Notes on type systems

Vladimir Voevodsky

Started September 08, 2009, cont. July 23, 2012, November 20, 2012, December 1, 2012

Notes from discarded attempts:

1. It seems that we will have to use some generalization of de Brujin indexes instead of α-equivalence classes since otherwise it is unclear how to "make" $[\Pi ; x]\left(T_{1}, T_{2}\right)$ from smaller pieces. Indeed in the formulation with alpha-equivalence classes T_{2} in this expression has no meaning at all (Nov. 20, 2012).

1a. One can write $[\Pi ; x]\left(T_{1}, T_{2}\right)$ as $[\operatorname{prod}]\left(T_{1},[b n d ; x]\left(T_{2}\right)\right)$ and similarly for all other quantifiers (suggested by D Grayson, around Dec.1, 2012).

1b. The "type" of $b n d$ is $\operatorname{forall}(A)(x: A)(T: \operatorname{Exp} A)(B), \operatorname{Exp}(B) \rightarrow \operatorname{Exp}(A-\{x\} \amalg B)$ (Dec.1, 2012).

Contents

1 C-systems and B-systems

C-systems and B-systems are models of essentially algebraic theories. C-systems are known in type theory as contextual categories. They where introduces by Cartmell in [?] and then described in more detail by Streicher (see [?, Def. 1.2, p.47]). B-systems are seemingly quite different objects which are exemplified by the systems of contexts and typing judgments of a type theory. One of the main ideas of this section is to outline some constructions and results which suggest that the theories of C-systems and B-systems are equivalent thus providing a purely algebraic basis for the connection between type systems and contextual categories. In the present version of the paper we do not give a precise formulation of the equivalence theorem. Work on constructing a formal proof of this theorem using Coq proof assistant is currently being done by Benedikt Ahrens, Chris Kapulkin and the author.

1 C-systems

It will be important for us to distinguish two notions of a category. What is understood by a category by most practicing mathematicians i.e. a category up to an equivalence, will be called, when an explicit distinction is needed, a category of h-level 3. A category as an algebraic object i.e. a category up to an isomorphism will be called a set-level category or category of h-level 2. A set-level category C is a pair of sets $\operatorname{Mor}(C)$ and $O b(C)$ with four maps

$$
\begin{gathered}
\partial_{0}, \partial_{1}: \operatorname{Mor}(C) \rightarrow O b(C) \\
I d: O b(C) \rightarrow \operatorname{Mor}(C)
\end{gathered}
$$

and

$$
\circ: \operatorname{Mor}(C)_{\partial_{0}} \times_{\partial_{1}} \operatorname{Mor}(C) \rightarrow \operatorname{Mor}(C)
$$

which satisfy the well known conditions (note that we write composition of morphisms in the form $f \circ g$ where $f: Y \rightarrow X$ and $g: Z \rightarrow Y)$.

A C-system is a set-level category $C C$ with additional structure of the form

1. a function $l: O b(C C) \rightarrow \mathbf{N}$,
2. an object $p t$,
3. a map $f t: O b(C C) \rightarrow O b(C C)$,
4. for each $X \in O b(C C)$ a morphism $p_{X}: X \rightarrow f t(X)$,
5. for each $X \in O b(C C)$ such that $X \neq p t$ and each morphism $f: Y \rightarrow f t(X)$ an object $f^{*} X$ and a morphism $q(f, X): f^{*} X \rightarrow X$,
which satisfies the following conditions:
6. $l^{-1}(0)=\{p t\}$
7. for X such that $l(X)>0$ one has $l(f t(X))=l(X)-1$
8. $f t(p t)=p t$
9. $p t$ is a final object,
10. for $X \in O b(C C)$ such that $X \neq p t$ and $f: Y \rightarrow f t(X)$ one has $f t\left(f^{*} X\right)=Y$ and the square

is a pull-back square,
11. for $X \in O b(C C)$ such that $X \neq p t$ one has $i d_{f t(X)}^{*}(X)=X$ and $q\left(i d_{f t(X)}, X\right)=i d_{X}$,
12. for $X \in O b(C C)$ such that $X \neq p t, f: Y \rightarrow f t(X)$ and $g: Z \rightarrow Y$ one has $(f g)^{*}(X)=$ $g^{*}\left(f^{*}(X)\right)$ and $q(f g, X)=q(f, X) q\left(g, f^{*} X\right)$.

