Γ), . . . , ui(Γ))) = Γ.
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The converse is not necessarily true since erasing the extra vertices may create a situation when
for one of the original uj ’s there are no vertices v with φ(v) = uj . One verifies easily that this
happens if and only if the corresponding element of qFi is degenerate. For a non-degenerate γ and
any u1, . . . , ui one has

π(Π(γ;u1, . . . , ui)) = γ

which finishes the proof.

Corollary 1.2 [homot] The spaces H[s, t] and H̃[s, t] are are homotopy equivalent to N. A history
Γ belongs to the connected component given by the number of final vertices with multiplicities defined
b ψ.

Proof: It follows by [?, ] from the fact that the monad F∗ (resp. F̃ ) is given by the composition
of the forgetful functor to sets (resp. pointed sets) with its left adjoint.

The maps H̃[s, t] → H[s, t] and H[s, t] → H̃[s, t] correspond with respect to the identifications of
Proposition 1.1 to the natural homomorphisms of monads F → F̃ and F̃ → F which proves the
following result.

Corollary 1.3 [rcont] The maps
H̃[s, t] → H[s, t]

H[s, t] → H̃[s, t]

are continuous.

The simplicial set F∗(N) is not locally finite. For example, the vertex [1] is the boundary of any
of the 1-simplexes of the form n[∗0] + [1], as a consequence H[s, t] is not a nice topological space.
The simplicial set F̃∗ to the contrary is locally finite. Moreover, one has the following result.

Proposition 1.4 [topstr] The space H̃[s, t] is the disjoint union of the form

H̃[s, t] = qn≥0H̃n[s, t]

where H̃n[s, t] is the subset of histories with the n survivors. The space H̃0 consists of one point
corresponding to the empty history. For n > 0, the space H̃n[s, t] is a finite contractible CW -complex
of dimension n− 1.

Proof: ???

Proposition 1.5 [str1] Every point of H̃n[s, t] lies in the closure of a simplex of dimension n− 1.
A point of Hn[s, t] belongs to the interior of a simplex of dimension n− 1 (i.e. has level n− 1) if
and only if the corresponding history Γ has the following properties:
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1. there are exactly n vertices v with φ(v) = t (i.e. ψ ≡ 1),

2. for any v such that φ(v) 6= s, t there exists exactly two edges starting in v,

3. for any v1, v2 such that φ(v1) = φ(v2) 6= t one has v1 = v2, in particular there is exactly one
vertex v with φ(v) = s.

Proof: ???

We will call histories which satisfy the conditions of Proposition 1.5 generic histories and denote
their space by B̃[s, t] since they are the ones with only binary ramification points. The proposition
shows that B̃[s, t] is naturally homeomorphic to the disjoint union of open [s, t]-simplexes and that
it is dense in H̃[s, t].

The natural map B̃n[s, t] → ∆n−1
op [s, t] assigns to each history Γ its sequential invariant - the

sequence u1, . . . , un−1 of the times of the division events in Γ.

1. structure of H̃n for small n,

2. for a generic Γ the neighborhood Uε(Γ) isomorphic to In−1
ε where Iε = [−ε, ε],

3. death free histories can be equivalently described as finite ultra-metric spaces whose metrics are
allowed to take value +∞ and to be degenerate (i.e. one may have d(x, y) = 0 for x 6= y). The
level of such a space is the number of values in (0,∞) which the metric takes and the sequential
invariant is the set of these values in the increasing order.

2 Branching Markov processes on N

The dynamics of the population which consists identical individuals is fully described by a collection
of probability kernels Pu,v : N → N given for all u ≤ v, u, v ∈ [s, t]. The value Pu,v(m,−) of Pu,v

on m is the measure on N whose value Pu,v(m,n) on n is the probability for a population having m
members at time u to have n members at time v. The assumption that the individuals are age-less
is equivalent to the condition that these kernels form a Markov process i.e. that for u ≤ v ≤ w one
has

Pv,w ◦ Pu,v = Pu,w.

We further assume that the individuals are independent (i.e. not ’aware’ of each other) which is
equivalent to the condition that this is a branching process i.e. that Pu,v are homomorphisms of
monoids in the category of probability kernels.

Such processes have standard description in terms of generating functions - formal power series of
the form

[eform]F (u, v;x) =
∞∑

n=0

Pu,v(1, n)xn. (1)
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The branching property implies that Pu,v(m,n) is the n-th coefficient of the power series F (u, v;x)m

and the Markovian condition becomes equivalent to the relation

[mcomp]F (u,w;x) = F (u, v;F (v, w;x)). (2)

This description provides a bijection between collections of formal power series F (u, v;x) of the
form (1) satisfying the conditions

F (u, v; 1) = 1

Pu,v(1, n) ≥ 0

and (2) and the isomorphism classes of branching Markov processes on N. We let BM(N; s, t)
denote this set of isomorphism classes.

3 Markov processes on histories

Let u1 ≤ · · · ≤ uq be a non-decreasing sequence in [s, t] and let Γ be a singleton history. Define
nu1,...,uq(Γ) ∈ S◦(q−1)(N) inductively as follows:

1. if q = 1 we set nu1(Γ) to be the number of population members at time u1 which is defined
as the number of initial vertices of Ru1(Γ) or equivalently as the number of final vertices of
Lu1(Γ) counted with their multiplicities as illustrated by the picture:

2. If q > 1 consider Ru1(Γ). If Ru1(Γ) = ∅ we set nu1,...,uq(Γ) = ∗q−2. Otherwise let Ru1(Γ) =
qΓi be the decomposition of Ru1(Γ) into the union of connected components. Then

nu1,...,uq(Γ) =
∑

i

[nu2,...,uq(Γi)].

Proposition 3.1 [borel1] The smallest σ-algebra on H[s, t] which makes all the functions nu1,...,uq

for all q ≥ 1 measurable coincides with the Borel σ-algebra B.
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Proof: For (u1, . . . , ul) ∈ ∆l and ε > 0 let U(u1, . . . , ul; ε) be the subset of (x1, . . . , xl) ∈ ∆l such
that |ui − xi| < ε. One verifies easily that subsets of the form U = U(u1, . . . , ul; ε)× {γ} generate
B. It remains to show that such a subset can be defined in terms of the functions nu1,...,uq .

