
A proposal for universe management in Coq
Vladimir Voevodsky

Started January 11, 2012

Contents

1 Introduction . 1
2 u-level expressions and admissible domains 2
3 System CPC . 2

1 Introduction

We start by a description of the system of expressions underlying the purposed type system.
We will provide this description on the semi-syntactic level with named variables.
Semi-syntactic means here that we are going to define expressions as planar trees with
vertices marked either by a name of a variable or by a u-level expression (see below) or by
a sequence of the form (S; a⃗1; . . . ; a⃗n) where S is a special symbol (from the given set of
allowed special symbols), n ≥ 0 and for each i = 1, . . . , n, a⃗i is (possibly empty) sequence of
names of variables. The occurrences of these variables in the nodes below such a node are
considered to be bound by the node. All expressions are considered up to α-equivalence i.e.
the renaming of bound variables and since the problems related to the possible conflict of
variable names are the usual ones we ignore them in this exposition.
This level of formalization is an intermediate one between the syntactic (linear) presentation
of expressions on the one hand and nameless presentation (using some version of de Brujin
indexes) on the other. The choice of a particular syntactic representation which is necessary
at the level of the user interface and of a particular nameless representation which is necessary
for the internal manipulation of expressions by the system can vary and are left for the next
stage of concretization.
On notations: we will write g[a] to indicate that g is an expression which may contain free
variable a and g[E/a] for the expression obtained by the substitution of the expression E
instead of a in g.
We will write a⃗ for a sequence a1, . . . , n and let dim(⃗a) denote the number of items in the
sequence.
We assume two alphabets for variables one for u-level variables and one for usual variables.
Unless otherwise indicated variables named x, y, z (with or without diacritics) are usual
variables and the ones named p, q, r are u-level variables (see below). The letters i, j, k, l,m, n
are reserved for numerals (e.g. in indexes).
We write [L](B1, . . . , Bn) for a labelled (planar i.e. with ordered branches) tree with the
root node labelled by L and branches B1, . . . , Bn. We also abbreviate [L]([L′](B1, . . . , Bn))

1

as [L][L′](B1, . . . , Bn).

2 u-level expressions and admissible domains

Definition 2.1 [d21a] A u-level expression is either a numeral or a u-level variable or an
expression of the form M + n where M is a u-level expression and n is a numeral.

Two u-level expressions with variables from a finite set Fu are considered to be definitionally
equal if they represent the same functions on NFu. Up to definitional equality any u-level
expression if either a numeral or the sum of a u-level variable with a numeral.

Definition 2.2 [d21b] Let Fu be a finite set. For p ∈ Fu let xp be the corresponding
coordinate function on NFu. A subset A of NFu is called admissible if it belongs to the
smallest class of subsets satisfying the following conditions:

1. subset defined by an equation of the form xp = n where p ∈ Fu, n ∈ N is admissible,

2. subset defined by an equation of the form xp = xq + n where p, q ∈ Fu and n ∈ N is
admissible,

3. subset defined by an inequality of the form xp ≥ yq + n or an inequality of the form
xp ≤ yq + n where p, q ∈ Fu and n ∈ N is admissible,

4. if subsets A1, A2 are admissible then A1 ∩ A2 is admissible.

It will be important for us that there exists an efficient decision procedure which determines
whether or not the admissible subset defined by a given system of equations and inequalities
of Definition 2.2 is empty.

3 System CPC

We first describe the sub-system CPC (calculus of polymorphic constructions) of our type
system which has elements related to universes and to dependent products and later add the
elements related to other constructions.

Terms of CPC

Definition 3.1 [d22] The following labels are permitted in the labelled trees of CPC :
names of variables, u-level expressions, el, (

∏
; x), U , J , ev, (λ;x), forall.

Definition 3.2 [d25] We distinguish three classes of labelled trees:

1. u-level expressions,

2

2. o-trees which are trees whose root node is labelled by el or (
∏
; x),

3. s-trees which are trees whose root node is labelled by the name of a variable, U , J ,
forall, ev or (λ;x).

Definition 3.3 [d20] A CPC-expression is a labelled planar tree with labels from the set
described in Definition 3.1 which satisfy the following conditions:

1. any node of the form [M] where M is a u-level expression has valency 0 (i.e. is a leaf),

2. any node of the form [el] has valency 1 and its only branch is an s-tree,

3. any node of the form [
∏
;x] has valency 2 and both of its branches are o-trees,

4. any node of the form [x] where x the name of a (usual) variable has valency 0 (i.e. is
a leaf),

5. any node of the form [U] has valency 1 and its only branch is a node labelled by a
u-level expression,

6. any node of the form [J] has valency 2 and both of its branches are nodes labelled by
u-level expressions,

7. any node of the form [forall] has valency 1 and its only branch is a node labelled by a
u-level expression,

8. any node of the form [ev] has valency 2 and both of its branches are s-trees,

9. any node of the form [λ; x] has valency 2, its first branch is an o-tree and its second
branch is an s-tree,

Intuitively, u-level expressions correspond to universe levels, o-expressions correspond to
types and s-expressions correspond to terms.