Let $B_{n}(C C)=\{X \in O b(C C) \mid l(X)=n\}$ and let $\operatorname{Mor}_{n, m}(C C)=\left\{f: \operatorname{Mor}(C C) \mid \partial_{0}(f) \in\right.$ B_{n} and $\left.\partial_{1}(f) \in B_{m}\right\}$. One can reformulate the definition of a C-system using $B_{n}(C C)$ and $\operatorname{Mor}_{n, m}(C C)$ as the underlying sets together with the obvious analogs of maps and conditions the definition given above. In this reformulation there will be no use of \neq and the only use of the existential qualifier will be as a part of "there exists a unique" condition. This shows that C-systems can be considered as models of an essentially algebraic theory with sorts B_{n}, and Mor $r_{n, m}$ and in particular all the results of [?] are applicable to C-systems.
We will also use the following notations:

1. $B(X)=\{Y \in O b(C C) \mid f t(Y)=X$ and $Y \neq p t\}$,
2. $\widetilde{O b}(C C)$ is the set of pairs of the form (X, s) where $X \in O b(C C), X \neq p t$ and s is a section of the canonical morphism $p_{X}: X \rightarrow f t(X)$ i.e. a morphism $s: f t(X) \rightarrow X$ such that $p_{X} \circ s=I d_{f t(X)}$,
3. $\widetilde{B}_{n}=\left\{(X, s) \in \widetilde{O b}(C C) \mid X \in B_{n}\right\}$ (note that $\widetilde{B}_{0}=\emptyset$),
4. $\partial: \widetilde{B}_{n} \rightarrow B_{n}$ is the function defined by $\partial(X, s)=X$,
5. $\widetilde{B}(X)=\partial^{-1}(X)$ (note that $\left.\widetilde{B}(p t)=\emptyset\right)$.

2 C-subsystems.

A C-subsystem $C C^{\prime}$ of a C-system $C C$ is a subcategory of the underlying set-level category which is closed, in the obvious sense under the operations which define the C-system on $C C$ and such that the canonical squares which belong to $C C^{\prime}$ are pull-back squares in $C C^{\prime}$. A C-subsystem is called non-trivial if it contains at least one element other than $p t$. A C-subsystem is itself a C-system with respect to the induced structure. The following elementary result plays a key role in many constructions of type theory:

Proposition 2.1 [2009.10.15.prop1] Let $C C$ be a C-system. Then for any family $C C_{\alpha}$ of C subsystems of $C C$, the intersection $C C^{\prime}=\cap_{\alpha} C C_{\alpha}$ is a C-subsystem.

Proof: The only condition to check is that a canonical square which belongs to $C C^{\prime}$ is a pull-back square in $C C^{\prime}$. This follows from the definition of pull-back squares and the fact that fiber products of sets commute with intersections of sets.

Corollary 2.2 [2009.10.15.cor1] Let $C C$ be a C-system, C_{0} a set of objects of $C C$ and C_{1} a set of morphisms of $C C$. Then there exists the smallest C-subsystem $\left[C_{1}, C_{0}\right]$ which contains C_{0} and C_{1}. It is called the C-subsystem generated by C_{0} and C_{1}.

Lemma 2.3 [2009.10.15.11] Let $C C$ be a C-system and $C C^{\prime}, C C^{\prime \prime}$ be two C-subsystems such that $O b\left(C C^{\prime}\right)=O b\left(C C^{\prime \prime}\right)$ (as subsets of $O b(C C)$) and $\widetilde{O b}\left(C C^{\prime}\right)=\widetilde{O b}\left(C C^{\prime \prime}\right)$ (as subsets of $\widetilde{O b}(C C)$). Then $C C^{\prime}=C C^{\prime \prime}$.

