
1 Duality for smooth quasi-projective morphisms

1.1 Basics

We will need several simple lemmas about the functorial behavior of pointed
simplicial sheaves on the categories of smooth schemes over a base with Nis-
nevich topology. Many of them have well known analogs for sheaves on
“small” sites but we often have to give quite differnet proofs. The main rea-
son for most of the differences is that for sheaves on smooth sites stalks and
inverse images do not commute i.e. Theorem 3.2(a) of [?] fails to be true.

Everywhere below we work in the context of pointed sheaves of sets on
(Sm/S)Nis which we call pointed spaces. The category of pointed spaces
over S is denoted Spc•(S) and the category of pointed simplicial spaces by
∆opSpc•(S). This is a pointed category which has all small products and
coproducts. Its initial/final object is denoted by pt and the direct sums
by ∨αFα. The smash product F ∧ G of two pointed simplicial sheaves is
given by the usual formula ([?, ]) and satisfies the standard associativity
and commutativity conditions. The unit object of the symmetric monoidal
structure defined by ∧ is denoted S0.

For any morphism of schemes f : S1 → S2 we have the inverse image
functor f ∗ which is caracterized by the properties that it commutes with
colimits and that for a smooth scheme X over S2 one has f ∗(X+) = (X ×S2

S1)+. It has the right adjoint called the direct image functor f∗. For smooth
morphisms f the functor of inverse image also has the left adjoint f# (see [])
such that for a smooth scheme X over S1 one has f#(X+) = X+ where on
the right side of the equality X is considered as a smooth scheme over S2.

Remark 1.1 [forgetful]Functors of all three types commute with the func-
tor of free base point F 7→ F+ from spaces to pointed spaces. Functors f ∗

and f∗ also commute with the forgetful functor from pointed spaces to spaces
but functors f# do not. If we denote the forgetful functor by ϕ then for a
smooth morphism f : S1 → S2 and a pointed space F over S1 one has a
push-forward square of spaces of the form

S1 → f#(ϕ(F ))
↓ ↓
S2 → ϕ(f#(F ))

The following lemmas can be seen directly from definitions.
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Lemma 1.2 [l0] For a composable pair of morphisms S1
f→ S2

g→ S3 there
is a canonical ismorphism (g ◦ f)∗ = f ∗ ◦ g∗ and for a composable triple the
usual square commutes.

By adjunction the isomorphisms of Lemma ?? define isomorphisms (g◦f)∗ =
g∗ ◦ f∗ and for smooth f, g isomorphisms (g ◦ f)# = g# ◦ f#.

Lemma 1.3 [l1] For any f : S1 → S2 and any F,G over S2 there is a
canonical isomorphism f ∗(F ∧G) = f ∗(F ) ∧ f ∗(G).

Lemma 1.4 [l2] For any smooth morphism f : S1 → S2 any F over S1 and
G over S2 the morphism f#(F ∧ f ∗G)→ f#F ∧G defined by the adjunctions
and the isomorphisms of Lemma ?? is an isomorphism.

Lemma 1.5 [l3] For any pull-back square

S ′
1

f1→ S1

p′ ↓ ↓ p
S ′
2

f2→ S2

such that p is smooth and any F over S the morphism p′#f
∗
1 (F )→ f ∗

2 p#(F )
defined by the adjunctions and the isomorphism of Lemma ?? is an isomor-
phism.

In general neither of the three types of functors considered above preserve
simplicial or A1-weak equivalences. In order to define the (left) derived
functors for f ∗ and f# we need the following construction.

[ladm] An object is called left admissible if it is admissible with respect
to all f ∗’s and f#’s.

Lemma 1.6 [l6] Let a : F → G be a simplicial (resp. A1-) weak equivalence
of left admissible objects over S. Then for any morphism f : S ′ → S the
morphism f ∗(a) is a simplicial (resp. A1-) weak equivalence and for any
smooth morphism f : S → S ′ the morphism f#(a) is a simplicial (resp. A1-)
weak equivalence.

Lemma 1.7 [l7] Let F be a left admissible object. Then for any morphism
f : S ′ → S the object f ∗(F ) is left admissible and for any smooth morphism
f : S → S ′ the object f#(F ) is left admissible.

