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1 Basics

We will need several simple lemmas about the functorial behavior of pointed
simplicial sheaves on the categories of smooth schemes over a base with Nis-
nevich topology. Many of them have well known analogs for sheaves on
“small” sites but we often have to give quite differnet proofs. The main rea-
son for most of the differences is that for sheaves on smooth sites stalks and
inverse images do not commute i.e. Theorem 3.2(a) of [?] fails to be true.

Everywhere below we work in the context of pointed sheaves of sets on
(Sm/S)Nis. In [?] we called such sheaves “spaces” over S but since the
techniques of this paper have much more to do with the usual sheaf theory
than with the homotopy theory we do not use this name here. The category
of pointed (simplicial) sheaves on (Sm/S)Nis is a pointed category which
has all small products and coproducts. Its initial/final object is denoted
by pt and the direct sums by ∨αFα. The smash product F ∧ G of two
pointed simplicial sheaves is given by the usual formula ([?, ]) and satisfies
the standard associativity and commutativity conditions. The unit object of
the symmetric monoidal structure defined by ∧ is denoted S0.

For any morphism of schemes f : S1 → S2 we have the inverse image
functor f ∗ which is caracterized by the properties that it commutes with
colimits and that for a smooth scheme X over S2 one has f ∗(X+) = (X ×S2

S1)+. It has the right adjoint called the direct image functor f∗. For smooth
morphisms f the functor of inverse image also has the left adjoint f# (see [])
such that for a smooth scheme X over S1 one has f#(X+) = X+ where on
the right side of the equality X is considered as a smooth scheme over S2.

Remark 1.1 [forgetful]Functors of all three types commute with the func-
tor of free base point F 7→ F+ from sheaves to pointed sheaves. Functors
f ∗ and f∗ also commute with the forgetful functor from pointed sheaves to
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sheaves but functors f# do not. If we denote the forgetful functor by ϕ then
for a smooth morphism f : S1 → S2 and a pointed sheaf F over S1 one has
a push-forward square of sheaves of the form

S1 → f#(ϕ(F ))
↓ ↓
S2 → ϕ(f#(F ))

The following lemmas can be seen directly from definitions.

Lemma 1.2 [l0] For a composable pair of morphisms S1
f→ S2

g→ S3 there
is a canonical ismorphism (g ◦ f)∗ → f ∗ ◦ g∗ and for a composable triple
f, g, h the square

(fgh)∗ → (gf)∗h∗

↓ ↓
f ∗(gh)∗ → f ∗g∗h∗

commutes.

By adjunction the isomorphisms of Lemma 1.2 define isomorphisms g∗◦f∗ →
(g ◦ f)∗ and for smooth f, g isomorphisms g# ◦ f# → (g ◦ f)#.

Lemma 1.3 [l1] For any f : S1 → S2 and any F,G over S2 there is a
canonical isomorphism f ∗(F ∧G) = f ∗(F ) ∧ f ∗(G).

Lemma 1.4 [l2] For any smooth morphism f : S1 → S2 any F over S1 and
G over S2 the morphism f#(F ∧ f ∗G)→ f#F ∧G defined by the adjunctions
and the isomorphisms of Lemma 1.3 is an isomorphism.

Lemma 1.5 [l3] For any pull-back square

S ′
1

f1→ S1

p′ ↓ ↓ p
S ′
2

f2→ S2

such that p is smooth and any F over S1 the morphism p′#f
∗
1 (F )→ f ∗

2 p#(F )
defined by the adjunctions and the isomorphism of Lemma 1.2 is an isomor-
phism.

In general neither of the three types of functors considered above preserve
simplicial or A1-weak equivalences. In order to define the (left) derived
functors for f ∗ and f# we need the following construction.
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pre-Definition 1.1 [ladm] An object is called left admissible if it is admis-
sible with respect to all f ∗’s and f#’s.

Lemma 1.6 [l6] Let a : F → G be a simplicial (resp. A1-) weak equivalence
of left admissible objects over S. Then for any morphism f : S ′ → S the
morphism f ∗(a) is a simplicial (resp. A1-) weak equivalence and for any
smooth morphism f : S → S ′ the morphism f#(a) is a simplicial (resp. A1-)
weak equivalence.

Lemma 1.7 [l7] Let F be a left admissible object. Then for any morphism
f : S ′ → S the object f ∗(F ) is left admissible and for any smooth morphism
f : S → S ′ the object f#(F ) is left admissible.

Lemma 1.8 [admsm] Let F and G be left admissible objects. Then F ∧G
is left admissible.

Lemma 1.9 [lres] For any S there exists a functor Lres : ∆opSpc• →
∆opSpc• called the left resolution functor and a natural transformation Lres→
Id such that the following two conditions hold:

1. for any F the terms of the simplicial sheaf Lres(F ) are direct sums of
pointed sheaves of the form U+ for smooth quasi-projective schemes U
over S.

2. for any F and any smooth quasi-projective scheme U over S the mor-
phism of simplicial sets Lres(F )(U)→ F (U) is a trivial Kan fibration.

Proof: ???

We define the left derived functors of f ∗ and f# setting Lf ∗ = f ∗ ◦Lres and
Lf# = f# ◦ Lres.

Lemma 1.10 [l5] For any morphism f : S1 → S2 and a simplicial (resp.
A1-) weak equivalence a : F → G over S2 the morphism Lf ∗(a) is a simplicial
(resp. A1-) weak equivalence.

For a smooth morphism f : S1 → S2 and a simplicial (resp. A1-) weak
equivalence a : F → G over S1 the morphism Lf#(a) is a simplicial (resp.
A1-) weak equivalence.

Proof: ???
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Lemma 1.11 [l51] For any morphism f : S1 → S2 and a left admissible
object F over S2 the morphism Lf ∗(F )→ f ∗(F ) is a simplicial weak equiv-
alence.

For a smooth morphism f : S1 → S2 and a left admissible object F over
S1 the morphism Lf#(F )→ f#(F ) is a simplicial weak equivalence.

