
A very short note on homotopy λ-calculus

Vladimir Voevodsky

Started September 23, 2006

Here is the general picture as I understand it at the moment. Let us consider the type system TS
which is generated by the following rules:

1.
`

` Ui : Ui+1

for all i = −1, 0, 1, . . .

2.
Γ ` T : Ui

Γ ` T : Ui+1

3.
Γ ` T : Ui

Γ ` T : Type

4. The usual dependent
∏

-rules (inside each Un)

5. The usual dependent
∑

-rules with strong elimination (inside each Un)1

Let CC be the contexts category of TS2. By a model of TS with values in a category D I mean a
functor CC → D which ”preserves the relevant structures”.

The main observation is that there is a canonical model M of TS with values in the usual homotopy
category H provided that we consider homotopy types based on a sufficiently large universe of sets.
To define this model one starts with a not-so-canonical model N of TS with values in the category
of spaces (actually simplicial sets, but I will use spaces as a more intuitive model for homotopy
types) and then sets M to be the composition of N with the projection Spc → H is M . Here are
the defining properties of N .

1. By definition N takes a context Γ to a space N(Γ).

2. A sequent of the form Γ ` T : Type (where T is an expression) defines a morphism

(Γ, x : T) → Γ

in CC. Morphisms of this type go to fibrations

N(Γ;T) : N(Γ, x : T) → N(Γ),
1We may also consider systems TSn where Ui are only defines for i ≤ n. E.g. TS−2 will be empty, TS−1 will have

one generating type U−1 with no terms. It looks similar to the usual λ-calculus with one generating type. Starting
with TS0 there are real dependencies.

2Similarly we may consider CCn for finite n. The category CC−2 is empty and CC−1 is probably the free Cartesian
closed category generated by one object U−1.

1

3. A sequent of the form Γ ` t : T (where T and t are expressions) defines a morphism

Γ → (Γ, x : T)

in CC. Morphisms of this type go to sections

N(Γ;T, t) : N(Γ) → N(Γ, x : T)

of N(Γ;T).

Given Γ ` P : Type and Γ, x : P ` Q : Type we can form Γ `
∏

x : P.Q and Γ `
∑

x : P.Q. On
the model level our data defines two fibrations

N(Γ, x : P, y : Q)
q→ N(Γ, x : P)

p→ N(Γ)

The fibration
N(Γ, z :

∏
x : P.Q) → N(Γ)

is the ”p∗(q)”. Its fiber over x ∈ N(Γ) is the space of sections (continuous ones!) of the fiber of q
over x.

The fibration
N(Γ, z :

∑
x : P.Q) → N(Γ)

is the ”p!(q)”. It is simply the composition of p and q. The meaning of term constructors associated
with

∑
and

∏
is the obvious one. If we took a model with values in Sets where all maps are

fibrations we would get the usual rules for interpretation of
∑

and
∏

but formulated in a slightly
unusual way.

The rigorous description of the value of N on Un’s is complicated. Up to homotopy equivalence,
the space N(Un) is the nerve of the n-groupoid of (n− 1)-groupoids in the ZF with n− 2 universes
(see below for the explicit form in the case n ≤ 1). Since n-groupoids are the same as n-homotopy
types one can also say it in a purely homotopy-theoretic way.

In particular,
M(U−1) = ∅

and
M(U0) = {0, 1}.

We further have
M(U1) =

∐
n≥0

BSn

where BSn is the classifying space of the permutation group on n elements (BS0 is empty, BS1 is
one point and BS2 is homotopy equivalent to RP∞ = BZ/2). In particular, π0(M(U1)) = N and
one uses U1 to define the type of natural numbers in Hλ. As far as I understand at the moment
M(U2) is

∐
X∈u2

BAut(X) where u2 is the set of equivalence classes of all groupoids with sets of
morphisms and objects being ZF -sets. Starting with U2 one needs ZF with universes in order for
the model to be defined. The model of U3 is the nerve of the 3-groupoid of 2-groupoids in ZF with
one universe.