Observe that for any γ ∈ S◦(l+1)(N) and any 0 ≤ k1 ≤ · · · ≤ kl+1 ≤ q there is an element
δk1,...,kl+1

(γ) ∈ S◦(q−1)(N) such that

nv1,...,vq(u1, . . . , ul; γ) = δk1,...,kl+1
(γ)

where ki is the number of vi’s in [s, ui) for i ≤ l and kl+1 is the number of vi’s in [s, t). In particular
it shows that the intersection of n−1

v1,...,vq
(δ) with ∆l×{γ} is given by equations of the form vi < uj

and therefore it is Borel measurable.

Conversely, fix γ ∈ S◦(l+1)(N) and consider the set of Γ such that for any v1, . . . , vq there exists
k1 ≤ · · · ≤ kl+1 ≤ q such that

nv1,...,vq(Γ) = δk1,...,kl+1
(γ).

Then this set coincides with ∆l × {γ} ⊂ H[s, t]. Replacing all v1, . . . , vq in this condition by all
rational ones (or all from any dense countable subset) we do not change the set. This shows that
subsets of the form ∆l × {γ} are measurable with respect to the σ-algebra generated by functions
nv1,...,vq .

For (u1, . . . , ul) ∈ ∆l and ε > 0 let U(u1, . . . , ul; ε) be the subset of (x1, . . . , xl) ∈ ∆l such that
|ui − xi| < ε. One verifies easily that subsets of the form U = U(u1, . . . , ul; ε) × {γ} generate
B. It remains to show that such a subset can be defined in terms of the functions nu−1,...,uq .
According to the previous remark the subset ∆l×{γ} itself is measurable. It remains to show that
U(u1, . . . , ul; ε)×{γ} can be defined as an intersection of ∆l×{γ} with a measurable subset. Such
a measurable subset is easy to produce using countable combinations of functions nv1,v2 for pairs
s < v1 ≤ v2 ≤ t.

Let Sv
u be the σ-algebra on H[s, t] generated by the functions nw1,...,wq with wi ∈ (u, v]. We have

the following obvious result.

Lemma 3.2 [ispaths] The collection of data (N,H[s, t], nu,S
v
u) forms a path system.

The space H[s, t] has a structure of a commutative topological monoid given by the obvious map a :
H×H → H corresponding to the disjoint union of histories. One verifies easily that these maps are
measurable with respect to all of the σ-algebras Sv

u and that the functions nu are homomorphisms
from H[s, t] to N.

Let us say that a Markov process Pu : N → H[s, t] on H[s, t] is additive if the kernels Pu are
homomorphisms of monoids i.e. if for i, j ∈ N one has

[eq1]a∗(Pu(k,−)⊗ Pu(l,−)) = Pu(k + l,−) (3)

where Pu(n,−) is the measure on St
u defined by the point n of N.
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Proposition 3.3 [ptop] For any branching Markov process (Pu,v : N → N)s≤u≤v≤t on N over
[s, t] there exist a unique additive Markov process Pu on H[s, t] with transition kernels Pu,v.

Proof: ???

For a given Γ the function u 7→ nu(Γ) from [s, t] to N is continuous from the above i.e. it satisfies
the condition

[ca] lim
ε≥0,ε→0

nu+ε(Γ) = nu(Γ) (4)

Remark 3.4 For a given u function Γ 7→ nu(Γ) from H to N need not be continuous.

Let [u, v] ⊂ [s, t]. One can easily see that there is only one reasonable way define a restriction map

cu,v : H[s, t] → H[u, v]

such that for any Γ and any w ∈ [u, v] one has nw(Γ) = nw(cu,v(Γ)).

Lemma 3.5 [mes1] The functions nu and the maps cu,v are measurable with respect to the Borel
σ-algebras.

Proof: ???

Let Sv
u be the smallest σ-algebra which makes cu,v measurable with respect to the Borel σ-algebra

on H[u, v]. By Lemma 3.5, the system (N,H[s, t],Sv
u, nw) is a ’path system’ i.e. it satisfies the

conditions of the definition of a Markov process (see [?, Def.1, p.40]) which do not refer to the
measures. We call it the singleton path system. A Markov process on this path system is a
collection of probability kernels

Pu : N → (H[s, t],St
u)

such that the collection Pu,v = nvPu : N → N has the standard Markov property

Pu,u = Id

Pv,w ◦ Pu,v = Pu,w.

We will assume in addition that our processes satisfy a stronger version of the ’future depends on
the past only through the present’ condition.

Condition 3.6 [condA] For any s ≤ u ≤ v ≤ t one has

(Pu)|St
v

= Pv ◦ Pu,v

Our first goal is to construct a class of additive Markov processes on the singleton path system
which correspond to branching Markov processes on N satisfying certain continuity conditions.
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4 Branching Markov processes and E-path system

We want to construct for any such process (F (t1, t2;x))s≤t1≤t2≤t which satisfies some continuity
condition for the functions F (t1, t2)(1)[n] an additive Markov process on the singleton path system
H[s, t] with the transition kernels given by F (t1, t2;x). We will do it in two steps starting with a
construction of intermediate path systems Ē[s, t] and E[s, t].

Set:
Ē[s, t] =

∏
u∈[s,t]

∏
v∈[u,t]

(
∐
n≥0

SnN)

where SnN is the i-th symmetric power of N. Define a map

e : H[s, t] → Ē[s, t]

by the condition that pru,v(e(Γ)) is in SnN if Γ has n members a1, . . . , an at time u and in this
case it is given by {m1}+ · · ·+ {mn} where mi is the number of descendants of ai at time v.