We will need to know how functors Lf ∗ and Lf# behave with respect to
homotopy colimits. Let us recall the definition of homotopy colimits first.
Let I be a small category and X : I → ∆opSpc• a diagram of pointed
(simplicial) sheaves indexed by I. For i ∈ I one usually denotes X(i) by Xi.
Let I/i be the category of objects in I over i (i.e. the category of arrows
which end in i) and let Nerv(I/i) be the nerve of I/i i.e. the simplicial set
whose n-simplexes are composable sequences of arrows in I/i of length n.
For any morphism γ : i → i′ in I we have a functor I/i′ → I/i and thus
a morphism of simplicial sets Nγ : Nerv(I/i′) → Nerv(I/i). Following [,
p.328] one defines the homotopy colimit hocolimi∈IXi as the coequalizer of
two morphisms ∨

γ:i→i′
Nerv(I/i′)+ ∧Xi

→→
∨
i

Nerv(I/i)+ ∧Xi

where the first arrow is given onNerve(I/i′)+∧Xi by Id∧X(γ), the second by
N(γ)+∧Id and simplicial sets are considered as constant simplicial sheaves in
the usual manner. The following three lemmas describe the main properties
of this construction.

Lemma 1.12 [hocolim0] Let X, Y : I → Spc• be two diagrams of pointed
simplicial sheaves and a : X → Y a morphism such that for any i ∈ I the
morphism ai : Xi → Yi is a simplicial (resp. A1-) weak equivalence. Then
the morphism hocolim(a) is a simplicial (resp. A1-weak equivalence).

Proof: For the simplicial case see [?, Cor. 2.1.21]. For the A1-case see [?,
Lemma 2.2.12].

The following two lemmas are immediate corollaries of the corresponding
results for simplicial sets proven in [, Ch.XII, §3].

Lemma 1.13 [hocolim1] Let X : ∆op → ∆opSpc• be a pointed bisimplicial
sheaf. Then there is a canonical simplicial weak equivalence hocolim∆op(X)→
diag(X) where diag(X) is the diagonal simplicial sheaf of X. In particular
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for any pointed simplicial sheaf considered as a functor X : ∆op → Spc• ⊂
∆opSpc• there is a canonical simplicial weak equivalence hocolim∆opXn → X
where Xn are the pointed sheaves of n-simplexes of X.

Lemma 1.14 [hocolim2] For a pushforward square

A
i→ X

↓ ↓
B → Y

such that i is a monomorphism, the canonical map hocolim(
A

i→ X

↓

B

)→ Y

is a simplicial weak equivalence.

Since the functor of inverse image is a left adjoint it commutes with colimits
which immediately implies that for any small diagram (Xi)i∈I we have a
canonical isomorphism i∗hocolimIXi → hocolimIi

∗(Xi).

Lemma 1.15 [hocolim3] For any small diagram (Xi)i∈I over S such that
Xi are left admissible hocolimi∈IXi is left admissible.

Proof: ???

Lemma 1.16 [Lho] For any morphism f : S ′ → S and any small diagram
(Xi)i∈I over S there is a natural (in X) isomorphism in the simplicial ho-
motopy category Hs(S

′) of the form

Lf ∗(hocolimi∈IXi)→ hocolimi∈ILf
∗(Xi)

such that the following square commutes

Lf ∗(hocolimi∈IXi) → hocolimi∈ILf
∗(Xi)

↓ ↓
f ∗(hocolimi∈IXi) → hocolimi∈Ii

∗(Xi)

Proof: Recall that Lf ∗ = f ∗ ◦ Lres and consider the diagram

f ∗Lres(hci∈I(Lres(Xi))) → f ∗hci∈I(Lres(Xi)) → hci∈If
∗Lres(Xi)

↓ ↓ ↓
f ∗Lres(hci∈IXi) → f ∗(hci∈IXi) → hci∈Ii

∗(Xi)
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where we abbreviated hocolim to hc. The left vertical arrow is a simplicial
weak equivalence by Lemmas 1.12 and 1.10, the first upper horizontal one is
a simplicial weak equivalence by Lemmas 1.6 and 1.15 and the second is the
canonical isomorphism. We define our isomorphism as the composition of the
inverse to the left vertical arrow with the upper horizontal ones. It is clearly
natural with respect to morphisms of diagrams. To prove commutativity of
the square it is sufficient to show that the two squares of the diagram from
above are commutative. The first one is commutative since Lres → Id is
a natural transformation of functors and the second one since f ∗hci∈I →
hci∈If

∗ is a natural transformation of functors.

Lemma 1.17 [constproj] For any morphism f : S ′ → S one has:

1. For any family (Fi)i∈I of pointed objects over S ′ the canonical morphism
∨if∗(Fi)→ f∗(∨iFi) is an isomorphism. In particular f∗(pt) = pt.

2. For any object F over S ′ and any pointed simplicial set K the morphism
K∧f∗(F )→ f∗(K∧F ) defined by the adjunction and the isomorphism
of Lemma 1.3 is an isomorphism.

Proof: ???

Let f : S ′ → S be any morphism and (Xi)i∈I a diagram over S ′. Define
the canonical morphism hocolimi∈If∗(Xi)→ f∗hocolimi∈IXi by the commu-
tative diagram∨

γ:i→i′ Nerv(I/i′)+ ∧ p∗(Xi)
→→

∨
iNerv(I/i)+ ∧ p∗(Xi) → hcip∗(Xi)

↓ ↓ ↓
p∗(

∨
γ:i→i′ Nerv(I/i′)+ ∧Xi)

→→ p∗(
∨

iNerv(I/i)+ ∧Xi) → p∗(hciXi)

where the left and the middle vertical arrows are compositions of isomor-
phisms from Lemma 1.17(1) and 1.17(2) and where we abbreviated hocolim
to hc.

Lemma 1.18 [adcom] For any small diagram (Xi)i∈I over S ′ the square of
canonical morphisms and adjunctions

f ∗hocolimi∈If∗(Xi) → hocolimi∈If
∗f∗(Xi)

↓ ↓
f ∗f∗hocolimi∈IXi → hocolimi∈IXi

commutes.
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So far we were able to avoid mentioning “stalks” of sheaves on (Sm/S)Nis

but some of the proofs below require their use. Let X be a smooth scheme
over S and x be a point of the Zariski topological space of X. To any such
pair we can assign a point F 7→ F(X,x) of the site (Sm/S)Nis setting

F(X,x) = colim(U,u)→(X,x)F (U)

where the colimit is taken over the category of all diagrams of the form

U
u ↗ ↓

Spec(kx)
x→ X

with U → X being etale. One verifies easily that this is indeed a point i.e.
that the functor (−)(X,x) : Shv((Sm/S)Nis) → Sets commutes with both
limits nd colimits. One can also verify that the set of points corresponding
to all the pairs (X, x) where X runs through smooth quasi-projective (or
affine) schemes over S is a “sufficient” set of points i.e. that the following
lemma holds.