2



Lemma 1.8 [admsm] Let F and G be left admissible objects. Then F ∧G
is left admissible.

Lemma 1.9 [lres] For any S there exists a functor Lres : ∆opSpc• →
∆opSpc• called the left resolution functor and a natural transformation Lres→
Id such that the following two conditions hold:

1. for any F the terms of the simplicial space Lres(F ) are direct sums of
pointed spaces of the form U+ for smooth quasi-projective schemes U
over S.

2. for any F and any smooth quasi-projective scheme U over S the mor-
phism of simplicial sets Lres(F )(U)→ F (U) is a trivial Kan fibration.

Proof: ???

We define the left derived functors of f ∗ and f# setting Lf ∗ = f ∗ ◦Lres and
Lf# = f# ◦ Lres.

Lemma 1.10 [l5] For any morphism f : S1 → S2 and a simplicial (resp.
A1-) weak equivalence a : F → G over S2 the morphism Lf ∗(a) is a simplicial
(resp. A1-) weak equivalence.

For a smooth morphism f : S1 → S2 and a simplicial (resp. A1-) weak
equivalence a : F → G over S1 the morphism Lf#(a) is a simplicial (resp.
A1-) weak equivalence.

Proof: ???

Lemma 1.11 [l51] For any morphism f : S1 → S2 and a left admissible
object F over S2 the morphism Lf ∗(F )→ f ∗(F ) is a simplicial weak equiv-
alence.

For a smooth morphism f : S1 → S2 and a left admissible object F over
S1 the morphism Lf#(F )→ f#(F ) is a simplicial weak equivalence.

We will need to know how functors Lf ∗ and Lf# behave with respect to
homotopy colimits. Let us recall the definition of homotopy colimits first.
Let I be a small category and X : I → ∆opSpc• a diagram of pointed
(simplicial) spaces indexed by I. For i ∈ I one usually denotes X(i) by Xi.
Let I/i be the category of objects in I over i (i.e. the category of arrows
which end in i) and let Nerv(I/i) be the nerve of I/i i.e. the simplicial set
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whose n-simplexes are composable sequences of arrows in I/i of length n.
For any morphism γ : i → i′ in I we have a functor I/i′ → I/i and thus
a morphism of simplicial sets Nγ : Nerv(I/i′) → Nerv(I/i). Following [,
p.328] one defines the homotopy colimit hocolimi∈IXi as the coequalizer of
two morphisms ∨

γ:i→i′
Nerv(I/i′)+ ∧Xi

→→
∨
i

Nerv(I/i)+ ∧Xi

where the first arrow is given onNerve(I/i′)+∧Xi by Id∧X(γ), the second by
N(γ)+∧Id and simplicial sets are considered as constant simplicial sheaves in
the usual manner. The following three lemmas describe the main properties
of this construction.

Lemma 1.12 [hocolim0] Let X, Y : I → Spc• be two diagrams of pointed
simplicial spaces and a : X → Y a morphism such that for any i ∈ I the
morphism ai : Xi → Yi is a simplicial (resp. A1-) weak equivalence. Then
the morphism hocolim(a) is a simplicial (resp. A1-weak equivalence).

Proof: For the simplicial case see [?, Cor. 2.1.21]. For the A1-case see [?,
Lemma 2.2.12].

The folloing two lemma are immediate corollaries of the corresponding results
for simplicial sets proven in [, Ch.XII, §3].

Lemma 1.13 [hocolim1] Let X : ∆op → ∆opSpc• be a pointed bisimplicial
space. Then there is a canonical simplicial weak equivalence hocolim∆op(X)→
diag(X) where diag(X) is the diagonal simplicial space of X. In particular
for any pointed simplicial space considered as a functor X : ∆op → Spc• ⊂
∆opSpc• there is a canonical simplicial weak equivalence hocolim∆opXn → X
where Xn are the pointed spaces of n-simplexes of X.

