
A test type system

Vladimir Voevodsky

Started January 25, 2013

Contents

This note gives some ideas about the test type system TTS with secondary witnessed which Dan
Grayson and I have been working on implementing. While TTS by itself has (most likely) decidable
definitional equality and typing making secondary witnesses to be formally speaking unnecessary,
they become essential for the implementation of more complex systems with undecidable typing
such as HTS.

1 Rules

Sequences of expression of the form

x1 : T1, . . . , xn : TnB

x1 : T1, . . . , xn : Tn ` o : T

x1 : T1, . . . , xn : Tn ` T
d
= T ′

x1 : T1, . . . , xn : Tn ` o
d
= o′ : T

where x1, . . . , xn are names of variables, Ti is an expression with free variables from {x1, . . . , xi−1}
and o, o′, T , T ′ are expressions with free variables from the set {x1, . . . , xn} are called sentences of
the type system.

Sequences of expressions of the form

x1 : T1, . . . , xn : TnB

x1 : T1, . . . , xn : Tn ` p : o : T

x1 : T1, . . . , xn : Tn ` q : T :
d
= T ′

x1 : T1, . . . , xn : Tn ` r : (p : o)
d
= (p′ : o′) : T

satisfying the same properties as above and such that p, q, r are expressions with free variables from
{x1, . . . , xn} are called extended sentences.

We are aiming at a type system where every derivable extended sentence can be obtained by a
unique inference rules such that one gets a bijection between inference trees and α-equivalence
classes of derivable extended sentences.

1

General inference rules

1.

B

2. for each X ∈ FV and x not in v(Γ)
ΓB

Γ, x : XB

Note: the condition that x is not one of the variables declared in Γ is essential since otherwise
it is possible that a sentence of the form Γ, x : T,Γ′ ` x : T can be obtained by two different
inference rules of the family of rules given in the next item. A possible alternative(?) is to
include in the next item the condition that x is not in v(Γ′).

3. for each i ∈ N
Γ, x : T,Γ′B

Γ, x : T,Γ′ ` [wd](x) : x : T

Note: The occurrence of x in [wd](x) is called a special occurrence. When we write E[o/x] this
refers to the expression obtained from E by replacing x with o in all non-special occurrences.
In all cases when we do that we also replace [wd](x) by some expression other than o.

4.
Γ, x : T B Γ, x : T ′ B T ∼ T ′

Γ ` [Wrefl] : T
d
= T ′

5.

Γ ` q : T1
d
= T2

Γ ` [Wsymm](q) : T2
d
= T1

6.

Γ ` q12 : T1
d
= T2 Γ ` q23 : T2

d
= T3

Γ ` [Wtrans](q12, q23, T2) : T1
d
= T3

7.
Γ ` p : o : T Γ ` p′ : o′ : T o ∼ o′

Γ ` [wrefl] : (p : o)
d
= (p′ : o′) : T

8.

Γ ` r : (p1 : o1)
d
= (p2 : o2) : T

Γ ` [wsymm](r) : (p2 : o2)
d
= (p1 : o1) : T

9.

Γ ` r12 : (p1 : o1)
d
= (p2 : o2) : T Γ ` r23 : (p2 : o2)

d
= (p3 : o3) : T

Γ ` [wtrans](r12, r23, p2, o2) : (p1 : o1)
d
= (p3 : o3) : T

10.

Γ ` p : o : T Γ ` q : T
d
= T ′

Γ ` [wconv](p, q, T) : o : T ′

2

11.

Γ ` r : (p : o)
d
= (p′ : o′) : T Γ ` q : T

d
= T ′

Γ ` [wconveq](r, q, T) : (p : o)
d
= (p′ : o′) : T ′

12.
Γ, u : S,Γ′, x : T ` Γ ` r : (p : o) = (p′ : o′) : S

Γ,Γ′[??] ` [...] : T [o/u, p/[wd](u)] = T [o′/u, p′/[wd](u)]

Universe

1. for x not in v(Γ)
ΓB

Γ, x : UB

2. for x not in v(Γ)
Γ ` p : o : U

Γ, x : [El](p, o)B

3.
Γ ` r : (p : o) = (p′ : o′) : U

Γ ` [weleq](r) : [El](p, o) = [El](p′, o′)

Dependent products We let [wch](x, q) denote [[wconv]([wd](x), [Wsymm](q),).