Lemma 1.19 [points0] A morphism f : F → G of sheaves on (Sm/S)Nis

is an isomorphism (rep. a monomorphism, an epimorphism) if and only if
for any smooth quasi-projective X over S and any point x of X the corre-
sponding map of pointed sets F(X,x) → G(X,x) is an isomorphism (resp. a
monomorphism, an epimorphism).

The main difference between smooth sites and small sites is that for a closed
embedding i : Z → S and a sheaf F on S one has (i∗F )(Z,z) ̸= F(S,i(z)).
Indeed if F = X+ for a smooth scheme X over S we have

(i∗F )(Z,z) = HomS(Spec(Oh
Z,z), X)+

and
F(S,i(z)) = HomS(Spec(Oh

S,i(z)), X)+

Note that if X is etale over S these two sets are the same which is the reason
for the equality (i∗F )(Z,z) = F(S,i(z)) on small sites.

Lemma 1.20 [stfin] Let f : S ′ → S be a finite morphism and F a sheaf on
S ′. Then for any (X, x) over S there is a canonical isomorphism

f∗(F )(X,x) =
∏

x′∈X′
Zar, pr(x

′)=x

F(X′,x′)

where X ′ = X ×S S ′ and pr : X ′ → X is the projection.
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Proof: ???

Lemma 1.21 [stet] Let f : S ′ → S be an etale morphism and F a sheaf on
S ′. Then for any (X, x) over S there is a canonical isomorphism

f#(F )(X,x) =
∨
x′
F(X′,x′)

where X ′ = X ×S S ′ and the sum is taken over the points x′ such that
pr(x′) = x and the morphism Spec(kx′)→ Spec(kx) is an isomorphism.

Proof: ???

2 The gluing theorem and its corollaries

Let i : Z → S be a closed embedding and j : U → S the complimentary
open one. In this section we consider the A1-homotopy theoretical analogs
of the classical results relating sheaves on S, Z and U . For pointed sheaves
of sets on small sites the standard picture can be summarized as follows:

1. for any sheaf F on Z the adjunction i∗i∗(F )→ F is an isomorphism

2. for any sheaf F on U the adjunction F → j∗j#(F ) is an isomorphism

3. for any sheaf F on S the adjunctions j#j
∗(F ) → F and F → i∗i

∗(F )
fit into a pushforward square

j#j
∗(F ) → F
↓ ↓
pt → i∗i

∗(F )

These facts have two important corollaries:

1. Projection formula: for a sheaf F on Z and sheaf G on S the morphism
F ∧ i∗(G)→ i∗(i

∗F ∧G) is an isomorphism

2. Base change: for a pull-back square

Z ′ fZ→ Z
i′ ↓ ↓i
S ′ fS→ S

and a sheaf F on Z the morphism f ∗
Si∗(F )→ i′∗f

∗
Z is an isomorphism
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Proposition 2.1 [nd1] Let p : Z → S be a finite morphism. Then the
functor of direct image p∗ is right exact i.e. for any diagram (Xi)i∈I over Z
the canonical morphism colimi∈Ip∗(Xi)→ p∗(colimi∈IXi) is an isomorphism.

Proof: Follows from Lemmas 1.19 and 1.20.

Corollary 2.2 [dirhc] Let p : Z → S be a finite morphism. Then for
any diagram (Xi)i∈I over Z the canonical morphism hocolimi∈Ip∗(Xi) →
p∗hocolimi∈IXi is an isomorphism.

Proof: Follows from Proposition 2.1 and the definition of the canonical
morphism hocolimi∈Ip∗(Xi)→ p∗hocolimi∈IXi.

Lemma 2.3 [closed2] Let i : Z → S be a closed embedding and X → Z a
smooth scheme over Z. Then there exist a finite Zariski covering X = ∪Vi,
smooth schemes Wi over S and isomorphisms Vi

∼= Wi ×S Z over Z.

Proof: We may assume that S = Spec(R) and Z = Spec(Q) are affine. By
[?, Prop. 3.24(b)] we can find a covering X = ∪Vi such that Vi are etale over
An

Z . By [?, Th. 3.4] we can further choose Vi’s such that

Vi = Spec((Ai[T ]/Pi)[1/bi]), A = Q[x1, . . . , xn][1/fi]

and P ′
i is a unit in (Ai[T ]/Pi)[1/bi]. Let f̃i be a lifting of fi to an element in

R, P̃i a lifting of Pi to an element in R[x1, . . . , xn][T ] and b̃i a lifting of bi to
an element of R[x1, . . . , xn][T ]. Set Wi = Spec(Ãi[T ]/P̃i[1/b̃i, 1/P̃

′
i ]) where

Ãi = R[x1, . . . , xn](1/f̃i). Then Wi is etale over Spec(Ãi) (by [?, Example
3.4]) and thus smooth over S and Wi ×S Z ∼= Vi by construction.

Lemma 2.4 [nd2] Let i : Z → S be a closed embedding. Then for any G
over S the adjunction G→ i∗i

∗(G) is an epimorphism.

Proof: Any pointed sheaf G over S is a colimit of a digram of sheaves
of the form (Xi)+ where Xi are smooth schemes over S. The functor i∗

commutes with colimits because it is a left adjoint and i∗ commutes with
colimits by Lemma 2.1. Thus it is sufficient to show that X+ → i∗i

∗X+ is
an epimorphism for a smooth scheme X over S. For any smooth U over S
sections of i∗i

∗(X+) over U are just sections of X ×S U → U over the closed
subscheme Z ×S U → U . Since X is smooth over S for any such section
locally (in the Nisnevich topology) extends to a section over U .
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Proposition 2.5 [p1] Let i : Z → S be a closed embedding and j : U → S
the complimentary open embedding. Then one has:

1. for any object F over Z the adjunction i∗i∗(F )→ F is an isomorphism

2. for any object F over U the adjunction F → j∗j#(F ) is an isomorphism

Proof: By Lemma 2.3 any smooth scheme over Z has a Zariski covering
by smooth schemes which come from S. Thus any pointed sheaf over Z is
a colimit of pointed sheaves of the form i∗((Wα)+) where Wα are smooth
schemes over S. The functor i∗ commutes with colimits because it is a left
adjoint and i∗ commutes with colimits by Lemma 2.1. Thus it is sufficient
to prove that i∗i∗i

∗G → i∗G is an isomorphism for any G over S. Since i∗

and i∗ are adjoint functors the composition i∗G→ i∗i∗i
∗G→ i∗G where the

first arrow is i∗(G→ i∗i
∗G) is identity. On the other hand the first arrow is

an epimorphism by Lemma 2.4. Therefore both arrows are isomorphisms.
To prove the second claim represent F as a colimit of a diagram of rep-

resentable sheaves. Both j∗ and j# are left adjoints and therefore commute
with colimits. Thus it is sufficient to verify the case F = X+ where X is
a smooth scheme over U . By construction of j# we have j#(X+) = X+

where on the right hand side X is considered as a smooth scheme over S and
j∗j#(X+) = X×SU . Our claim follows now from the fact that the projection
X ×S U → X is an isomorphism.

