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1 Singleton paths system

Let us recall first the definition of a paths system given in []. We work in the expansion
category E whose objects are measurable spaces (X, A) and morphisms are kernels (see
loc.cit.). For a subset T of the real line, a paths system over T is the following collection of
data:

1. for each s ∈ T , a measurable space Xs,

2. for each s, t ∈ T such that s < t, a measurable space Xst together with two measurable
maps i : Xst → Xs and f : Xst → Xt,

3. for each s, t, u ∈ T such that s < t < u, a morphisms in E of the form Xst×XtXtu → Xsu

such that the square
Xst ×Xt Xtu −−−→ Xsuy y

Xs ×Xt ×Xu
pr−−−→ Xs ×Xu

commutes.

These data should satisfy the obvious associativity condition for each s < t < u < v in T .
The singleton paths system is a paths system on the set of natural numbers (i.e. all

Xt’s are N) where a path from m to n over [s, t] is a “singleton genealogy” over the time
interval [s, t] where the initial population has m members and the final population has n
members. “Singleton” here means that we consider genealogies which involve only divisions
and deaths but not unions of any kind. The goal of this section is to give precise definitions
corresponding to this intuitive idea.

Definition 1.1 [hist1] Let T = [a, b] (where b > a) be a closed interval of the real line. A
singleton genealogy h (or just a genealogy) over T is the following collection of data:

1. a (finite) directed graph (V̄ , E) with the set V̄ of vertices and the set E of edges

2. a finite set F and a map φ : F → V̄
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3. a function τ : V̄ → T

such that the following conditions are satisfied:

1. if τ(v) 6= a then there exists exactly one edge which ends in v

2. τ(v) = a if and only if there exists exactly one edge which starts in v

3. for each v ∈ F one has τ(φ(v)) = b

4. if there is an edge from vertex v0 to vertex v1 then τ(v1) > τ(v0)

Let I (resp. F−) denote the subset τ−1(a) (resp. τ−1(b) in V̄ . Condition (4) implies that
for v ∈ I there are no edges ending in v and for v ∈ F− there are no edges starting in v.
Condition (3) implies that φ may be considered as a map F → F−. Let Vn be the subset of
V which consists of vertices v such that one of the following conditions holds:

1. τ(v) 6= b and there are exactly n edges starting in v

2. τ(v) = b, n 6= 1 and #φ−1(v) = n

Condition (2) of Definition 1.1 implies that V1 = ∅. Set V =
∐

Vn. Elements of V will be
called proper vertices of H.

Intuitively, I(h) is the initial population of our genealogy, F (h) is the final population and
F−(h) is the population in the moments just preceeding the final moment. The elements of
V are the events in the genealogy with V0 being the set of all deaths and for n > 1, Vn is the
set divisions or other types of events when an individual produces several new individuals.
The restriction of τ to V assigns to an event the moment of time when this event occured.
We exclude the possibility of events occurring at the initial moment a of the genealogy. Two
examples of genealogies are drawn below (??).

Define the geometric realization |h| of a genealogy h as follows. For an edge e ∈ E(h)
let s(e) be the vertex where s(e) starts and t(e) the vertex where e ends. Set |e| =
[τ(s(e)), τ(t(e))]. By condition (4), |e| is an interval of non-zero length and we will write
s(|e|) and t(|e|) for its beginning and end respectively. Set

|S| = (
∐

e∈E(h)

|e|)/ ∼

where ∼ is the equivalence relation generated by pairs (t(|e0|), s(|e1|)) such that t(e0) = s(e1).
We will consider |h| as a topological space (a cell complex of dimension one) with respect to
the quotient topology. Our equivalence relation is such that to each vertex v ∈ V̄ (h) there
correspond is a well defined point on |h| which we denote by |v|. The inclusions |e| → T
define a continuous map |τ(h)| : |h| → T and |τ |(|v|) = τ(v). Note that the geometric
realization does not contain any information on the set F and the map F → F−.

One defines an isomorphism h1 → h2 as a triple of bijections V̄ (h1) → V̄ (h2), E(h1) →
E(h2) and F (h1) → F (h2) which respect the incidence relations, functions τi and maps φi.

Lemma 1.2 [rig1] Let f : h → h be an automorphism which is the identity on F (h)
∐

V0(h).
Then f = Id.
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Proof: ???

Lemma 1.3 [rig2] Let f : |h| → |h| be a continuous automorphism of the topological space
|h| which commutes with the function |τ | and which is identity on the set |φF (h)

∐
V0(h)|.

Then f = Id.

Proof: ???

An ordered genealogy is a genealogy h together with orderings on F (h) and V0(h). Lemma 1.2
states that ordered genealogies have no automorphisms and that the geometric realizations
of ordered genealogies have no automorphisms as spaces over T . Let D = D[a,b] be the set of
isomorphism classes of ordered genealogies over [a, b]. We are now going to define a topology
on D.