Lemma 1.14 [hocolim2] For a pushforward square

A
i→ X

↓ ↓
B → Y

such that i is a monomorphism, the canonical map hocolim(
A

i→ X

↓

B

)→ Y

is a simplicial weak equivalence.
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Since the functor of inverse image is a left adjoint it commutes with colimits
which immediately implies that for any small diagram (Xi)i∈I we have a
canonical isomorphism i∗hocolimIXi → hocolimIi

∗(Xi).

Lemma 1.15 [hocolim3] For any small diagram (Xi)i∈I over S such that
Xi are left admissible hocolimi∈IXi is left admissible.

Proof: ???

Lemma 1.16 [Lho] For any morphism f : S ′ → S and any small diagram
(Xi)i∈I over S there is a natural (in X) isomorphism in the simplicial ho-
motopy category Hs(S

′) of the form

Lf ∗(hocolimi∈IXi)→ hocolimi∈ILf
∗(Xi)

such that the following square commutes

Lf ∗(hocolimi∈IXi) → hocolimi∈ILf
∗(Xi)

↓ ↓
f ∗(hocolimi∈IXi) → hocolimi∈Ii

∗(Xi)

Proof: Recall that Lf ∗ = f ∗ ◦ Lres and consider the diagram

f ∗Lres(hci∈I(Lres(Xi))) → f ∗hci∈I(Lres(Xi)) → hci∈If
∗Lres(Xi)

↓ ↓ ↓
f ∗Lres(hci∈IXi) → f ∗(hci∈IXi) → hci∈Ii

∗(Xi)

where we abbreviated hocolim to hc. The left vertical arrow is a simplicial
weak equivalence by Lemmas ?? and ??, the first upper horizontal one is
a simplicial weak equivalence by Lemmas ?? and ?? and the second is the
canonical isomorphism. We define our isomorphism as the composition of the
inverse to the left vertical arrow with the upper horizontal ones. It is clearly
natural with respect to morphisms of diagrams. To prove commutativity of
the square it is sufficient to show that the two squares of the diagram from
above are commutative. The first one is commutative since Lres → Id is
a natural transformation of functors and the second one since f ∗hci∈I →
hci∈If

∗ is a natural transformation of functors.

Lemma 1.17 [constproj] For any morphism f : S ′ → S one has:
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1. For any family (Fi)i∈I of pointed objects over S ′ the canonical morphism
∨if∗(Fi)→ f∗(∨iFi) is an isomorphism. In particular f∗(pt) = pt.

2. For any object F over S ′ and any pointed simplicial set K the morphism
K∧f∗(F )→ f∗(K∧F ) defined by the adjunction and the isomorphism
of Lemma ?? is an isomorphism.

Proof: ???

Let f : S ′ → S be any morphism and (Xi)i∈I a diagram over S ′. Define
the canonical morphism hocolimi∈If∗(Xi)→ f∗hocolimi∈IXi by the commu-
tative diagram∨

γ:i→i′ Nerv(I/i′)+ ∧ p∗(Xi)
→→

∨
iNerv(I/i)+ ∧ p∗(Xi) → hcip∗(Xi)

↓ ↓ ↓
p∗(

∨
γ:i→i′ Nerv(I/i′)+ ∧Xi)

→→ p∗(
∨

iNerv(I/i)+ ∧Xi) → p∗(hciXi)

where the left and the middle vertical arrows are compositions of isomor-
phisms from Lemma ??(1) and ??(2) and where we abbreviated hocolim to
hc.

Lemma 1.18 [adcom] For any small diagram (Xi)i∈I over S ′ the square of
canonical morphisms and adjunctions

f ∗hocolimi∈If∗(Xi) → hocolimi∈If
∗f∗(Xi)

↓ ↓
f ∗f∗hocolimi∈IXi → hocolimi∈IXi

commutes.

So far we were able to avoid mentioning “stalks” of sheaves on (Sm/S)Nis

but some of the proofs below require their use. Let X be a smooth scheme
over S and x be a point of the Zariski topological space of X. To any such
pair we can assign a point F 7→ F(X,x) of the site (Sm/S)Nis setting

F(X,x) = colim(U,u)→(X,x)F (U)

where the colimit is taken over the category of all diagrams of the form

U
u ↗ ↓

Spec(kx)
x→ X
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with U → X being etale. One verifies easily that this is indeed a point i.e.
that the functor (−)(X,x) : Shv((Sm/S)Nis) → Sets commutes with both
limits nd colimits. One can also verify that the set of points corresponding
to all the pairs (X, x) where X runs through smooth quasi-projective (or
affine) schemes over S is a “sufficient” set of points i.e. that the following
lemma holds.