2

The model of Un has a natural filtration by subspaces Un,k, k = 0, . . . , n where Un,k is (the nerve
of) the k-groupoid of (k − 1)-groupoids in the universe Un. In particular Un,1 is the (nerve of) the
usual groupoid of sets in Un and their isomorphisms. We define a (−1)-groupoid as a set where
any two elements are equal i.e. one of the two sets ∅ and pt. Hence for any n ≥ 0 the model of Un,0

is the two point set {0, 1} = {true, false}.

U0,0 U1,0 U2,0 U3,0 . . .y y y
U1,1 −−−→ U2,1 −−−→ U3,1 −−−→ . . .y y

U2,2 −−−→ U3,2 −−−→ . . .y
U3,3 −−−→ . . .

All the arrows are inclusions with the image being a disjoint union of some of the connected
components of the target and the usual arguments a-la Russell’s paradox imply that except for the
ones marked as equalities the arrows are proper inclusions e.g. U2,1 (which is responsible for sets
in U2) is strictly larger than U1,1 (which is responsible for sets in U1) etc.

The model M can be used to define an hierarchy of equality types Eqk(T ; t1, t2) on TS. Given a
valid type expression T : Un and two term expressions t1, t2 : T we get on the level of models a
space X = M(T) (up to homotopy) and two points x1, x2 ∈ X. The model of Eqk(T ; t1, t2) for
k ≥ n is (homotopy equivalent to) the space P (X;x1, x2) of paths from X1 to x2 in X. The model
of Eq0(T ; t1, t2) is a truth value (i.e. is empty or contractible) which is true iff x1, x2 belong to
the same connected component of X. In a sense Eq0 is the Leibnitz equality type while Eqk for
k ≥ n is the ”full” equality type. The Eqk’s are concrete (and complicated) type expressions in TS
(at least for T : Un where n is fixed).

So defined, the equality types lack many of the properties which hold on the model level. The
homotopy λ-calculus Hλ is a hypothetical extension of TS by means of additional rules which
make the behavior of Eqk’s more ”natural”. In particular, on the level of Hλ, U−1 becomes the
empty type, U0 becomes Prop and U1 becomes the type of finite sets which is used in the usual
way to define the type of natural numbers. By construction Hλ also comes with a canonical model
in the homotopy category.

Originally, I was considering a different approach to Hλ where the equality types where introduced
as ”primitives” along with

∑
and

∏
and the universes where ”defined” but it seems to me now

that it is nicer to start with
∑

,
∏

and universes and define the equality types later.

The advantage of Hλ and its homotopy-theoretic model over the less sophisticated type systems
is that it better reflects the way mathematicians envision ”types” corresponding to mathematical
structures. For example if we fix the size of the universe n and write in the usual way the type
expression for, say, the type Gr(Un) of groups in Un then the model of Gr(Un) will be (the nerve
of) the groupoid of groups in the universe Un and their isomorphisms. Similarly, if we write down
the definition of a category in a proper way then the model of Cat(Un) will be (the nerve of) the

3

2-groupoid of categories in Un, their equivalences and natural isomorphisms between equivalences.
Moreover, any construction on categories described in the language of Hλ is automatically ”in-
variant” under equivalences of categories. E.g. any function we can describe in Hλ from Cat(Un)
to Gr(Un) will on the model level correspond to a construction which produces a group from a
category which maps equivalences between categories to isomorphisms between the corresponding
groups. In the usual type systems we can do something like that for types of ”level 1” (see below)
i.e. sets with structures but not for higher levels (e.g. categories).

At the moment much of what I said above is at the level of conjectures. Even the definition of the
model of TS in the homotopy category is non-trivial. Similarly, the definition of equality types in
terms of universes is rather involved and I am not sure which of the properties of these types have
to be imposed so that the rest will follow.