Let us write first
D =

∐
n,m≥0

D(∗ m→ n)

where D(∗ m→ n) is the subset of genealogies such that #(F (h)) = n and #(V0(h)) = m. We
will inductively construct for each n, m ≥ 0 the following collection of objects:

1. a topology on D(∗ m→ n)

2. a topological space D̃(∗ m→ n) and a continuous map p : D̃(∗ m→ n) → D(∗ m→ n)

3. a continuous map |τ | : D̃(∗ m→ n) → T

4. for each h ∈ D(∗ m→ n) an isomorphism |h| ∼= p−1(h) such that its composition with
|τ | is |τ(h)|.

We first do induction on n constructing our structures for m = 0 and all n ≥ 0 and then do
induction on m.

For n = m = 0 there is only the empty genealogy. Hence D(∗ 0→ 0) = pt. The geometric

realization of the empty genealogy is ∅ and hence D̃(∗ 0→ 0) = ∅. Assume now that everything
is defined up to n.

Define subset I in D̃(∗ 0→ n) setting

|I| = ∪
h∈D(∗ 0→n)

|I(h)|

To get a topology on D(∗ 0→ n + 1) we define a bijection

[indmap]D(∗ 0→ n + 1) → (D̃(∗ 0→ n)− |I|)
∐

D(∗ 0→ n). (1)

Let h ∈ D(∗ 0→ n + 1) be an ordered genealogy and let u be the (n + 1)-st element in F (h).
Let v = φ(u). If v is the image under φ of an element other than u then removing u from F

we get a genealogy h′ from D(∗ 0→ n) and there is a point |v| in |h′| corresponding to v. In
this case we map h to (h′, |v|)
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Assume now that φ−1(v) = u. By condition (1) of Definition 1.1 there exists a unique edge
e which ends in v. Let w be the vertex where this edge starts. There are two possibilities.

If τ(w) = a then h is the disjoint union of a genealogy h′ in D(∗ 0→ n) and an edge starting

in w and ending in v. In this case we map h to the point of D(∗ 0→ n) corresponding to h′.
If τ(w) 6= a let h′ be the genealogy obtained from h by removing of the edge e. If w ∈ V2(h)

then w stops being a vertex in h′. If w ∈ Vn(h) for n > 2 then w becomes an element of
Vn−1(h

′). In any case w corresponds to a well defined point |w| on |h′| and we map h to
(h′, |w|). One verifies immediately that the map (1) defined in this way is a bijection.

Next we need to construct D̃(∗ 0→ n + 1) and a continuous map p : D̃(∗ 0→ n + 1) →
D(∗ 0→ n + 1) such that p−1(h) = |h|. Let B be the closed subset in T × T given by the
condition that (t, t′) ∈ D if and only if t ≥ t′. Consider B as a space over T with respect
to the second projection B → T such that the fiber of B over t′ is the interval [t′, b]. Let
s : T → B be the section which sends t′ to t′. Set

Xn = (D̃(∗ 0→ n)− |I|)×T B.

Then Xn is a space over D̃(∗ 0→ n)−|I| whose fiber over (h, x ∈ |h|) is the interval [|τ |(x), b]

and s defines a section D̃(∗ 0→ n)−|I| → Xn which we also denote by s. Let Yn be the space
defined by the cocartesian square:

[indeq3]

D̃(∗ 0→ n)− |I| s−−−→ Xn

Γ

y y
(D̃(∗ 0→ n)− |I|)×

D(∗ 0→n)
D̃(∗ 0→ n) −−−→ Yn

(2)

where ∆ is the graph of the embedding

D̃(∗ 0→ n)− |I| → D̃(∗ 0→ n).

Finally set

D̃(∗ 0→ n + 1) = Yn

∐
D̃(∗ 0→ n)

∐
D(∗ 0→ n)× T

and define the projection

[indeq2]p : D̃(∗ 0→ n + 1) → D(∗ 0→ n + 1) = (D̃(∗ 0→ n)− |I|)
∐

D(∗ 0→ n) (3)

to be the coproduct of the obvious projections

Yn → D̃(∗ 0→ n)− |I|

and
D̃(∗ 0→ n)

∐
D(∗ 0→ n)× T → D(∗ 0→ n).

The definition of |τ | : D̃(∗ 0→ n+1) → T is obvious. It remains to construct an isomorphism
|h| → p−1(h).
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Let u be the (n + 1)-st element of F (h) and v = φ(u). Let e be the edge of h ending in v
and let w be the starting vertex of this edge. Assume first that τ(w) 6= a i.e. that

h = (h′, |w|) ∈ D̃(∗ 0→ n)− |I|.