Lemma 1.19 [points0] A morphism f : F → G of sheaves on (Sm/S)Nis

is an isomorphism (rep. a monomorphism, an epimorphism) if and only if
for any smooth quasi-projective X over S and any point x of X the corre-
sponding map of pointed sets F(X,x) → G(X,x) is an isomorphism (resp. a
monomorphism, an epimorphism).

The main difference between smooth sites and small sites is that for a closed
embedding i : Z → S and a sheaf F on S one has (i∗F )(Z,z) ̸= F(S,i(z)).
Indeed if F = X+ for a smooth scheme X over S we have

(i∗F )(Z,z) = HomS(Spec(Oh
Z,z), X)+

and
F(S,i(z)) = HomS(Spec(Oh

S,i(z)), X)+

Note that if X is etale over S these two sets are the same which is the reason
for the equality (i∗F )(Z,z) = F(S,i(z)) on small sites.

Lemma 1.20 [stfin] Let f : S ′ → S be a finite morphism and F a sheaf on
S ′. Then for any (X, x) over S there is a canonical isomorphism

f∗(F )(X,x) =
∏

x′∈X′
Zar, pr(x

′)=x

F(X′,x′)

where X ′ = X ×S S ′ and pr : X ′ → X is the projection.

Proof: ???

Lemma 1.21 [stet] Let f : S ′ → S be an etale morphism and F a sheaf on
S ′. Then for any (X, x) over S there is a canonical isomorphism

f#(F )(X,x) =
∨
x′
F(X′,x′)

where X ′ = X ×S S ′ and the sum is taken over the points x′ such that
pr(x′) = x and the morphism Spec(kx′)→ Spec(kx) is an isomorphism.

Proof: ???
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1.2 The gluing theorem and its corollaries

Let i : Z → S be a closed embedding and j : U → S the complimentary
open one. In this section we consider the A1-homotopy theoretical analogs
of the classical results relating sheaves on S, Z and U . For pointed sheaves
of sets on small sites the standard picture can be summarized as follows:

1. for any sheaf F on Z the adjunction i∗i∗(F )→ F is an isomorphism

2. for any sheaf F on U the adjunction F → j∗j#(F ) is an isomorphism

3. for any sheaf F on S the adjunctions j#j
∗(F ) → F and F → i∗i

∗(F )
fit into a pushforward square

j#j
∗(F ) → F
↓ ↓
pt → i∗i

∗(F )

These facts have two important corollaries:

1. Projection formula: for a sheaf F on Z and sheaf G on S the morphism
F ∧ i∗(G)→ i∗(i

∗F ∧G) is an isomorphism

2. Base change: for a pull-back square

Z ′ fZ→ Z
i′ ↓ ↓i
S ′ fS→ S

and a sheaf F on Z the morphism f ∗
Si∗(F )→ i′∗f

∗
Z is an isomorphism

Proposition 1.22 [nd1] Let p : Z → S be a finite morphism. Then the
functor of direct image p∗ is right exact i.e. for any diagram (Xi)i∈I over Z
the canonical morphism colimi∈Ip∗(Xi)→ p∗(colimi∈IXi) is an isomorphism.

Proof: Follows from Lemmas ?? and ??.

Corollary 1.23 [dirhc] Let p : Z → S be a finite morphism. Then for
any diagram (Xi)i∈I over Z the canonical morphism hocolimi∈Ip∗(Xi) →
p∗hocolimi∈IXi is an isomorphism.
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Proof: Follows from Proposition ?? and the definition of the canonical mor-
phism hocolimi∈Ip∗(Xi)→ p∗hocolimi∈IXi.

Lemma 1.24 [closed2] Let i : Z → S be a closed embedding and X → Z a
smooth scheme over Z. Then there exist a finite Zariski covering X = ∪Vi,
smooth schemes Wi over S and isomorphisms Vi

∼= Wi ×S Z over Z.