1.
Γ, x : T1, y : T2B

Γ, y : [
∏

;x](T1, T2)B

2.

Γ, x : T1, y : T2 B Γ ` q : T1
d
= T ′1

Γ ` [wpi1](q) : [
∏

;x](T1, T2)
d
= [

∏
;x](T ′1, T2[[wch](x, q)]/[wd](x)])

3.

Γ, x : T1, y : T2 B Γ, x : T1 ` q : T2
d
= T ′2

Γ ` [wpi2;x](q) : [
∏

;x](T1, T2)
d
= [

∏
;x](T1, T ′2)

4.
Γ, x : T1 ` p : o : T2

Γ ` [wlam;x](p) : [λ;x](o) : [
∏

;x](T1, T2)

5.

Γ, x : T1 ` r : (p : o)
d
= (p′ : o′) : T2

Γ ` [wl2](r) : (([wlam;x](p) : [λ;x](o))
d
= ([wlam;x](p′) : [λ;x](o′))) : [

∏
;x](T1, T2)

6.
Γ ` pf : f : [

∏
;x](T1, T2) Γ ` po : o : T1

Γ ` [wev](pf , po, T1, T2) : [ev;x](f, o) : T2[o/x, po/[wd](x)]

7.
Γ ` r : (pf : f) = (pf ′ : f ′) : [

∏
;x](T1, T2) Γ ` po : o : T1

Γ ` [wevf](r) : (, [ev;x](f, o)) = (: [ev;x](f ′, o)) : T2[o/x, po/[wd](x)]]

3

8. (*** Problem - what is the second underscore? ***)

Γ ` pf : f : [
∏

;x](T1, T2) Γ ` r : (po : o) = (po′ : o′) : T1

Γ ` [wevo](r) : (: [ev;x](f, o)) = (: [ev;x](f, o′)) : T2[o/x, po/[wd](x)]]

9.

Γ ` p1 : o1 : T1 Γ, x : T1 ` p2 : o2 : T2

Γ ` [wbeta](p1, p2) : [ev; y]([λ;x](T1, o2), o1, T1, T2)
d
= o2[o1/x, p1/[wd](x)] : T2[o1/x, p1/[wd](x)]

10.

Γ ` pf : f : [
∏

;x](T1, T2)

Γ ` [weta](pf) : [λ;x](T1, [ev; y](f, x, T1, T2[y/x, [wd](y)/[wd](x)))
d
= f : [

∏
;x](T1, T2)

2 Derivation trees

Definition 2.1 [cuttingsrface] For a rooted tree E a ”cutting surface” S is a set of vertices such
that the path from each leave of the tree to the root passes through exactly one vertex in S.

For example the sets of all leaves or the set consisting only of the root are cutting surfaces.

Definition 2.2 [csdepth] A depth of a rooted tree E relative to a cutting surface S is the maximal
distance (number of edges one has to cross) from elements of S to the root of the tree.

For example the depth of a tree relative to S = {root} is 0 and the depth relative to the set of all
leaves is the depth of the tree.

Lemma 2.3 [surface] Let S be any subset of vertices of a rooted tree E such that the path from
any leaf to the root passes through at least one element of S. Let further S0 be the subset of S which
is defined by the condition that v ∈ S0 if an only if v ∈ S and the path from v to the root does not
contain any other elements of S. Then S0 is a cutting surface.

Proof: For any leaf l of E let S(l) be the set of elements of S which lie on the path from l to the
root. Then S(l) ∩ S0 consists of exactly one element, namely the element in S(l) which is closest
to the root.

Given two cutting surfaces S1, S2 we say that S1 ≥ S2 if the path from any element of S1 to the root
contains an element of S2. We will write inf(S1, S2) for the cutting surface constructed according
to Lemma ?? from the set of vertices S1 ∪ S2. Note that inf(S1, S2) is indeed the greatest lower
bound of the set {S1, S2}.

1. Each derivation tree is rooted and each branch of a derivation tree is a derivation tree.

2. Each derivation tree defines a derivable sentence. In particular there are four kinds of deriva-
tion trees - the ones which define four kinds of sentences.

3. Each vertex of a derivation tree is labelled by the (number or name of) the corresponding in-
ference rule. The kind of the branch corresponding to a given vertex is completely determined
by the label of the vertex.