Proof: Let $f: Y \rightarrow X$ be a morphism in $C C^{\prime}$. We want to show that it belongs to $C C^{\prime \prime}$. Proceed by induction on m where $X \in B_{m}$. For $m=0$ the assertion is obvious. Suppose that $m>0$. Since $C C$ is a C-system we have a commutative diagram

such that $f=q\left(p_{X} f, X\right) s_{f}$. Since the right hand side square is a canonical one, $\left(\left(p_{X} f\right)^{*} \Gamma^{\prime}, s_{f}\right) \in$ $\widetilde{O b}(C C)$ and $f t(X) \in B_{m-1}$, the inductive assumption implies that $f \in C C^{\prime \prime}$.

Remark 2.4 In Lemma 2.3, it is sufficient to assume that $\widetilde{O b}\left(C C^{\prime}\right)=\widetilde{O b}\left(C C^{\prime \prime}\right)$. The condition $O b\left(C C^{\prime}\right)=O b\left(C C^{\prime \prime}\right)$ is then also satisfied. Indeed, let $X \in O b\left(C C^{\prime}\right)$. Then $p_{X}^{*} X$ is the product $X \times X$ in $C C$. Consider the diagonal section $\Delta_{X}: X \rightarrow p_{X}^{*} X$ of $p_{p_{X}^{*}(X)}$. Since $C C^{\prime}$ is assumed to be a C-subsystem we conclude that $\Delta_{X} \in \widetilde{O b}\left(C C^{\prime}\right)=\widetilde{O b}\left(C C^{\prime \prime}\right)$ and therefore $X \in O b\left(C C^{\prime \prime}\right)$. It is however more convenient to think of C-subsystems in terms of subsets of both $O b$ and $\widetilde{O b}$.

Let $C C$ be a C-system. Let us say that a pair of subsets $C \subset O b(C C), \widetilde{C} \subset \widetilde{O b}(C C)$ is saturated if there exists a C-subsystem $C C^{\prime}$ such that $C=O b\left(C C^{\prime}\right)$ and $\widetilde{C}=\widetilde{O b}\left(C C^{\prime}\right)$. By Lemma 2.3 we have a bijection between C-subsystems of $C C$ and saturated pairs (C, \widetilde{C}).
Let us introduce the following notations. Let $X \in O b(C C)$ and $i \geq 0$. Denote by $p_{X, i}$ the composition of the canonical projections $X \rightarrow f t(X) \rightarrow \ldots \rightarrow f t^{i}(X)$ such that $p_{X, 0}=I d_{X}$ and $p_{X, 1}=p_{X}$. For $f: Y \rightarrow f t^{i}(X)$ denote by $q(f, X, i): f^{*}(X, i) \rightarrow X$ the morphism defined inductively by the rule

$$
\begin{array}{cc}
f^{*}(X, 0)=Y & q(f, X, 0)=f \\
f^{*}(X, i+1)=q(f, f t(X), i)^{*}(X) & q(f, X, i+1)=q(q(f, f t(X), i), X)
\end{array}
$$

In other words, $q(f, X, i)$ is the canonical pull-back of the morphism $f: Y \rightarrow f t^{i}(X)$ with respect to the sequence of canonical projections $X \rightarrow f t(X) \rightarrow \ldots \rightarrow f t^{i}(X)$.
Let $i \geq 1, f: Y \rightarrow f t^{i}(X)$ be a morphism and $s: f t(X) \rightarrow X$ an element of $\widetilde{O b}(C C)$. Denote by $f^{*}(s, i)$ the element of $\widetilde{O b}(C C)$ of the form $f^{*}(f t(X), i-1) \rightarrow f^{*}(X, i)$ which is the pull-back of s with respect to $q(f, f t(X), i-1)$.

