On Lemma 6.10.12 in the HoTT book
 Vladimir Voevodsky

December 20, 2013.

In the current version of the HoTT book there is a lemma of the following form:
Lemma Suppose $P: \mathbf{Z} \rightarrow \mathcal{U}$ is a type family and that we have

$$
\begin{aligned}
& d 0: P(0), \\
& d+: \prod(n: \mathbf{N}) P(n) \rightarrow P(\operatorname{succ}(n)), \text { and } d-: \prod(n: \mathbf{N}) P(-n) \rightarrow P(-\operatorname{succ}(n))
\end{aligned}
$$

Then we have $f: \Pi(z: \mathbf{Z}) P(z)$ such that $f(0) \equiv d 0$ and $f(\operatorname{succ}(n)) \equiv d+(f(n))$, and $f(-\operatorname{succ}(n)) \equiv d-(f(-n))$ for all $n: \mathbf{N}$.

Where \equiv denotes definitional equality. The following note is a summary of my attempt to prove a non-dependent version of this lemma in Coq using the definition of integers "hz" given in the Foundations library.
First it is unclear what the condition of the form $a(n) \equiv b(n)$ for all n is supposed to mean. Indeed there are two different interpretations. First that for any numeral n one has $a(n) \equiv b(n)$. Second that $a \equiv b$ in the function type. In Coq the first condition is strictly weaker than the second. In what follows we consider the second meaning.
The non-dependent form of the lemma looks as follows 1 :
"Lemma l61012nd ($\mathrm{T}: \mathrm{UU}$) (d0 : T) (dplus : forall n : nat , T -> T) (dminus : forall n : nat , T -> T) : hz $->\mathrm{T}$."
The conditions are equivalent to the acceptability by Coq of the following code:
"Lemma test1 ($\mathrm{T}: \mathrm{UU}$) (d0 : T) (dplus : forall n : nat , T $\rightarrow \mathrm{T}$) (dminus : forall n : nat , $\mathrm{T} \rightarrow \mathrm{T}$) : paths (l61012nd d0 dplus dminus (nattohz 0)) d0 . Proof . intros . apply idpath . Defined.
Lemma test2 ($\mathrm{T}: \mathrm{UU}$) (d0 : T) (dplus : forall n : nat , T -> T) (dminus : forall n : nat , $\mathrm{T}-\mathrm{T}$) (n : nat) : paths (l61012nd d0 dplus dminus (nattohz (S n))) (dplus n (l61012nd dO dplus dminus (nattohz n))) . Proof . intros . apply idpath . Defined.
Lemma test3 ($\mathrm{T}: \mathrm{UU}$) (d0 : T) (dplus : forall n : nat , T -> T) (dminus : forall n : nat , $\mathrm{T} \rightarrow \mathrm{T}$) (n : nat) : paths (l61012nd d0 dplus dminus (hzsign (nattohz (S n)))) (dminus n (161012 nd d0 dplus dminus (hzsign (nattohz n)))) . Proof . intros . apply idpath . Defined."

At the moment I am unable to find a proof of "l61012nd" which would make these idpathproofs of "test1","test2" and "test3" to compile.

[^0]The reason is somewhat subtle and interesting. The first surprising fact is that such a proof of "161012nd" can be found if we add the additional assumption that " T " is an h-set. Namely, the following code does work:
"Lemma l61012aa ($\mathrm{T}: \mathrm{UU}$) (d0 : T) (dplus : forall n : nat , T -> T) (dminus : forall n : nat , $\mathrm{T} \rightarrow \mathrm{T}$) : forall nm: dirprod nat nat , T. Proof. intros. destruct $n m$ as $[n \mathrm{~m}]$. generalize m. clear m. induction n.
intro m . induction m . apply d0. apply (dminus m IHm) . intro m . destruct m . apply (dplus n (IHn O)) . apply (IHn m) . Defined .

Lemma l61012ab (T : hSet) (dO : T) (dplus : forall n : nat , T -> T) (dminus : forall n : nat , $\mathrm{T} \rightarrow \mathrm{T}$) (n m : nat) : paths (161012aa T d0 dplus dminus (dirprodpair n m)) (161012aa T dO dplus dminus (dirprodpair (S n) (S m))) . Proof. intros . apply idpath . Defined.

Lemma 161012a (T : hSet) (d0 : T) (dplus : forall n : nat , T -> T) (dminus : forall n : nat , $\mathrm{T}->\mathrm{T}$) : hz $\rightarrow \mathrm{T}$. Proof. intros T d0 dplus dminus. unfold hz . unfold commrigtocommrng. simpl .
apply (setquotuniv (hrelabgrfrac (rigaddabmonoid natcommrig)) T (161012aa T dO dplus dminus)). admit . Defined .

