
On Lemma 6.10.12 in the HoTT book
Vladimir Voevodsky

December 20, 2013.

In the current version of the HoTT book there is a lemma of the following form:
Lemma Suppose P : Z→U is a type family and that we have

d0 : P (0),

d+ :
∏
(n : N)P (n)→P (succ(n)), and d− :

∏
(n : N)P (−n)→P (−succ(n))

Then we have f :
∏
(z : Z)P (z) such that f(0) ≡ d0 and f(succ(n)) ≡ d + (f(n)), and

f(−succ(n)) ≡ d−(f(−n)) for all n : N.
Where ≡ denotes definitional equality. The following note is a summary of my attempt to
prove a non-dependent version of this lemma in Coq using the definition of integers “hz”
given in the Foundations library.
First it is unclear what the condition of the form a(n) ≡ b(n) for all n is supposed to
mean. Indeed there are two different interpretations. First that for any numeral n one has
a(n) ≡ b(n). Second that a ≡ b in the function type. In Coq the first condition is strictly
weaker than the second. In what follows we consider the second meaning.
The non-dependent form of the lemma looks as follows1:
“Lemma l61012nd (T : UU) (d0 : T) (dplus : forall n : nat , T -> T) (
dminus : forall n : nat , T -> T) : hz -> T .”
The conditions are equivalent to the acceptability by Coq of the following code:
“Lemma test1 (T : UU) (d0 : T) (dplus : forall n : nat , T -> T)
(dminus : forall n : nat , T -> T) : paths (l61012nd d0 dplus dminus (
nattohz 0)) d0 . Proof . intros . apply idpath . Defined.

Lemma test2 (T : UU) (d0 : T) (dplus : forall n : nat , T -> T) (
dminus : forall n : nat , T -> T) (n : nat) : paths (l61012nd d0 dplus
dminus (nattohz (S n))) (dplus n (l61012nd d0 dplus dminus (nattohz n
))) . Proof . intros . apply idpath . Defined.

Lemma test3 (T : UU) (d0 : T) (dplus : forall n : nat , T -> T) (
dminus : forall n : nat , T -> T) (n : nat) : paths (l61012nd d0 dplus
dminus (hzsign (nattohz (S n)))) (dminus n (l61012nd d0 dplus dminus
(hzsign (nattohz n)))) . Proof . intros . apply idpath . Defined.”
At the moment I am unable to find a proof of “l61012nd” which would make these idpath-
proofs of “test1”,“test2” and “test3” to compile.

1All of the Coq code in the note can be copy-pasted directly into Coq. Compilation requires the file hz.v
from the Foundations library.

1

The reason is somewhat subtle and interesting. The first surprising fact is that such a proof
of “l61012nd” can be found if we add the additional assumption that “T” is an h-set. Namely,
the following code does work:
“Lemma l61012aa (T : UU) (d0 : T) (dplus : forall n : nat , T -> T) (
dminus : forall n : nat , T -> T) : forall nm: dirprod nat nat , T. Proof.
intros. destruct nm as [n m] . generalize m . clear m . induction n.

intro m . induction m . apply d0. apply (dminus m IHm) . intro m .
destruct m . apply (dplus n (IHn O)) . apply (IHn m) . Defined .

Lemma l61012ab (T : hSet) (d0 : T) (dplus : forall n : nat , T -> T)
(dminus : forall n : nat , T -> T) (n m : nat) : paths (l61012aa T d0
dplus dminus (dirprodpair n m)) (l61012aa T d0 dplus dminus (dirprodpair
(S n) (S m))) . Proof. intros . apply idpath . Defined.

Lemma l61012a (T : hSet) (d0 : T) (dplus : forall n : nat , T -> T)
(dminus : forall n : nat , T -> T) : hz -> T . Proof. intros T d0 dplus
dminus. unfold hz . unfold commrigtocommrng. simpl .

apply (setquotuniv (hrelabgrfrac (rigaddabmonoid natcommrig)) T (l61012aa
T d0 dplus dminus)). admit . Defined .

Lemma test1a (T : hSet) (d0 : T) (dplus : forall n : nat , T -> T)
(dminus : forall n : nat , T -> T) : paths (l61012a T d0 dplus dminus (
nattohz 0)) d0 . Proof . intros . apply idpath . Defined.

Lemma test2a (T : hSet) (d0 : T) (dplus : forall n : nat , T -> T) (
dminus : forall n : nat , T -> T) (n : nat) : paths (l61012a T d0 dplus
dminus (nattohz (S n))) (dplus n (l61012a T d0 dplus dminus (nattohz
n))) . Proof . intros . apply idpath . Defined.

Lemma test3a (T : hSet) (d0 : T) (dplus : forall n : nat , T -> T) (
dminus : forall n : nat , T -> T) (n : nat) : paths (l61012a T d0 dplus
dminus (hzsign (nattohz (S n)))) (dminus n (l61012a T d0 dplus dminus
(hzsign (nattohz n)))) . Proof . intros . apply idpath . Defined.”
The best I can do for a general “T” is to provide a proof of “l61012nd” for which the idpath-
proofs of “test1” and “test2” work and a proof of “test3” requires a “destruct” or a proof
for which idpath-proofs of “test1” and “test3” work and the proof of “test2” requires a
detract. Here is the code for the first case:
“(* We define the subtraction on natural numbers in two different ways.
Our first definition [minus1] coincides with the one given in the standard
library. It has the property that [minus1 O n] is definitionally equal to
[O] but not that [minus1 n O] is definitionally equal to [n]. The other
definition [minus2] has a complimentary set of properties - [minus2 n O] is
definitionally equal to [n] but [minus2 O n] is not definitionally equal to
[O]. *)

Definition minus1 (n m : nat) : nat . Proof. intro n . induction n .

