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1 Motivation

The simplest way to motivated the necessity of the motivic stable homotopy
category is to refer to the fact that algebraic K-theory does not extend to the
the triangulated category of motives. In particular the triangulated category
of motives does not provide a sufficient framework to study such a funda-
mental object as the motivic spectral sequence. The other motivation comes
from the cohomological operations but for historic reasons it seems to be less
useful.

In the theory of ordinary motivic cohomology there are two “conflicting”
groups of results. In the first group are the “computation” results comparing
motivic cohomology to other theories. As an example one may state that
Hn,n = KM

n for a field or that Hp,q = 0 for q < 0. In the second group
there are “good behavior” results such as the Mayer-Vietoris property or the
projective bundle theorem. There are constructions of the motivic category
(or of the motivic cohomology) which make the results of either of the two
groups easy to prove but in each case the results of the opposite group require
a lot of technical work.

At the moment we have only one approach to the stable homotopy cat-
egory which is an analog of the “good behavior” approach to the ordinary
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cohomology. As a result very little is known about the simplest cases of mo-
tivic stable homotopy groups and other related groups. As an outstanding
exmple consider the fact that while there is (at least over fields of charac-
teristics zero) the motivic Adams spectral sequence we can not prove that it
converges even for S0.

I hope that the constructions described in this notes will lead to a new
model of the stable homotopy theory which will be more friendly for compu-
tations questions. Of course one expects that it will be non-trivial to show
that the new and the old models agree.

2 Framed correspondences

Fix a noetherian scheme S and let Sch/S be the category of separated
schemes of finite type over S. We define a rational function on a scheme
X as an equivalence class of invertible functions on dense open subsets of
X identifying a function with its restriction to a smaller subset. Rational
functions are contravariantly functorial for dominant morphisms and form a
sheaf M∗ on the small etale site Xet of X . For any rational function f there
exists a maximal open subset Uf where f is an invertible function. We let
Supp(f) denote the closed complement to Uf .

Let Z be a closed subset in X . A framing of Z of level n is a collection
φ1, . . . , φn of rational functions on X such that ∩n

i=1Supp(φi) = Z. For a
scheme X over S a framing of Z over S is a framing of Z such that the
closed subsets Supp(φi) do not contain the generic points of the fibers of
X → S.

For schemes X , Y over S and n ≥ 0 an explicit framed correspondence of
level n is the following collection of data:

1. a closed subset Z in An
X which is finite over X

2. an etale neighborhood p : U → An
X of Z

3. a framing φ1, . . . , φn of level n of Z in U over X

4. a morphism g : U → Y

The subset Z is called the support of the correspondence. Note that the
existence of framing of level n implies that Z is equidimensional over X of
relative dimension zero. Two explict framed correspondences Φ and Φ′ of
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level n are called equivalent if they have the same support and there exists
an open neighborhood V of Z in U×An

X
U ′ such that on V , g ◦pr agrees with

g′ ◦ pr′ and φ ◦ pr agree with φ′ ◦ pr′. A framed correspondence of level n is
an equivalence class of explicit framed correspondences of level n.

We let F gl
n (X, Y ) denote the set of globally framed correspondences from

X to Y . We consider it as a pointed set with the distinguished point being
the class 0n of the explicit correspondence with U = ∅.

Example 2.1 The set F gl
0 (X, Y ) coincides with the set of pointed mor-

phisms X+ → Y+. In particular, for a connected scheme X one has

F gl
0 (X, Y ) = Hom(X, Y )∐ {00}

Example 2.2 Let p1, . . . , pn be a collection of pair-wise disjoint X-points
in Am

X . We denote by Φ(p1, . . . , pn) the framed correspondence from X to
∐n

i=1X with the support in p1(X) ∪ · · · ∪ pn(X) and the framing given in a
neighborhood of pi(X) by φj = prj − prj ◦ pi.