Lemma test1a (T : hSet) (d0 : T) (dplus : forall n : nat , T -> T) (dminus : forall n : nat , $\mathrm{T} \rightarrow \mathrm{T}$) : paths (161012a T dO dplus dminus (nattohz 0)) d0 . Proof . intros . apply idpath . Defined.
Lemma test2a ($\mathrm{T}: \mathrm{hSet}$) (d0 : T) (dplus : forall n : nat , T -> T) (dminus : forall n : nat , $\mathrm{T} \rightarrow \mathrm{T}$) (n : nat) : paths (161012a T d0 dplus dminus (nattohz (S n))) (dplus n (161012a T dO dplus dminus (nattohz n))) . Proof . intros . apply idpath . Defined.

Lemma test3a (T : hSet) (d0 : T) (dplus : forall n : nat , T -> T) (dminus : forall n : nat , T -> T) (n : nat) : paths (161012a T d0 dplus dminus (hzsign (nattohz (S n)))) (dminus n (161012a T do dplus dminus (hzsign (nattohz n)))) . Proof . intros . apply idpath . Defined."

The best I can do for a general " T " is to provide a proof of "161012nd" for which the idpathproofs of "test1" and "test2" work and a proof of "test3" requires a "destruct" or a proof for which idpath-proofs of "test1" and "test3" work and the proof of "test2" requires a detract. Here is the code for the first case:
"(* We define the subtraction on natural numbers in two different ways. Our first definition [minus1] coincides with the one given in the standard library. It has the property that [minus1 0 n] is definitionally equal to [0] but not that [minus1 $n ~ 0] ~ i s ~ d e f i n i t i o n a l l y ~ e q u a l ~ t o ~[n] . ~ T h e ~ o t h e r ~$ definition [minus2] has a complimentary set of properties - [minus2 n 0] is definitionally equal to $[\mathrm{n}$] but [minus2 0 n] is not definitionally equal to [0]. *)

Definition minus1 (n m : nat) : nat . Proof. intro n . induction n .
intro m. apply 0 . intro m . destruct m. apply (S n) . apply (IHn m). Defined.

Definition minus2 ($n \mathrm{~m}$: nat) : nat . Proof. intros . generalize n . clear n . induction m .
intro n . apply n .
intro n . destruct n . apply 0 . apply (IHm n). Defined.
(* The two minus functions are used to define a section of the projection [dirprod nat nat -> hz] *)

Definition rnatnat : dirprod nat nat -> dirprod nat nat := fun nm => dirprodpair (minus2 (pr1 nm) (pr2 nm)) (minus1 (pr2 nm) (pr1 nm)) .
Definition rhz : hz -> dirprod nat nat . Proof . unfold hz . unfold commrigtocommrng. simpl .
apply (setquotuniv (hrelabgrfrac (rigaddabmonoid natcommrig)) (setdirprod natset natset) rnatnat). admit . Defined.
Definition l61012nd ($\mathrm{T}: \mathrm{UU}$) (d0 : T) (dplus : forall n : nat , T $\rightarrow \mathrm{T}$) (dminus : forall n : nat , T -> T) (z : hz) : T := l61012aa T d0 dplus dminus (rhz z) .

Lemma test1 ($\mathrm{T}: \mathrm{UU}$) (d0 : T) (dplus : forall n : nat , T $\rightarrow \mathrm{T}$) (dminus : forall n : nat , $\mathrm{T} \rightarrow \mathrm{T}$) : paths (161012nd T dO dplus dminus (nattohz 0)) d0 . Proof . intros . apply idpath . Defined.

Lemma test2 ($\mathrm{T}: \mathrm{UU}$) (d0 : T) (dplus : forall n : nat , T -> T) (dminus : forall n : nat , $\mathrm{T} \rightarrow \mathrm{T}$) (n : nat) : paths (161012 nd T d0 dplus dminus (nattohz (S n))) (dplus n (l61012nd T dO dplus dminus (nattohz n))) . Proof . intros . apply idpath . Defined."
The idpath-proof
"Lemma test3 ($\mathrm{T}: \mathrm{UU}$) (d0 : T) (dplus : forall n : nat , $\mathrm{T} \rightarrow \mathrm{T}$) (dminus : forall n : nat , $\mathrm{T} \rightarrow \mathrm{T}$) (n : nat) : paths (l61012nd T do dplus dminus (hzsign (nattohz (S n)))) (dminus n (161012nd T d0 dplus dminus (hzsign (nattohz n)))) ."
does not work. The best one can get is a destruct-idpath-idpath-proof:
"Proof . intros . destruct n . apply idpath . apply idpath . Defined."
which among other things implies that the idpath-proof would work if we substitute for the variable " n : nat" in "test3" any numeral (e.g. 5).
Let us consider now what are the issues which prevent us from getting a proof of "161012nd" with would make the idpath-proofs of all three test lemmas work. Much of what happens can be seen in terms of the following diagram:

where in our case $X=\mathbf{N} \times \mathbf{N}, R$ is the equivalence relation such that $\mathbf{Z}=(\mathbf{N} \times \mathbf{N}) / R, r$ is defined in "rnatnat" and r_{R} in "rhz".
For the data "d0, dplus, dminus" we construct in "161012aa" a function $f: \mathbf{N} \times \mathbf{N} \rightarrow T$ such that

$$
\begin{gathered}
f(0,0)=d 0 f(1+n, 0)=\operatorname{dplus}(n, f(n, 0)) \\
f(0,1+m)=\operatorname{dminus}(m, f(0, m)) f(1+n, 1+m)=f(n, m)
\end{gathered}
$$

To agree with the idpath-proofs of the three test lemmas we need a function f_{R} such that

$$
\begin{gathered}
f_{R}(p(0,0))=d 0 \\
f_{R}(p(1+n, 0))=\operatorname{dplus}\left(n, f_{R}(p(n, 0))\right. \\
f_{R}(p(0,1+m))=\operatorname{dminus}\left(m, f_{R}(p(0, m))\right)
\end{gathered}
$$

The condition $f(1+n, 1+m)=f(n, m)$ implies that it is compatible with R. Therefore when T is an h-set we may apply "setquotuniv" to obtain f_{R} which makes the corresponding triangle definitionally commutative and therefore satisfies all three required conditions.

When T is a general type we define f_{R} instead by $f_{R}(z)=f\left(r_{R}(z)\right)$. In order for the conditions to be satisfied in this case we need the equations

$$
\begin{gathered}
f(r(0,0))=d 0 \\
f(r(1+n, 0))=\operatorname{dplus}(n, f(r(n, 0))) \\
f(r(0,1+m))=\operatorname{dminus}(m, f(r(0, m)))
\end{gathered}
$$

which would follow if we could find r such that

$$
\begin{gathered}
r(n, 0)=(n, 0) \\
r(0, m)=(0, m) \\
r(1+n, 1+m)=r(n, m)
\end{gathered}
$$

or equivalently we need to construct $r 1: \mathbf{N} \times \mathbf{N} \rightarrow \mathbf{N}$ such that

$$
\begin{aligned}
r 1(n, 0) & =n \\
r 1(0, m) & =0 \\
r 1(1+n, 1+m) & =r 1(n, m)
\end{aligned}
$$

The problem of this approach is that there seems to be no way in Coq to define a function $r 1$ satisfying (definitionally) the first two of these conditions.

Another possibility would be to try to modify "setquotuniv" to obtain universality of setquotients of h-sets by equivalence relations with respect to compatible functions to all types. More generally, we can ask:
Q1 Can we find a construction for set-quotients of h-sets by equivalence relations which would be universal with respect to compatible functions to all types?
I think this can be reduced to the case of the maximal equivalence relation leading to the following question:

Q2 Given "(X:hSet) (T:UU) (f:X->T) (is:forall (x1 x2 : X), paths (f x1) (f x2))" can we construct " f is:ishinh (X)->T" such that for all " $x: X$ " one has "fis(hinhpr $x) \equiv f$ x".

A weaker version of the same question would only require a path equality between "fis (hinhpr x)" and "f x".

So far I see no way to either find a definition of "fis" or to show that it can not be done in general. For the later possibility we can ask the following:
Q3 Can we show that there is no proof for the following pair of lemmas
"Lemma fis_UU (X:UU)(T:UU) (f:X->T) (is:forall (x1 x2:X), paths (f x1) (f x2))
: ishinh (X)->T."
"Lemma fis_UU_paths (X:UU) (T:UU) (f:X->T) (is:forall (x1 x2:X), paths (f x1) (f x2)) ($x: X$) : paths (fis_UU X T f is (hinhpr x)) (f x)."

[^0]: ${ }^{1}$ All of the Coq code in the note can be copy-pasted directly into Coq. Compilation requires the file hz.v from the Foundations library.