The second part of this proposition togther with Lemma 1.4 imply:

Corollary 2.6 [c0] For any F , G over U the morphism j#(F ∧ G) →
j#F ∧ j#G given by the adjunction and isomorphism of Lemma 1.3 is an
isomorphism.

Let j∗j# → Id be the natural transformation inverse to the isomorphism
of Proposition 2.5(2). By adjunction it defines a natural transformation
j# → j∗. One can immediately verify the following fact.

Lemma 2.7 [ves] Let j : U → S be an open embedding such that j(U) is a
connected component of S. Then j# → j∗ is an isomorphism.

Let now p : U → S be an etale morphism. Define a natural transformation
p# → p∗ as the adjoint to the natural transformation p∗p# → Id given by
the composition

p∗p#(F ) = (pr2)#pr
∗
1(F )→ (pr2)#∆∗(F ) ∼= (pr2)#∆#(F ) ∼= F
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where the first arrow is the isomorphism of Lemma 1.5 for the square

U ×S U
pr1→ U

pr2↓ ↓
U → S

the second is obtained from the composition pr∗1(F )→ ∆∗∆
∗pr∗1(F ) ∼= ∆∗(F )

where ∆ : U → U ×S U is the diagonal and the third is the isomorphism of
Lemma 2.7.

Proposition 2.8 [l4] Let iU : Z → U be a closed embedding and p : U → S
an etale morphism such that the composition iS = p◦ iU is again a closed em-
bedding. Then for any F over Z the composition p#(iU)∗(F )→ p∗(iU)∗(F ) =
(iS)∗(F ) is an isomorphism.

Proof: Follows from Lemmas 1.19, 1.20 and 1.21.

Proposition 2.9 [clconst] Let i : Z → S be a closed embedding and j :
U → S the complimentary open embedding. For any pointed simplicial set
K considered as an object over S the canonical square

j#j
∗(K) → K
↓ ↓
pt → i∗i

∗(K)

is a push-forward square.

Proof: It follows from Lemmas 1.19, 1.20 and 1.21.

Example 2.10 The statements of Propositions 2.9 and 2.5(1) would be false
if we considered the category Sm/S with Zariski topology instead of the
Nisnevich one. Let S be the spectrum of a local non-henselian ring and
i : Spec(k) → S the embedding of the closed point. Let further U → S be
a local scheme etale over S such that U ×S Spec(k) =

⨿n
i=1 Ui where Ui are

connected and n > 1. Then S0(U) = S0 and i∗i
∗(S0)(U) = ∨n

i=1S
0 and thus

the morphism S0 → i∗i
∗(S0) is not an epimorphism.

In the following examples S = Spec(A) is the spectrum of a henselian local
ring A and i : Z → S is the embedding of the closed point Z = Spec(A/m).
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Example 2.11 [noncocart]Consider the pointed sheaf of sets (A1, 0) on
(Sm/S)Nis. Then the square

j#j
∗(F ) → F
↓ ↓
pt → i∗i

∗(F )

is not a pushforward square. Indeed j#j
∗(F )(S) = pt, (F/j#j

∗(F ))(S) = A
and i∗i

∗(F )(S) = A/m.

Example 2.12 [nonbf]An explicit computation shows that for S and Z as
above one has Li∗i∗(A

1, 0) ∼= (A1, 0)×BsimplGa i.e. the canonical morphism
Li∗i∗(F )→ F is not a simplicial weak equivalence for general F .

Theorem 2.13 [gluing] Let i : Z → S be a closed embedding, j : U → S
the complimentary open embedding and F a left admissible object over S.
Then the adjunction j#j

∗(F )→ F is a monomorphism and the square

j#j
∗(F ) → F
↓ ↓
pt → i∗i

∗(F )

is A1-homotopy cocartesian i.e. the canonical morphism F/j#j
∗(F )→ i∗i

∗(F )
is an A1-weak equivalence.

Proof: This is the pointed version of [?, Th. 3.2.21]. One can verify it using
Remark 1.1.

Proposition 2.14 [p2] Let F be an object over Z. Then the composition
Li∗i∗(F )→ i∗i∗(F )→ F is an A1-weak equivalence.

Proof: Let us consider first the case when F = i∗G for a left admissible
object G over S. Consider the commutative diagram

i∗Lres(G/j#j
∗G) → i∗Lres(i∗i

∗G)
↓ ↓

i∗(G/j#j
∗G) → i∗i∗i

∗G
↘ ↓

i∗G
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We have to show that the composition of the right vertical arrows is an A1-
weak equivalence. By Theorem 2.13 the canonical morphism G/j#j

∗(G) →
i∗i

∗(G) is an A1-weak equivalence. Thus by Lemma 1.10 the upper horizon-
tal arrow is an A1-weak equivalence. By Lemma 1.7 and our definition of left
admissible objects the left hand side is left admissible. Thus by Lemma 1.6
the left vertical arrow is a simplicial weak equivalence. The composition of
the slanted arrow with the canonical morphism i∗G→ i∗(G/j#j

∗G) is iden-
tity by the definition of adjoint functors. This morphism is an isomorphism
since i∗ commutes with coproducts and i∗j# = pt by Lemma 1.5 and thus
the slanted arrow is an isomorphism which finishes the proof for F of the
form i∗G.
To prove the proposition for all F we need the following two lemmas.

Lemma 2.15 [closed3] Let i : Z → S be a closed embedding. Then for
any object F over S there exists a diagram of the form (i∗((Wi)+))i∈∆op

where Wi are smooth schemes over S and a simplicial weak equivalence
hocolimi∈∆opi∗((Wi)+)→ F .