If f : X ′ → X is a morphism of schemes and Φ = (U, φ, g) an explicit
correspondence from X to Y then (U ′ = U ×X X

′, φ ◦ pr, g ◦ pr) is an explicit
correspondence from X ′ to Y which we denote by f ∗(Φ). Let (U, φ, g) be
an explicit correspondence of level n from X to Y and (V, ψ, g) an explicit
correspondence of level m from Y to Z. We define their composition as
follows. Consider the diagram

W
prV−−−→ V

prU





y





y

U
g

−−−→ Y




y

X

(2.2.1)

where W is the fiber product of V and U . Let us verify that (W, (φ◦prU , ψ◦
prV ), g ◦ prV ) is an explicit correspondence of level n+m from X to Z. Note
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first that there is a diagram

W
prV−−−→ V





y





y

U ×Am g×Id
−−−→ Y ×Am





y

X ×An ×Am

(2.2.2)

where the square is cartesian which shows that W is etale over An+m
X . The

rational functions ψj ◦ prV are defined because of the property 2.i of the
definition of an explicit correspondence and the functions φi ◦prU are defined
because prU is smooth. It remains to verify that the closed subset

(∩iSupp(φi ◦ prU)) ∩ (∩jSupp(ψj ◦ prV ))

is finite over X and maps monomorphically to X×An×Am. The first state-
ment follows immediately from (2.2.1) since Supp(φi◦prU) = pr−1

U (Supp(φi))
and Supp(ψj ◦ prV ) ⊂ pr−1

V (Supp(ψj)).
The second statement follows in a similar manner from the diagram

(2.2.2).
The composition of explicit correspondences clearly respects the equiva-

lences and defines a map Fn(X, Y )×Fm(Y, Z) → Fn+m(X,Z). The following
lemma is straightforward.

Lemma 2.3 The composition of the equivalence classes of explicit correspon-
dences is associative.

For a pair of schemes X , Y denote by F gl
∗ (X, Y ) the set ∐nF

gl
n (X, Y ).

Composition of framed correspondences defines a category F gl
∗ (S) with the

same objects as Sch/S and morphisms given by F gl
∗ (X, Y ). Since morphisms

of schemes can be identified with special framed correspondences of level
zero we get a functror Sch/S → F gl

∗ (S) and one can easily see that for a
framed correspondence Φ : X → Y and a morphism f : X ′ → X one has
f ∗(Φ) = Φ ◦ f .

Remark 2.4 The category F gl
∗ (S) has neither an initial nor a final object.

Endomorphisms of the empty scheme in F gl
∗ (S) are of the form F gl

∗ (∅, ∅) =
{00, . . . , 0n, . . . }. Observe also that the disjoint union of schemes is not their
coproduct in F gl

∗ (S).
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3 Framed functors

Definition 3.1 A globally framed functor F on Sch/S is a contravariant
functor from F gl

∗ (S) to the category of pointed sets such that F (∅) = pt and
F (X

∐

Y ) = F (X)× F (Y ).

Note that the representable functors on F gl
∗ (S) are not framed functors. To

associate a framed functor to a scheme one needs a slightly more involved
construction. Denote by σX the framed correspondence of level 1 from X

to X given by (A1
X

Id
−→ A1

X , id, prX). For any morphism of pointed schemes
f : X+ → Y+ one has fσX = σY f by for a general globally framed corre-
spondence Φ one has ΦσX 6= σY Φ.

Let hX be the functor represented by X on F gl
∗ (S). Then σX defines an

endomorphism of hX and we set:

QglX+ := colimσX :hX→hX
hX

Note that the functors QglX+ are functorial with respect to morphisms of
pointed schemes but not with respect to general framed correspondences.

Lemma 3.2 For any X the functor QglX+ is a globally framed functor.

Proof: We have hX(∅) = F gl
∗ (∅, X) =

∐

{0n}. Composition with σX takes
{0}n to {0}n+1 which implies that QglX+(∅) = pt. Given two framed corre-
spondences Φ : X → Y , Φ′ : X ′ → Y of the same level we may consider the
framed correspondence Φ

∐

Φ′ : X ∐X ′ → Y . This construction defines in
the obvious manner a map QglY+(X)×QglY+(X

′) → QglY+(X ∐X ′) which
is clearly bijective.

Definition 3.3 A globally framed functor is called stable if for any X one
has F (σX) = IdF (X).

Note that functors of the form QglX+ are not stable. As always a framed
functor is called homotopy invariant if F (X) = F (X ×A1) for all X .

Lemma 3.4 Let p1, . . . , pn and q1, . . . , qn are two sets of pair-wise disjoint
X-points in Am

X . Then the framed correspondences Φ(p1, . . . , pn) and Φ(q1, . . . , qn)
defined in Example 2.2 are A1-homotopic.