Then the fiber p−1(h) is given by the fiber of (2) over h i.e. by the cofibrant square

pt
τ(w)−−−→ [τ(w), b]

|w|
y y
|h′| −−−→ p−1(h)

and we have an obvious isomorphism |h| → p−1(h). Assume now that τ(w) = a i.e.

h = (h′, |w|) ∈ D(∗ 0→ n)

Then the fiber p−1(h) is |h′|
∐

T and we again have an obvious isomorphism |h| → p−1(h)|.
Assume now that the structures related to D(∗ m→ n) are constructed and let us construct

the structures related to Dn,m+1. Set as before

|I| = ∪
h∈D(∗m→n)

|I(h)|

|S| = ∪
h∈D(∗m→n)

|S(h)|.

and let
|V0| = ∪

h∈D(∗m→n)
|V0(h)|.

Let B◦ be the subset of points (t, t′) in T×T satisfying the condition t > t′ which we consider
as a space over T with respect to the second projection. Set

Un,m = (D̃(∗ m→ n)− |I| − |V0|)×T B◦.

Define a bijection

Dn,m+1 → Un,m

∐
D(∗ m→ n)× (a, b]

as follows. Let h ∈ Dn,m+1. Let v be the (m + 1)-st element of V0(h). Let e be the edge
which ends in v and let w be the vertex where e starts. Let h′ be the genealogy obtained
from h by removing e. Note that w is not in V0(h)∪S(h). Assume first that w is not in I(h).
Then w gives a well defined point |w| on h′| and we map h to ((h′, |w|), (τ(v), τ(w))) ∈ Un,m.
If w ∈ I(h) then h is the disjoint union of h′ and e and we map h to (h′, τ(v)). One verifies
immediately that our map is indeed a bijection.

To construct D̃n,m+1 proceed as follows. Let C be the set of points (s, t, t′) in T ×B such
that t ≤ s ≤ t′. Set

Xn,m = Un,m ×B C

Then Xn,m is a space over Un,m whose fiber over ((h, x), t) is the closed interval [τ(x), t]. Let
s : Un,m → Xn,m be the section which sends ((h, x), t) to (((h, x), t), τ(x)). Let Yn,m be the
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space defined by the cocartesian square

Un,m
s−−−→ Xn,m

Γ

y y
Un,m × D̃(∗ m→ n) −−−→ Yn,m

where Γ is the graph of the projection Un,m → D̃(∗ m→ n). Let C be the subset of points
(t, t′) in T × (a, b] satisfying t ≤ t′. Set

Zn,m = D̃(∗ m→ n)
∐

(D(∗ m→ n)× C)

Finally set D̃n,m+1 = Yn,m

∐
Zn,m. We define p : D̃n,m+1 → Dn,m+1 in the obvious way.

Let h ∈ Dn,m+1 and let us construct an isomorphism |h| → p−1(h). Let as before v be
the (m + 1)-st element of V0(h), e the edge which ends in v and w the vertex where e starts.
Let further h′ be the genealogy obtained from h by removing e. Assume first that w is not
in I(h) and let |w| be the corresponding to w point on |h′. Then h lies in Un,m and p−1(h)
is given by the cocartesian square

pt
τ(w)−−−→ [τ(w), τ(v)]

|w|
y y
|h′| −−−→ p−1(h)

and we get an obvious isomorphism |h| → p−1(h). Assume now that w ∈ I(h). Then h lies
in Zn,m and the fiber p−1(h) is given by

p−1(h) = |h′|
∐

[a, τ(v)]

and we again have an obvious isomorphism |h| → p−1(h). The construction of |τ | : D̃n,m+1 →
T is obvious.

The change of orderings on V0(F ) and F (h) define actions of the symmetric groups Σm

and Σn on D(∗ m→ n). These two actions commute and therefore give an action of the
product Σm × Σn.

Lemma 1.4 [iscont] The action of Σm × Σn on D(∗ m→ n) specified above is continuous.

Proof: ???

Set
H(∗ m→ n) := D(∗ m→ n)/(Σn × Σm).

Points of H(∗ m→ n) are the isomorphism classes of genealogies h such that #F (h) = n and
#(V0(h)) = m. The universal bundle D̃(∗ m→ n) → D(∗ m→ n) also has an obvious action of
Σn × Σm and taking the quotient we get a universal bundle

p : H̃(∗ m→ n) → H(∗ m→ n)
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such that for each h we have p−1(h) = |h|. Finally, the function |τ | is clearly invariant under
the action which we consider and we get a function

|τ | : H̃(∗ m→ n) → T.

We are ready now to define the singleton paths system H over T = [a, b]. For each s ∈ T
we set Hs = N. For s < t in T we set Hst = H[s, t] to be the set of isomorphism classes
of singleton genealogies over [s, t] with the Borel σ-algebra corresponding to the topology
constructed in the previous section. For h ∈ Hst we set i(h) = #I(h) and f(h) = #F (h).
For a genealogy h let us denote by [h] its isomorphism class. To define the composition
morphisms

m : Hst ×N Htu → Hsu

we have to assign to each pair of genealogies (h1, h2) (over [s, t] and [t, u] respectively) such
that #F (h1) = #I(h2) a measure m(h1, h2) on Hsu which depends only on [h1] and [h2].
Observe that for any h1 and h2 as above and any bijection α : F (h1) → I(h2) we have
a well defined genealogy h1 ∪α h2 over [s, u] obtained by “gluing” h1 and h2 using α. Let
n = #F (h1) = #I(h2). We set:

[compdef ]m(h1, h2) = (1/n!)
∑

α

[h1 ∪α h2] (4)

where for simplicity we let use the same symbol for a point and the corresponding δ-measure.