Proof: We may assume that S = Spec(R) and Z = Spec(Q) are affine. By
[?, Prop. 3.24(b)] we can find a covering X = ∪Vi such that Vi are etale over
An

Z . By [?, Th. 3.4] we can further choose Vi’s such that

Vi = Spec((Ai[T ]/Pi)[1/bi]), A = Q[x1, . . . , xn][1/fi]

and P ′
i is a unit in (Ai[T ]/Pi)[1/bi]. Let f̃i be a lifting of fi to an element in

R, P̃i a lifting of Pi to an element in R[x1, . . . , xn][T ] and b̃i a lifting of bi to
an element of R[x1, . . . , xn][T ]. Set Wi = Spec(Ãi[T ]/P̃i[1/b̃i, 1/P̃

′
i ]) where

Ãi = R[x1, . . . , xn](1/f̃i). Then Wi is etale over Spec(Ãi) (by [?, Example
3.4]) and thus smooth over S and Wi ×S Z ∼= Vi by construction.

Lemma 1.25 [nd2] Let i : Z → S be a closed embedding. Then for any G
over S the adjunction G→ i∗i

∗(G) is an epimorphism.

Proof: Any pointed space G over S is a colimit of a digram of spaces of the
form (Xi)+ where Xi are smooth schemes over S. The functor i∗ commutes
with colimits because it is a left adjoint and i∗ commutes with colimits by
Lemma ??. Thus it is sufficient to show thatX+ → i∗i

∗X+ is an epimorphism
for a smooth scheme X over S. For any smooth U over S sections of i∗i

∗(X+)
over U are just sections of X×SU → U over the closed subscheme Z×SU →
U . Since X is smooth over S for any such section locally (in the Nisnevich
topology) extends to a section over U .

Proposition 1.26 [p1] Let i : Z → S be a closed embedding and j : U → S
the complimentary open embedding. Then one has:

1. for any object F over Z the adjunction i∗i∗(F )→ F is an isomorphism

2. for any object F over U the adjunction F → j∗j#(F ) is an isomorphism

Proof: By Lemma ?? any smooth scheme over Z has a Zariski covering
by smooth schemes which come from S. Thus any pointed space over Z
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is a colimit of pointed spaces of the form i∗((Wα)+) where Wα are smooth
schemes over S. The functor i∗ commutes with colimits because it is a left
adjoint and i∗ commutes with colimits by Lemma ??. Thus it is sufficient to
prove that i∗i∗i

∗G→ i∗G is an isomorphism for any G over S. Since i∗ and
i∗ are adjoint functors the composition i∗G→ i∗i∗i

∗G→ i∗G where the first
arrow is i∗(G → i∗i

∗G) is identity. On the other hand the first arrow is an
epimorphism by Lemma ??. Therefore both arrows are isomorphisms.

To prove the second claim represent F as a colimit of a diagram of rep-
resentable sheaves. Both j∗ and j# are left adjoints and therefore commute
with colimits. Thus it is sufficient to verify the case F = X+ where X is
a smooth scheme over U . By construction of j# we have j#(X+) = X+

where on the right hand side X is considered as a smooth scheme over S and
j∗j#(X+) = X×SU . Our claim follows now from the fact that the projection
X ×S U → X is an isomorphism.

Let j∗j# → Id be the natural transformation inverse to the isomorphism
of Proposition ??(2). By adjunction it defines a natural transformation j# →
j∗. One can immediately verify the following fact.

Lemma 1.27 [ves] Let j : U → S be an open embedding such that j(U) is
a connected component of S. Then j# → j∗ is an isomorphism.

Let now p : U → S be an etale morphism. Define a natural transformation
p# → p∗ as the adjoint to the natural transformation p∗p# → Id given by
the composition

p∗p#(F ) = (pr2)#pr
∗
1(F )→ (pr2)#∆∗(F ) ∼= (pr2)#∆#(F ) ∼= F

where the first arrow is the isomorphism of Lemma ?? for the square

U ×S U
pr1→ U

pr2↓ ↓
U → S

the second is obtained from the composition pr∗1(F )→ ∆∗∆
∗pr∗1(F ) ∼= ∆∗(F )

where ∆ : U → U ×S U is the diagonal and the third is the isomorphism of
Lemma ??.