Proposition 2.5 [2009.10.15.prop2] A pair (C, \widetilde{C}) is saturated if and only if it satisfies the following conditions:

1. $p t \in C$,
2. if $X \in C$ then $f t(X) \in C$,
3. if $(s: f t(X) \rightarrow X) \in \widetilde{C}$ then $X \in C$,
4. if $(s: f t(X) \rightarrow X) \in \widetilde{C}, X^{\prime} \in C, i \geq 1$ and $f t^{i}(X)=f t\left(X^{\prime}\right)$ then $q\left(p_{X^{\prime}}, f t(X), i-1\right)^{*}(s) \in \widetilde{C}$,
5. if $\left(s_{1}: f t(X) \rightarrow X\right) \in \widetilde{C}, i \geq 1$ and $\left(s_{2}: f t^{i+1}(X) \rightarrow f t^{i}(X)\right) \in \tilde{C}$ then $q\left(s_{2}, f t(X), i-\right.$ $1)^{*}\left(s_{1}\right) \in \widetilde{C}$,
6. if $X \in C$ then the diagonal $s_{i d_{X}}: X \rightarrow\left(p_{X}\right)^{*}(X)$ is in \widetilde{C}.

Conditions (4) and (5) are illustrated by the following diagrams:

Proof: The "only if" part of the proposition is straightforward. Let us prove that for any (C, \widetilde{C}) satisfying the conditions of the proposition there exists a C-subsystem $C C^{\prime}$ of $C C$ such that $C=$ $O b\left(C C^{\prime}\right)$ and $\widetilde{C}=\widetilde{O b}\left(C C^{\prime}\right)$.
For a morphism $f: Y \rightarrow X$ let $f t(f)=p_{X} f: Y \rightarrow f t(X)$. Any morphism $f: Y \rightarrow X$ in $C C$ has a canonical representation of the form $Y \xrightarrow{s_{f}} X \xrightarrow{q_{f}} X$ where $X_{f}=f t(f)^{*}(X), q_{f}=q(f t(f), X)$ and $s_{f}: Y \rightarrow X_{f}$ is the section of the canonical projection $X_{f} \rightarrow Y$ corresponding to f.
Define a candidate subcategory $C C^{\prime}$ setting $\operatorname{Ob}\left(C C^{\prime}\right)=C$ and defining the set $\operatorname{Mor}\left(C C^{\prime}\right)$ of morphisms of $C C^{\prime}$ inductively by the conditions:

1. $Y \rightarrow p t$ is in $\operatorname{Mor}\left(C C^{\prime}\right)$ if and only if $Y \in C$,
2. $f: Y \rightarrow X$ is in $\operatorname{Mor}\left(C C^{\prime}\right)$ if and only if $X \in O b(C), f t(f) \in \operatorname{Mor}\left(C C^{\prime}\right)$ and $s_{f} \in \widetilde{C}$.
(note that the for $(f: Y \rightarrow X) \in \operatorname{Mor}\left(C C^{\prime}\right)$ one has $Y \in C$ since $\left.s_{f}: Y \rightarrow X_{f}\right)$.
Let us show that if the condition of the proposition are satisfied then $\left(\operatorname{Ob}\left(C C^{\prime}\right), \operatorname{Mor}\left(C C^{\prime}\right)\right.$) form a C-subsystem of $C C$.

The subset $O b\left(C C^{\prime}\right)$ contains $p t$ and is closed under $f t$ map by the first two conditions. The following lemma shows that $\operatorname{Mor}\left(C C^{\prime}\right)$ contains identities and the compositions of canonical projections.

Lemma 2.6 [2009.10.16.11] Under the assumptions of the proposition, if $X \in C$ and $i \geq 0$ then $p_{X, i}: X \rightarrow f t^{i}(X)$ is in $\operatorname{Mor}\left(C C^{\prime}\right)$.