Lemma 1.5 [isamor] The formula (4) defines a morphism in E.

Proof: ???

Lemma 1.6 [isassociative] The composition morphisms constructed above satisfy the as-
sociativity condition.

Proof: ???

2 Processes on the singleton paths system

Recall that a process on a paths system (Xs, Xst, φstu) is a collection of morphisms µst :
Xs → Xst in E such that

1. for all s < t, µst is a section of i : Xst → Xs,

2. for all s < t < u, the following square commutes

Xst
f∗(µtu)−−−−→ Xst ×Xt Xtu

µst

x yφstu

Xs
µsu−−−→ Xsu

where the upper horizontal arrow is the pull-back of µtu along f : Xst → X.
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Let us expand this definition in the case of the singleton paths system. Let H(m → ∗)st

(resp. H(m → n)st) be the subset of genealogies h in Hst such that i(h) = m (resp. i(h) = m
and f(h) = n). The composition morphisms can be written as a collection of morphisms in
E of the form

φk :
∐
m

H(k → m)st ×H(m → ∗)tu → H(k → ∗)su.

Then a process on H is a collection of measures µ(m → n)st on H(m → n)st such that

1. for all s < t and all m ∈ N

µ(m → ∗)st := ⊕mµ(m → n)st

is a probability measure on H(m → ∗)st,

2. for all s < t < u and all k ∈ N one has∑
m

φk(µ(k → m)st ⊗ µ(m → ∗)tu) = µ(k → ∗)su.

Let us define a pre-process on H as a collection of σ-finite measures µ(k → m)st on
H(k → m)st which satisfies the second of these two conditions. Our first goal is to pro-
vide a description of pre-processes on H in terms of “generators and relations”.

For s < t1 < . . . < tn < u and i0, . . . , in ∈ N denote by H i0,...,in
st1...tnu the set of genealogies h

over [s, u] such that φ(V (h)) has i0 points between s and t1, i1 points between t1 and t2 etc.
In other words, we consider genealogies where events occur in i0 different moments of time
on (s, t1], i1 diffrenent moments of time on (t1, t2] etc.

Theorem 2.1 [th1.0] There is a bijection between pre-processes on H over T and collections
of σ-finite measures µ0(k → ∗)st, µ1(k → ∗)st on H0

st(k → ∗) and H1
st(k → ∗) respectively

such that for s < t < u one has

µ0(k → ∗)su =
∑
m

φk(µ
0(k → m)st ⊗ µ0(m → ∗)tu)

and

µ1(k → ∗)su =
∑
m

φk(µ
0(k → m)st ⊗ µ1(m → ∗)tu + µ1(k → m)st ⊗ µ0(m → ∗)tu)

Let us start with the following lemmas.

Lemma 2.2 [l1] Let X be a measurable space and X = ∪Xi a covering of X by a countable
set of measurable subsets. Then there is a bijection between the set of σ-finite measures on
X and collections of σ-finite measures µi on Xi such that for each i, j one has

(µi)|Xi∩Xj
= (µj)|Xi∩Xj

Proof: ???
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Lemma 2.3 [l2] Let s < t1 < . . . < tn < u be in T , i0, . . . , in ∈ N and let t ∈ (s, u). If
tm < t < tm+1 then there is a commutative diagram of the form

H i0,...,im
st1...t ×N H im,...,in

ttm+1...u −−−→ H i0,...,in
st1...uy y

Hst ×N Htu
φ−−−→ Hsu

where the vertical arrows are the inclusions. In addition for each m we have a commutative
diagram of the form:

H
i0,...,im−1

st1...tm ×N H im,...,in
tmtm+1...u −−−→ H i0,...,in

st1...uy y
Hstm ×N Htmu

φ−−−→ Hsu

Proof: ???

Note that the upper horizontal arrow in the sqaure of Lemma 2.3 is uniquely defined and is
simply the restriction of the composition morphism to the corresponding subset.

Lemma 2.4 [l3] Let T ′ be a dense subset in T . Then for s < u in T and n ≥ 1 one has

Hn+1
su = ∪t∈T ′∩(s,u)H

1,n
stu

In addition for t < t′ one has
H1,n

stu ∩H1,n
st′u = H1,0,n

stt′u .

Proof: ???

Proof of the theorem: Let us prove the existence part of the theorem. The uniqueness
will be clear. We have

Hst(k → ∗) =
∐
n≥0

Hn
st(k → ∗).