Lemma 3.4 [l20] One has:

1. Any branch of a CPC-expression is a CPC-expression,

2. modulo possible necessity to change the names of bound variables to avoid name con-
flicts, the labelled tree obtained by a replacement of any node of the form [x] where x
is the name of a (usual) variable by an s-expression is again a CPC-expression.

Proof: Straightforward.

We let CPC denote the set of CPC-expressions and UE, OE and SE denote the subsets of
u-level expressions, o-expressions and s-expressions in CPC.

3

According to the general rule stated above, variables in the expression which occur in its
nodes labelled by (

∏
,_) and (λ,_) are called bound. The other ones are called free. We will

write CPC(Fv, Fu), OE(Fv, Fu) and SE(Fv, Fu) for the sets of expressions, o-expressions
and s-expressions respectively with free variables from the set Fv and u-level variables from
the set Fu.
For E ∈ CPC(Fv, Fu) and an element n⃗ ∈ NFu we write E[n⃗] for the CPC-expression
obtained by evaluating all of the u-level expressions in E on n⃗.
For a linearly ordered set Fv we will write Fv⨿{x} for the disjoint union of Fv with a one
element set {x} ordered such that a < x for all a ∈ Fv.

Definition 3.5 [d23] Let E be an expression with free variables in a linearly ordered set
Fv and u-variables in a set Fu. Let ϕ : Fv → OE be a function assigning an o-expression
to each free variable of E. Let A be an admissible domain in NFu. We define the notions
of an expression strictly well formed relative to ϕ and A and function τ = τ(ϕ) from strictly
well formed s-expressions to OE(Fv, Fu) recursively as follows:

1. A u-level expression E is strictly well formed.

2. An expression of the form [el](E ′) is strictly well formed iff E ′ is a strictly well-formed
s-expression relative to ϕ, A and τ(E ′) = [el][U][N] for an u-level expression N .

3. An expression of the form [
∏
;x](E1, E2) is strictly well formed iff:

(a) E1 does not contain x and is a strictly well formed o-expression relative to ϕ, A,
(b) E2 is a strictly well formed o-expression relative to the function ϕ′ on Fv ⨿ {x}

which equals ϕ on Fv and E1 on x and A.

4. For x ∈ Fv, [x] is strictly well formed iff:

(a) ϕ(x) ∈ OE({x′ ∈ Fv |x′ < x}),
(b) ϕ(x) is strictly well formed relative to the restriction of ϕ to {x′ ∈ Fv |x′ < x}

and A,

under these conditions τ([x]) = ϕ(x).

5. An expression of the form [U](M) is strictly well formed and τ(U) = [el][U][M + 1].

6. An expression of the form [J](M1,M2) is strictly well formed if for all n⃗ ∈ A one has

M1(n⃗) ≤ M2(n⃗)

under this condition

τ([J](M1,M2)) = [
∏

; x]([el][U][M1], [el][U][M2])

7. An expression of the form [forall][M] is strictly well formed and

τ([forall][M]) = [prod;x]([el][U][M], [
∏

;F]([
∏

; y]([el][x], [el][U][M]), [el][U][M]))

4

8. An expression of the form [ev](E1, E2) is strictly well formed iff:

(a) E1 is a strictly well formed s-expression relative to ϕ, A and τ(E1) = [
∏
;x](E1,1, E1,2),

(b) E2 is a strictly well formed s-expression relative to ϕ, A and for all n⃗ ∈ A one
has τ(E2)[n⃗] = E1,1[n⃗]

under these conditions
τ([ev](E1, E2)) = E1,2[E2/x]

9. An expression of the form [λ; x](E1, E2) is strictly well formed iff:

(a) E1 does not contain x and is a strictly well formed o-expression relative to ϕ, A,
(b) E2 is a strictly well formed s-expression relative to the function ϕ′ on Fv ⨿ {x}

which equals ϕ on Fv and E1 on x and A,

under these conditions

τ([λ;x](E1, E2)) = [
∏

;x](E1, τ(ϕ
′, E2))

Remark 3.6 [rem1]It is easy to see that for given E and ϕ there is a largest admissible
subset A such that E is strictly well formed relative to ϕ and A. We denote this subset by
udom(E, ϕ).