Proof: By definition of C-systems there exists n such that $f t^{n}(X)=p t$. Then $p_{X, n} \in \operatorname{Mor}\left(C C^{\prime}\right)$ by the first constructor of $\operatorname{Mor}\left(C C^{\prime}\right)$. By induction it remains to show that if $X \in C$ and $p_{X, i} \in$ $\operatorname{Mor}\left(C C^{\prime}\right)$ then $p_{X, i-1} \in \operatorname{Mor}\left(C C^{\prime}\right)$. We have $f t\left(p_{X, i-1}\right)=p_{X, i}$ and $s_{p_{X, i-1}}$ is the pull-back of the diagonal $f t^{i-1}(X) \rightarrow\left(p_{f t^{i-1}(X)}\right)^{*}\left(f t^{i-1}(X)\right)$ with respect to the canonical morphism $X \rightarrow$ $f t^{i-1}(X)$. The diagonal is in \widetilde{C} by condition (6) and therefore $s_{p_{X, i-1}}$ is in \widetilde{C} by repeated application of condition (4).

Lemma 2.7 [2009.10.16.13] Under the assumptions of the proposition, let $X \in C,(s: f t(X) \rightarrow$ $X) \in \widetilde{C}, i \geq 0$, and $\left(f: Y \rightarrow f t^{i}(X)\right) \in \operatorname{Mor}\left(C C^{\prime}\right)$. Then $q(f, f t(X), i-1)^{*}(s): f t\left(f^{*}(X, i)\right) \rightarrow$ $f^{*}(X, i)$ is in $\operatorname{Mor}\left(C C^{\prime}\right)$.

Proof: Suppose first that $f t^{i}(X)=p t$. Then $f=p_{Y, n}$ for some n and the statement of the lemma follows from repeated application of condition (4). Suppose that the lemma is proved for all morphisms to objects of length $j-1$ and let the length of $f t^{i}(X)$ be j. Consider the canonical decomposition $f=q_{f} s_{f}$. The morphism q_{f} is the canonical pull-back of $f t(f)$ and therefore the pull-back of s relative to q_{f} coincides with its pull-back relative to $f t(f)$ which is \widetilde{C} by the inductive assumption. The pull-back of an element of \widetilde{C} with respect to s_{f} is in \widetilde{C} by condition (5).

Lemma 2.8 [2009.10.16.14] Under the assumptions of the proposition, let $g: Z \rightarrow Y$ and $f:$ $Y \rightarrow X$ be in $\operatorname{Mor}\left(C C^{\prime}\right)$. Then $f g \in \operatorname{Mor}\left(C C^{\prime}\right)$.

Proof: If $X=p t$ the the statement is obvious. Assume that it is proved for all f whose codomain is of length $<j$ and let X be of length j. We have $f t(f g)=f t(f) g$ and therefore $f t(f g) \in \operatorname{Mor}\left(C C^{\prime}\right)$ by the inductive assumption. It remains to show that $s_{f g} \in \widetilde{C}$. We have the following diagram whose squares are canonical pull-back squares

which shows that $s_{f g}=g^{*}\left(s_{f}\right)$. Therefore, $s_{f g} \in \operatorname{Mor}\left(C C^{\prime}\right)$ by Lemma 2.7.
Lemma 2.9 [2009.10.16.15] Under the assumptions of the proposition, let $X \in C$ and let f : $Y \rightarrow f t(X)$ be in $\operatorname{Mor}\left(C C^{\prime}\right)$, then $f^{*}(X) \in C$ and $q(f, X) \in \operatorname{Mor}\left(C C^{\prime}\right)$.

Proof: Consider the diagram

where the squares are canonical. By condition (6) we have $s_{I d} \in \widetilde{C}$. Therefore, by Lemma 2.7, we have $s_{q(f, X)} \in \widetilde{C}$. In particular, $q(f, X)^{*}(X) \in C$ and therefore $f^{*}(X)=f t\left(q(f, X)^{*}(X)\right) \in C$. The fact that $q(f, X) \in \operatorname{Mor}\left(C C^{\prime}\right)$ follows from the fact that $s_{q(f, X)} \in \widetilde{C}$ and $f t(q(f, X))=f \circ p_{f^{*}(X)}$ is in $\operatorname{Mor}\left(C C^{\prime}\right)$ by previous lemmas.

Lemma 2.10 [2009.10.16.16] Under the assumptions of Lemma 2.9, the square

is a pull-back square in $C C^{\prime}$.