Proposition 1.28 [l4] Let iU : Z → U be a closed embedding and p : U → S
an etale morphism such that the composition iS = p◦ iU is again a closed em-
bedding. Then for any F over Z the composition p#(iU)∗(F )→ p∗(iU)∗(F ) =
(iS)∗(F ) is an isomorphism.
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Proof: Follows from Lemmas ??, ?? and ??.

Proposition 1.29 [clconst] Let i : Z → S be a closed embedding and j :
U → S the complimentary open embedding. For any pointed simplicial set
K considered as an object over S the canonical square

j#j
∗(K) → K
↓ ↓
pt → i∗i

∗(K)

is a push-forward square.

Proof: It follows from Lemmas ??, ?? and ??.

Example 1.30 The statements of Propositions ?? and ??(1) would be false
if we considered the category Sm/S with Zariski topology instead of the
Nisnevich one. Let S be the spectrum of a local non-henselian ring and
i : Spec(k) → S the embedding of the closed point. Let further U → S be
a local scheme etale over S such that U ×S Spec(k) =

⨿n
i=1 Ui where Ui are

connected and n > 1. Then S0(U) = S0 and i∗i
∗(S0)(U) = ∨n

i=1S
0 and thus

the morphism S0 → i∗i
∗(S0) is not an epimorphism.

In the following examples S = Spec(A) is the spectrum of a henselian local
ring A and i : Z → S is the embedding of the closed point Z = Spec(A/m).

Example 1.31 [noncocart]Consider the pointed sheaf of sets (A1, 0) on
(Sm/S)Nis. Then the square

j#j
∗(F ) → F
↓ ↓
pt → i∗i

∗(F )

is not a pushforward square. Indeed j#j
∗(F )(S) = pt, (F/j#j

∗(F ))(S) = A
and i∗i

∗(F )(S) = A/m.

Example 1.32 [nonbf]An explicit computation shows that for S and Z as
above one has Li∗i∗(A

1, 0) ∼= (A1, 0)×BsimplGa i.e. the canonical morphism
Li∗i∗(F )→ F is not a simplicial weak equivalence for general F .
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Theorem 1.33 [gluing] Let i : Z → S be a closed embedding, j : U → S
the complimentary open embedding and F a left admissible object over S.
Then the square

j#j
∗(F ) → F
↓ ↓
pt → i∗i

∗(F )

is A1-homotopy cocartesian i.e. the canonical morphism F/j#j
∗(F )→ i∗i

∗(F )
is an A1-weak equivalence.

Proof: This is the pointed version of [?, Th. 3.2.21]. One can verify it using
Remark ??.

Proposition 1.34 [p2] Let F be an object over Z. Then the composition
Li∗i∗(F )→ i∗i∗(F )→ F is an A1-weak equivalence.

Proof: Let us consider first the case when F = i∗G for a left admissible
object G over S. Consider the commutative diagram

i∗Lres(G/j#j
∗G) → i∗Lres(i∗i

∗G)
↓ ↓

i∗(G/j#j
∗G) → i∗i∗i

∗G
↘ ↓

i∗G

We have to show that the composition of the right vertical arrows is an A1-
weak equivalence. By Theorem ?? the canonical morphism G/j#j

∗(G) →
i∗i

∗(G) is an A1-weak equivalence. Thus by Lemma ?? the upper horizontal
arrow is an A1-weak equivalence. By Lemma ?? and our definition of left
admissible objects the left hand side is left admissible. Thus by Lemma ?? the
left vertical arrow is a simplicial weak equivalence. The composition of the
slanted arrow with the canonical morphism i∗G → i∗(G/j#j

∗G) is identity
by the definition of adjoint functors. This morphism is an isomorphism since
i∗ commutes with coproducts and i∗j# = pt by Lemma ?? and thus the
slanted arrow is an isomorphism which finishes the proof for F of the form
i∗G.
To prove the proposition for all F we need the following two lemmas.