By Lemma 2.3 the composition of genealogies defines for all s < t < u morphisms

φ :
∐

i+j=n

∐
m

H i
st(k → m)×Hj

tu(m → ∗) → Hn
su(k → ∗)

and a collection of measures µn
st(k → ∗) on Hn

st(k → ∗) defines a pre-process if and only if
for all s < t < u and all n one has

[rela]φ(⊕i+j=k ⊕m µi
st(k → m)⊗ µj

tu(m → ∗)) = µn
stu(k → ∗). (5)

We will construct measures µn
st(k → ∗) satisfying (5) by induction on n.

By assumption we already have measures on H0
st(k → ∗) and H1

st(k → ∗) for all k and all
s < t in T and these measures satisfy (5).

Let us choose a countable dense subset T ′ in T . By Lemma 2.4 and Lemma 2.2 in order
to construct µn

su it is sufficient to construct measures µ1,n−1
stu (k → ∗) on H1,n−1

stu (k → ∗) for
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all t ∈ T ′ such that for t < t′ their restrictions to H1,0,n−1
stt′u (k → ∗) coincide. Consider the

composition morphisms

φ :
∐
m

H1
st(k → m)×Hn−1

tu (m → ∗) → H1,n−1
stu (k → ∗)

from the second part of Lemma 2.3. Set

µ1,n−1
stu (k → ∗) = φ(⊕mµ1

st(k → m)⊗ µn−1
tu (m → ∗)).

The fact that for t < t′ the restrictions of our measures to H1,0,n−1
stt′u (k → ∗) coincide follow

from the associativity square: and the inductive assumption that
Let us say that an elementary genealogy of multiplicity k over [s, t] is a genealogy h such

that #V (h) ≤ 1, i(h) = 1 and f(h) = k. One can easily see that for k = 1 there is exactly
one such genealogy and for any k 6= 1 the set of isomorphism classes of such genealogies is
(s, t] where x ∈ (s, t] corresponds to the genealogy h with τ(V (h)) = {x} (see ??).

Let us consider now the set X1(n → ∗)st of isomorphism classes of genealogies h in
H(n → ∗)st such that τ(V (h)) consists of one point. Since vertices with the same value
of τ can not be connected by an edge any such genealogy is a disjoint union of elementary
genealogies. Let H(n; k1, . . . , kn)st be the subset of X1(n → ∗)st which consists of genealogies
h such that the multiplicities of the corresponding elementary genealogies are k1, . . . , kn (we
want here to consider k1, . . . , kn as an un-ordered set of numbers rather than as a sequence).
As before, we have

H(n; k1, . . . , kn)st =

{
pt if k1 = . . . = kn = 1
(s, t] otherwise

Clearly, the subsets H(n; k1, . . . , kn)st are measurable. For a process µ on H the measures
µ(k → ∗)st give us a collection of measures µ(n; k1, . . . , kn)st on (s, t] and (for k1 = . . . =
kn = 1) a collection of numbers x(n)st (since measures on a point are non-negative real
numbers).

Lemma 2.5 [elprop] The collection (µ(n; k1, . . . , kn)st, x(n)st)s<t corresponding to a process
on H satisfies the following condition. For any s < t < u in T one has

[cond1]x(n)su = x(n)stx(n)tu (6)

and if ki 6= 1 for some i then

[cond2]µ(n; k1, . . . , kn)su = µ(n; k1, . . . , kn)stx(n)tu + x(n)stµ(n; k1, . . . , kn)tu. (7)

Proof: ???

Theorem 2.6 [th1] There is a bijection between the set of processes on H over T and the
set of collections (µ(n; k1, . . . , kn)st, x(n)st)s<t satisfying conditions (6),(7) of Lemma 2.5.

Proof: ???

A pre-process over T = [a, b] is called normal if for any a ≤ s < b and any k one has

µ(k → ∗)sb(H(k → ∗)sb) 6= 0,∞.
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Lemma 2.7 [deter] A normal pre-process on H over T = [a, b] is uniquely determined by
the measures µ(k → ∗)sb for a ≤ s < b.

Proof: ???

3 Reducible processes

Recall from Section 1 that we let D(∗ m→ n) denote the space of ordered genealogies with n
final individuals and m deaths events over T = [a, b]. Our construction of these spaces gave
as a side effect a construction of continuous maps

D(∗ m→ n) → D(∗ m−1→ n)

which correspond to the removal of the edge ending in the m-th death event. The composition
of these maps give us a map

[r0]D(∗ m→ n) → D(∗ 0→ n) (8)

which sends a genealogy h to the genealogy obtained from h by removing all the lines of
descend which do not reach the final population. One can easily see that the map (8) is
equivariant under the action of Σm × Σn and therefore gives us a continuous maps

rs : Hsb → Hsb

for all a ≤ s < b. For a genealogy h ∈ Hsb we call rs(h) the ansestral genealogy defined by
h. Intuitively, h describes genealogy of all descendants of the initial population and r(h)
describes the genealogy of the direct ansestors of the final population.