Proof: We need to show that for a morphism $g: Z \rightarrow f^{*}(X)$ such that $p_{f^{*}(X)} g$ and $q(f, X) g$ are in $\operatorname{Mor}\left(C C^{\prime}\right)$ one has $g \in \operatorname{Mor}\left(C C^{\prime}\right)$. We have $f t(g)=p_{f^{*}(X)} g$, therefore by definition of $\operatorname{Mor}\left(C C^{\prime}\right)$ it remains to check that $s_{g} \in \widetilde{C}$. The diagram

shows that $s_{g}=s_{q(f, X) g}$ and therefore $s_{g} \in \operatorname{Mor}\left(C C^{\prime}\right)$.

To finish the proof of the proposition it remains to show that $O b\left(C C^{\prime}\right)=C$ and $\widetilde{O b}\left(C C^{\prime}\right)=\widetilde{C}$. The first assertion is tautological. The second one follows immediately from the fact that for $(s: f t(X) \rightarrow X) \in \widetilde{O b}(C C)$ one has $f t(s)=I d_{f t(X)}$ and $s_{s}=s$.

3 The sequent axiomatics of C-systems.

Proposition 2.5 suggests that a C-system $C C$ can be reconstructed from the sets $B_{n}=B_{n}(C C)$ and $\widetilde{B}_{n+1}=\widetilde{B}_{n+1}(C C), n \geq 0$ together with the structures on these sets which correspond to the conditions of the proposition. Let us show that it is indeed the case.
In addition to the sets B_{n} and \widetilde{B}_{n} and maps $f t: B_{n+1} \rightarrow B_{n}$ and $\partial: \widetilde{B}_{n+1} \rightarrow B_{n+1}$ let us consider the following maps given for all $m \geq n \geq 0$:

1. $T:\left(B_{n+1}\right)_{f t} \times_{f t^{m+1-n}}\left(B_{m+1}\right) \rightarrow B_{m+2}$, which sends (Y, X) such that $f t(Y)=f t^{m+1-n}(X)$ to $p_{Y}^{*}(X, m+1-n)$,
2. $\widetilde{T}:\left(B_{n+1}\right)_{f t} \times_{f t^{m+1-n} \partial}\left(\widetilde{B}_{m+1}\right) \rightarrow \widetilde{B}_{m+2}$, which sends (Y, s) such that $f t(Y)=f t^{m+1-n} \partial(s)$ to $p_{Y}^{*}(s, m+1-n)$,
3. $S:\left(\widetilde{B}_{n+1}\right)_{\partial} \times_{f t^{m+1-n}}\left(B_{m+2}\right) \rightarrow B_{m+1}$, which sends (r, X) such that $\partial(r)=f t^{m+1-n}(X)$ to $r^{*}(X, m+1-n)$,
4. $\widetilde{S}:\left(\widetilde{B}_{n+1}\right)_{\partial} \times_{f t^{m+1-n} \partial}\left(\widetilde{B}_{m+2}\right) \rightarrow \widetilde{B}_{m+1}$, which sends (r, s) such that $\partial(r)=f t^{m+1-n} \partial(s)$ to $r^{*}(s, m+1-n)$.
5. $\delta: B_{n+1} \rightarrow \widetilde{B}_{n+2}$ which sends X to the diagonal section of the projection $p_{X}^{*} X \rightarrow X$.

Note that we have:

1. for $Y \in B_{n+1}, X \in B_{m+1}$ such that $f t(Y)=f t^{m+1-n}(X)$ and $m \geq n \geq 0$ one has:

$$
f t(T(Y, X))= \begin{cases}T(Y, f t(X)) & \text { if } m>n \tag{3}\\ Y & \text { if } m=n\end{cases}
$$

2. for $Y \in B_{n+1}, s \in \widetilde{B}_{m+1}$ such that $f t(Y)=f t^{m+1-n} \partial(s)$ and $m \geq n \geq 0$ one has:

$$
\begin{equation*}
\partial(\widetilde{T}(Y, s)=T(Y, \partial(s)) \tag{4}
\end{equation*}
$$