Remark 4.1 The invariant e(Γ) has a better behavior than a more simple invariant which assigns
to Γ the function

(u 7→ nu(Γ)) ∈
∏

u∈[s,t]

N

since, as we will see below, for any e ∈ Ē[s, t] there are only finitely many Γ such that e(Γ) = e and
nu(Γ) does not have this property. For example consider the history Γw which has two members
at the initial moment and the only transformation events are the death of the first one and the
division of the second one into two both occurring at the same time w. Then for any w ∈ (s, t] we
have nu(Γ) ≡ 2.

Let St
s be the product σ-algebra of the maximal σ-algebras on the countable set

∐
i≥0 S

nN. For
any [u, v] ⊂ [s, t] we have a projection Ē[s, t] → Ē[u, v] and we let Sv

u denote the pull back to
Ē[s, t] of Sv

u on Ē[u, v].

For u ∈ [s, t] let nu : Ē[s, t] → N be the map which takes e to n such that pru,u(e) ∈ SnN. AS in
the case of H[s, t], one verifies immediately that the collection (N, Ē[s, t],Sv

u, nu) is a path system.

The monoid structure on qn≥0S
nN defines a monoid structure on Ē[s, t] and as before we call

a process of this path system additive if the corresponding kernels Pu : N → (Ē[s, t],St
u) are

homomorphisms of monoids.

Proposition 4.2 [ext1] For any branching Markov process F (t1, t2;x) on N over [s, t] there exists
a unique additive Markov process on Ē[s, t] with the transition kernels given by F (t1, t2;x).

Proof: ???
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Let O = {(u, v)|s ≤ u ≤ v ≤ t}. Define E[s, t] as the subset of Ē[s, t] which consists of functions
ρ : O → S∞N satisfying the following conditions:

1. ρ takes only a finite number of different values,

2. if u < v then there exists δ > 0 such that for all ε ≤ δ one has ρ(u+ ε, v) = ρ(u, v),

3. if v < t then there exists δ > 0 such that for all ε ≤ δ one has ρ(u, v + ε) = ρ(u, v),

The property (4) shows that for any Γ ∈ H[s, t] one has e(Γ) ∈ E[s, t].

Let Rs
t be the smallest σ-algebra which makes the functions nx for s ≤ x ≤ t measurable with

respect to the obvious σ-algebra on N. The standard construction shows that for any m ∈ N, and
any s ∈ [−T, 0] there is a unique measure Ps,m on (V,Rs

0) such that for n ∈ N and t ≥ s one has
Ps,m(n−1

t (n)) = P (s, t)[m,n] and that one has the following result.

Proposition 4.3 [pr1] The collection of data (nt,R
s
t , Ps,m) is a Markov process (in the sense of

[?, Def.1, p.40]) with the phase space N and the space of elementary events H[−T, 0].

Therefore our first step is to show that the process (nt,R
s
t , Ps,m) has a canonical extension to a

process on a wider set of σ-algebras with respect to which r is measurable. Let Ss
t = r−1(Rs

t ) be
the smallest σ-algebra which makes the map r measurable with respect to the σ-algebra Rs

t on H̃.
It is generated by subsets

Sx,m = r−1(Rx,m)

for s ≤ x ≤ t, where
Rx,m = n−1

x (m).

Let Ts
t = Rs

t + Ss
t .

Corollary 4.4 [c1] The composition

N
P ′

s→ H
r→ H

nt→ N

is a homomorphism whose value on 1 is represented by the power series F (s, t;D(t) + (1−D(t))x)
where D(t) = F (t, 0; 0).

Proof: We have D(t) = F (t, 0; 0) = Pt,1(R0,0). Considering formal power series we get from (8):

∑
n≥0

P ′
s,1(St,n)xn =

∑
k,n≥0

Ps,1(Rt,k)
∑

i1+···+in=n

n∏
j=1

P ′
t,1(St,ij )x

n =

=
∑

k

Ps,1(Rt,k)(
∑

i

P ′
t,1(St,i)xi)n =

∑
k

Ps,1(Rt,k)(D(t) + (1−D(t))x)k.

which proves the corollary.
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Let
φt = D(t) + (1−D(t))x

and let
φ−1

t = (x−D(t))/(1−D(t))

such that
[eq4]φt(φ−1

t (x)) = φ−1
t (φt(x)) = Id. (5)

Set
F̃ (s, t;x) = φ−1

s (F (s, t;φt(x)).

The equations (5) imply immediately that the series F̃ satisfy the relations (2) and therefore define
a branching Markov process. We have:

F̃ (s, t; 0) = φ−1
s (F (s, t;D(t))) = φ−1

s (D(s)) = 0

i.e. this process is death free. We let P̃s denote the corresponding probability kernels N → (H̃,Rs
0).

Lemma 4.5 [l1] There are commutative diagrams of probability kernels:

N
φ∗s−−−−→ N

Ps

y yP̃s

(H,Ts
0)

r−−−−→ (H̃,Rs
0)

nt

y ynt

N
φ∗t−−−−→ N

where φ∗s is the additive probability kernel N → N corresponding to the power series φs.

Proof: Follows immediately from Corollary 4.4.

Let’s write φ∗s(n) =
∑

k akδk where δk is the δ-measure concentrated at k. By Corollary 4.4 we
have

Ps(n)[St1,n1 ∩ · · · ∩ Stq ,nq ] = Ps(n)[r−1(Rt1,n1 ∩ · · · ∩Rtq ,nq)] =

= P̃sφ
∗
s(n)[Rt1,n1 ∩ · · · ∩Rtq ,nq ] =

∑
k

akP̃s(k)[Rt1,n1 ∩ · · · ∩Rtq ,nq ].