Proof: Define a functor LresS : ∆opSpc•(Z) → ∆opSpc•(Z) and a natural
transformation LresS → Id in the same way as we did with Lres in the
proof of Lemma ?? but starting with smooth schemes of the form W ×S Z
for smooth quasi-projective schemes over S. Consider the composition

hocolimi∈∆opLresS(F )i → LresS(F )→ F

The first arrow is a simplicial weak equivalence by Lemma 1.13. To show that
the second one is a simplicial weak equivalence one uses the same argument
as in the proof of Lemma ?? together with Lemma 2.3.

Lemma 2.16 [clhoco] Let p : Z → S be a finite morphism and (Xi)i∈I a
small diagram over Z. There exists a natural (in X) isomorphism

Lp∗p∗hocolimi∈IXi → hocolimi∈ILp
∗p∗Xi

in the simplicial homotopy category over Z such that the diagram

Lp∗p∗hocolimi∈IXi → hocolimi∈ILp
∗p∗Xi

↓ ↙
hocolimi∈IXi

commutes.
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Proof: Consider the diagram

Lp∗p∗hocolimi∈IXi ← Lp∗hocolimi∈Ip∗(Xi) → hocolimi∈ILp
∗p∗(Xi)

↓ ↓ ↓
p∗p∗hocolimi∈IXi ← p∗hocolimi∈Ip∗(Xi) → hocolimi∈Ip

∗p∗(Xi)
↘ ↙

hocolimi∈IXi

The first upper horizontal arrow is the isomorphism of Corollary 2.2. The
second one is the isomorphism of Lemma 1.16. We define our isomorphism
as the compostion of the inverse to the first one with the second. To prove
commutativity of the triangle claimed in the lemma it is sufficient to prove
commutativity of three squares in the diagram above. The upper left one is
commutative since Lp∗ → p∗ is a natural transformation. The upper right
one by Lemma 1.16 and the lower one by Lemma 1.18.

To finish the proof of Proposition 2.14 consider the simplicial weak equiv-
alence hocolimi∈∆opi∗((Wi)+) → F constructed in Lemma 2.15. We have a
commutative square

Li∗i∗hocolimi∈∆opi∗((Wi)+) → Li∗i∗F
↓ ↓

hocolimi∈∆opi∗((Wi)+) → F

The upper horizontal arrow is a simplicial weak equivalence by [?, Prop.
3.1.27] and Lemma 1.10 and the lower horizontal one by construction. Thus
it is sufficient to show that the left vertical arrow is an A1-weak equivalence.
This follows from the first part of the proof, Lemma 2.16 and Lemma 1.12.

Corollary 2.17 [p3] Let F be an object over Z. Then the canonical mor-
phism Li∗i∗(F )→ i∗i∗(F ) is an A1-weak equivalence.

Proposition 2.18 [projform] Let i : Z → S be a closed embedding, F a
left admissible object over S and G a pointed simplicial sheaf over Z. Then
the morphism F ∧ i∗G → i∗(i

∗F ∧ G) defined by the adjunction and the
isomorphism of Lemma 1.3 is an A1-weak equivalence.
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Proof: Consider first the case when G = i∗F ′ for a left admissible object F ′

over S. We have the following commutative diagram of morphisms of sheaves

F ∧ (F ′/j#j
∗F ′) → F ∧ i∗i

∗F ′

↓ ↓
(F ∧ F ′)/(F ∧ j#j

∗F ′) i∗(i
∗F ∧ i∗F ′)

↓ ↓
(F ∧ F ′)/j#j

∗(F ∧ F ′) → i∗i
∗(F ∧ F ′)

where all the vertical arrows except for the upper right one are isomorphisms
for obvious reasons (Lemmas 1.3 and 1.4). The upper horizontal arrow is an
A1-weak equivalence by Theorem 2.13 and the lower one by Lemma 1.8 and
Theorem 2.13. Thus F ∧ i∗i∗F ′ → i∗(i

∗F ∧ i∗F ′) is an A1-weak equivalence.
To prove the case of an arbitrary G one uses Lemma 2.15, Corollary 2.2,
Lemma 1.12 and [?, Prop. 3.1.27].

Corollary 2.19 [p0] Let i : Z → S be a closed embedding, j : U → S
the complimentary open embedding and F a left admissible object over S.
Then the morphism F ∧ i∗(S

0) → i∗i
∗(F ) defined by the adjunction and

isomorphism of Lemma 1.3 is an A1-weak equivalence.

Proposition 2.20 [clbasechange] For a pull-back square

Z ′ fZ→ Z
i′ ↓ ↓i
S ′ fS→ S

such that i is a closed embedding and a left admissible F on Z the composition
Lf ∗

Si∗(F )→ f ∗
Si∗(F )→ i′∗f

∗
Z(F ) is an A1-weak equivalence.

Proof: Consider first the case when F = i∗G for a left admissible object G
over S. Then we have a diagram

Lf∗
S(G/j#j∗G) → f∗

S(G/j#j∗G) → f∗
S(G)/f∗

Sj#j∗G → f∗
S(G)/j′#(j′)∗f∗

S(G)

↓ ↓ ↓
Lf∗

Si∗i
∗(G) → f∗

Si∗i
∗(G) → i′∗f

∗
Z i∗G → i′∗(i

′)∗f∗
S(G)

where the left square is commutative because Lf ∗
S → f ∗

S is a natural trans-
formation and the commutativity of the right hexagon can be easily verified
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from definitions. The left vertical arrow is an A1-weak equivalence by The-
orem 2.13 and Lemma 1.10. The first upper horizontal arrow is a simplicial
weak equivalence by Lemma 1.7 and Lemma 1.11. Two other upper horizon-
tal arrows and the right lower horizontal one are isomorphisms for obvious
reasons. The right vertical arrow is an A1-weak equivalence by Theorem
2.13 and Lemma 1.7. Thus the composition of the first two lower horizontal
arrows is an A1-weak equivalence.

To prove the case of a general F one uses Lemma 2.15 in a way similar
to how it is used in the proof of Proposition 2.14.

Remark 2.21 It can be shown that in the notations of Proposition 2.20
the the morphism f ∗

Si∗(F ) → i′∗f
∗
Z is an isomorphism for any F but since

Lf ∗
Si∗(F ) → f ∗

Si∗(F ) is not generally a simplicial weak equivalence this has
little use.