3. for $r \in \widetilde{B}_{n+1}, X \in \widetilde{B}_{m+2}$ such that $\partial(r)=f t^{m+1-n}(X)$ and $m \geq n \geq 0$ one has:

$$
f t(S(r, X))= \begin{cases}S(r, f t(X)) & \text { if } m>n \tag{5}\\ f t(Y) & \text { if } m=n\end{cases}
$$

4. for $r \in \widetilde{B}_{n+1}, s \in \widetilde{B}_{m+2}$ such that $\partial(r)=f t^{m+1-n} \partial(s)$ and $m \geq n \geq 0$ one has:

$$
\begin{equation*}
\partial(\widetilde{S}(r, s))=S(r, \partial(s)) \tag{6}
\end{equation*}
$$

5.

$$
\begin{equation*}
[\text { 2009.12.27.eq1 }] \partial(\delta(X))=T(X, X) \tag{7}
\end{equation*}
$$

Let us denote by

$$
\begin{aligned}
& T_{j}:\left(B_{n+j}\right)_{f t j} \times_{f t^{m+1-n}}\left(B_{m+1}\right) \rightarrow B_{m+1+j} \\
& \widetilde{T}_{j}:\left(B_{n+j}\right)_{f t j} \times{ }_{f t^{m+1-n} \partial}\left(\widetilde{B}_{m+1}\right) \rightarrow \widetilde{B}_{m+1+j}
\end{aligned}
$$

the maps which are defined inductively by

$$
T_{j}(Y, X)=\left\{\begin{array}{ll}
X & \text { if } j=0 \tag{8}\\
T\left(Y, T_{j-1}(f t(Y), X)\right) & \text { if } j>0
\end{array} \quad \widetilde{T}_{j}(Y, s)= \begin{cases}s & \text { if } j=0 \\
\widetilde{T}\left(Y, \widetilde{T}_{j-1}(f t(Y), s)\right) & \text { if } j>0\end{cases}\right.
$$

Note that for any $i=0, \ldots, j$ we have

$$
T_{j}(Y, X)=T_{i}\left(Y, T_{j-i}\left(f t^{i}(Y), X\right)\right)
$$

and

$$
\widetilde{T}_{j}(Y, s)=\widetilde{T}_{i}\left(Y, \widetilde{T}_{j-i}\left(f t^{i}(Y), s\right)\right)
$$

Lemma 3.1 [Tnft] One has

$$
T_{j}(Y, f t(X))=f t\left(T_{j}(Y, X)\right)
$$

Proof: For $n=0$ the statement is obvious. For $n>0$ we have by induction on j

$$
\begin{aligned}
T_{j}(Y, f t(X)) & =T\left(Y, T_{j-1}(f t(Y), f t(X))\right)=T\left(Y, f t\left(T_{j-1}(f t(Y), X)\right)\right)= \\
& =f t\left(T\left(Y, T_{j-1}(f t(Y), X)\right)\right)=f t\left(T_{j}(Y, X)\right)
\end{aligned}
$$

Let $f: Y \rightarrow X$ be a morphism such that $Y \in B_{n}$ and $X \in B_{m}$. Define a sequence $\left(s_{1}(f), \ldots, s_{m}(f)\right)$ of elements of \widetilde{B}_{n+1} inductively by the rule

$$
\left(s_{1}(f), \ldots, s_{m}(f)\right)=\left(s_{1}(f t(f)), \ldots, s_{m-1}(f t(f)), s_{f}\right)=\left(s_{f t t^{m-1}(f)}, \ldots, s_{f t(f)}, s_{f}\right)
$$

where $f t(f)=p_{X} f, s_{f}$ is defined by the diagram (2) and for $m=0$ we start with the empty sequence. This construction can be illustrated by the following diagram for $f: Y \rightarrow X$ where $X \in B_{4}$:

which is completely determined by the condition that the squares are the canonical ones and the composition of morphisms in the i-th arrow from the top is $f t^{i}(f)$. For the objects Z_{i}^{j} we have:

$$
\begin{array}{ll}
Z_{4,1}=S\left(s_{1}(f), T_{n}(Y, X)\right) & Z_{4,2}=S\left(s_{2}(f), Z_{4,1}\right) \quad Z_{4,3}=S\left(s_{3}(f), Z_{4,2}\right) \\
Z_{3,1}=S\left(s_{1}(f), T_{n}(Y, f t(X))\right) & Z_{3,2}=S\left(s_{2}(f), Z_{3,1}\right) \tag{10}\\
Z_{2,1}=S\left(s_{1}(f), T_{n}\left(Y, f t^{2}(X)\right)\right) &
\end{array}
$$

A simple inductive argument similar to the one in the proof of Lemma 2.3 show that if $f, f^{\prime}: Y \rightarrow X$ are two morphisms such that $X \in B_{m}$ and $s_{i}(f)=s_{i}\left(f^{\prime}\right)$ for $i=1, \ldots, m$ then $f=f^{\prime}$. Therefore, we may consider the set $\operatorname{Mor}(C C)$ of morphisms of $C C$ as a subset in $\amalg_{n, m \geq 0} B_{n} \times B_{m} \times \widetilde{B}_{n+1}^{m}$.
Let us show how to describe this subset in terms of the operations introduced above.
Lemma 3.2 [2009.11.07.11] An element $\left(Y, X, s_{1}, \ldots, s_{m}\right)$ of $B_{n} \times B_{m} \times \widetilde{B}_{n+1}^{m}$ corresponds to a morphism if and only if the element $\left(Y, f t(X), s_{1}, \ldots, s_{m-1}\right)$ corresponds to a morphism and $\partial\left(s_{m}\right)=Z_{m, m-1}$ where $Z_{m, i}$ is defined inductively by the rule:

$$
Z_{m, 0}=T_{n}(Y, X) \quad Z_{m, i+1}=S\left(s_{i+1}, Z_{m, i}\right)
$$

Proof: Straightforward from the example considered above.

Let us show now how to identify the canonical morphisms $p_{X, i}: X \rightarrow f t^{i}(X)$ and in particular the identity morphisms.

Lemma 3.3 [2009.11.10.11] Let $X \in B_{m}$ and $0 \leq i \leq m$. Let $p_{X, i}: X \rightarrow f t^{i}(X)$ be the canonical morphism. Then one has:

$$
s_{j}\left(p_{X, i}\right)=\widetilde{T}_{m-j}\left(X, \delta_{f t^{m-j}(X)}\right) \quad j=1, \ldots, m-i
$$

Proof: Let us proceed by induction on $m-i$. For $i=m$ the assertion is trivial. Assume the lemma proved for $i+1$. Since $f t\left(p_{X, i}\right)=p_{X, i+1}$ we have $s_{j}\left(p_{X, i}\right)=s_{j}\left(p_{X, i+1}\right)$ for $j=1, \ldots, m-i-1$. It remains to show that

$$
\begin{equation*}
[2009.11 .10 . \text {.eq1 }] s_{m-i}\left(p_{X, i}\right)=\widetilde{T}_{i}\left(X, \delta_{f t^{i}(X)}\right) \tag{11}
\end{equation*}
$$

By definition $s_{m-i}\left(p_{X, i}\right)=s_{p_{X, i}}$ and (11) follows from the commutative diagram:

where $p=p_{X, i}$.

Lemma 3.4 [2009.11.10.12] Let $(X, s) \in \widetilde{B}_{m+1}, Y \in B_{n}$ and $f: Y \rightarrow f t(X)$. Define inductively $(f, i)^{*}(s) \in \widetilde{B}_{n+m+1-i}$ by the rule

$$
\begin{gathered}
(f, 0)^{*}(s)=\widetilde{T}_{n}(Y, s) \\
(f, i+1)^{*}(s)=\widetilde{S}\left(s_{i+1}(f),(f, i)^{*}(s)\right)
\end{gathered}
$$

Then $f^{*}(s)=(f, m)^{*}(s)$.

Proof: It follows from the diagram:

