Description f LF in TS style

Vladimir Voevodsky

Started November 27, 2012. Work in progress.

1 Expressions and terms of LF

Definition 1.1 [lfexp] The following labels are permitted in expressions of LF: names of t-constants, names of o-constants, names of o-variables, Type, $\left[\prod_{k} ; x\right],\left[\prod_{t} ; x\right],\left[\lambda_{t} ; x\right],\left[e v_{t}\right]$, $\left[\lambda_{o} ; x\right]$ and $\left[e v_{o}\right]$.

Definition 1.2 [lfclassesofexp] We distinguish three classes of expressions:

1. K-expressions are the ones with the root node $[$ Type $]$ or $\left[\prod_{k} ; x\right]$,
2. T-expressions are the ones with the root node $[X]$ where X is the name of a t-constant, $\left[\prod_{t} ; x\right],\left[\lambda_{t} ; x\right]$ or $\left[e v_{t}\right]$,
3. O-expressions are the ones with the root node $[x]$ where x is the name of an o-constant or an o-variable, $\left[\lambda_{o} ; x\right]$ and $\left[e v_{o}\right]$.

Definition 1.3 [lfterms] An LF-term is an expression of LF which satisfies the following conditions:

1. any node of the form [Type] has valency 0 ,
2. any node of the form $\left[\prod_{k} ; x\right]$ has valency 2, its first branch is a t-expression which does not depend on x and its second branch is a k-expression,
3. any node of the form $\left[\prod_{t} ; x\right]$ has valency 2, its first branch is a t-expression which does not depend on x and its second branch is a t-expression,
4. any node of the form $\left[\lambda_{t} ; x\right]$ has valency 2, its first branch is a t-expression which does not depend on x and its second branch is a t-expression,
5. any node of the form $\left[e v_{t}\right]$ has valency 2 and both its branches are t-expressions,
6. any node of the form $\left[\lambda_{o} ; x\right]$ has valency 2, its first branch is a t-expression which does not depend on x and its second branch is a o-expression,
7. any node of the form $\left[e v_{o}\right]$ has valency 2 and both its branches are o-expressions.

2 Derivation rules for LF

The derivation (inference) rules for LF are as follows:
1.

$$
\bar{\triangleright}
$$

2. for each $i \in \mathbf{N}$

$$
\frac{\Gamma, x: T, \Gamma^{\prime} \triangleright \quad \text { where } l(\Gamma)=i}{\Gamma, x: T, \Gamma^{\prime} \vdash x: T}
$$

3.

$$
\frac{\Gamma, x: T \triangleright \quad \Gamma, x: T^{\prime} \triangleright}{\Gamma \vdash T \stackrel{d}{=} T}
$$

4.

$$
\frac{\Gamma \vdash T_{1} \stackrel{d}{=} T_{2}}{\Gamma \vdash T_{2} \stackrel{d}{=} T_{1}}
$$

5.

$$
\frac{\Gamma \vdash T_{1} \stackrel{d}{=} T_{2} \quad \Gamma \vdash T_{2} \stackrel{d}{=} T_{3}}{\Gamma \vdash T_{1} \stackrel{d}{=} T_{3}}
$$

6.

$$
\frac{\Gamma \vdash o: T \quad \Gamma \vdash o^{\prime}: T \quad o \sim_{A} o^{\prime}}{\Gamma \vdash o \stackrel{d}{=} o^{\prime}: T}
$$

7.

$$
\frac{\Gamma \vdash o_{1} \stackrel{d}{=} o_{2}: T}{\Gamma \vdash o_{2} \stackrel{d}{=} o_{1}: T}
$$

8.

$$
\frac{\Gamma \vdash o_{1} \stackrel{d}{=} o_{2}: T \quad \Gamma \vdash o_{2} \stackrel{d}{=} o_{3}: T}{\Gamma \vdash o_{1} \stackrel{d}{=} o_{3}: T}
$$

9.

$$
\frac{\Gamma \vdash o: T \quad \Gamma \vdash T \stackrel{d}{=} T^{\prime}}{\Gamma \vdash o: T^{\prime}}
$$

10.

$$
\frac{\Gamma \vdash o \stackrel{d}{=} o^{\prime}: T \quad \Gamma \vdash T \stackrel{d}{=} T^{\prime}}{\Gamma \vdash o \stackrel{d}{=} o^{\prime}: T^{\prime}}
$$

11. if A is a t-constant name unused in Γ then

$$
\frac{\Gamma \triangleright}{\Gamma, A: \text { Type } \triangleright}
$$

12. If A is a t-expression and K is a k-expression then

$$
\frac{\Gamma, x: A, y: K \triangleright}{\Gamma, z:\left[\prod_{k} ; x\right](A, K) \triangleright}
$$

13. If A, A^{\prime} are t-expressions and K, K^{\prime} are k-expressions then

$$
\frac{\Gamma \vdash A \stackrel{d}{=} A^{\prime} \quad \Gamma, x: A \vdash K \stackrel{d}{=} K^{\prime}}{\Gamma \vdash\left[\prod_{k} ; x\right](A, K) \stackrel{d}{=}\left[\prod_{k} ; x\right]\left(A^{\prime}, K^{\prime}\right)}
$$

