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1 2-pretheories

1.1 Basic definitions

Definition 1.1.1 [2pr] A 2-functor H : Schft/S → Cat is called a 2-
pretheory if the following conditions hold:

1. H(∅) is equivalent to the point category and for any X, Y over S the
functor

H(iX)×H(iY ) : H(X
⨿
Y ) → H(X)×H(Y )

is an equivalence

2. for any smooth morphism p : X → Y the functor H(p) has a left adjoint
Hl(p) and for any pull-back square

X ′ fX→ X
p′ ↓ ↓p
Y ′ fY→ Y

such that p is smooth the l-exchange morphism Hl(p
′)H(fX) → H(fY )Hl(p)

is an isomorphism

3. for a closed embedding i : Z → X the functor H(i) has a right adjoint
Hr(i) and for any pull back square

Z ′ fZ→ Z
i′ ↓ ↓i
X ′ fX→ X

the r-exchange morphism H(fX)Hr(i) → Hr(i
′)H(fZ) is an isomor-

phism.
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Lemma 1.1.2 [trivial1] For any 2-pretheory H and any X the category
H(X) has initial and final objects and finite coproducts. The functors H(f)
take final objects to final objects, initial objects to initial objects and finite
coproducts to finite coproducts.

Proof: For any X the morphism e : ∅ → X is a smooth morphism and
a closed embedding. By 1.1.1(1,2,3) it implies that the canonical functor
H(X) → pt has both left and right adjoints i.e. H(X) has initial and final
objects.

The morphism p : X
⨿
X → X is smooth and one verifies easily that

if (F,G) is an object of H(X
⨿
X) corresponding to a pair of objects F,G

of H(X) by 1.1.1(1) then Hl(p)(F,G) is a coproduct of F and G in H(X).
Functors H(f) preserve coproducts by the second part of 1.1.1(2) applied to
the square

X ′ ⨿X ′ → X
⨿
X

↓ ↓
X ′ f→ X

and initial and final objects by the second parts of 1.1.1(2,1) applies to a
similar square for e : ∅ → X.

Let Sm/X be the category of smooth schemes over X wich we consider as
a symmetric monoidal category with respect to the direct products. The for
any 2-pretheory H the category H(X) has a module structure

S : Sm/X → Funct(H(X), H(X))

over Sm/X defined as follows. For a smooth scheme p : U → X over X
denote by S(U) the functor Hl(p)H(p) : H(X) → H(X). For a morphism of
smooth schemes f : U1 → U2 over X let S(f) be the natural transformation
l-adjoint to

H(p1) ∼= H(f)H(p2)
Id∗a∗Id→ H(f)H(p2)Hl(p2)H(p2) ∼= H(p1)Hl(p2)H(p2)

where a : Id → H(p2)Hl(p2) is the adjunction. One can verify that for a
composable pair of morphisms of smooth schemes g, f one has S(g ◦ f) =
S(g) ◦ S(f).

For a pair of smooth schemes p1 : U1 → X, p2 : U2 → X we have a
canonical isomorphism S(U1 ×X U2) → S(U1) ◦ S(U2) given by

Hl(p12)H(p12) ∼= Hl(p1)Hl(pr1)H(pr2)Hl(p2) → Hl(p1)H(p1)Hl(p2)H(p2)
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where p12 = p2 ◦ pr2 = p1 ◦ pr1 is the morphism U1 ×X U2 → X and the
middle arrow is the l-exchange isomorphism of 1.1.1(2). These isomorphisms
are compatible with the associativity isomorphisms for direct products and
composition of functors and one can check that they are natural in both U1

and U2.

Definition 1.1.3 [additive] A 2-pretheory is called additive if all the cate-
gories H(X) are additive.

Lemma 1.1.4 [add0] If H is an additive pretheory then the functors H(f),
Hl(p) and Hr(i) are additive.

Proof: Follows from Lemma 1.1.2

Consider a pull-back square

ZX
iX→ X

pZ ↓ ↓p
ZY

iY→ Y

(1)

such that p is smooth and i is a closed embedding. Define the lr-exchange
morphism Hl(p)Hr(iY ) → Hr(iX)Hl(pZ) as the r-adjoint to the composition

H(iX)Hl(p)Hr(iY ) → Hl(pZ)H(iY )Hr(iY ) → Hl(pZ)

where the first arrow is the inverse to the l-base change morphism which
exists by 1.1.1(2) and the second is given by the adjunction.

Definition 1.1.5 [exc] A 2-pretheory H is said to satisfy open excision
(resp. etale excision, smooth excision) if for any pull-back square of the
form (1) such that p is an open embedding (resp. an etale morphisms, a
smooth morphism) the lr-exchange morphism is an isomorphism.

