Abstract type systems
Vladimir Voevodsky
Started June 17, 2011

Contents
1 Introduction 1
2 Abstract systems of expressions e 1

1 Introduction

It is well known to many specialists in type theory how difficult it is to discuss type systems with
mathematicians. One of the key reasons is that up to now the only answer to the natural question
7 And what exactly is a type system?” consisted in listing a number of more or less complicated
examples. In this paper we give a formal definition of an abstract type system in the language
of modern mathematics. Showing that a particular type system in the usual utilitarian sense is a
type system in the sense of our definition requires proving a list of properties for the corresponding
classes of contexts, judgements and reduction rules.

A particular type system is usually defined in two or three steps. First one defined a syntactic
system of expressions with free and bound variables which underlies the type system. Then one
defines the class of "valid” contexts and judgements of the type system which are, mathematically
speaking, certain sequences (lists) of the expressions of the underlying syntactic system. Finally
one defines a class of transformations between expressions called ”reductions” or more generally
”re-writing rules” which is used to consider certain contexts and judgements to be ”definitionally
equal” to each other. We will proceed by introducing abstract mathematical concepts corresponding
to each step of this process.

2 Abstract systems of expressions

In this section we give a mathematical meaning to syntactic systems of expressions with free and
bound variables. We start with the following definitions. Recall that a monad or triple on a
category C is a functor F': C' — C together with natural transformations F'o F — F and Id — F
which satisfy appropriate associativity and unity axioms (see e.g. [2, p.137]). Recall further that a
functor between categories with filtered colimits is called cocontinuous if it preserves such colimits.
We will be interested in particular in cocontinuous functors F' : Sets — Sets from the category of
sets to itself. Since any set is in a canonical way a filtered colimit of its finite subsets there is a
natural equivalence between such functors and functors from the category FSets of finite sets to
the category of all sets.

Definition 2.1 An abstract system of expressions is a cocontinuous monad E on the category of
sets.

We claim that any syntactic system of expressions such as a first order language, language of the A-
calculus etc. defines an abstract system of expressions in our sense and that this abstract system of

expressions contains a sufficient amount of essential information about the corresponding syntactic
system to be used in the forthcoming definition of an abstract type system.

Let us start with the following construction. Let F', B, S and @) be four sets of which B is countably
infinite. The sets F', S and) can be arbitrary but in most examples they will be finite or countably
infinite. Let further a be a function S II Q — N. The reader is suggested to think of F' as the set
of possible names of free variables, B as the set of possible names of bound variables, S as the set
of names of functional symbols and @) as the set of names of quantifiers. The value of ¢ on s € S
or ¢ € (is the number of ”arguments” or ”arity” of the corresponding function or quantifier.

For a finite rooted tree T" we write V(T') for the set of vertices of T', val(v) for the number of edges
leaving v and v’ < v if v’ is above v (the root of the tree is assumed to be the lowest vertex) . For
v € V(T) let [v] = [v]p be the subtree in T" which consists of v and all the vertices above v. We
say that vertices of T" are labeled by elements of a set X if we are given a function [: V(T') — X.
We denote by T'(X) the set of finite rooted trees labeled by elements of X given together with the
orderings on the sets of edges leaving each vertex (”planar trees”).

Let Expo(F, B, S,Q,a) be the subset of T(F II BII SII Q x B) which consists of trees satisfying
the following conditions:

1. if [(v) € F 11 B then val(v) = 0,

if I(v) € S then val(v) = a(l(v)), if I(v) = (¢,z) € Q x B the val(v) = a(g),
if I(v) = (¢, 2), l(v') = (¢/,2') and v # v then x # o/,

(

if [(v) € B then there exists v' such that v' > v and I(v") = (q,1(v)).

- W N

)
)
)=
)

The first condition says that only the leaves of the tree can be labelled by names of variables, the
second has obvious meaning, the third requires all the names of all bound variables to be different
from each other. This condition can be weakened but for our purposes such a strong but simple
form is sufficient. Finally the fourth condition says that a name of bound variable can only appear
above a quantifier which binds it.

Definition 2.2 Two elements of Expo(F, B, S,Q,a) are called a-equivalent if they can be obtained
from each other by the change of labeling induced by a permutation on B ("renaming of bound
variables”).

We let Exp(F,S,Q,a) denote the set of equivalence classes in Expy(F, B, S,Q,a) modulo a-
equivalence. Note that this set does not depend up to a canonical isomorphism from the choice of
B and we omit B from its notation.

Consider now Ezp(S,Q,a) :== Exp(—,S,Q,a) as a covariant functor in F' from Sets to Sets with
the functoriality defined by the obvious change of names of free variables corresponding to a map
F — F'. The following proposition is straightforward although a detailed proof would take some
space.

Proposition 2.3 The functor Exp(S,Q,a) is cocontinuous. The substitution of expressions for
free variables defines a structure a monad on Exp(S,Q,a).

We have constructed an abstract system of expressions starting from a ”signature” (S,Q,a). We
will call such systems of expressions ”free” or ”syntactic” systems of expressions. Let us now
consider some examples.

Example 2.4 [lambda] The set of a-equivalence classes of terms of the untyped A-calculus with
free variables from F' is naturally isomorphic to Exp(F,S,Q,a) where S = {eval}, Q@ = {\},
a(eval) = 2 and a(A) = 1. The monad structure corresponds to the substitution on A-terms.