Assume that s ≤ t1 ≤ · · · ≤ tq. Since P̃s for a Markov process we have

P̃s(k)(Rt1,n1 ∩ · · · ∩Rtq ,nq) = P̃s(k)[Rt1,n1 ]P̃t1(n1)[Rt2,n2 ] . . . P̃tq−1(nq−1)[Rtq ,nq ]

and therefore, again by Corollary 4.4

Ps(n)[St1,n1 ∩ · · · ∩ Stq ,nq ] = (
∑

k

akP̃s(k)[Rt1,n1 ])P̃t1(n1)[Rt2,n2 ] . . . P̃tq−1(nq−1)[Rtq ,nq ] =

= nt1P̃sφ
∗
s(n)[n1]P̃t1(n1)[Rt2,n2 ] . . . P̃tq−1(nq−1)[Rtq ,nq ] =

= φ∗t1nt1Ps(n)[n1]P̃t1(n1)[Rt2,n2 ] . . . P̃tq−1(nq−1)[Rtq ,nq ]

Using again formal power series we get the following result.
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Lemma 4.6 [fc1] The value of Ps(n)[St1,n1 ∩ · · · ∩ Stq ,nq ] is the coefficient at xn1
1 . . . x

nq
q in the

expression (F (s, t1;φt1(x1))nF̃ (t1, t2;x2)n1 . . . F̃ (tq−1, tq;xq)nq−1.

5 Reduced processes

Proposition 5.1 [p1] For any additive Markov process (nt,R
s
t , Ps,m) there exists a unique additive

Markov process (nt,T
s
t , P

′
s,m) such that the restriction of P ′

s,m to Rs
t equals Ps,m and for t ≥ s one

has
[eq3]P ′

s,1(Rt,k ∩ St,n) = P ′
s,1(Rt,k)P ′

t,k(St,n). (6)

Proof: We will only prove uniqueness i.e. we will show how to express P ′
s,m(St,n) through Ps,m.

Note first that
[eq2]a−1(St,n) = qi+j=nSt,i × St,j (7)

The condition (3) implies that
P ′

s,k = a∗(⊗k
j=1P

′
s,1)

and together with (7) we get

P ′
s,k(St,n) =

∑
i1+···+ik=n

k∏
j=1

P ′
s,1(St,ij ).

We further have

[eq6]P ′
s,1(St,n) =

∑
k≥0

P ′
s,1(Rt,k ∩ St,n) =

∑
k≥0

P ′
s,1(Rt,k)P ′

t,k(St,n) = (8)

=
∑
k≥0

Ps,1(Rt,k)
∑

i1+···+ik=n

k∏
j=1

P ′
t,1(St,ij )

Observe now that P ′
t,1(St,i) can be non-zero only for i = 0, 1 and that

P ′
t,1(St,0) = Pt,1(R0,0)

P ′
t,1(St,1) = 1− Pt,1(R0,0)

which finishes the proof of the proposition.

Remark 5.2 The measures on H[s, t] which we are going to consider in this paper vanish on the
subsets of the form

ι2,u = {Γ such that there exists a division point v with φ(v) = u}

but not necessarily on the subsets of the form

ι0,u = {Γ such that there exists a death point v with φ(v) = u}

so we should be careful with the behavior of our constructions on the subsets of the second kind
but not of the first.
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Remark 5.3 One verifies easily that there are histories Γ,Γ′ such that nu(Γ) = nu(Γ)′ for all u
but nur(Γ) 6= nur(Γ′) for some value of u. In the most simple example of this kind the function
nu(Γ) = nu(Γ)′ is the step function taking values 2, 3, 2. This implies in particular that r is not
measurable with respect to the minimal σ-algebras which are generated by the functions nu.

6 Parameters space for singleton processes

Definition 6.1 [abar] For s ≤ t define the set Ā[s, t] as the set of functions σ : [s, t] → (0, 1]
satisfying the following conditions

1. σ is smooth outside of a finite number of points τi ∈ (s, t) and in all smooth points it satisfies
the inequality

[mainineq]σ′ ≥ −σ(1− σ) (9)

2. for any x ∈ {τi} ∪ {s} the limit

σ+(x) = limε>0,ε→0σ(x+ ε)

exists and one has σ+(x) = σ(x),

3. for any x ∈ {τi} ∪ {t} the limit

σ−(x) = limε>0,ε→0σ(x− ε)

exists and one has σ−(x) ≤ σ(x)

4. σ(t) = 1.

Define a topology on Ā[s, t] by the metric

dist(f, g) = |f(s)− g(s)|2 + |f(t)− g(t)|2 +
∫ t

s
|f(x)− g(x)|2dx

or by any equivalent one.

Lemma 6.2 [value] For any x ∈ [s, t] the function f 7→ f(x) is continuous on Ā[s, t].

Proof:(Sketch) Our definition of the metric immediately implies the statement of the lemma for
x = s, t. Therefore we may assume that x ∈ (s, t). We need to show that for any f ∈ Ā, ε > 0 there
exists δ(ε) > 0 such that |f(x)− g(x)| ≥ ε implies that dist(f, g) ≥ δ(ε). Assume for example that
g(x) > f(x). Then in order for g to be close to f on the interval (x, t], g has to decrease as fast as
possible. However, its rate of decrease is limited by the inequality (9) which allows one to find the
required δ.
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Proposition 6.3 [pex1] For any σ ∈ Ā[−T, 0] there exists a unique singleton process F (x, y;u)
such that for x ∈ [s, t] one has:

σ(x) = 1− F (x, 0; 0).

Proof: Let us first consider the case when σ is smooth. Let F be a singleton process with the
death rate d(t). Set

δ(s, t) =
∫ t

s
d(x)dx

By [?, p.47] we have:

F (s, t;u) = 1− (1− u)et−s−δ(s,t)

1 + (1− u)
∫ t
s e

t−x−δ(x,t)dx
.

Set F (x;u) = F (x, 0;u) and δ(x) = δ(x, 0) then

F (t;u) = 1− (1− u)e−(t+δ(t))

1 + (1− u)
∫ 0
t e

−(x+δ(x))dx

Set
φ(t) = 1 + e

R 0
t e−(x+δ(x))dx

Then
φ′ = −e−(x+δ(x))

and

F (t;u) = 1 +
(1− u)φ′(t)

1 + (1− u)(φ(t)− 1)

1− σ(t) = F (t; 0) = 1 +
φ′

φ

c−
∫ 0

t
σ(x)dx = ln(φ)

From φ(0) = 2 we get:
φ(t) = 2e

R 0
t σ(x)dx

and φ′ = −σφ. We get:

F (t;u) =
(φ(t)−1 − 1 + σ(t))u+ 1− σ(t)

(φ(t)−1 − 1)u+ 1

Since this is an invertible function of u with the inverse

F ◦(−1)(t, u) =
−u+ 1− σ(t)

(φ(t)−1 − 1)u+ 1− φ(t)−1 − σ(t)

and from the Markovian property we get

F (s, t;u) = F (s;u) ◦ F ◦(−1)(t;u)

i.e.