3 Duality for smooth quasi-projective morphisms

3.1 Formulation of the main theorem

Definition 3.1 Let p : X → S be a smooth morphism. The dualizing object
of X over S is the pointed sheaf DX/S = (X ×S X)/(X ×S X − ∆(X))
considered over X with respect to the projection to the second component.

Note that by Lemma 2.9 the dualizing object can be written as DX/S =
(pr2)#∆∗(S

0) where pr2 : X ×S X → X is the projection to the second
component and ∆ : X → X ×S X is the diagonal.

Let p : X → S be a smooth morphism and p = p̄ ◦ j be a decomposition
of p such that j : X → X̄ is an open embedding and p̄ : X̄ → S is any
morphism. For any left admissible F over X we define a natural (in F )
morphism in the A1-homotopy category

βF = β
(j,p̄)
F : p̄∗p#(F )→ j#(F ∧DX/S)

as follows. Consider the following diagram

[dmain]

X ×S X
p′′→ X

j′ ↓
Γ

↙ ↓j
X ×S X̄

p′→ X̄
p̄′ ↓ ↓p̄
X

p→ S

(1)
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where both squares are Cartesian and Γ is the closed embedding of the graph
of j. We define βF as the morphism in theA1-homotopy category represented
by the following diagram of morphisms of pointed simplicial sheaves

Lp′#(p̄
′)∗F Lp′#j

′
#((p

′′)∗F ∧∆∗S
0)

↓ ↘ ↓ ↘
p̄∗p#(F ) Lp′#Γ∗F j#(F ∧DX/S)

where ∆ : X → X ×S X is the diagonal embedding and the morphisms are
given by:

1. the left vertical arrow is the composition Lp′#(p̄
′)∗F → p′#(p̄

′)∗F →
p̄∗p# where the second arrow is the isomorphism of Lemma 1.5 and the
first one is a simplicial weak equivalence by Lemmas 1.7 and 1.11;

2. the left slanted arrow is obtained by applying Lp′# to the morphism
adjoint to the ismorphism Γ∗(p̄′)∗ ∼= Id of Lemma 1.2;

3. the middle vertical arrow is obtained by applying Lp′# to the composi-
tion

j′#((p
′′)∗F ∧∆∗S

0)→ j′#(∆∗∆
∗((p′′)∗(F )))→ j′#∆∗F → Γ∗F

where the first arrow is an A1-weak equivalence by Corollary 2.19 and
Lemma ??, the second is the isomorphism of Lemma 1.2 and the third
is the isomorphism of Proposition 2.8;

4. the right slanted arrow is the composition

Lp′#j
′
#((p

′′)∗F ∧∆∗S
0) → p′#j

′
#((p

′′)∗F ∧∆∗S
0)

↓
j#p

′′
#((p

′′)∗F ∧∆∗S
0) → j#(F ∧DX/S)

where the first arrow is the canonical morphism, the second is an iso-
morphism of Lemma 1.2 and the third is the isomorphism of Lemma
1.5.

The following duality theorem is the main result of this paper.

Theorem 3.2 [main] For any smooth morphism p : X → S and any decom-
position p = p̄ ◦ j such that j : X → X̄ is an open embedding and p̄ : X̄ → S
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is a projective morphism there exists n ≥ 0 such that for any left admissible
F on X the n-th T-suspension of the morphism

δF : p#(F )→ Rp̄∗j#(F ∧DX/S)

adjoint to βF is an isomorphism in HA1(S).

Lemma 3.3 [bc] Consider a pull back diagram

X2
f ′′
→ X1

j2 ↓ ↓ j1

X̄2
f ′
→ X̄1

p̄2 ↓ ↓ p̄1

S2
f→ S1

where j1, j2 are open embeddings and p1 = p̄1◦j1, p2 = p̄2◦j2 are smooth mor-
phisms. Then for any left admissible F over X1 the diagram of morphisms
in HA1(X̄2)

(f ′)∗p̄∗1(p1)#(F ) → (f ′)∗(j1)#(F ∧DX1/S1)
↓ ↓

p̄∗2f
∗(p1)#(F ) (j2)#(f

′′)∗(F ∧DX1/S1)
↓ ↓

p̄∗2(p2)#(f
′′)∗(F ) → (j2)#((f

′′)∗(F ) ∧DX2/S2)

commutes.

Proof: ???

Consider a diagram of the form

X̄ ′

k

↗ ↓ q̄

X
j→ X̄
p

↘ ↓ p̄

S

18



and denote the composition p̄q̄ by r̄. Then for any left admissible F over X
we have a square of morphisms in HA1(S)

q̄∗p̄∗p#(F ) −→ r̄∗p#(F )
↓ ↓

q̄∗j#(F ∧DX/S) −→ k#(F ∧DX/S)
(2)

where the upper horizontal arrow is the isomorphism of Lemma 1.2, the left

vertical arrow is q̄∗(β
(j,p̄)
F ), the right vertical arrow is β

(j′,r̄)
F and the lower

horizontal arrow is β
(k,q̄)
(F∧DX/S)

.

Proposition 3.4 [long] The square 2 commutes.

Proof: Consider the diagrams of the form 1 for (j, p̄) and (k, r̄)

X ×S X
p′′→ X

j′ ↓
Γj

↙ ↓j
X ×S X̄

p′1→ X̄
p̄′ ↓ ↓p̄
X

p→ S

X ×S X
p′′→ X

k′ ↓
Γk

↙ ↓k
X ×S X̄ ′ p′2→ X̄ ′

r̄′ ↓ ↓r̄
X

p→ S

(3)

and the pull-back square

X ×S X̄ ′ p′2→ X̄ ′

q̄′ ↓ ↓ q̄′

X ×S X̄
p′1→ X̄

which connects them. We have:

q̄∗p̄∗p# −→ r̄∗p#
↑ 1 ↑

q̄∗(p′1)#(p̄
′)∗ ← (p′2)#(q̄

′)∗(p̄′1)
∗ → (p′2)#(r̄

′)∗

↑ 2 ↑ 3 ↑
q̄∗L(p̄′1)#(p̄

′)∗ ← L(p′2)#L(q̄
′)∗(p̄′)∗ → L(p′2)#(r̄

′)∗

↓ 4 ↓ 5 ↓
q̄∗L(p̄′1)#(Γj)∗ ← L(p′2)#L(q̄

′)∗(Γj)∗ → L(p′2)#(Γk)∗
↑ 6 ↑ 7 ↑

q̄∗L(p̄′1)#j′#((p′′)∗∧∆∗S0) ← L(p′2)#L(q̄′)∗j′#((p′′)∗∧∆∗S0) → L(p′2)#k′#((p′′)∗∧∆∗S0)

↓ 8 ↓
q̄∗j#p

′′
#((p

′′)∗ ∧∆∗S
0) −→ k#p

′′
#((p

′′)∗ ∧∆∗S
0)

↓ 9 ↓
q̄∗j#(F ∧DX/S) −→ k#(F ∧DX/S)
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where the left vertical side represents q̄∗(β
(j,p̄)
F ), the right vertical side repre-

sents β
(j′,r̄)
F , the upper horizontal one is the isomorphism of Lemma 1.2 and

the lower horizontal one is β
(k,q̄)
(F∧DX/S)

.