Proof: ???
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Lemma 3.5 Let x1, . . . , xn be a collection of pair-wise disjoint X-points on
A1

X and let (φ1, . . . , φn), (ψ1, . . . , ψm) be two collections of rational functions
in neighborhoods of the points x1, . . . , xn respectively which define framed
correspondences

Φ,Ψ : X → ∐n
i=1X

with the support in x1(X)∪ · · ·∪xn(X). Assume that for each i the function
φi/ψi is regular in a neighborhood of xi(X) and equals 1 on xi(X). Then Φ
and Ψ are A1-homotopic.

Proof: The homotopy is given by the framed correspondence X × A1 →
∐n

i=1X with the support in (x1(X)∪· · ·∪xn(X))×A1 and the framing given
in a neighborhood of xi(X) × A1 by the rational function φi + t(φi − ψi)
where t is the projection to the A1.

For any X denote by δ the explicit correspondence from X to X ∐ X with
U = (A1 − {0} ∐ A1 − {1})X , φ = t ∐ (t − 1) where t : A1

X → X is the
projection and g : (A1−{0}∐A1−{1})X → X∐X . For any framed presheaf
F it defines maps F (X)× F (X) → F (X).

Theorem 3.6 Let F be a stable homotopy invariant framed presheaf. Then
the maps F (X) → F (X)× F (X) make F into a framed presheaf of abelain
groups.

Proof: For a framed functor F and a pair of correspondences Φ1, Φ2 of the
same level we have F (Φ1

∐

Φ2) = F (Φ1)× F (Φ2). Therefore, to check that
our operation is associative we need to check that the following diagram in
F gl
∗ commute up to an A1-homotopy:

X
δ

−−−→ X ∐X

δ





y





y

σX∐δ

X ∐X
δ∐σX−−−→ X ∐X ∐X

The two paths in this diagram are represented by correspondences of the
form Φ(p1, p2, p3) where in one case p1 = (0, 0); p2 = (0, 1); p3 = (1, 0) and in
another p1 = (0, 0); p2 = (1, 0); p3 = (1, 1). They are homotopic by Lemma
3.4. Similarly one establishes the commutativity of our operation. The fact
that the distinguished point represents the right unit is obvious and the fact
that it is also the left unit follows from the commutativity.
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It remains to show that there is an inverse. Consider the framed corre-
spondence m of level 1 from X to X with the support X × {0} and framing
−1/t. We claim that for a ∈ F (X), m∗(a) is the inverse to a. It is enough to

show that the framed correspondence X
δ
→ X

∐

X
σ
∐

m
→ X is A1-homotopic

to 02. This composition is a correspondence of level 2 with the support in
(0, 0) ∐ (1, 0) and the framing given by (x1, x2) in the neighborhood of the
first point and (x1 − 1,−1/x2) in the neighborhood of the second. Observe
first that we can move the second point first to the point (1, 1) with framing
(x1−1, 1/(1−x2)) and then to (0, 1) with framing (x1, 1/(1−x2)). Applying
Lemma 3.5 with respect to x2 we further conclude that our correspondence is
homotopic to the correspondence with the support (0, 0)∐ (0, 1) and framing
given by (x1, x2/(1−x2)) in the neighborhood of both points. The homotopy
of the last correspondence to zero is given by the correspondence over A1

X

with the support {0} × Supp(f) where f(x2, t) = (x2 − t)/(1 − x2) and the
framing (x1, f). Theorem 3.6 is proved.

4 Framed correspondences and the Nisnevich topology

For a scheme X we let Et/X denote the category of schemes separated and
etale over X .

Theorem 4.1 Let X be a normal scheme. Then for any scheme Y the
functor U 7→ Fn(U, Y ) from Et/X to Sets

•
is a sheaf in the etale topology.

Proof:

Lemma 4.2 Let X be a normal scheme. Then the category Et/X has finite
colimits and the functor from Et/X to Sch/X preserves these colimits.

Proof: The statement of the lemma clearly holds for finite coproducts. It
remians to check it for coequalizers. Let f, g : U → V be a pair of morphisms
in Et/X . Let Ū and V̄ be normal schemes finite over X which contain U
and V respectively as dense open subschemes. The f and g extend to a pait
of morphisms f̄ , ḡ : Ū → V̄ . Let W̄ be the spectrum of the equalizer of
the corresponding pair of homomorphisms of the sheaves of rings O(V̄ ) →
O(Ū). Clearly, W̄ is the coequalizer of f̄ and ḡ in the category of affine
schemes over X . The universal properties of W̄ and the universal properties
of normalization imply immediately that W̄ is normal and equidimensional
over X . The morphism V̄ → W̄ being a finite morphism of normal schemes
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equidimensional over X is equidimnsional and therefore open. Let W be the
image of V in W̄ . Since W is normal and quasi-finite over X and there is
a surjective morphism V → W with V etale over X we conclude that W is
etale over X .