F (s, t;u) =
(−σ(s)φ(t)−1 + φ(t)−1 − φ(s)−1)u+ φ(s)−1 − φ(t)−1 − σ(t)φ(s)−1 + φ(t)−1σ(s)

(φ(t)−1 − φ(s)−1)u+ φ(s)−1 − φ(t)−1 − φ(s)−1σ(t)
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which gives us an explicit formula for F as a function of σ when σ is smooth. Setting

φ(s, t) = e−
R t

s σ(x)dx

we get

[fsigma]F (s, t;u) = 1− σ(s)
u− 1

(1− φ(s, t))u+ φ(s, t)− 1− φ(s, t)σ(t)
. (10)

Simple computation shows that such a system of functions forms a process (i.e. that all the
coefficients in the Taylor series in u are non-negative) iff

φ(s, t) ≤ 1− σ(s)
1− σ(t)

and that this condition holds for any σ ∈ Ā[−T, 0]. We denote the process (10) by Fσ.

2 Likelihood functional

1 Singleton processes

We consider here a particular class of branching Markov processes on N which we call singleton
processes. Intuitively these processes describe the situation of a birth and death process with a
constant birth rate equal 1. More precisely we consider families

F (s, t;u) =
∑

bk(s, t)uk

such that for ε ≥ 0 one has:

bk(t− ε, t) =


o2(ε) for k > 2
ε+ o2(ε) for k = 2
o(ε) for k = 0

We assume our time interval to be (−∞, 0] and write D(t) = b0(t, 0) for the cumulative death rate
of our process from t to 0.

We start with explicit calculation of F and F̃ in case when bi’s are smooth enough to use the
standard differential equations describing generating functions of branching processes. Since we
consider birth and death processes there are functions p0, p1, p2 such that p0 + p1 + p2 = 0 and we
have:

[eq21]
∂F (t, 0;u)

∂t
= −f(t, F (t, 0, u)) (11)

where f(t, x) = p2(t)x2 + p1(t)x+ p0(t) (see e.g. [?, Th.4, p.39]). Since we assume that the birth
rate is constant and equals 1 we have p2 = 1 and therefore p1 = 1− p0 where p0 is the death rate.
Then

f(t, x) = (x− p0(t))(x− 1)

We will write d(t) instead of p0(t).
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We further have
F̃ (t, 0;u) = φ−1

t F (t, 0;u) = (F −D(t))/(1−D(t))

and
[eq22]F = (1−D(t))F̃ +D(t). (12)

where D(t) = F (t, 0; 0). Substituting (12) in (11) and using the consequence

∂D(t)
∂t

= −f(t,D(t))

of (11) we get
∂F̃

∂t
+ f(t,D(t))F̃ −D(t)

∂F̃

∂t
− f(t,D(t)) =

= −(p0 + p1(1−D(t))F̃ + p1D(t) + (1−D(t))2F̃ 2 +D(t)2 + 2D(t)(1−D(t))F̃ )

which implies for D(t) 6= 1:

(1−D(t))F̃ 2 − (1−D(t))F̃ = −∂F̃
∂t
.

Since D(t) = F (t, 0; 0) the (11) implies that we have

∂D

∂t
= (D − d)(1−D)

Let us denote 1−D(t) by σ(t). Then σ(t) is the probability that one population member at time
t will have at least one living descendant at time 0 and it is connected with the death rate by the
equation

σ′ = σ(σ + d− 1)

We can express d through σ and σ′ using this equation and since d ≥ 0 we conclude that σ must
satisfy the inequality

σ′ ≥ −σ(1− σ)

Since F̃ (s, t;u) for all s, t is determined by F̃ (t, 0;u) through equations 2 we see (using again [?,
Th.4, p.39]) that F̃ (s, t;u) is the generating function of a birth process with the birth rate equal to
σ(t).

Using the explicit formula for the generating functions of such processes (see e.g. [?, Ex.9, p.46])
we get:

[m1]F̃ (s, t;u) =
q(t)u

(q(t)− q(s))u+ q(s)
(13)

where

q(t) = exp(
∫ 0

t
σ(x)dx).

Let’s write
[ared]F̃ (s, t;u) =

∑
k

ak(s, t)uk (14)

From (13) we get:
∂F̃

∂u
=

q(s)q(t)
((q(t)− q(s))u+ q(s))2
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∂2F̃

∂u2
= 2

q(s)q(t)(q(s)− q(t))
((q(t)− q(s))u+ q(s))3

and therefore
a1(s, t) =

q(t)
q(s)

a2(s, t) =
q(t)
q(s)

(1− q(t)
q(s)

)

Let us consider the sequence of t′s and n′s is of the form

t0, t0, t1 − ε, t1 + ε, t2 − ε, t2 + ε, . . . , tq − ε, tq + ε, tq+1

N, ñ, ñ, ñ+ 1, ñ+ 1, ñ+ 2, . . . , ñ+ q − 1, ñ+ q, ñ+ q

where ε is sufficiently small such that the sequence of t′s is an increasing one. We want to compute

F (N, ñ; t0, . . . , tq+1) = Pt0(N)[St0,ñ, . . . , Stq ,ñ+q].

By Lemma 4.6 we get

F (N, ñ; t0, . . . , tq+1) =
(
N

ñ

)
(1−σ(t0))N−ñσ(t0)ña1(t0, t1− ε)ñ ña1(t1− ε, t1 + ε)ñ−1a2(t1− ε, t1 + ε)

a1(t1 + ε, t2 − ε)ñ+1(ñ+ 1)a1(t2 − ε, t2 + ε)ña2(t2 − ε, t2 + ε) . . .