We let SWFCPC(Fu, Fv, ϕ,A), SWFOE(Fu, Fv, ϕ, A) and SWFSE(Fu, Fv, ϕ,A) de-
note the sets of expressions, o-expressions and s-expressions from CPC(Fu, Fv) which are
strictly well formed relative to ϕ and A.

Lemma 3.7 [l21] Let E ∈ SWFCPC(Fu, Fv, ϕ, A) be a strictly well formed expression,
x ∈ Fv and E ′ ∈ CPC(Fu, Fv − {x}) an s-expression which does not contain x, is strictly
well formed relative to ϕ and A and such that τ(E ′) = ϕ(x). Then E[E ′/x] is strictly well
formed relative to ϕ and A.

Proof: ???

Theorem 3.8 [th1] For any E ∈ SWFCPC(Fu, Fv, ϕ, A) one has τ(E) ∈ SWFOE(Fu, Fv, ϕ, A).

Proof: ???

Reduction rules for CPC A strictly well formed relative to ϕ, A CPC-expression with
u-level variables from Fu is called a root-node redux relative to an admissible subset A if it
has one of the following forms:

1. [el][ev]([J]([M1], [M2]), X) (reduces to [el](X), possibly increasing udom),

5

2. [el][ev]([ev]([forall][M], X), F) (reduces to [
∏
;x]([el](X), [el][ev](F,X)), no change in

udom),

3. [ev]([λ; x](X, f), a) (reduces to f [a/[x]] with a possibly increasing udom),

4. [ev]([J]([[M1], [M2]), X) (reduces to [X] possibly reducing udom by the condition M1(n⃗) =
M2(n⃗)),

5. [ev]([J]([M3], [M4]), [ev]([J]([M1], [M2]), X)) (reduces to [ev]([J]([M1], [M4]), X) possi-
bly increasing udom),

6. [ev]([J]([M1], [M2]), [ev]([ev]([forall][M3], X), F) (reduces to
[ev]([ev]([forall][M2], [ev]([J]([M3], [M2]), X)), [λ; a]([el][X], [ev]([J]([M3], [M2]), [ev](F,X))))
with changes in udom),

7. [λ;x](X, [ev](f, [x])) (reduces to f , no change in udom).

Adding dependent sums - system CPC1

Definition 3.9 [d32] The following labels are permitted in the labelled trees of CPC1 - the
labels permitted in CPC, (

∑
;x), pair, pr1, pr2, [total].

The notions of u-level expressions, o- and s- trees in CPC1 are defined as follows:

Definition 3.10 [d35]

1. trees with the root node caring a CPC-label is an u-level expression, s-tree or an o-tree
according to the rules of Definition 3.2,

2. trees with the root of the form [
∑

;x] are o-trees,

3. trees with the root node of the form [pair], [pr1], [pr2] and [total] are s-trees.

Definition 3.11 [d30] A CPC1-expression is a CPC1-labelled planar tree such that:

1. any node caring one of the CPC-labels satisfies the conditions of Definition 3.3,

2. any node of the form [
∑

;x] has valency 2 and both its branches are o-trees,

3. any node of the form [pair] has valency 2,

4. any node of the form [pr1] has valency 2,

5. any node of the form [pr2] has valency 2,

6. any node of the form [total] has valency 1 and its only branch is a node labelled by a
u-level expression.

6

The obvious analog of Lemma 3.4 holds for CPC1-expressions. We extend to CPC1 the basic
notations introduced in the context of CPC.

Definition 3.12 [d33] Under the obvious CPC1-analog of assumptions and notations of
Definition 3.5 we extend the notion of being strictly well formed, the function τ and the
function udom to CPC1-expressions recursively as follows:

1. an expression whose root node carries a CPC-label is strictly well formed if it satisfies
the obvious analog of the corresponding condition of Definition 3.5.

2. an expression of the form [
∑

; x](E1, E2) is strictly well formed iff 1

(a) E1 does not contain x and is a strictly well formed o-expression relative to ϕ,
(b) E2 is a strictly well formed o-expression relative to the function ϕ′ on Fv ⨿ {x}

which equals ϕ on Fv and E1 on x,

under these conditions udom([
∏
;x](E1, E2)) = udom(E1) ∩ (udom(phi′, E2)),

3. an expression of the form [pair](E1, E2) is strictly well formed iff:

1It is exactly the same rule as for [
∏
;x]

7

