
Description f LF in TS style
Vladimir Voevodsky

Started November 27, 2012. Work in progress.

1 Expressions and terms of LF

Definition 1.1 [lfexp] The following labels are permitted in expressions of LF: names of
t-constants, names of o-constants, names of o-variables, Type, [

∏
k;x], [

∏
t;x], [λt;x], [evt],

[λo;x] and [evo].

Definition 1.2 [lfclassesofexp] We distinguish three classes of expressions:

1. K-expressions are the ones with the root node [Type] or [
∏

k;x],

2. T-expressions are the ones with the root node [X] where X is the name of a t-constant,
[
∏

t;x], [λt;x] or [evt],

3. O-expressions are the ones with the root node [x] where x is the name of an o-constant
or an o-variable, [λo;x] and [evo].

Definition 1.3 [lfterms] An LF-term is an expression of LF which satisfies the following
conditions:

1. any node of the form [Type] has valency 0,

2. any node of the form [
∏

k;x] has valency 2, its first branch is a t-expression which does
not depend on x and its second branch is a k-expression,

3. any node of the form [
∏

t;x] has valency 2, its first branch is a t-expression which does
not depend on x and its second branch is a t-expression,

4. any node of the form [λt;x] has valency 2, its first branch is a t-expression which does
not depend on x and its second branch is a t-expression,

5. any node of the form [evt] has valency 2 and both its branches are t-expressions,

6. any node of the form [λo;x] has valency 2, its first branch is a t-expression which does
not depend on x and its second branch is a o-expression,

7. any node of the form [evo] has valency 2 and both its branches are o-expressions.

1



2 Derivation rules for LF

The derivation (inference) rules for LF are as follows:

1.

B

2. for each i ∈ N
Γ, x : T,Γ′ B where l(Γ) = i

Γ, x : T,Γ′ ` x : T

3.
Γ, x : T B Γ, x : T ′B

Γ ` T d
= T

4.
Γ ` T1

d
= T2

Γ ` T2
d
= T1

5.
Γ ` T1

d
= T2 Γ ` T2

d
= T3

Γ ` T1
d
= T3

6.
Γ ` o : T Γ ` o′ : T o ∼A o

′

Γ ` o d
= o′ : T

7.
Γ ` o1

d
= o2 : T

Γ ` o2
d
= o1 : T

8.
Γ ` o1

d
= o2 : T Γ ` o2

d
= o3 : T

Γ ` o1
d
= o3 : T

9.
Γ ` o : T Γ ` T d

= T ′

Γ ` o : T ′

10.
Γ ` o d

= o′ : T Γ ` T d
= T ′

Γ ` o d
= o′ : T ′

11. if A is a t-constant name unused in Γ then

ΓB
Γ, A : TypeB

2



12. If A is a t-expression and K is a k-expression then

Γ, x : A, y : K B
Γ, z : [

∏
k;x](A,K)B

13. If A, A′ are t-expressions and K, K ′ are k-expressions then

Γ ` A d
= A′ Γ, x : A ` K d

= K ′

Γ ` [
∏

k;x](A,K)
d
= [

∏
k;x](A′, K ′)

14. If A, B are t-expressions then

Γ, x : A, y : BB
Γ, z : [

∏
t;x](A,B)B

15. If A, A′, B, B′ are t-expressions then

Γ ` A d
= A′ Γ, x : A ` B d

= B′

Γ ` [
∏

t;x](A,B)
d
= [

∏
t;x](A′, B′)

16. If A is a t-expression and K is a k-expression then

Γ, x : A ` B : K

Γ ` [λt;x](A,B) : [
∏

k;x](A,K)

17. If A, A′ are t-expressions and K is a k-expression then

Γ ` A d
= A′′ Γ, x : A ` B d

= B′ : K

Γ ` [λt;x](A,B)
d
= [λt;x](A′, B′) : [

∏
k;x](A,K)

18.
Γ ` F : [

∏
k;x](A,K) Γ ` a : A

Γ ` [evt](F, a) : K[a/x]

19.
Γ ` F d

= F ′ : [
∏

k;x](A,K) Γ ` a d
= a′ : A

Γ ` [evt](F, a)
d
= [evt](F ′, a′) : K[a/x]

20. If A and B are t-expressions then

Γ, x : A ` o : B

Γ ` [λ;x](A, o) : [
∏

t;x](A,B)

21. If A, A′ and B are t-expressions then

Γ ` A d
= A′ Γ, x : A ` o d

= o′ : B

Γ ` [λ;x](A, o)
d
= [λ;x](A′, o′) : [

∏
;x](A,B)

3



22.
Γ ` f : [

∏
t;x](A,B) Γ ` o : A

Γ ` [evo](f, o) : B[o/x]

23.
Γ ` f d

= f ′ : [
∏

t;x](A,B) Γ ` o d
= o′ : B

Γ ` [evo](f, o)
d
= [evo](f ′, o′) : B[o/x]

24. If A, B are t-expressions then

Γ ` o : A Γ, o : A ` o′ : B

Γ ` [evo]([λo;x](A, o), o′)
d
= o′[o/x] : B[o/x]

25. If A, B are t-expressions then

Γ ` o : A Γ, x : A ` B : K

Γ ` [evt]([λt;x](A,B), o)
d
= B[o/x]

26.
Γ ` F : [

∏
k;x](A,K)

Γ ` [λt;x](A, [evt](F, x))
d
= F : [

∏
k;x](A,K)

27.
Γ ` f : [

∏
t;x](A,B)

Γ ` [λo;x](A, [evo](f, x))
d
= f : [

∏
t;x](A,B)

4