The inference problems which we consider below concern the reconstructions of the
parametrs of a process µst onH from an observation of the ansestral genealogy of a genealogy
generated by this process. An important intermediate object is given by the projections of
the measures µsb(n → ∗) with respect to rs i.e. by the compositions rs ◦ µsb. These com-
positions almost never correspond to a process themselves since they do not give sections of
the morphism i : Hsb → N unless µ is death free. However, in many interesting cases one
can define the reduced process µ̃ of a given process µ whose measures are closely related to
rsµ(k → ∗).

We start by considering the situation when we are given for each a ≤ s < b a section
µs : N → Hsb of i without assuming that these sections correspond to a process.

Definition 3.1 [anses0] A family of morphisms µs as above is called reducible if for any
a ≤ s < b there exist a (stochastic) morphism σs : N → N and a section µ̃s of i : Hsb →→ N
such that the square

[needsq][sq1]

N
σs−−−→ N

µs

y yµ̃s

Hsb
rs−−−→ Hsb

(9)

commutes.
A family µs is called uniquely reducible if it is reducible and the morphisms σs and µ̃s

which make (9) commutative are unique. If µs is a uniquely reducible family then the family
µ̃s is called the reduction of µs.

11



Let µs and µ̃s be as in Definition 3.1. The condition that µ̃s is a section of i together with
the commutativity of (9) shows that

[int2]σs = irsµs. (10)

In particular we conclude that σs which makes (9) commutative is always unique. Let us
write σs in the form

< m >7→
∑

k

σmk
s < k >

where we used the notation < i > for points of N to distinguish them from the coefficients.
Then (10) shows that

σmk
s = µs(m → ∗)(Hsb((m, k) → ∗))

where
H((m, k) → ∗)sb = H(m → ∗)sb ∩ r−1

s (H(k → ∗)sb).

The subset H((m, k) → ∗)sb consists of genealogies with the inital population of size m
and such that exactly k members of the initial population have descendants in the final
population. Hence, σmk

s is the probability that in a population with m individuals at time s
exactly k will have descendants in the final population.

Let µs((m, k) → ∗) be the measure equal to µs(m → ∗) on Hsb((m, k) → ∗) and to zero
on the rest of Hsb.

Lemma 3.2 [redcr] A family µs is reducible if and only if for all m, n, k one has

[redcond]σmk
s rs(µ((n, k) → ∗)) = σnk

s rs(µ((m, k) → ∗)) (11)

i.e. the projections of the measures µs((i, k) → ∗) to Hsb(k → ∗) agree for different i up
to multiplication by a constant. It is uniquely reducible if and only if it is reducible and for
each k and s there exists m such that σmk

s 6= 0.

Proof: The commutativity of (9) is equivalent to the condition that for all m, k one has

σmk
s µ̃s(k → ∗) = rs(µs((m, k) → ∗))

This implies ”only if” in the first part of the lemma and ”if” in the second part. Assume
now that (11) is satisfied. If for a given k there exists m such that σmk

s 6= 0 we set

µ̃s(k → ∗) = (1/σmk
s )rs(µs((m, k) → ∗)).

Otherwise take µ̃s(k → ∗) to be any probability measure on Hsb(k → ∗). One verifies
immediately that this defines µ̃s which are sections of i : Hsb → N such that (9) commutes.
This proves ”if” in the first part of the lemma ”only if” in the second.

We proceed now to the lemmas relating rs with the composition morphisms. Define for
k ≤ m and s < t in T a morphism

qmk
st : Hst(∗ → m) → Hst(∗ → k)

12



as follows. For a genealogy h and a subset A in F (h) let r(h,A) be the genealogy obtained
from h by removing all lines of descend which end outside A (in particular all of those which
do not reach F (h)). Set:

qmk
st (h) = C(m, k)−1

∑
A⊂F (h), #(A)=k

r(h,A).

Let further
qstb : Hst ×N Htb → Hst ×N Htb

be given on Hst(∗ → m)×Htb((m, k) → ∗) by

qmk
stb (h, h′) = (qmk

st (h), rt(h
′)).

Lemma 3.3 [lowersq] For any s < t < b in T the square

[lower]

Hst ×N Htb
qstb−−−→ Hst ×N Htb

φ

y yφ

Hsb
rs−−−→ Hsb

(12)

commutes (here φ is the composition morphism).

Proof: Let h ∈ Hst(∗ → m) and h′ ∈ Htb((m, k) → ∗). Going through the upper right
corner of the square we get

φ(qstb(h, h′)) = C(m, k)−1
∑

A⊂F (h), #(A)=k

φ(r(h,A), rs(h
′)) =

= C(m, k)−1(k!)−1
∑

A⊂F (h), #(A)=k

∑
α:A∼=I(rs(h′))

r(h,A) ∪α rsb(h
′).