It remains to verify thatW is the coequalizer of f and g in the category of
separated schemes of finite type over X . We have an etale covering p : V →
W and it is sufficient to check that for Y in Sch/X and a map u : V → Y
such that uf = ug we have u pr1 = u pr2 where pri are the projections
V ×W V → V . Since Y is separated and all connected components of V ×W V
dominate X it is sufficient to verify this property over the generic points of
X . Over these points we have f̄ = f , ḡ = g and W̄ = W and since W̄ is the
coequalizer of f̄ and ḡ the morphism u descends to W and in particular one
has u pr1 = u pr2.

Example 4.3 Lemma 4.2 is false without the assumption that X is normal.
Let X be the union of two copies of A1 − {0} glued together in points {1}.
Let U be the etale covering of X of degree 2 obtained by taking two copies
of the map z 7→ z2 and gluing these copies together over {1}. Let V be the
open subscheme in U which is the preimage of one of the open subschemes
A1−{0, 1} in X . Let us show that the colimit U/V = U∩V X in the category
of separated schemes is not etale over X . Observe that the colimit in the
category of separated schemes does not change if we replace V by its closure
in U . In this case we get a diagram of schemes finite over X and its colimit
is the union of X and the scheme obtained from the double cover of A1 − 0
by contracting the preimage of 1 to a point. Since it has only one geometric
point over the singular point of X and two everywhere else it is not etale
over X .

We now proceed to the proof of Theorem 4.1. First of all one observes easily
that framed correspondences with values in a scheme Y form a separated
presheaf for the etale topology. It remains to check that for a normal scheme
X , an etale covering N → X of X and a framed correspondence ΦN from
N to Y such that the pull-backs of ΦN with respect to the two projections
N ×X N → N agree there exists a framed correspondence Φ from X to Y
which restricts to ΦN on N .

A framed correspondence from N to Y is the equivalence class of an ex-
plicit correspondence (ZN , UN → An

N , φN , g : UN → Y ). The condition that
the pull-backs of ΦN with respect to the two projections N ×X N → N
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agree mean that pr−1
1 (ZN) = pr−1

2 (ZN) and that there is an etale neghbor-
hood V of this closed subset in An

N×N together with two maps V → UN

such that the pull-backs of φ and g with respect to these maps agree. The
first condition implies that ZN is the pull-back of a closed subset Z in An

X .
Since ZN is finite over X so is Z. Consider the coequalizer W of the maps
V → UN in the category of schemes separated and etale over An

X which exist
by Lemma 4.2. The fiber Z ′ of W over Z is covered by ZN and the map
ZN ×Z ZN → Z ′ equalizes the two projections. This implies immediately
that Z ′ = Z i.e. that W is an etale neghborhood of Z. The functions φN

and the morphism gN descend to functions φ and a morphism g on W . One
verifies immediately that φ is a framing for Z. We obtained a framed cor-
respondence Φ = (Z,W → An

X , φ, g). The pull-back Φ′ of Φ to N is, as
an explicit framed correspondence, (ZN ,W ×X N, φ′ ◦ prW , g

′ ◦ prW ). The
morphism UN →W ×XN takes φ′◦prW to φN and g ◦prW to gN . Therefore,
Φ′ is equivalent to ΦN . Theorem is proved.

Recall that for a morphism f : X → Y we denote by Č(f) or Č(Y/X) the
Cech simplicial object defined by f (see []).

Theorem 4.4 Let U → X be an etale (resp. Nisnevich) covering of a
scheme X. Then for any n the morphism of simplicial presheaves

Fn(−, Č(U/X)) → Fn(−, X)

is a local equivalence in the etale (resp. Nisnevich) topology.

Proof: Let us consider the Nisnevich case. The etale case is similar. We
have to show that for a local henselian scheme Y the map of simplicial sets
Fn(Y, Č(U/X)) → Fn(Y,X) is a weak equivalence.