Lemma 1.35 [closed3] Let i : Z → S be a closed embedding. Then for
any object F over S there exists a diagram of the form (i∗((Wi)+))i∈∆op
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where Wi are smooth schemes over S and a simplicial weak equivalence
hocolimi∈∆opi∗((Wi)+)→ F .

Proof: Define a functor LresS : ∆opSpc•(Z) → ∆opSpc•(Z) and a natural
transformation LresS → Id in the same way as we did with Lres in the
proof of Lemma ?? but starting with smooth schemes of the form W ×S Z
for smooth quasi-projective schemes over S. Consider the composition

hocolimi∈∆opLresS(F )i → LresS(F )→ F

The first arrow is a simplicial weak equivalence by Lemma ??. To show that
the second one is a simplicial weak equivalence one uses the same argument
as in the proof of Lemma ?? together with Lemma ??.

Lemma 1.36 [clhoco] Let p : Z → S be a finite morphism and (Xi)i∈I a
small diagram over Z. There exists a natural (in X) isomorphism

Lp∗p∗hocolimi∈IXi → hocolimi∈ILp
∗p∗Xi

in the simplicial homotopy category over Z such that the diagram

Lp∗p∗hocolimi∈IXi → hocolimi∈ILp
∗p∗Xi

↓ ↙
hocolimi∈IXi

commutes.

Proof: Consider the diagram

Lp∗p∗hocolimi∈IXi ← Lp∗hocolimi∈Ip∗(Xi) → hocolimi∈ILp
∗p∗(Xi)

↓ ↓ ↓
p∗p∗hocolimi∈IXi ← p∗hocolimi∈Ip∗(Xi) → hocolimi∈Ip

∗p∗(Xi)
↘ ↙

hocolimi∈IXi

The first upper horizontal arrow is the isomorphism of Corollary ??. The
second one is the isomorphism of Lemma ??. We define our isomorphism
as the compostion of the inverse to the first one with the second. To prove
commutativity of the triangle claimed in the lemma it is sufficient to prove
commutativity of three squares in the diagram above. The upper left one is
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commutative since Lp∗ → p∗ is a natural transformation. The upper right
one by Lemma ?? and the lower one by Lemma ??.

To finish the proof of Proposition ?? consider the simplicial weak equiva-
lence hocolimi∈∆opi∗((Wi)+) → F constructed in Lemma ??. We have a
commutative square

Li∗i∗hocolimi∈∆opi∗((Wi)+) → Li∗i∗F
↓ ↓

hocolimi∈∆opi∗((Wi)+) → F

The upper horizontal arrow is a simplicial weak equivalence by [?, Prop.
3.1.27] and Lemma ?? and the lower horizontal one by construction. Thus
it is sufficient to show that the left vertical arrow is an A1-weak equivalence.
This follows from the first part of the proof, Lemma ?? and Lemma ??.

Corollary 1.37 [p3] Let F be an object over Z. Then the canonical mor-
phism Li∗i∗(F )→ i∗i∗(F ) is an A1-weak equivalence.

Proposition 1.38 [projform] Let i : Z → S be a closed embedding, F a
left admissible object over S and G a pointed simplicial sheaf over Z. Then
the morphism F ∧ i∗G → i∗(i

∗F ∧ G) defined by the adjunction and the
isomorphism of Lemma ?? is an A1-weak equivalence.

Proof: Consider first the case when G = i∗F ′ for a left admissible object F ′

over S. We have the following commutative diagram of morphisms of sheaves

F ∧ (F ′/j#j
∗F ′) → F ∧ i∗i

∗F ′

↓ ↓
(F ∧ F ′)/(F ∧ j#j

∗F ′) i∗(i
∗F ∧ i∗F ′)

↓ ↓
(F ∧ F ′)/j#j

∗(F ∧ F ′) → i∗i
∗(F ∧ F ′)

where all the vertical arrows except for the upper right one are isomorphisms
for obvious reasons (Lemmas ?? and ??). The upper horizontal arrow is an
A1-weak equivalence by Theorem ?? and the lower one by Lemma ?? and
Theorem ??. Thus F ∧i∗i∗F ′ → i∗(i

∗F ∧i∗F ′) is an A1-weak equivalence. To
prove the case of an arbitrary G one uses Lemma ??, Corollary ??, Lemma
?? and [?, Prop. 3.1.27].
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Corollary 1.39 [p0] Let i : Z → S be a closed embedding, j : U → S
the complimentary open embedding and F a left admissible object over S.
Then the morphism F ∧ S+/U+ → i∗i

∗(F ) defined by the adjunction and
isomorphism of Lemma ?? is an A1-weak equivalence.