Example 2.5 [propositional/The set of expressions of propositional calculus with variables from
F is naturally isomorphic to Exp(F,S,Q,a) where S = {7, V,A,=}, Q@ =0, a(7) =1 and a(V) =
a(A\) =a(=) =2.

Example 2.6 [multisorted] Consider the language of multi-sorted first order logic with the set
of sorts SR, set of generating predicates GP with arities given by a function a : GP — N and the
set generating functions GF' with arities given by a function GF — N which we also denote by a.
Let @ ={V,3} and S = SRIIGPIIGF. For q € Q set a(q) =2 and for s € SR, a(s) = 1.

Now we can embed the well formed expressions our language with free variables from F' considered
modulo the a-equivalence to Exp(F, S, Q,a). Vertices which are labeled by (V,z) and (3, x) have
valency two. For such a vertex v, the first branch of [v] is one vertex labeled by an element of
SR giving the sort over which the quantification occurs and the second branch is the expression
which is quantified. Unlike in the previous examples not all elements of Exp(S, @, a) are well-formed
expressions and, moreover, the subsets of well-formed expressions do not form a sub-monad. In this
particular example we could still obtain a monad but now on sorted sets. However, in the more
complex situation of dependent type systems the sorts themselves can be complex expressions
involving variables and such an approach does not work. Instead it turns out to be convenient to
consider the whole monad Exp(S, @, a) and distinguish ”meaningful” expressions only on the next
stage when we introduce the concepts of contexts and judgements.

Example 2.7 [betareduction] The following example provides us with an abstract system of
expressions which is obtained from a syntactic one but which is not itself syntactic. Let us start
with the system of expressions of A-terms described in an example given above. Let us denote
the corresponding sets of terms with free variables from F' by FA(F). Consider the equivalence
relation on EA(F') generated by the S-reduction of A-terms. This equivalence relation is known to
commute with substitution. Therefore, the quotient sets with respect to this relation again form a
monad which is still cocontinuous. The corresponding abstract system of expression is denoted by
EAg. We can further add the n-reduction and obtain another system of expressions EAg,,.

Syntactic systems of expressions admit a construction which does not apply to general systems
of expressions but which is very important in formalizations of the descriptions of particular type
systems. This construction was invented by de Bruijn (see [1]) in the context of A-terms but applies
equally well to any syntactic system of expressions.

If one wants to formalize the mathematics of the previous paragraphs using a proof assistant then
formalization of Fxpg is straightforward - it is just an inductive type easily written in terms F', B,
S, @ and a. The first problem one will encounter is that our definition of Exp(F, S, @, a) required
taking the quotient of, say, Fxpo(F,N, S, Q, a) by the a-equivalence relation. From the point of view
of constructive mathematics taking a quotient set is a complicated operation. For example it can
lead from a set (or type) with decidable equality to one where equality is undecidable. De Bruijn’s
construction provides an explicit embedding of Exp(F, S, Q,a) into Expo(FIIN, (), STIQ,(, a) and
describes the substitution operation directly in the language of this representation. Let us give a
short exposition of this important construction here.

Let E be an element of Expy(F, B,S,Q,a). We will construct, following de Bruijn, and element
dBp(E) in Expy(FIIN,(, ST Q,0,a) from which one can construct an explicit representative of
the a-equivalence class of E in Expo(F,N,S,Q,a). The construction is very simple.

The underlying planar tree remains the same. The labels from F' and S remain the same. The
labels from @ x B are replaced by their first components lying in (). Consider now a leaf v labelled
by an element x of B. By the fourth condition there exists a vertex v’ upstream from v labelled by
(¢, x) for some ¢ € Q. By the third condition such a vertex is unique. Let us consider the unique
path in the tree leading from v’ to v and lets count the number of vertices on this path labelled
by the quantifiers including v’ itself. Let us now label v by the number which we obtain. The
resulting labelled tree dBp(F) lies in Expo(F IIN, 0, S11Q,0,a). It is easy to explicitly describe
this embedding and to reconstruct the a-equivalence class of F from dBp(FE).

There is a slight modification of this construction which is used to establish a bijection dB between
Exzp(N,S,Q,a) and Expo(N,0,S 11 Q,0,a). Let us fix a linearly ordered set B with elements
b1,bo, ... and consider Exp(N, S,Q,a) as a quotient of Fxpy(N, B, S,Q,a). Let us define a map
from Expo(N,0,S 11 Q,0,a) to Expy(N, B, S,Q,a) as follows. Let E be an element of the first
set. Let N be the total number of vertices in E labelled by elements of (). We choose an ordering
on these vertices and add to their labels second components b1, ...,by using this ordering. Now
consider a leaf v labelled by n € N. If the number of quantifiers m upstream of v is less than
n then we re-label it by m —n — 1 € nn. It will be a vertex corresponding to a free variable.
Otherwise the number of quantifiers greater or equal to n and we may consider the quantifier which
is n quantifiers upstream of v. It is labelled by some b; and we re-label v with b;. It will be a vertex
corresponding to a bound variable.

References

[1] N. G. de Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic
formula manipulation, with application to the Church-Rosser theorem | MR0321704 (48 #71)].
In Selected papers on Automath, volume 133 of Stud. Logic Found. Math., pages 375—-388. North-
Holland, Amsterdam, 1994.

[2] S. MacLane. Categories for the working mathematician, volume 5 of Graduate texts in Mathe-
matics. Springer-Verlag, 1971.