2

intro m . apply O . intro m . destruct m . apply (S n) . apply (IHn m).
Defined.

Definition minus2 (n m : nat) : nat . Proof. intros . generalize n .
clear n . induction m .

intro n . apply n .

intro n . destruct n . apply O . apply (IHm n). Defined.

(* The two minus functions are used to define a section of the projection [
dirprod nat nat -> hz] *)

Definition rnatnat : dirprod nat nat -> dirprod nat nat := fun nm => dirprodpair
(minus2 (pr1 nm) (pr2 nm)) (minus1 (pr2 nm) (pr1 nm)) .

Definition rhz : hz -> dirprod nat nat . Proof . unfold hz . unfold
commrigtocommrng. simpl .

apply (setquotuniv (hrelabgrfrac (rigaddabmonoid natcommrig)) (setdirprod
natset natset) rnatnat). admit . Defined.

Definition l61012nd (T : UU) (d0 : T) (dplus : forall n : nat , T -> T
) (dminus : forall n : nat , T -> T) (z : hz) : T := l61012aa T d0 dplus
dminus (rhz z) .

Lemma test1 (T : UU) (d0 : T) (dplus : forall n : nat , T -> T) (
dminus : forall n : nat , T -> T) : paths (l61012nd T d0 dplus dminus (
nattohz 0)) d0 . Proof . intros . apply idpath . Defined.

Lemma test2 (T : UU) (d0 : T) (dplus : forall n : nat , T -> T) (
dminus : forall n : nat , T -> T) (n : nat) : paths (l61012nd T d0 dplus
dminus (nattohz (S n))) (dplus n (l61012nd T d0 dplus dminus (nattohz
n))) . Proof . intros . apply idpath . Defined.”
The idpath-proof
“Lemma test3 (T : UU) (d0 : T) (dplus : forall n : nat , T -> T) (
dminus : forall n : nat , T -> T) (n : nat) : paths (l61012nd T d0
dplus dminus (hzsign (nattohz (S n)))) (dminus n (l61012nd T d0 dplus
dminus (hzsign (nattohz n)))) .”
does not work. The best one can get is a destruct-idpath-idpath-proof:
“Proof . intros . destruct n . apply idpath . apply idpath . Defined.”
which among other things implies that the idpath-proof would work if we substitute for the
variable “n:nat” in “test3” any numeral (e.g. 5).
Let us consider now what are the issues which prevent us from getting a proof of “l61012nd”
with would make the idpath-proofs of all three test lemmas work. Much of what happens
can be seen in terms of the following diagram:

3

X
r→ X

f→ T

p ↓
rR
↗ ↓ p

fR
↗

X/R X/R

where in our case X = N×N, R is the equivalence relation such that Z = (N×N)/R, r is
defined in “rnatnat” and rR in “rhz”.
For the data “d0, dplus, dminus” we construct in “l61012aa” a function f : N × N → T
such that

f(0, 0) = d0 f(1 + n, 0) = dplus(n, f(n, 0))

f(0, 1 +m) = dminus(m, f(0,m)) f(1 + n, 1 +m) = f(n,m)

To agree with the idpath-proofs of the three test lemmas we need a function fR such that

fR(p(0, 0)) = d0

fR(p(1 + n, 0)) = dplus(n, fR(p(n, 0))

fR(p(0, 1 +m)) = dminus(m, fR(p(0,m)))

The condition f(1 + n, 1 + m) = f(n,m) implies that it is compatible with R. Therefore
when T is an h-set we may apply “setquotuniv” to obtain fR which makes the corresponding
triangle definitionally commutative and therefore satisfies all three required conditions.
When T is a general type we define fR instead by fR(z) = f(rR(z)). In order for the
conditions to be satisfied in this case we need the equations

f(r(0, 0)) = d0

f(r(1 + n, 0)) = dplus(n, f(r(n, 0)))

f(r(0, 1 +m)) = dminus(m, f(r(0,m)))

which would follow if we could find r such that

r(n, 0) = (n, 0)

r(0,m) = (0,m)

r(1 + n, 1 +m) = r(n,m)

or equivalently we need to construct r1 : N × N → N such that

r1(n, 0) = n

r1(0,m) = 0

r1(1 + n, 1 +m) = r1(n,m)

The problem of this approach is that there seems to be no way in Coq to define a function r1
satisfying (definitionally) the first two of these conditions.

4

Another possibility would be to try to modify “setquotuniv” to obtain universality of set-
quotients of h-sets by equivalence relations with respect to compatible functions to all types.
More generally, we can ask:
Q1 Can we find a construction for set-quotients of h-sets by equivalence relations which
would be universal with respect to compatible functions to all types?
I think this can be reduced to the case of the maximal equivalence relation leading to the
following question:
Q2 Given “(X:hSet)(T:UU)(f:X->T)(is:forall (x1 x2 : X), paths (f x1) (f x2))”
can we construct “fis:ishinh(X)->T” such that for all “x:X” one has “fis(hinhpr x)≡ f
x”.
A weaker version of the same question would only require a path equality between “fis(hinhpr
x)” and “f x”.
So far I see no way to either find a definition of “fis” or to show that it can not be done in
general. For the later possibility we can ask the following:
Q3 Can we show that there is no proof for the following pair of lemmas
“Lemma fis_UU (X:UU)(T:UU)(f:X->T)(is:forall (x1 x2:X), paths (f x1) (f x2))
: ishinh(X)->T.”
“Lemma fis_UU_paths (X:UU)(T:UU)(f:X->T)(is:forall (x1 x2:X), paths (f x1) (f
x2))(x:X): paths (fis_UU X T f is (hinhpr x)) (f x).”

5