Proof: This morphism has a decomposition of the form

F ∧ S+/U+ → F ∧ i∗(S
0)→ i∗(i

∗F ∧ S0) ∼= i∗i
∗(F )

where the first arrow is an isomorphism by Lemma ?? and the second is an
A1-weak equivalence by Proposition ??.

Proposition 1.40 [clbasechange] For a pull-back square

Z ′ fZ→ Z
i′ ↓ ↓i
S ′ fS→ S

such that i is a closed embedding and a left admissible F on Z the composition
Lf ∗

Si∗(F )→ f ∗
Si∗(F )→ i′∗f

∗
Z(F ) is an A1-weak equivalence.

Proof: Consider first the case when F = i∗G for a left admissible object G
over S. Then we have a diagram

Lf∗
S(G/j#j∗G) → f∗

S(G/j#j∗G) → f∗
S(G)/f∗

Sj#j∗G → f∗
S(G)/j′#(j′)∗f∗

S(G)

↓ ↓ ↓
Lf∗

Si∗i
∗(G) → f∗

Si∗i
∗(G) → i′∗f

∗
Z i∗G → i′∗(i

′)∗f∗
S(G)

where the left square is commutative because Lf ∗
S → f ∗

S is a natural trans-
formation and the commutativity of the right hexagon can be easily verified
from definitions. The left vertical arrow is an A1-weak equivalence by The-
orem ?? and Lemma ??. The first upper horizontal arrow is a simplicial
weak equivalence by Lemma ?? and Lemma ??. Two other upper horizontal
arrows and the right lower horizontal one are isomorphisms for obvious rea-
sons. The right vertical arrow is an A1-weak equivalence by Theorem ?? and
Lemma ??. Thus the composition of the first two lower horizontal arrows is
an A1-weak equivalence.

To prove the case of a general F one uses Lemma ?? in a way similar to
how it is used in the proof of Proposition ??.
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Remark 1.41 It can be shown that in the notations of Proposition ??
the the morphism f ∗

Si∗(F ) → i′∗f
∗
Z is an isomorphism for any F but since

Lf ∗
Si∗(F ) → f ∗

Si∗(F ) is not generally a simplicial weak equivalence this has
little use.

1.3 Formulation of the main theorem

Definition 1.42 Let p : X → S be a smooth morphism. The dualizing
object of X over S is the pointed space DX/S = (X×S X)/(X×S X−∆(X))
considered over X with respect to the projection to the second component.

Note that by Lemma ?? the dualizing object can be written as DX/S =
(pr2)#∆∗(S

0) where pr2 : X ×S X → X is the projection to the second
component and ∆ : X → X ×S X is the diagonal.

Let p : X → S be a smooth morphism and p = p̄ ◦ j be a decomposition
of p such that j : X → X̄ is an open embedding and p̄ : X̄ → S is any
morphism. For any left admissible F over X we define a natural (in F )
morphism in the A1-homotopy category

βF : p̄∗p#(F )→ j#(F ∧DX/S)

as follows. Consider the following diagram

X ×S X
p′′→ X

j′ ↓
Γj

↙ ↓j
X ×S X̄

p′→ X̄
p̄′ ↓ ↓p̄
X

p→ S

where both squares are Cartesian and Γj is the closed embedding of the graph
of j.

Theorem 1.43 [main] For any smooth morphism p : X → S and any
decomposition p = p̄ ◦ j such that j : X → X̄ is an open embedding and
p̄ : X̄ → S is a projective morphism there exists n ≥ 0 such that for any left
admissible F on X the n-th T-suspension of the morphism

δF : p#(F )→ p̄∗j#(F ∧DX/S)

adjoint to βF is an A1-weak equivalence.
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