
Type system TS0 and its models

Vladimir Voevodsky

Started June 16, 2011

Contents

1 Introduction 1

2 Type system TS0 and its models 1

1 System of expressions underlying TS0 . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Contexts and judgements of TS0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3 Proof that TS0 is a type system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1 Introduction

We consider the simplest type system TS where we can formulate the main homotopy notions and
some of the resizing axioms. For that we need the standard dependent products, dependent sums,
Martin-Lof identity types and a universe UU . In our specification we use pure contexts (without
judgements attached) to represent types which normally would be ”parked” in an auxiliary universe
UU1 which can not be a part of any constructions. In our approach to specifications of type systems
we do not need to introduce a name for this auxiliary universe.

We will build TS in several steps. The first type system we consider has only UU and dependent
products and does not have any reduction rules (other than α-conversion i.e. the renaming of
bound variables). It will be denoted TS0.

2 Type system TS0 and its models

1 System of expressions underlying TS0

The system of expressions underlying TS0 is the free system of expressions with the following
”generators”:

1. constant UU ,

2. one-variable quantifier of valency 2 denoted by
∏

,

3. one variable quantifier of valency 2 denoted by λ,

4. function symbol of valency 2 denoted by eval.

We use bold font to denote names of variables and the usual font to denote names of special symbols
and expressions. We use the notation

∏
x : R.S for

∏
which bounds variable x and has R and S as
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its first and second branch respectively. Similarly we use λx : R.f for λ which bounds x and has R
and f as the first and second branch respectively. We use parenthesis to avoid ambiguity whenever
necessary. For eval we use the standard convention when one writes AB instead of eval(A,B).

All expressions are considered modulo α-equivalence i.e. up to renaming of bound variables.

2 Contexts and judgements of TS0

Below are the rules for the formation of contexts and judgements in TS0. As usual Γ, ∆ etc. denote
an arbitrary context or a segment of a context and it is understood that any expression has as free
variables only the variables which have been declared and assigned types strictly prior to the use
of this expression. We use commas to separate variable declarations in a context. The notation
x /∈ Γ means that the variable name x has not been declared in Γ.

Empty context, diagonals

`
Γ, x : T, Γ′ `

Γ, x : T, Γ′ ` x : T

Universe structure
Γ `

Γ, x : UU `
Γ ` T : UU

Γ, x : T `
(x /∈ Γ)

Dependent Products
Γ, x : R, y : S `

Γ, z :
∏

x : R.S `
(z /∈ Γ)

Γ, x : R ` s : S

Γ ` λx : R.s :
∏

x : R.S

Γ ` f :
∏

x : R.S Γ ` r : R

Γ ` f r : S[x/r]

Dependent products and the universe

Γ ` R : UU Γ, x : R ` S : UU

Γ `
∏

x : R.S : UU

Remark 2.1 One could re-write our specification using two universes UU and UU1 and only using
judgements but not ”pure” contexts. Then the system described so far will look very similar to the
system λω of Barndregt’s λ-cube (see [1][p. 206]) which has the ”signature” (loc.cit. p.214):

S = (UU,UU1)

A = ((UU,UU1))

R = ((UU,UU,UU), (UU1, UU1, UU1))

and considered without β-reduction. However, we also have the inclusion UU ⊂ UU1 which takes
us outside of the class of systems considered by Barendregt. We prefer the specification given above
since it emphasizes the fact that the second universe UU1 can not be a part of any constructions.
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Remark 2.2 As was pointed out by Dan Doel, in the two universe specification, it is possible to
achieve the effect of having the inclusion UU ⊂ UU1 by introducing an additional rule to the R
component of the signature of the form (UU,UU,UU1). The idea is that since

∏
is the only type

forming constructor any particular type expression which types to UU according to the repeated
application of the (UU,UU,UU) rule can be re-typed to UU1 using the rule (UU,UU,UU1) the
last time the rule (UU,UU,UU) was used. This however requires a formal proof and leads to
proliferation of rules in the case of more complex systems and we prefer to have a direct inclusion
rule instead.

3 Proof that TS0 is a type system

Let us recall the following definitions.
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