4

3 Main structural properties

Lemma 3.1 [untree] Let S be a derivable extended sentence of TTS. Then it is obtainable by an
exactly one inference rule.

Proof: Straightforward.

Lemma 3.2 [dertree] The derivation tree for a sentence of one of the following forms:

Γ,Γ′B

Γ,Γ′ ` p : o : T

Γ,Γ′ ` p : T = T ′

Γ,Γ′ ` p : o = o′ : T

has (a unique) smallest cutting surface whose elements represent sentences of the form ΓB.

Proof: Since the the greatest lower bound of any two cutting surfaces is defined and is contained
(as a subset) in the union of these surfaces, it is sufficient to show that that in each of the four
cases for any derivation tree there exists at least one cutting surface satisfying the conditions of
the lemma.

We proceed by induction on the depth of the derivation tree.

Looking at the inference rules we see that each of the premises for any inference rule for a context
of the form Γ,Γ′B where Γ′ is non-empty has either the same form or of the form Γ,Γ′ ` p : o : T
or equals ΓB.

Each of the premises for any inference rule for a judgement of the form Γ,Γ′ ` p : o : T is either of
the same form or of the form Γ,Γ′ ` p′ : T = T ′, or of the form Γ,Γ′B where Γ′ is non-empty or
equals ΓB.

Each of the premises for any inference rule for a judgement of the form Γ,Γ′ ` p : T = T ′ is either
of the same form or of the form Γ,Γ′ ` p′ : o : T , or of the form Γ,Γ′ ` p′′ : o = o′ : T , or of the
form Γ,Γ′B where Γ′ is non-empty or equals ΓB.

Each of the premises for any inference rule for a judgement of the form Γ,Γ′ ` p : o : T is either
of the same form or of the form Γ,Γ′ ` p′ : T = T ′, or of the form Γ,Γ′ ` p′′ : o = o′ : T , or of the
form Γ,Γ′B where Γ′ is non-empty or equals ΓB.

Combining these properties of our inference rules with the induction on the depth of the derivation
tree we obtain the assertion of the lemma.

Remark 3.3 Note that the assertion of Lemma ?? is not tautological and really depends on the
form of the inference rules which one chooses in the definition of a type system. For example, if we
included the rule

ΓB
Γ, x : X ` x : X

for X ∈ FV into our list of the generating inference rules then Lemma ?? would become false.
Indeed then one would have a derivation tree for x : X ` x : X which has only one edge terminating
in the empty context B and in particular no vertices corresponding to the context x : XB.

5

As an immediate corollary of Lemma ?? we get the following result.

Lemma 3.4 [dertree0] For any derivable sentence of one of the following forms

Γ,Γ′B

Γ,Γ′ ` p : o : T

Γ,Γ′ ` p : T = T ′

Γ,Γ′ ` p : o = o′ : T

the sentence ΓB is derivable.

Lemma 3.5 [dertree1] One has the following properties of derivable sentences:

1.
Γ, x1 : T1 B Γ,Γ′B

Γ, x1 : T1,Γ′B

2.
Γ, x1 : T1 B Γ,Γ′ ` p : o : T

Γ, x1 : T1,Γ′ ` p : o : T

3.
Γ, x1 : T1 B Γ,Γ′ ` p : T = T ′

Γ, x1 : T1,Γ′ ` p : T = T ′

4.
Γ, x1 : T1 B Γ,Γ′ ` p : o = o′ : T

Γ, x1 : T1,Γ′ ` p : o = o′ : T

where our notation means that if the sentences above the line are derivable then the sentences below
the line are.

Proof: Consider the derivation tree of the right hand side sentence above the line relative to Γ.
Replace each Γ with Γ, x1 : T1 `.

Remark 3.6 The key to the validity of the proof of Lemma ?? is that for any of the inference
rules one of the following possibilities holds:

1. the product sentence of the inference rule is of the three later kinds and changing its context
part Γ with Γ, x : T both in the product and in the premises again produces a inference rule,

2. the product sentence is of the first kind i.e. of the form ΓB where Γ = Γ1,Γ2 with l(Γ2) ≤ 1
and replacing Γ1 with Γ1, x : T both in the product and in the premises again produces a
inference rule.