Going through the lower left corner we get

rs(φ(h, h′)) = (m!)−1
∑

β:F (h)∼=I(h′)

rs(h ∪β h′)

Let B = Isb(h
′) ⊂ I(h′). Then each β defines Aβ = β−1(B) and αβ : Aβ

∼= I(rsb(I
′)). Clearly

rs(h ∪β h′) ∼= r(h,Aβ) ∪αβ
rt(h

′)

In addition for each (A, α) there is exactly (m−k)! different β’s such that (A, α) = (Aβ, αβ).
Since C(m, k) = m!/(k!(m− k)!) we get the required equality.

Lemma 3.4 [uppersq] Let µ, µ̃ be as above and assume that the squares (9) commute. Let

pst : Hst → Hst

be the morphism given on Hst(∗ → m) by

pm
st(h) =

∑
k≤m

σmk
t qmk

st (h).

13



Let
pr∗µtb : Hst → Hst ×N Htb

and
pr∗µ̃tb : Hst → Hst ×N Htb

be the morphisms defined by µt and µ̃t respectively. Then the square

[upper]

Hst
pst−−−→ Hst

pr∗µt

y ypr∗µ̃t

Hst ×N Htb
qstb−−−→ Hst ×N Htb

(13)

commutes.

Proof: By definition, for h ∈ Hst(∗ → m) one has

pr∗µt(h) = h⊗ µt(m → ∗)

and similarly for h′ ∈ Hst(∗ → k) one has

pr∗µ̃t(h
′) = h′ ⊗ µ̃t(k → ∗)

where we as always identify points and the corresponding δ-measures. Going through the
upper right corner of (13) we get for h ∈ Hst(∗ → m):

pr∗µ̃t(pst(h)) = pr∗µ̃t(
∑

k

σmk
t qmk

st (h)) =

=
∑

k

σmk
t qmk

st (h)⊗ µ̃t(k → ∗).

Going through the lower left corner we get

qstb(pr
∗µt(h)) = qstb(h⊗ µt(m → ∗)) =

∑
k

qstb(h⊗ µt((m, k) → ∗)) =

=
∑

k

qmk
st (h)⊗ rt(µt((m, k) → ∗))

On the other hand the commutativity of (9) implies that one has

rt(µt((m, k) → ∗)) = σmk
t µ̃t(k → ∗).

Definition 3.5 [anses] Let µ be a process on H over [a, b]. It is called reducible (resp.
uniquely reducible) if the morphisms µs := µsb, a ≤ s < b are reducible (resp. uniquely
reducible) in the sense of Definition 3.1.

Theorem 3.6 [mainanses] Let µst be a uniquely reducible process on H over T = [a, b] and
let µ̃s be the reduction of the family µs := µsb. Then there exists a unique process µ̃st such
that µ̃s = µ̃sb.

14



Proof: The uniqueness part of the theorem follows from ??. Consider the projections
πst : Hsb → Hst defined by the cutting map. In order to prove the existence part we have to
show that the morphisms

µ̃st := πstµ̃s : N → Hst

satisfy the condition of ??, i.e. that the composition

N
µ̃st→ Hst

pr∗µ̃t→ Hst ×N Htb
φ→ Hsb

coincides with µ̃s. We start with the following lemma.

Lemma 3.7 [as1] For all a ≤ s < t < b the square

[s1sq]

N
σs−−−→ N

µst

y yµ̃st

Hst
pst−−−→ Hst

(14)

commutes.

Proof:

Consider now the following diagram

N
σs−−−→ N

µst

y yµ̃st

Hst
pst−−−→ Hst

pr∗µtb

y ypr∗µ̃tb

Hst ×N Htb
qstb−−−→ Hst ×N Htb

φ

y yφ

Hsb
rs−−−→ Hsb

It commutes by Lemmas 3.7, 3.4, 3.3. Since µ is a process the left vertical side equals µsb.
Let f be the composition of morphisms of the right vertical side. We need to prove that
f = µ̃sb. The commutativity of 9 implies that

[almost]f ◦ σs = µ̃sb ◦ σs. (15)

Since µ is uniquely reducible, Lemma 3.2 shows that for each k there exists m such that
σmk

s 6= 0. This guarantees that σs is an epimorphism in the expansion category and therefore
(15) implies f = µ̃sb.

Removing the lines of descent of all the members of the initial population which have no
descendants in the final population gives us maps

pm,k : H((m, k) → n)st → H((k, k) → n)st.

The map rst clearly factors through pm,k i.e.

(rst)|H((m,k)→n) = (rst)H((k,k)→n) ◦ pm,k.
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4 Additive processes on the singleton paths system

Let us denote by H(k) the subset of H which consists of genealogies h such that #I(h) = k.
Let further Zt be the subset of H which consists of genealogies h such that there exists
v ∈

∐
i≥2 Vi(h) satisfying τ(v) = t.