Recall that a functor ϕ is called conservative if any morphism f such that
ϕ(f) is an isomorphism is itself an isomorphism.

Definition 1.1.6 [wd] A 2-pretheory (or more generally a 2-functor) is said
to have weak Zariski descent (resp. weak Nisnevich descent, weak etale de-
scent etc.) if for any Zariski (resp. Nisnevich, etale etc.) covering {ji : Ui →
X}i∈I the functor

∏
H(ji) : H(X) → ∏

H(Ui) is conservative.
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Let p : P1
X → X be the canonical morphism and i : X → P1

X a section
of p.

Definition 1.1.7 [stable] A 2-pretheory is called T-stable if for any X and
i as above the functor Hl(p)Hr(i) : H(X) → H(X) is an equivalence.

Let j : U → P1
X be the open embedding complimentary to i and pU = p ◦ j.

Definition 1.1.8 [hi] A 2-pretheory is called homotopy invariant if for any
X and i as above the adjunction Hl(pU)H(pU) → IdH(X) is an isomorphism.

Consider the sequence

Hl(pU)H(pU)
ηi→ Hl(p)H(p)

σi→ Hl(p)Hr(i)

obtained from the sequence of adjunctions

Hl(j)H(j) → Id→ Hr(i)H(i)

by applying H(p) on the right and Hl(p) on the left and using composition
isomorphisms.

Definition 1.1.9 [A] A 2-pretheory is said to satisfy axiom A if it is additive
and for any X and i as above the sequence

0 → Hl(pU)H(pU)
ηi→ Hl(p)H(p)

σi→ Hl(p)Hr(i) → 0

is split-exact.

For any 2-pretheory H the diagram

Hl(pU)H(pU)
ηi→ Hl(p)H(p)

↓ ↓
Id = Id

where the vertical arrows are the adjunctions commutes. Thus if H is a
homotopy invariant 2-pretheory then the composition of the right vertical
arrow with the inverse to the left one gives a canonical projection πi for ηi. If
in addition H satisfies Axiom A there is a unique section λi : Hl(p)Hr(i) →
Hl(p)H(p) of σi such that πi ◦ λi = 0. One can easily see that for any other
point i′ of P1

X over X the composition

ϕii′ : Hl(p)Hr(i)
λi→ Hl(p)H(p)

σi′→ Hl(p)Hr(i
′)
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is an isomorphism. These isomorphisms satisfy the conditions ϕii′ = ϕ−1
i′i ,

ϕi′i′′ϕii′ = ϕii′′ . We will use them to identify the functors Hl(p)Hr(i) for
different i’s and will denote them all by Σ and call the suspension functor.
Similarly we will omit the index from the notations for π and λ. Using
this terminology one can say that for any homotopy invariant 2-pretheory
satisfying Axiom A there is a canonical split-exact sequence

0 → Σ
λ→ Hl(p)H(p)

π→ Id→ 0

and a point i : X → P1
X of P1 over X defines a section ηi for π and a

projection σi for λ. It is easy to construct examples which show that σi and
ηi actually depend on i.

Lemma 1.1.10 [Sbch] Let H be a homotopy invariant 2-pretheory which
satisfies Axiom A, f : X ′ → X a morphism and p : P1

X → X, p′ : P1
X′ → X ′

the canonical projections. There is a unique isomorphism ΣH(f) → H(f)Σ
such that the diagram

ΣH(f) → H(f)Σ
↓ ↓

Hl(p
′)H(p′)H(f) → H(f)Hl(p)H(p)

where the lower arrow is obtained from the l-exchange isomorphism of ??(2),
commutes.
If i : X → P1

X is a point of P1 over X and i′ : X ′ → P1
X′ the corresponding

point of P1 over X ′ then the diagram

Hl(p
′)H(p′)H(f) → H(f)Hl(p)H(p)

↓ ↓
ΣH(f) → H(f)Σ

where the vertical arrows are given by σi and σi′ respectively commutes.

Lemma 1.1.11 [Slbch] Let H be a homotopy invariant 2-pretheory which
satisfies Axiom A, q : X → Y a smooth morphism and pX : P1

X → X,
pY : P1

Y → Y the canonical projections. Then there is a unique isomorphism
Hl(q)Σ → ΣHl(q) such that the diagram

Hl(q)Σ → ΣHl(q)
↓ ↓

Hl(q)Hl(pX)H(pX) → Hl(pY )H(pY )Hl(q)

where the lower arrow is obtained from 1.1.1(2) commutes.
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Proof: Follows from the fact that Hl(q)Hl(pX)H(pX) → Hl(pY )H(pY )Hl(q)
fits into a commutative diagram

Hl(q)Hl(pX)H(pX) → Hl(pY )H(pY )Hl(q)
↓ ↓

Hl(q) = Hl(q)

where the vertical arrows are morphisms π i.e. the adjunctions.