6

These conditions would not hold if we had a generating inference rule with the product of the form
Γ1,Γ2B where l(Γ2) > 1 and Γ2 does not directly appear in the premise e.g. a rule such as

ΓB
Γ, x : U , o : [El](x, [wd](x))B

or if we had a generating inference rule with the product of one of the three later kinds of the form
Γ0,Γ1 ` J where Γ1 is nonempty and does not directly appear in the premises e.g. a rule such as

Γ ` p : f : [
∏

;x](T1, T2)

Γ, y : T1 ` [...](p) : [ev;x](f, y, T2) : T2[y/x]

Lemma 3.7 [dertree2] One has the following properties of derivable sentences:

1.
Γ,Γ′′ B Γ,Γ′B

Γ,Γ′,Γ′′B

2.
Γ,Γ′′ B Γ,Γ′ ` p : a : T

Γ,Γ′,Γ′′ ` p : a : T

3.
Γ,Γ′′ B Γ,Γ′ ` p : T = T ′

Γ,Γ′,Γ′′ ` p : T = T ′

4.
Γ,Γ′′ B Γ,Γ′ ` p : o = o′ : T

Γ,Γ′,Γ′′ ` p : o = o′ : T

Proof: By induction on the length of Γ′′ using Lemma ??.

Lemma 3.8 [dertree3] One has the following properties of derivable sentences:

Γ ` p : a : S Γ, x : S,Γ′B
Γ,Γ′[a/x, p/[wd](x)]B

Γ ` p : a : S Γ, x : S,Γ′ ` p′ : o : T

Γ,Γ′[a/x, p/[wd](x)] ` (p′ : o : T)[a/x, p/[wd](x)]

Γ ` p : a : S Γ, x : S,Γ′ ` p′ : T = T ′

Γ,Γ′[a/x, p/[wd](x)] ` (p′ : T = T ′)[a/x, p/[wd](x)]

Γ ` a : S Γ, x : S,Γ′ ` p′ : o = o′ : T

Γ,Γ′[a/x, p/[wd](x)] ` (p′ : o = o′ : T)[a/x, p/[wd](x)]

Proof: By induction on the depth of the derivation tree of the right hand side sentence above the
line relative to Γ, x : SB. If the depth is zero the statement follows from Lemma ??. Further we
need to consider each of the inference rules assuming that the context Γ is of the form Γ, x : S,Γ′

and verify that after replacing the context by Γ,Γ′[a/x, p/[wd](x)], all the components of all the
judgements J by J [a/x, p/[wd](x)] and assuming that the sentences above the line and Γ ` p : a : S
are derivable we can show that the sentence below the line is derivable.

7

For example in the [wpi1] rule we get above the line:

Γ,Γ′[a/x, p/[wd](x)], x′ : T1[a/x, p/[wd](x)], y : T2[a/x, p/[wd](x)]B

and
Γ,Γ′[a/x, p/[wd](x)] ` (p′ : T1 = T ′1)[a/x, p/[wd](x)]

and below the line
Γ,Γ′[a/x, p/[wd](x)] `

([wpi1](p′) : [
∏

;x′](T1, T2) = [
∏

;x](T ′1, T2[[wch](x′, p′)/[wd](x′)]))[a/x, p/[wd](x)]

and our claim follows from the fact that since x 6= x′ we have

(E[[wch](x′, p′)/[wd](x′)])[a/x, p/[wd](x)] = (E[a/x, p/[wd](x)])[[wch](x′, p′[a/x, p/[wd](x)])/[wd](x′)]

Another example is [wd](x) rule. Then above the line we get

Γ,Γ′[a/x, p/[wd](x)]B

and below the line

Γ,Γ′[a/x, p/[wd](x)] ` ([wd](x) : x : S)[a/x, p/[wd](x)]

which equals
Γ,Γ′[a/x, p/[wd](x)] ` p : a : S

which is derivable by the inductive assumption and Lemma ??.