. . . (ñ+ q − 1)a1(tq − ε, tq + ε)ñ+q−2a2(tq − ε, tq + ε)a1(tq + ε, tq+1)ñ+q

Set

[bi]Bi =



∫ t1−ε
t0

σ(x)dx for i = 0∫ ti+1−ε
ti+ε σ(x)dx for i = 1, q − 1∫ tq+1

tq+ε σ(x)dx for i = q

(15)

and for i = 1, . . . , q:

[ci]Ci =
∫ ti+ε

ti−ε
σ(x)dx (16)

The we have:

F (N, ñ; t0, . . . , tq+1; ε) = M

(
N

ñ

)
(1−σ(t0))N−ñσ(t0)ñe−ñB0e−ñC1(1−e−C1)e−(ñ+1)B1e−(ñ+1)C2(1−e−C2) . . .

. . . e−(ñ+q−1)Cq(1− e−Cq)e−(ñ+q)Bq

where
M = ñ(ñ+ 1) . . . (ñ+ q − 1).
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2 Computation A

???This lemma has to be reproved for functions in Ā.

Lemma 2.1 [cp1] Let t0 < t1 and σ0, σ1 ∈ (0, 1]. A smooth function σ : [t0, t1] → R such that
σ(t0) = σ0, σ(t1) = σ1 and

[cond1]σ′ ≤ −σ(1− σ) (17)

exists if and only if
[asser1]σ1 ≥

σ0

σ0 + (1− σ0)et1−t0
(18)

or equivalently
[asser2]σ0 ≤

σ1

σ1 + (1− σ1)et0−t1
(19)

and the equalities are achieved for a unique function

[s01]σ(u) =
σ0

σ0 + (1− σ0)eu−t0
(20)

Proof: The equivalence of (18) and (19) is obvious. Let σ be a function satisfying the conditions
of the proposition. Let us show that (18) holds. If σ1 = 1 then (18) is obvious. Therefore, we may
assume that σ1 < 1. Assume that for all x, σ(x) > 0. Set

[cp1eq2]φ(x) = − σ′

σ(1− σ)
. (21)

Then (17) implies that φ(x) ≤ 1. Solving (21) with the initial condition σ(t0) = σ0 we get:

σ(u) =
σ0

σ0 + (1− σ0)eΦ(u)

where
Φ(u) =

∫ u

t0

φ(x)dx ≤ t1 − t0

which implies (18). This computation also implies that the condition which we have started with
(that σ > 0) is superfluous and that the only smooth function for which (18) is an equality is (20).

Suppose now that σ1 ∈ [0, 1] satisfies the strong version of (18). Let ε > 0 be a sufficiently small
number. Consider the function of the form (20) on the interval [t0, t1− ε] and extend it to a smooth
function on [t0, t1] with σ(t1) = σ1 such that on the segment [t1 − ε, t1] we have σ′ >> 0. Clearly,
such σ satisfies (17).

??? The following lemma also has to be reproved for σ ∈ Ā. Change the definition of Ā removing
the normalization σ(t) = 1.

Lemma 2.2 [bcomp] Let σ be a function satisfying the conditions of Lemma 2.1. Then

[asser3](1 + σ1(et1−t0 − 1))−1 ≤ e−
R t1

t0
σ(x)dx ≤ 1 + σ0(et0−t1 − 1) (22)
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The equality is achieved in the class of smooth functions only if the equality holds in (18). In this
case the only function which achieves the equality in any of the inequalities of (22) is (20) which
makes both inequalities to be equalities.

Proof: Lemma 2.1 shows that
σ(u) ≥ σ0

σ0 + (1− σ0)eu−t0

and
σ(u) ≤ σ1

σ1 + (1− σ1)eu−t1

Computing the integrals we get (22).

3 Computation B

Set

[fofsigma]F (t1, . . . , tq+1; ε) = e−C1(1− e−C1)e−2B1e−2C2(1− e−C2) . . . e−qCq(1− e−Cq)e−(q+1)Bq

(23)
and

G(N, t0; ε) = N(1− σ(t0))N−1σ(t0)e−B0

such that
F (N, 1; t0, . . . , tq+1; ε) = q!G(N, t0; ε)F (t1, . . . , tq+1).

Proposition 3.1 [redf1] For any σ ∈ Ā[t1, tq+1] which maximizes F (t1, . . . , tq+1) there exists
T < t1 such that for any t0 ≤ T there is an extension of σ to an element of Ā[t0, tq+1] which
maximizes F (N, 1; t0, . . . , tq+1; ε).

Proof: We will show that for any y > 0 there exists T such that for t0 < T a function f ∈ Ā[t0, t1]
which maximizes G(N, t0; ε) exists and for any such function one has f(t1) < y. Applying this
result to y = σ(t1) we get a function f which, when ’concatenated’ with σ will lie in Ā[t0, tq+1] and
maximizes both F (t1, . . . , tq+1) and G(N, t0; ε).

Proposition 3.2 [redf2] Let ε be admissible with respect to t1, . . . , tq+1. Then there exists T << t1
such that for any t0 ≤ T and any function σ ∈ Ā[t0, tq+1] which maximizes F (N, 1; t0, . . . , tq+1; ε) the
restriction σ|[t0,t1] maximizes maxN≥1G(N, t0; ε) and the restriction σ|t1,tq+1

maximizes F (t1, . . . , tq+1).

Proof: ???

Lemma 3.3 [redf3] For any t1, . . . , tq+1 and any sufficiently small ε there exists a function σ ∈
Ā[t1, tq+1] which maximizes F (t1, . . . , tq+1).

Proof: ???
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4 Computation C

Here we consider the problem of maximizing F (t1, . . . , tq+1; ε) as a functional on Ā[t1− ε, tq+1]. For
σ in Ā[t1 − ε, tq+1] and 1 ≤ i ≤ q set:

yi(σ) = σ(ti + ε)

Definition 4.1 A number ε > 0 is called admissible relative to t1, . . . , tq+1 if ε < −(1/2)ln(q/(q +
1)) and ε < (ti+1 − ti)/2 for all i = 1, . . . , q.

