
Simplicial set model of HIT cones
Vladimir Voevodsky

Started March 21, 2013. Work in progress.

1 Semantics of identity types

We consider identity types (which we denote ”paths”) which are introduced by the following
group of inference rules:

[r1]

Γ ⊢ T type
Γ ⊢ o : T

Γ ⊢ o′ : T

Γ ⊢ paths(o, o′) type
(1)

[r2]

Γ ⊢ T type
Γ ⊢ o : T

Γ ⊢ idpath(o) : paths(o, o)
(2)

[r3]

Γ ⊢ T type
Γ ⊢ o : T

Γ, x : T, e : paths(o, x) ⊢ P type
Γ ⊢ s0 : P [o/x, (idpath o)/e]

Γ ⊢ o′ : T
Γ ⊢ e′ : paths(o, o′)

Γ ⊢ paths_rect(o, T, x.e.P, s0, o′, x′) : P [o′/x, e′/e]
(3)

[r4]

Γ ⊢ T type
Γ ⊢ o : T

Γ, x : T, e : paths(o, x) ⊢ P type
Γ ⊢ s0 : P [o/x, (idpath o)/e]

Γ ⊢ (paths_rect(o, T, x.e.P, s0, o, idpath(o))
d
= (so o)

(4)

If C is a locally Cartesian closed category and p : Ũ → U is a universe in C.
then a paths-structure on the C-system CC(C, p) can be introduced as follows.

Let us denote by Bn the set of objects of length n in CC(C, p) and by B̃n the set of sections
of the canonical projections X → ft(X) where X ∈ Bn. For Γ ∈ Bn let B(Γ) be the set of
elements Γ′ such that ft(Γ′) = Γ and B̃(Γ′) the set of elements s such that ∂(s) = Γ′.
By construction of CC(C, p) there is an object [Γ] of C corresponding to each Γ ∈ Bn and
one has natural bijections:

[b1]B(Γ) = HomC([Γ],U) (5)

[b2]B̃(Γ′) = HomU([Γ
′], Ũ) (6)

The rule (1) corresponds to specifying for all s an operation of the form

paths : B̃(Γ)∂ ×∂ B̃(Γ) → B(Γ)

From the bijections (5),(6) we conclude that such an operation can be obtained from a
morphism

Paths : Ũ ×U Ũ → U

1



Rule (2) corresponds to specifying for all Γ an operation of the form

idpath : B̃(Γ) → B̃(Γ)

such that ∂(idpath(s)) = paths(s, s). From the bijections (5),(6) we conclude that such an
operation can be obtained from a morphism

Idpath : Ũ → Ũ

such that p ◦ Idpath = Paths ◦∆ where ∆ : Ũ → Ũ ×U Ũ is the diagonal.
Let us consider now the third rule (3). As an operation it has five arguments. The first
argument is as before an element s of B̃(Γ). The second argument is an element of B(Γ′)
where Γ′ is expressible through s (given paths). To find the expression for Γ′ consider its
derivation tree. We have

Γ, x : T ⊢ o : T Γ, x : T ⊢ x : T

Γ, x : T ⊢ paths o x type

We have (Γ, x : T ⊢ o : T ) = T̃ (∂(s), s) and (Γ, x : T ⊢ x : T ) = δ(∂(s)). Therefore the
second argument of rule (3) is an element Γ′ of B(paths(T̃ (∂(s), s), δ(∂(s)))). The third
argument is an element s′ of B̃(Γ) with the condition that ∂(s′) is expressible through s and
Γ′ (given paths and idpath). To find the exact form of the expression consider the derivation
tree for the sentence (Γ ⊢ P [o/x, idpath(o)/e] type). We have:

Γ ⊢ o : T Γ, x : T, e : paths o x ⊢ P type

Γ, e : paths o o ⊢ P [o/x] type

Γ ⊢ idpath(o) : paths o o Γ, e : paths o o ⊢ P [o/x] type

Γ ⊢ P [o/x, idpath(o)/e] type

Therefore we have
∂(s′) = S(idpath(s), S(s,Γ′))