The horizontal arrows in squares 4 and 6 are given by the composition of
natural transformations

L(p′2)#L(q̄
′)∗ → (p′2)#L(q̄

′)∗ → q̄∗L(p̄′1)#

where the first one is a simplicial weak equivalence by Lemmas 1.7 and 1.11
and the second one is an isomorphism by Lemma 1.5. Since these are natural
transformations the squares 4 and 6 commute. The upper horizontal arrow in
square 2 is the base change isomorphism of Lemma 1.5 and the right vertical
one is the composition

L(p′2)#L(q̄
′)∗ → (p′2)#L(q̄

′)∗ → (p′2)#(q̄
′)∗

and this square commutes because the base change is a natural transfor-
mation. It follows that to prove the proposition it is sufficient to verify
commutativity of pentagon 1, squares 3,5,7, pentagon 8 and square 9.

Pentagon 1 is the coherence between the base change isomorphisms of
Lemma 1.5 and the composition isomorphisms of Lemma 1.2 (??). Square 3
commutes because L(p′2)# → (p′2)# is a natural transformation. Square 5 is
obtained by applying L(p′2)# to the diagram

L(q̄′)∗(p̄′)∗ → (q̄′)∗(p̄′)∗ → (r̄′)∗

↓ 5a ↓ 5b ↓
L(q̄′)∗(Γj)∗ → (q̄′)∗(Γj)∗ → (Γk)∗

where square 5a commutes because L(q̄′)∗ → (q̄′)∗ is a natural transforma-
tion. The upper horizontal arrow of square 5b is the isomorphism of Lemma
1.2. The lower horizontal one is the adjoint to the composition

Γ∗
k(q̄

′)∗(Γj)∗ → Γ∗
j(Γj)∗ → Id

where the first arrow is the isomorphism of Lemma 1.2 obtained from the
equality Γj = q̄′Γk and the second is the adjunction. The left vertical arrow
is obtained by applying (q̄′)∗ to the morphism adjoint to the isomorphism
Γ∗
j(p̄

′)∗ = Id of Lemma 1.2 and the right vertical one is the adjoint to the
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isomorphism Γ∗
kr̄

∗ = Id of Lemma 1.2. The commutativity of this square can
be seen from the following diagram of adjoint morphisms

Γ∗
k(q̄

′)∗(p̄′)∗ → Γ∗
j(p̄

′)∗

↓ ↓
Id

↘
Γ∗
k(q̄

′)∗(Γj)∗Γ
∗
j(p̄

′)∗ → Γ∗
j(Γj)∗Γ

∗
j(p̄

′)∗ → Γ∗
j(p̄

′)∗

↓ ↓ ↓
Γ∗
k(q̄

′)∗(Γj)∗ → Γ∗
j(Γj)∗ → Id

The left vertical side is by definition Γ∗
k of the left vertical arrow of square

5a and the lower horizontal side is the adjoint to the lower horizontal arrow
of square 5a. The composition of the upper horizontal arrow and the right
vertical arrow equals by Lemma 1.2 to the composition

Γ∗
k(q̄

′)∗(p̄′)∗ → Γ∗
k(r̄

′)∗ → Id

which is adjoint to the composition of the upper horizontal and right vertical
arrows of square 5a. The triangle commutes by definition of adjoints. The
right lower square because Γ∗

j(Γj)∗ → Id is a natural transformation. Two
left squares because Γ∗

k(q̄
′)∗ → Γ∗

j is a natural transformation. Square 7 is
obtained by applying L(p′2)# to the diagram

L(q̄′)∗(Γj)∗ → (q̄′)∗(Γj)∗ → (Γk)∗
↑ 7a ↑ 7b ↑

L(q̄′)∗j′#((p
′′)∗ ∧∆∗S

0) → (q̄′)∗j′#((p
′′)∗ ∧∆∗S

0) → k′
#((p

′′)∗ ∧∆∗S
0)

where the vertical arrows are taken from the definitions of β(j,p̄) and β(k,r̄).
The square on the left commute because L(q̄′)∗ → (q̄′) is a natural transfor-
mation. The right upper horizontal arrow was described in the context of

square 5 above and the lower right horizontal arrow is β
(k′,q̄′)
(p′′)∗F∧∆∗S0 . To prove

commutativity of square 7b observe first that (Γk)∗congk
′
∗∆∗ and thus it is

sufficient to prove commutativity of the square obtained from 7b by applying
(k′)∗....

Corollary 3.5 In the notations of the proposition the following square of
morphisms in HA1 commutes

p#(F )
δ
(j,p̄)
F−→ Rp̄∗j#(F ∧DX/S)

δ
(k,r̄)
F ↓ ↓

Rr̄∗k#(F ∧DX/S) → Rp̄∗Rq̄∗k#(F ∧DX/S)
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(here the right vertical arrow is Rp̄∗ of the composition j#(F ∧ DX/S) →
q̄∗k#(F ∧DX/S)→ Rq̄∗k#(F ∧DX/S) where the first arrow is the morphism

adjoint to ϵ
(k,q̄)
F∧DX/S

).

Proof: ???

For a pull-back square
X ′ q→ S ′

g ↓ ↓ f

X
p→ S

and any F over S ′ define a morphism Lp∗Rf∗(F ) → Rg∗Lq
∗(F ) in the

simplicial homotopy category over X by the following diagram

p∗Lres(f∗Rres(F ))← p∗Lres(f∗Rres(Lres(F )))→ p∗f∗(Rres(Lres(F )))→

→ g∗q
∗(Rres(Lres(F )))→ g∗Rres(q∗(Rres(Lres(F ))))← g∗Rres(q∗Lres(F ))

where the first left arrow is a simplicial weak equivalence by Lemmas 1.10
and 3.6 and the second left arrow is a simplicial weak equivalence by Lemmas
1.6 and 3.7.