Let now H be a T-stable homotopy invariant 2-pretheory which satisfies
Axiom A. The Σ is an equivalence and we denote by Ω the right adjoint
to Σ which then an inverse equivalence. Lemmas 1.1.10 and 1.1.11 formally
imply:

Lemma 1.1.12 [Obch] Let H be a T-stable homotopy invariant 2-pretheory
which satisfies Axiom A. Then for any morphism f : X ′ → X there is a
unique isomorphism H(f)Ω → ΩH(f) such that the diagram

ΣH(f)Ω → ΣΩH(f)
↓ ↓

H(f)ΣΩ → H(f)

where the lower horizontal arrow is obtained from the isomorphism of Lemma
1.1.10, commutes.
For any smooth morphism q : X → Y there is a unique isomorphism Hl(q)Ω →
ΩHl(q) such that the diagram

Hl(q) → Hl(q)ΩΣ
↓ ↓

ΩΣHl(q) → ΩHl(q)Σ

where the lower horizontal arrow is obtained from the inverse to the isomor-
phism of Lemma 1.1.11, commutes.

Lemma 1.1.13 [com1] Let H be a T-stable homotopy invariant 2-pretheory
which satisfies Axiom A and q : X → Y a smooth morphism. Then the
following diagram where the upper line consists of isomorphisms of Lemma
1.1.12 and the vertical arrows are obtained from the adjunctions, commutes

Hl(q)H(q)Ω → Hl(q)ΩH(q) → ΩHl(q)H(q)
↓ ↓
Ω = Ω
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The following lemma is an immediate corollary of Lemma 1.1.13.

Lemma 1.1.14 [com2] Let H be a T-stable homotopy invariant 2-pretheory
which satisfies Axiom A. Then there exists a unique isomorphism ϵ : ΣΩ →
ΩΣ such that the diagram

ΣΩ
ϵ→ ΩΣ

↓ ↓
Hl(q)H(q)Ω → Hl(q)ΩH(q) → ΩHl(q)H(q)

commutes.

1.2 Duality theorem for the projective line

In this section we prove that for an additive T-stable homotopy invariant 2-
pretheory H satisfying Axiom A the functor Hl(p)Ω where p is the canonical
morphism P1

X → X is right adjoint to H(p). Consider the square

P1
X ×X P1

X

pr2→ P1
X

pr1 ↓ ↓ p

P1
X

p→ X

and let ∆ : P1
X → P1

X ×X P1
X be the diagonal. Define two morphisms

β : H(p)Hl(p)Ω → Id and ϕ : Id→ Hl(p)ΩH(p) as follows:

β is the composition

H(p)Hl(p)Ω → Hl(pr2)H(pr1)Ω → Hl(pr2)Hr(∆)Ω = ΣΩ → Id

where the first arrow is the inverse to the l-exchange isomorphism of
1.1.1(2) and the second morphism is obtained from the r-adjoint to
H(∆)H(pr1) → Id.

ϕ is the composition

Id→ ΣΩ
λ∗Id→→ Hl(p)H(p)Ω → Hl(p)ΩH(p)

where the first arrow is the inverse to the adjunction, the second one is
obtained from λ and the third one is the isomorphism of Lemma 1.1.12.

Theorem 1.2.1 [Pdual] The morphisms β and ϕ define on Hl(p)Ω the
structure of a right adjoint to H(p).
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Proof: By [] we have to verify that the compositions

H(p)
Id∗ϕ−→ H(p)Hl(p)ΩH(p)

β∗Id−→ H(p)

and
Hl(p)Ω

ϕ∗Id−→ Hl(p)ΩH(p)Hl(p)Ω
Id∗β−→ Hl(p)Ω

are identities.

Lemma 1.2.2 [key1] The composition

H(p)Σ
Id∗λ→ H(p)Hl(p)H(p)

↓
Hl(pr2)H(pr1)H(p) → Hl(pr2)Hr(∆)H(p) = ΣH(p)

is the inverse to the canonical morphism of Lemma 1.1.10.