14. If A, B are t-expressions then

$$
\frac{\Gamma, x: A, y: B \triangleright}{\Gamma, z:\left[\prod_{t} ; x\right](A, B) \triangleright}
$$

15. If $A, A^{\prime}, B, B^{\prime}$ are t-expressions then

$$
\frac{\Gamma \vdash A \stackrel{d}{=} A^{\prime} \quad \Gamma, x: A \vdash B \stackrel{d}{=} B^{\prime}}{\Gamma \vdash\left[\prod_{t} ; x\right](A, B) \stackrel{d}{=}\left[\prod_{t} ; x\right]\left(A^{\prime}, B^{\prime}\right)}
$$

16. If A is a t -expression and K is a k -expression then

$$
\frac{\Gamma, x: A \vdash B: K}{\Gamma \vdash\left[\lambda_{t} ; x\right](A, B):\left[\prod_{k} ; x\right](A, K)}
$$

17. If A, A^{\prime} are t-expressions and K is a k-expression then

$$
\frac{\Gamma \vdash A \stackrel{d}{=} A^{\prime \prime} \quad \Gamma, x: A \vdash B \stackrel{d}{=} B^{\prime}: K}{\Gamma \vdash\left[\lambda_{t} ; x\right](A, B) \stackrel{d}{=}\left[\lambda_{t} ; x\right]\left(A^{\prime}, B^{\prime}\right):\left[\prod_{k} ; x\right](A, K)}
$$

18.

$$
\frac{\Gamma \vdash F:\left[\prod_{k} ; x\right](A, K) \quad \Gamma \vdash a: A}{\Gamma \vdash\left[e v_{t}\right](F, a): K[a / x]}
$$

19.

$$
\frac{\Gamma \vdash F \stackrel{d}{=} F^{\prime}:\left[\prod_{k} ; x\right](A, K) \quad \Gamma \vdash a \stackrel{d}{=} a^{\prime}: A}{\Gamma \vdash\left[e v_{t}\right](F, a) \stackrel{d}{=}\left[e v_{t}\right]\left(F^{\prime}, a^{\prime}\right): K[a / x]}
$$

20. If A and B are t-expressions then

$$
\frac{\Gamma, x: A \vdash o: B}{\Gamma \vdash[\lambda ; x](A, o):\left[\prod_{t} ; x\right](A, B)}
$$

21. If A, A^{\prime} and B are t-expressions then

$$
\frac{\Gamma \vdash A \stackrel{d}{=} A^{\prime} \quad \Gamma, x: A \vdash o \stackrel{d}{=} o^{\prime}: B}{\Gamma \vdash[\lambda ; x](A, o) \stackrel{d}{=}[\lambda ; x]\left(A^{\prime}, o^{\prime}\right):[\Pi ; x](A, B)}
$$

22.

$$
\frac{\Gamma \vdash f:\left[\prod_{t} ; x\right](A, B) \quad \Gamma \vdash o: A}{\Gamma \vdash\left[e v_{o}\right](f, o): B[o / x]}
$$

23.

$$
\frac{\Gamma \vdash f \stackrel{d}{=} f^{\prime}:\left[\prod_{t} ; x\right](A, B) \quad \Gamma \vdash o \stackrel{d}{=} o^{\prime}: B}{\Gamma \vdash\left[e v_{o}\right](f, o) \stackrel{d}{=}\left[e v_{o}\right]\left(f^{\prime}, o^{\prime}\right): B[o / x]}
$$

24. If A, B are t-expressions then

$$
\frac{\Gamma \vdash o: A \quad \Gamma, o: A \vdash o^{\prime}: B}{\Gamma \vdash\left[e v_{o}\right]\left(\left[\lambda_{o} ; x\right](A, o), o^{\prime}\right) \stackrel{d}{=} o^{\prime}[o / x]: B[o / x]}
$$

25 . If A, B are t -expressions then

$$
\frac{\Gamma \vdash o: A \quad \Gamma, x: A \vdash B: K}{\Gamma \vdash\left[e v_{t}\right]\left(\left[\lambda_{t} ; x\right](A, B), o\right) \stackrel{d}{=} B[o / x]}
$$

26.

$$
\frac{\Gamma \vdash F:\left[\prod_{k} ; x\right](A, K)}{\Gamma \vdash\left[\lambda_{t} ; x\right]\left(A,\left[e v_{t}\right](F, x)\right) \stackrel{d}{=} F:\left[\prod_{k} ; x\right](A, K)}
$$

27.

$$
\frac{\Gamma \vdash f:\left[\prod_{t} ; x\right](A, B)}{\Gamma \vdash\left[\lambda_{o} ; x\right]\left(A,\left[e v_{o}\right](f, x)\right) \stackrel{d}{=} f:\left[\prod_{t} ; x\right](A, B)}
$$