Finally the result of the operation defined by (3) is an element r of B̃(Γ) with the condition
that

∂(r) =
∏

(
∏

(Γ′))

Let us now describe the domain of definition of the rule (3) as the set of morphisms from [Γ]
to some object A of C. The first argument is specified by a morphism s : [Γ] → A1. As we
know A1 = Ũ . The second argument belongs to the set B(paths(δ(∂(s)), T̃ (∂(s), s))) which
varies over B̃(Γ). Therefore the representing object is an object over Ũ .
To describe in the same way the second argument let us compute the object which represents
B(paths(δ(∂(s)), T̃ (∂(s), s))) for a given s. Since s : [Γ] → Ũ the will be object over Ũ . By
construction

B(paths(s1, s2)) = HomC([Γ]Paths◦(s1,s2) ×U Ũ ,U)

2



1 Semantics of cones

Cones of functions f : X → Y together with the associated constructors, eliminator and the
computation rule provide an important example of higher inductive types. In this note we
show how to extend the univalent simplicial set model to this group of structures.
Formally, the cones structure in an intensional type system is defined by the following infer-
ence rules:

Γ ⊢ f : X → Y

Γ ⊢ cone(f) type

Γ ⊢ f : X → Y

Γ ⊢ conec0(f) : cone(f)

Γ ⊢ f : X → Y

Γ ⊢ conec1(f) : Y → cone(f)

Γ ⊢ f : X → Y

Γ ⊢ conec2(f) : forall x : X, paths conec0(f) (conec1(f) (f x))

Γ ⊢ f : X → Y
Γ, c : cone(f) ⊢ P type
Γ ⊢ c0 : P [conec0(f)/c]
Γ ⊢ c1 : forall y : Y, P [(conec1(f) y)/c]
Γ ⊢ c2 : forall x : X, paths (tpair conec0(f) c0) (tpair (conec1(f) (f x))(c1 (f x)))

Γ ⊢ cone_rect(f, c.P, c0, c1, c2) : forall c : cone(f), P

Γ ⊢ f : X → Y
Γ, c : cone(f) ⊢ P type
Γ ⊢ c0 : P [conec0(f)/c]
Γ ⊢ c1 : forall y : Y, P [(conec1(f) y)/c]
Γ ⊢ c2 : forall x : X, paths (tpair conec0(f) c0) (tpair (conec1(f) (f x))(c1 (f x)))

Γ ⊢ (cone_rect(f, c.P, c0, c1, c2) conec0(f))
d
= c0

Γ ⊢ f : X → Y
Γ, c : cone(f) ⊢ P type
Γ ⊢ c0 : P [conec0(f)/c]
Γ ⊢ c1 : forall y : Y, P [(conec1(f) y)/c]
Γ ⊢ c2 : forall x : X, paths (tpair conec0(f) c0) (tpair (conec1(f) (f x))(c1 (f x)))
Γ ⊢ y0 : Y

Γ ⊢ (cone_rect(f, c.P, c0, c1, c2) (conec1(f) y0)
d
= (c1 y0)

3



Γ ⊢ f : X → Y
Γ, c : cone(f) ⊢ P type
Γ ⊢ c0 : P [conec0(f)/c]
Γ ⊢ c1 : forall y : Y, P [(conec1(f) y)/c]
Γ ⊢ c2 : forall x : X, paths (tpair conec0(f) c0) (tpair (conec1(f) (f x))(c1 (f x)))
Γ ⊢ x0 : X

Γ ⊢ (maponpaths tcone_rect (conec2(f) x0)
d
= (c2 x0)

Where paths is the identity type of the type system, tpair is the pair formation constructor
of the dependent sums, tconerect is the function

tconerect := fun c : cone(f) ⇒ tpair c (cone_rect(f, c.P, c0, c1, c2) c)

and maponpaths is the function on paths obtained in the usual way using the eliminator for
the identity types.

4


	Semantics of identity types
	Semantics of cones