Proof: Follows from commutativity of the diagram

ΣH(p) → Hl(pr2)H(pr2)H(p)
↓

↓ Hl(pr2)H(pr1)H(p)
↓

H(p)Σ → H(p)Hl(p)H(p)
↓

Hl(pr2)H(pr1)H(p) −→ ΣH(p)
↓ ↓

Hl(pr2)H(pr2)H(p)
(σ∆)∗Id−→ ΣH(p)

To prove that the first composition is identity consider the diagram

H(p) → H(p)ΣΩ
Id∗λ∗Id−→ H(p)Hl(p)H(p)Ω → H(p)Hl(p)ΩH(p)

↓ ↓
Hl(pr2)H(pr1)H(p)Ω → Hl(pr2)H(pr1)ΩH(p)

↓ ↓
ΣH(p)Ω → ΣΩH(p)

↓ ↓
H(p)ΣΩ → H(p)
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where the composition of upper horizontal and right vertical sides is by defini-
tion (β∗Id) ◦ (Id∗ϕ) Two upper squares are commutative because H(p)Ω →
ΩH(p) is a natural transformation and the lower one is commutative by
Lemma 1.1.12. By Lemma 1.2.2 the composition of the second upper hori-
zontal arrow with the following three vertical arrows is identity which implies
that (β∗Id) ◦ (Id∗ϕ) = Id

Lemma 1.2.3 [key2] The composition ((Id ∗ β) ◦ (ϕ ∗ Id)) ∗ IdH(p)

Hl(p)ΩH(p)
ϕ∗Id−→ Hl(p)ΩH(p)Hl(p)ΩH(p)

Id∗β∗Id−→ Hl(p)ΩH(p)

is an isomorphism.

Proof: Using only Lemma 1.1.12 and Lemma 1.1.14 one can easily see that
it is sufficient to check that the following composition

ΣHl(p)H(p)
λ∗Id→ Hl(p)H(p)Hl(p)H(p) → Hl(p)Hl(pr2)H(pr1)H(p)

↓
Hl(p)Hl(pr2)H(pr2)H(p)

↓
Hl(p)ΣH(p)

where the second vertical arrow is Id ∗ σ∆ ∗ Id, is an isomorphism. Denote
the composition of the second horizontal arrow with the two vertical ones
by γ. Let σ : Hl(p)H(p)Hl(p)H(p) → Hl(p)H(p)Hl(p)H(p) be the automor-
phism corresponding to the permutation of factors on P1 × P1 under the
isomorphism

Hl(p)H(p)Hl(p)H(p) = S(P1)S(P1) ∼= S(P1 ×P1)

let i : S(P1 ×P1 −∆(P1)) → Hl(p)H(p)Hl(p)H(p) be the morphism corre-
sponding under the same isomorphism to the embedding P1×P1−∆(P1) →
P1 ×P1 and let

σ0 : S(P
1 ×P1 −∆(P1)) → S(P1 ×P1 −∆(P1))

be the isomorphism corresponding to the permutation of factors on P1 ×
P1 −∆(P1). One can easily verify the following facts:
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1. the sequence

0 → S(P1 ×P1 −∆(P1))
i→ Hl(p)H(p)Hl(p)H(p)

γ→ Hl(p)ΣH(p) → 0

is split-exact

2. the sequences

0 → ΣHl(p)H(p)
λ∗Id→ Hl(p)H(p)Hl(p)H(p)

a∗Id→ Hl(p)H(p) → 0

0 → Hl(p)H(p)Σ
Id∗λ→ Hl(p)H(p)Hl(p)H(p)

Id∗a→ Hl(p)H(p) → 0

are split exact.

3. the diagram

S(P1 ×P1 −∆(P1)) → Hl(p)H(p)Hl(p)H(p)
σ0 ↓ ↓σ

S(P1 ×P1 −∆(P1)) → Hl(p)H(p)Hl(p)H(p)

commutes

4. the diagram

Hl(p)H(p)Hl(p)H(p)
a∗Id→ Hl(p)H(p)

σ ↓ ↓Id
Hl(p)H(p)Hl(p)H(p)

a∗Id→ Hl(p)H(p)

commutes.

Therefore there exist isomorphisms

σ′ : ΣHl(p)H(p) → Hl(p)H(p)Σ

σ′′ : Hl(p)ΣH(p) → Hl(p)ΣH(p)

such that the diagram

ΣHl(p)H(p)
λ∗Id→ Hl(p)H(p)Hl(p)H(p)

γ→ Hl(p)ΣH(p)
σ′ ↓ σ ↓ σ′′ ↓

Hl(p)H(p)Σ
Id∗λ→ Hl(p)H(p)Hl(p)H(p)

γ→ Hl(p)ΣH(p)

commutes. Observe now that the composition of lower horizontal arrows is
Id ∗ ψ where ψ is the isomorphism considered in Lemma 1.2.2 and therefore
the composition of upper horizontal arrows is an isomorphism.
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