Note that the conditions imposed on ε imply that the sequence t1− ε, t1 + ε, t2− ε, . . . , tq + ε, tq+1 is
an increasing one and that e−Ci > i/(i+1) for i = 1, . . . , q which in turn implies that the functions
e−iCi(1− e−Ci) are increasing functions of Ci.

In what follows we consider t1, . . . , tq+1 to be fixed.

Lemma 4.2 [ccl1] For a given collection 0 ≤ y1, . . . , yq ≤ 1 the set C(y1, . . . , yq; ε) of functions
σ ∈ Ā[t1 − ε, tq+1] such that yi(σ) = yi for i = 1, . . . q − 1 is non-empty if and only if

[conc]
yi

yi + (1− yi)eti+1−ti−2ε
≤ yi+1

yi+1 + (1− yi+1)e−2ε
(24)

Proof: It follows easily from Lemma 2.1.

Lemma 4.3 [ccl2] If C(y1, . . . , yq; ε) is non-empty then there exists a unique element σ there which
maximizes F (t1, . . . , tq; ε) and one has

σ(ti − ε) =
yi

yi + (1− yi)e−2ε

σ−(ti+1 − ε) =
yi

yi + (1− yi)eti+1−ti−2ε

σ−(tq+1) =
yq

yq + (1− yq)etq+1−tq−ε

e−Ci = (1 + yi(e2ε − 1))−1

e−Bi =
{

1 + yi(e2ε−(ti+1−ti) − 1) for i < q

1 + yq(eε−(tq+1−tq) − 1) for i = q

Proof: By definition F is given by (23) where Bi and Ci are defined by (15) and (16) respectively.
The terms of the product depending on Bi’s are decreasing in Bi’s and in view of the fact that ε
is admissible the terms depending on Ci are increasing in Ci. For a given yi, Lemma 2.2 shows
that there exists a unique function σ ∈ Ā[ti − ε, ti + ε] (resp. σ ∈ Ā[ti + ε, ti+1 − ε] for i < q
and σ ∈ Ā[qi + ε, tq+1] for i = q) such that σ(ti + ε) = yi which maximizes Ci (resp. minimizes
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Bi). The inequalities (24) show that we can concatenate these functions and get a function σ in
Ā(t1− ε, tq+1) which maximizes the product. One can easily see now that any other function which
maximizes the product also should maximize each of the term and therefore it coincides with the
σ which we have constructed.

Set
δ = e2ε − 1

ri =
{
e2ε−(ti+1−ti) for i < q

eε−(tq+1−tq) for i = q

Re-writing the formulas of Lemma 4.3 we get:

σ(ti − ε) = (1 + δ)yi(δyi + 1)−1

σ−(ti+1 − ε) = riyi((ri − 1)yi + 1)−1

e−Ci = (δyi + 1)−1

1− e−Ci = δyi(δyi + 1)−1

e−Bi = (ri − 1)yi + 1

and we get for our function F (t1, . . . , tq+1; ε) the expression:

F = δq
q∏

i=1

yi((ri − 1)yi + 1)i+1(δyi + 1)−(i+1)

which we have to maximize on the set of y1, . . . , yq satisfying

y1 ≥ 0

yi+1 ≥ (1 + δ)yi((1 + δ − ri+1)yi + ri+1)−1 for i=1,. . . ,q

1 ≥ yq+1

Note that all the expressions involve Moebius (linear fractional) functions of yi which we may
describe in terms of 2x2 matrices considered up to a scalar multiple:

Mi =
(
ri − 1 1
δ 1

)

Ei =
(

1 + δ 0
1 + δ − ri ri

)−1

=
(

ri 0
ri − (1 + δ) 1 + δ

)
Then our function becomes

F = δq
q∏

i=1

yiMi(yi)i+1

and the conditions
y1 ≥ 0

yi+1 ≥ E−1
i+1(yi) for i=1,. . . ,q

1 ≥ yq+1
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we have
det(Ei) = ri(1 + δ) > 0

which implies that Ei(y) are increasing functions. Set

Ai = Ei+1 . . . Eq

and introduce new variables:
ui = A−1

i (yi)

Then the function becomes

[ufun]F = δq
q∏

i=1

Ai(ui)Mi(Ai(ui))i+1 (25)

and the inequalities become
[uineq]0 ≤ u1 ≤ · · · ≤ uq ≤ 1 (26)

i.e. we have to find maximums of (25) on the simplex (26). We have:

EjEj+1 =
(

rj 0
rj − (1 + δ) 1 + δ

) (
rj+1 0

rj+1 − (1 + δ) 1 + δ

)
=

(
rjrj+1 0

rjrj+1 − (1 + δ)2 (1 + δ)2

)
which implies that

Ai =
(

ri+1 . . . rq 0
ri+1 . . . rq − (1 + δ)q−i (1 + δ)q−i

)
and

MiAi = (1 + δ)−1

(
ri . . . rq − (1 + δ)q−i (1 + δ)q−i

ri+1 . . . rq − (1 + δ)q−i−1 (1 + δ)q−i−1

)

Proposition 4.4 [umax] There exists ρ > 0 such that for any 0 < ε < ρ, any i = 1, . . . q and any
k = 1, . . . , q + 1− i the function

k−1∏
j=0

Ai+j(u)Mi+j(Ai+j(u))i+j+1

has a unique maximum for u ∈ (0, 1].

Proof: ???