The functor Fn(Y,−) is a coproduct of functors of the form FZ,φ
n (Y,−)

where Z is a closed subset of An
Y finite over Y and φ is an equivalence class

of framings of Z in its etale neighborhoods in An
Y . Therefore it is sufficient

to show that for any Z and φ the map

FZ,φ
n (Y, Č(U/X)) → FZ,φ

n (Y,X) (4.4.1)

is a weak equivalence. The functors FZ,φ(Y,−) commutes with fiber products
and therefore we have

FZ,φ
n (Y, Č(U/X)) = Č(FZ,φ

n (Y, U)
p
→ FZ,φ

n (Y,X)).
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It remains to note that if Y is henselian then so is Z and which implies
that the map p is surjective and therefore (4.4.1) is a simplicial homotopy
equivalence.

Corollary 4.5 Let F be a framed presheaf. Then the associated sheaf in the
etale (resp. Nisnevich) topology has a unique structure of a framed presheaf
such that the map F → aetF is a map of framed presheaves.

Proof: Let us consider the Nisnevich case. The etale case is similar. Let us
show first that the separated presheaf associated with F has a structure of
a framed presheaf. Let X be a scheme, U → X a Nisnevich covering and
u : Y → X be a framed correspondence of level n. Let f, g two elements
of F (X) which become equal on U . We have to verify that u∗(f) and u∗(g)
become equal on a Nisnevich covering of Y . Theorem 4.4 asserts in particular
that the map of presheaves Fn(−, U) → Fn(−, X) is an epimorphism in the
Nisnevich topology. Therefore, there is a Nisnevich covering V → Y and a
framed correspondence V → U such that the square

V −−−→ U




y





y

Y −−−→ V

(4.5.1)

commutes. This implies that the pull-backs of f and g become equal on V .
The same diagram implies the uniqueness part of the corollary.

Consider a section of F on U whose restrictions with respect to the two
projections U×XU → U agree. This section defines a morphism of presheaves
Fn(−, U) → F which factors through the coequalizer of the maps Fn(−, U×X

U) → Fn(−, U) defined by the two projections. The sheaf associated with
this coequalizer is, by Theorem 4.4, Fn(−, X) and we get a map Fn(−, X) →
aNisF , i.e. for any framed correspondence Y → X of level n we got a
section of aNisF on Y . Using again (4.5.1) one verifies that this construction
commutes with compositions of correspondences. Corollary is proved.

5 A construction of framed correspondences

6 A construction of framed functors

For anyX the endomorphism σX defines an endomorphism of the correspond-
ing representable functor Fr∗(−, X) on Fr∗(S). We define Fr(−, X) as the
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colimit of the sequence Fr∗(−, X)
σX−→ Fr∗(−, X) → . . . . It is a functor on

Fr∗(S) and one can easily see that Fr(U ∐ V,X) = Fr(U,X) ∐ Fr(V,X)
which implies that Fr(−, X) is a framed functor on Sch/S. Note that a
framed correspondence X → Y does not in general define a morphism of
framed functors Fr(−, X) → Fr(−, Y ). Note also that Fr(−, X) is not
stable in the sense of Definition ??.

For a scheme X and an explicit correspondence (U, φ, g) : Y → Z we
define an explicit correspondence IdX × (U, φ, g) : X × Y → X × Z as
(X×U, φ◦prU , IdX ×g). Let f : X1 → X2 be a morphism of schemes. Then
the diagram of framed correspondences:

X1 × Y
IdX1

×(U,φ,g)
−−−−−−−−→ X1 × Z

f×IdY





y





y

f×IdZ

X2 × Y
IdX2

×(U,φ,g)
−−−−−−−−→ X2 × Z

(6.0.2)

commutes. This shows that the category Fr∗(S) has a “module” structure
over the category Sch/S: for a morphism f of schemes and a framed corre-
spondence G one defines f × G to be the framed correspondence given by
the diagonal in (6.0.2).

We will use two actions of GLn(X) on Frn(X, Y ). If Φ = (p : U →
An

X , φ, g) is a framed correspondence and a is an element of GLn(X) (or
more generally an element of Aut(An)(X)), then aΦ = (a◦p : U → An

X , φ, g)
is again a framed correspondence. This defines one action of GLn(X) on
Frn(X, Y ). To define the second action consider the collection of rational
functions φ = (φ1, . . . , φn) as a collection of regular functions on a dense
open subset of U . Applying a to φ we get a new sequence of regular functions
(φ′

1, . . . , φ
′
n). Let us show that there is an open neighborhood V this functions

are not identically zero ...
An elementary A1-homotopy from a framed correspondence f to a framed

correspondence g is a framed correspondence h : X × A1 → Y such that
h ◦ (IdX × {0}) = f and h ◦ (IdX × {1}) = g Two framed correspondences
f, g : X → Y are called A1-homotopic (or simply homotopic if no confusion
is possible) if they can be connected by a chain of elementary homotopies.
One verifies easily that the composition of framed correspondences preserves
the homotopy relation. The category whose objects are schemes and mor-
phisms are the homotopy classes of framed correspondences will be denoted
by π0Fr∗(S).
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Lemma 6.1 For any framed correspondence f : X → Y the framed corre-
spondences f ◦ σX and σY ◦ f are canonically homotopic.

Proof: Assume that f is of level n. For any X and Y we have an action of
the group GLn(S)×GLn(S) (where S is the base scheme) on Frn(X, Y ) of
the form:

(A,B)(p : U → An
X , φ, g) = (A ◦ p, B ◦ φ, g)

Let δn be the permutation (t1, . . . , tn, s) 7→ (s, t1, . . . , tn). One can easily see
that f ◦ σX = (δn, δn)(σY ◦ f). The permutation δn is homotopic in GLn to
transformation

a : (x1, . . . , xn, y) 7→ (x1, . . . , xn,−y)

this shows that f ◦ σX is canonically homotopic to (s, s)(f ◦ σX). It remains
to note that (s, s)(f ◦σX) = (f ◦σX): if (U, φ, g) is an explicit correspondence
representing f then the automorphism

U ×A1 (u,t)7→(u,−t)
−−−−−−−→ U ×A1

defines an equivalence between (U, φ, g) ◦ σX and (s, s)((U, φ, g) ◦ σX).

For a framed functor F denote by C∗(F ), as always, the simplicial framed
functor of the form U 7→ F (U × ∆•) where ∆• is the standard cosimplicial
object in Sch/S. Conisder the simplicial set

C∗(Fr(−, Y ))(X) = Fr(X ×∆• , Y )

Since the morphisms σX commute with the morphisms of level zero the mor-
phisms σ : X ×∆n → X ×∆n define an endomorphism of C∗(Fr(−, Y ))(X)
which we denote σ.

Lemma 6.2 There is a pointed simplicial homotopy from σ to the idenity.

Proof: The construction of Lemma 6.1 gives a map h : Fr(X, Y ) → Fr(X×
A1, Y ) natural with respect to morphsms of level zero in X and such that
for any f : X → Y one has

h(f)|X×{0} = σY ◦ f

h(f)|X×{1} = f ◦ σX

The maps h for X × ∆n give a map of simplicial sets C∗(Fr(Y ))(X) →
C∗(Fr(Y ))(X × A1) whose compositions with the restrictions to X × {0}
and X×{1} are σl and σr respectively. Our result follows from the fact that
these restrictions are simplicially homotopic (see [, ]).
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7 Framed sheaves

A framed presheaf on a category of schemes is just a framed functor. For
a topology on the category of schemes a framed sheaf with respect to this
topology is a framed presheaf which is a sheaf with respect to this topology.

Proposition 7.1 Let F be a framed presheaf. Then the associated sheaf
in the Nisnevich (resp. etale) topology has a unique staructure of a framed
functor such that the map F → aF is a map of framed functors.

For a scheme X we denote by FrX the sheaf in the Nisnevich topology
associated with the presheaf Y 7→ Fr∗(Y,X).

8 Traces of framed correspondences

Let Φ = (U → An × X, φ, g : U → Y ) be a framed correspodence from
X to Y with the support Z ⊂ U which we consider as a closed reduced
subscheme. The trace of Φ is the triple (U → An × X, φ, g|ZZ → Y ). A
framed correspondence is called smooth if in any point z of Z the functions
φi are regular and the divisors φ−1

i (0) are smooth and intersect transversally.
For a smooth correspondence Z is a smooth closed subvariety of U .

Proposition 8.1 Let Φ and Φ′ be framed correspondences from X to Y .
Assume that they are smooth and that their traces coincide. Then the sections
of aNisFr∗(−, Y ) on X defined by Φ and Φ′ are A1-homotopic.

Proof: ???

13