Lemma 3.6 [l5d] For any morphism f : S1 → S2 and a simplicial (resp.
A1-) weak equivalence a : F → G over S2 the morphism Rf∗(a) is a simplicial
(resp. A1-) weak equivalence.

Lemma 3.7 [mix] For a left admissible object F over S the object Rres(F )
is left admissible.

Lemma 3.8 [smbc] Consider a pull-back square

X ′ q→ S ′

g ↓ ↓ f

X
p→ S

such that p is a smooth morphism. Then for any F over S ′ the morphism
p∗f∗(F )→ g∗q

∗(F ) defined by the adjunctions and Lemma 1.2 is an isomor-
phism.

Proof: ???
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Lemma 3.9 [n1] In the notations of Diagram 1 assume that p is an open
embedding. The for any F over X the morphism F → p∗p̄∗j#(F ) adjoint to

ϵ
(j,p̄)
F is an isomorphism.

Proof: ???

Lemma 3.10 [n11] In the notations of Lemma 3.9 the canonical morphism
p∗p̄∗j#(F )→ p∗Rp̄∗j#(F ) is a simplicial weak equivalence.

Proof: Consider the diagram

p∗p̄∗j#(F ) → p̄′∗(p
′)∗j#(F )

↓ ↓
p∗p̄∗Rres(j#(F )) → p̄′∗(p

′)∗Rres(j#(F ))

The horizontal arrows are ismorphisms by Lemma 3.8 and therefore it is suf-
ficient to check that the right vertical arrow is a simplicial weak equivalence.
Assume first that F is right admissible. Then (p′)∗j#(F ) = j′#(p

′′)∗(F ) =
j′′∗ (p

′′)∗(F ) is right admissible by Lemma 3.13, (p′)∗Rres(j#(F )) is right ad-
missible by Lemma 3.12 and the morphism (p′)∗j#(F ) → (p′)∗Rres(j#(F ))
is a simplicial weak equivalence. Thus the right vertical arrow is a simplicial
weak equivalence in this case by Lemma 3.11. On the other hand the mor-
phism p̄′∗(p

′)∗j#(F ) → p̄′∗(p
′)∗j#(Rres(F )) is a simplicial weak equivalence

since p̄′∗(p
′)∗j# ∼= Id and the morphism p̄′∗(p

′)∗Rres(j#(F ))→ p̄′∗(p
′)∗Rres(j#(Rres(F )))

is a simplicial weak equivalence because j# preserves simplicial weak equiv-
alences by [?, Prop. 3.1.26], (p′)∗ takes right admissible objects to right
admissible objects by Lemma 3.12 and p̄′∗ preserves simplicial weak equiva-
lences bewteen right admissible objects by Lemma 3.11.

Lemma 3.11 [l6d] Let a : F → G be a simplicial (resp. A1-) weak equiva-
lence of right admissible objects over S. Then for any morphism f : S ′ → S
the morphism f∗(a) is a simplicial (resp. A1-) weak equivalence.

Lemma 3.12 [rtsm] Let F be a right admissible object and f : S ′ → S be
a smooth morphism. Then f ∗(F ) is right admissible.

Lemma 3.13 [l7d] Let F be a right admissible object. Then for any mor-
phism f : S ′ → S the object f∗(F ) is right admissible.
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Lemma 3.14 [n2] In the notations of Lemma 3.9 let i : Z → S be the
reduced closed subscheme S− p(X) of S. Assume that for any F over X̄ the
base change morphism Li∗Rp̄∗(F ) → R(p̄Z)∗L(i

′)∗(F ) associated with the
pull-back square

Z ′ i′→ X̄
p̄Z ↓ ↓ p̄

Z
i→ S

is an A1-weak equivalence. Then for any left admissible F the first simplicial
suspension of the composition p#(F )→ p̄∗j#(F )→ Rp̄∗j#(F ) where the first

arrow is the morphism adjoint to ϵ
(j,p̄)
F is an A1-weak equivalence.

Proof: Consider the diagram

p#p
∗p#(F ) → p#p

∗p̄∗j#(F ) → p#p
∗Rp̄∗j#(F )

↓ ↓ ↓
p#(F ) → p̄∗j#(F ) → Rp̄∗j#(F )

where the upper line is obtained from the lower one by applying functor p#p
∗

and the vertical arrows come from the natural transformation p#p
∗ → Id.

The left vertical arrow is an isomorphism by Proposition 2.5(2) and the
composition of the inverse with the left upper horizontal arrow is p# of the
isomorphism of Lemma 3.9. The right upper horizontal arrow is a simplicial
weak equivalence by Lemma 3.10 and [?, Prop. 3.1.26]. It remains to show
that the first simplicial suspension of the right vertical arrow is an A1-weak
equivalence.

By [?, Prop. 3.1.26] and [?, Cor. 3.1.24] the functor p#p
∗ preserves

simplicial weak equivalences. Thus it is sufficient to prove that the first
simplicial suspension of the morphism p#p

∗LresRp̄∗j#(F )→ LresRp̄∗j#(F )
is an A1-weak equivalence. By Theorem 2.13 the canonical morphism

LresRp̄∗j#(F )/p#p
∗LresRp̄∗j#(F )→ i∗i

∗LresRp̄∗j#(F )

is an A1-weak equivalence. This by Lemma 3.15 it is sufficient to show that
the right hand side is A1-weakly equivalent to pt.

By the assumption of the Lemma there exists an isomorphism in the
A1-homotopy category of the form

i∗i
∗LresRp̄∗j#(F )→ i∗R(p̄Z)∗L(i

′)∗j#(F )
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By Lemma 1.7 j#(F ) is left admissible and thus the canonical morphism
L(i′)∗j#(F ) → (i′)∗j#(F ) is a simplicial weak equivalence. By Lemma 1.5
(i′)∗j#(F ) = pt since X ×X̄′ Z ′ = ∅. Lemma is proven.

Lemma 3.15 [cone] Let i : F → G be a monomorphism such that the
canonical morphism G/F → pt is an A1-weak equivalence. Then the first
simplicial suspension IdS1

s
∧ i is an A1-weak equivalence.

Proof: ???
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