5 Computation for δ = 0

Set si = 1− ri . . . rq since rj ≤ 1 we have 1 > si ≥ si+1 ≥ 0 and any non-increasing sequence of si’s
may arise from a combinations of the event times t1 ≤ · · · ≤ tq. For δ = 0 our formulas become:

Ai =
(

1− si+1 0
−si+1 1

)
MiAi =

(
−si 1
−si+1 1

)
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fi(x) = Ai(x)Mi(Ai(x))i+1 = (1− si+1)x(−six+ 1)i+1(−si+1x+ 1)−(i+2)

fi,k =
k−1∏
j=0

fi+j(x) = (
k−1∏
j=0

(1− si+j+1))xk(−six+ 1)i+1(−si+kx+ 1)−(i+k+1)

Lemma 5.1 [maxfik] For k > 0 the function fi,k(x) has a unique maximum on [0, 1] at the point

xi,k =
k

(i+ k + 1)si − (i+ 1)si+k

Proof: Elementary computation.

3 Algorithms

4 Appendix. Some basic notions of probability

The main notion which we need is that of a probability kernel. Consider two measurable spaces
(X,A), (Y,B) where X and Y are sets and A,B are σ-algebras of subsets of X and Y respectively.
A probability kernel P : (X,A) → (Y,B) is a function X × B → R≥0 such that for any x ∈ X
the function P (x,−) is a probability measure on B and for any U ∈ B the function P (−, U) is a
measurable function on (X,A). Probability kernels can be composed in a natural way. The category
whose objects are measurable spaces and morphisms are probability kernels was first considered
in [?] and we will call it the Giry category. Any measurable map f : (X,A) → (Y,B) may be
considered as a probability kernel which takes a point x of X to the δ-measure δf(x).

The Giry category has a monoidal structure given on the level of spaces by the direct product. The
monoidal category axioms are essentially equivalent to the Fubbini theorems.

The definition of a Markov process which we use is similar to but slightly different from the one
adopted in [].

Definition 0.2 [pathsystem] A path system over the interval [s, t] is the following collection of
data:

1. A measurable space (X,A) which is called the phase space of the system,

2. A set Ω which is called the path space of the system,

3. A family of maps ξu : Ω → X given for all u ∈ [s, t],

4. A family of σ-algebras Sv
u on Ω given for all u ≤ v in [s, t].

These data should satisfy the following conditions:
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1. For [u, v] ⊂ [a, b] one has Sv
u ⊂ Sb

a,

2. For u ∈ [s, t] the map ξu : (Ω,Su
u) → (X,A) is measurable.

For simplicity of notation we will sometimes abbreviate the notation for a path system omitting
some of its components e.g. we may write (Ω,Sv

u) instead of (X,A,Ω, ξu,Sv
u).

We define the standard path system St(X,A) associated with (X,A) setting Ω = X [s,t], ξu to be
the projections and Sv

u to be the smallest σ-algebra which makes ξw for w ∈ [u, v] measurable.

Definition 0.3 [mprocess] A Markov process on a path system ((X,A),Ω, ξu,Sv
u) is a collection

of probability kernels
Pu : (X,A) → (Ω,St

u)

such that ξu ◦ Pu = Id and for u ≤ v the square

(X,A) Pu−−−−→ (Ω,St
u)

Pu,v

y y
(X,A) Pv−−−−→ (Ω,St

v)

(27)

where
Pu,v = ξv ◦ Pu,

commutes.

One verifies easily that for a Markov process P and for u ≤ v ≤ w one has

[comp0]Pu,u = Id (28)

[comp1]Pv,w ◦ Pu,v = Pu,w (29)

Conversely, suppose that we are given a family of probability kernels Pu,v : (X,A) → (X,A) for all
[u, v] ⊂ [s, t] which satisfy the conditions (28) and (29). Then it is easy to define a Markov process
on the standard path system associated with (X,A) with these transition kernels. We will say that
a Markov process on (X,A) is such a collection of kernels or equivalently a Markov process on the
standard path system associated with (X,A).

Definition 0.4 [mps] Let (X,A,Ω, ξu,Sv
u) and (X,A,Ω′, ξ′u,R

v
u) be two path systems over [s, t]

with the same phase space. A morphism from the first to the second is a map f : Ω → Ω′ such that:

1. for any u ∈ [s, t] one has ξ′u ◦ f = ξ′u,

2. for any u ≤ v in [s, t] the map f is measurable with respect to Sv
u and Rv

u.

26



For any path system on (X,A) there is a unique morphism from it to the standard path system
St(X,A) on (X,A).

Lemma 0.5 [mpm] Let f be a morphism of path systems as in Definition 0.4 and (Pu)u∈[s,t] a
Markov process on the first one. Then the kernels fPu form a Markov process on the second system.

Proof: Elementary verification.

Note that for a morphism f of paths systems and a process P on the first one the transition kernels
Pu,v for P and fP coincide.

Definition 0.6 [lkh] Let (Y,B) be a measurable space and y ∈ Y . Suppose that Y also carries a
topology. The we define a partial order ≥y on the set of measures on (Y,B) setting µ ≥y µ

′ if there
exists an open neighborhood U of y such that for any measurable Z in U one has µ(U) ≥ mu′(U).

Lemma 0.7 [contcase] Let (Y,B) be a measure space which also carries a topology and y ∈ Y . Let
further µ be a measure on Y and f, g two continuous non-negative functions on Y . If f(y) > g(y)
then fµ ≥y gµ.

Proof: ???

Example 0.8 [add1] Note that if under the assumptions of Lemma 0.7 we have f(y) = g(y) then
one may have fµ ≥y gµ, gµ ≥y fµ or fµ and gµ may be incomparable relative to ≤y.

Definition 0.9 [likelihood] Let P : (X,A) → (Y,B) be a probability kernel, y a point of Y and
assume that Y has a topology.

A maximal likelihood reconstruction of y relative to P is a point x of X such that for any x′ one
has P (x,−) ≥y P (x′,−).

Lemma 0.10 [existence] Let P : (X,A) → (Y,B) be a probability kernel of the form x 7→ fxµ
where µ is a measure on (Y,B) and (fx)x∈X is a collection of continuous functions on Y . Let y ∈ Y
and suppose that there exists a point x ∈ X such that for any x′ 6= x one has fx(y) > fx′(y). Then
x is the maximal likelihood reconstruction of y relative to P .

Proof: It follows immediately from Lemma 0.7.
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