Definition 4.1 [indmes] A measure µ on H[T ] is called:

normalized if for each I and k ≥ 0 one has µI(H
(k)[I]) = 1

nd-regular if for each I and t ∈ I one has µI(Zt[I]) = 0

branching if for each I one has u∗(µI ⊗ µI) = µI

Definition 4.2 [mesfam] Let T = [a, b] be as above and suppose that for each subinterval
I ⊂ T we are given a measure µI on H[I]. Such a family (µI) is called normalized (resp.
nd-regular, branching) if each of the measures µI is normalized (resp. nd-regular, branching).
In addition, the family (µI) is called sequential if for each s0 < s1 < s2 one has

c∗(µ[s0,s1] ⊗ µ[s1,s2]) = µ[s0,s2].

Let us recall now some basic notions related to the continuous time Markov processes on
N. For our purposes, a Markov process on N over T is a collection of expansion morphisms
φs0,s1 : N → N given for all s0 ≤ s1 and satisfying the following conditions:

1. for each pair s0 ≤ s1 and any i ∈ N, φs0,s1(i) is a probability measure on N

2. φs,s = Id

3. for a triple s0 ≤ s1 ≤ s2 one has φs0,s2 = φs1,s2 ◦ φs1,s0 .

Consider the addition map + : N ×N → N. A Markov process (φs0,s1) is called a Markov
branching process if for each pair s0 ≤ s1 one has

φs0,s1(0) = δ0

and the diagram

N×N
φs0,s1⊗φs0,s1−−−−−−−−→ N⊗N

+

y y+

N
φs0,s1−−−→ N

commutes. In other words, (φs0,s1) is a branching process if the morphisms φs0,s1 are homo-
morphisms of monoids.

For a morphism φ : N → N we may define a measure φ∨ on N×N setting

φ∨(p, q) = φ(p, q)

Let further
c : (N×N)× (N×N) → N×N

be an expansion morphism of the form

c((n1, n2), (m1, m2)) =

{
0 if n2 6= m1

δn2 if n2 = m1
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Lemma 4.3 [mardes] There is a bijection between the set of Markov processes on N over
T and the set of families of measures µI on N×N where I runs through all non-degenerate
subintervals I of T , satisfying the following conditions

1. for each I and each i ∈ N one has µI({i} ×N) = 1

2. for each s0 < s1 < s2 one has

c∗(µ[s0,s1] ⊗ µ[s1,s2]) = µ[s0,s2]

Proof: ???

Lemma 4.4 [isbran] The bijection of Lemma 4.3 identifies Markov branching processes
with families (µI) such that for each I one has

u∗(µI ⊗ µI) = µI

where
u : (N×N)× (N×N) → N×N

is the map ((n1, n2), (m1, m2)) 7→ (n1 + m1, n2 + m2).

Proof: ???

5 Sequential measures on D(∗ m→ n)

Let us start with a general measure-theoretic construction. Recall that a measurable space
is a pair (X,A) where X is a set and A is a σ-algebra of subsets of X.

Definition 5.1 [mfinite] Let (X, A), (Y, B) be measurable spaces and f : X → Y a map
of sets. Then f is called an m-covering if there exists countable families (Xi ∈ A)i∈I and
(Yj ∈ B)j∈J satisfying the following conditions

1. X =
∐

Xi and Y =
∐

Yj (in particular different subsets in the families are disjoint)

2. for each j there exists a finite subset Ij ⊂ I such that p−1(Yj) =
∐

i∈Ij
Xi and the

restriction of p to each Xi is an isomorphism of measure spaces (Xi, A|Xi
) → (Yj, B|Yj

).

The following lemma is straightforward.

Lemma 5.2 [ism] Any m-covering is a measurable map in addition if f is an m-covering
and U ∈ A then f(U) ∈ B.

Definition 5.3 [mhom] let f : (X, A) → (Y, B) be an m-covering. A measure µ on (X, A)
is called f -homogeneous if for any U, V ∈ A such that f(U) = f(V ) and f : U → f(U),
f : V → f(V ) are bijections one has µ(U) = µ(V ).

Lemma 5.4 [main1] Let f : (X, A) → (Y,B) be an m-covering. Then the map f∗ de-
fines the bijection between the space of m-homogeneous measures on (X, A) and the space of
measures on (Y, B).
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Proof: ???

Let us go back to the space of genealogies now. Recall that for a space X the set of
isomorphisms classes of maps Y → X where Y is a finite set of n elements is parametrized
by the symmetric power SnX of X. The set of isomorphisms classes of maps from all finite
sets to X is then parametrized by

S•X :=
∐
n≥0

SnX

Let h be a genealogy and let νn = #(Vn(h)) is the number of ”proper” vertices of h with n
outgoing edges. By the previous remark, for each n = 0, 2, . . . the set Vn together with the
function τ defines a point in SνnT . Our conditions further imply that for n = 0 this point
belongs to Sνn((a, b]) and for n ≥ 2 it belongs to Sνn((a, b)). Therefore, we get a map

[impmap]π : D[T ] → S•((a, b])×
∞∏

n=2

S•((a, b)) (16)

Consider both sides of (16) as measurable spaces with respect to the σ-algebras of Borel
subsets in the corresponding topologies.

Proposition 5.5 [firstprop] The map (16) is an m-covering.

Proof: ???
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