Lemma 3.9 [dertree3.1] One has the following properties of derivable sentences:

Γ ` p : T1 = T ′1 Γ, x1 : T1,Γ
′B

Γ, x′1 : T ′1,Γ
′[x′1/x1, [wch](x′, p)/[wd](x)]B

Γ ` p : T1 = T ′1 Γ, x1 : T1,Γ
′ ` p′ : T2 = T ′2

Γ, x′1 : T ′1,Γ
′[x′1/x1, [wch](x′, p)/[wd](x)] ` (p′ : T2 = T ′2)[x′1/x1, [wch](x′, p)/[wd](x)]

Γ ` p : T1 = T ′1 Γ, x1 : T1,Γ
′ ` p′ : o : T2

Γ, x′1 : T ′1,Γ
′[x′1/x1, [wch](x′, p)/[wd](x)] ` (p′ : o : T2)[x′1/x1, [wch](x′, p)/[wd](x)]

Γ ` p : T1 = T ′1 Γ, x1 : T1,Γ
′ ` p′ : o = o′ : T2

Γ, x′1 : T ′1,Γ
′[x′1/x1, [wch](x′, p)/[wd](x)] ` (p′ : o = o′ : T2)[x′1/x1, [wch](x′, p)/[wd](x)]

Proof: By induction on the depth by the second sentence above the line relative to Γ, x1 : T1B. If
the depth is 0 the assertion is obvious. The only non-trivial inference rule is [wd](x) which is easily
checked.

Lemma 3.10 [dertree4] One has the following properties of derivable sentences:

Γ ` p : o : T

Γ, x : TB

Γ ` p : T = T ′

Γ, x : TB

8

Γ ` p : T = T ′

Γ, x : T ′B

Γ ` p : o = o′ : T

Γ `? : o : T

Γ ` p : o = o′ : T

Γ `? : o′ : T

where the question mark ? means that there exists an expression which makes the corresponding
(extended) sentence derivable.

Proof: Let us add the tautological property ΓB
ΓB for sentences of the first kind and proceed by

induction on the derivation depth of the sentence above the line relative to Γ.

The first non-trivial rule to check is the wpi1 rule. The inductive step in this case follows from
Lemma ??. The next one is wev which follows from Lemma ??.

General non-essential sub-expressions

1. The sub-expressions with root labels wd, Wrefl, Wsymm, Wtrans, wrefl, wsymm, wtrans,
wconv and wconveq are non-essential.

4 TTS as a generalized algebraic theory

This section is written to understand a new connection in type theory which I am just beginning
to understand. It is based on the ideas of [?]. Cartmell’s paper is about ”generalized algebraic
theories”. At some point he makes an assertion:

”The essentially algebraic theories of Freyd [5] can be seen to have the same descriptive power as
generalised algebraic theories, at least as far as the usual set valued models are concerned.”

which made me think for a long time that ”generalized algebraic” and ”essentially algebraic” are
interchangeable. In fact it is not so. What seems to be true (I am still working on it) is that
any generalized algebraic theory defines an essentially algebraic one but many different generalized
algebraic theories may generate the same essentially algebraic one.

Here is an example. Consider an essentially algebraic (in fact algebraic) theory of the form
(S1, S2, f : S1 → S2) whose models are pairs of sets together with a function between them.
There are (al least) two *different* generalized algebraic theories which correspond to it. In the
approach of describing generalized algebraic theories suggested by Cartmell these two are given by:

Theory 1
` A type

x : A ` B(x) type

Theory 2
` A1 type

` A2 type

x : A1 ` f(x) : A2

9

As far as I understand to choose a generalized algebraic theory corresponding to a given essentially
algebraic one has to specify, roughly speaking, which of the operations of the later will be translated
as type dependencies (display maps) and which as usual functions.

There is always a choice when all operations are translated as functions. Consider for example an
essentially algebraic theory of the form (S1, S2, S3, f1, f2 : S1 → S2, g : {x|f1x = f2x} → S3). This
can be translated as:

Theory 1
` A1 type

` A2 type

` A3 type

x : A1 ` f1(x) : A2

x : A1 ` f2(x) : A2

x1 : A2, x2 : A2 ` EqA2(x1, x2) type

x1 : A2, x2 : A2, y1 : EqA2(x1, x2), y2 : EqA2(x1, x2) ` y1 = y2

x1 : A2, x2 : A2, y : EqA2(x1, x2),` x1 = x2

x : A1, y : EqA2(f1(x), f2(x)) ` g(x, y) : A3

or as:

Theory 2
` A1 type

x1 : A1, x2 : A1 ` A2(x1, x2) type

x : A1, x
′ : A2(x, x) ` g(x, x′) : A3

10