In the rest of the text I will try to give one possible definition of the equality types in TS. One
proceeds in the following steps:

Define the contractibility on the level of TS. Set

true = (U−1 → U−1) : U0

false = U−1 : U0.

For T, T ′ : U0 set
Equiv(T, T ′) = (T → T ′)× (T ′ → T).

For T : Un set
Contr(T) =

∏
F : Un → U0.Equiv(F (T), F (true))

then M(Contr(T)) 6= ∅ iff M(T) belongs to the same connected component of M(Un) as
M(true) i.e. if M(T) is a contractible space. In that case M(Contr(T)) is itself contractible.

Define representable functors on the level of TS. Suppose T : Un is a type (expression). I
want to think of its model X = M(T) as of the nerve of some n-groupoid in Un. The
members of T correspond to objects. For T = Un we get the groupoid of all groupoids.
Functions T → Un correspond to functors from T to the groupoid of all groupoids. Among
these functors there are representable ones i.e. we have the homotopy type Rep(T) which
maps to T → Un. For F : T → Un set

rep(F) = Contr(
∑

t : T.F (T)).

One verifies that on the level of models rep(F) 6= ∅ iff F is representable. Set

Rep(T) =
∑

F : T → Un.rep(F).

then the model of Rep(T) is the space of representable functors on T . By abuse of notation
I will write F (t) : Un instead of the formal (πF)(t) for F : Rep(T) and t : T .

Define Un,k on the level of TS. We first define type expressions Lvk(T) : U0 for T : Un which
are ”indicator functions” for Un,k. Start with k = 0. Note that for a ”representable functor”

4

F : Rep(T) and t : T the value F (t) is the type of equivalences between the representing
member and t. Hence, T is of level 0 iff for all F and all t the type F (t) is contractible. I.e.

Lv0(T) =
∏

F : Rep(T).
∏

t : T.Contr(F (t))

Similarly T is of level k iff all F (t) are of level k − 1. Hence for k ≥ 1 we have

Lvk(T) =
∏

F : Rep(T).
∏

t : T.Lvk−1(F (t))

We can set now:
Un,k =

∑
T : Un.Lvk(T)

(in this numbering sets are of level 1 and usual 1-groupoids are of level 2.) On the model
level we have Un,k = Un for k ≥ n. I do not know if this is provable in TS. If not add this as
an axiom.

Define Eqk, Hfiberk, isheqk and Heqk. We are going to define by common induction on k start-
ing with k = 0 the following type expressions:

1. Eqk(T ; t1, t2) : Un for T : Un and t1, t2 : T – for k ≥ n the model of Eqk will be
P (X;x1, x2) where X is the model of T and x1, x2 the models of t1, t2,

2. Hfiber(f, t) : Un for f : T ′ → T , t : T and T, T ′ ∈ Un – for k ≥ n the model of
Hfiber(f, t) is the homotopy fiber of the model of f over the model of t,

3. isheqk(f) : U0 for f as above – for k ≥ n the model of f is a homotopy equivalence iff
the model of isheqk(f) is true,

4. Heqk(T ′, T) : Un for T ′, T : Un – for k ≥ n the model of Heqk(T ′, T) is the type of
homotopy equivalences from T ′ to T .

We start with:
Eq0(T ; t1, t2) = true

and proceed as follows:

Hfiberk(f, t) =
∑

t′ : T ′.Eqk(t′, f(t))

isheqk(f) =
∏

t : T.Contr(Hfiberk(f, t))

Heqk(T ′, T) =
∑

f : T ′ → T.isheqk(f)

Eqk+1(T ; t1, t2) =
∏

F : Rep(T).Heqk(F (t1), F (t2))

in the last expression I write F (t) for F : Rep(T) instead of the correct but long (πF)(t). Let
us ”prove” that these expressions do indeed have the required models for k ≥ n. We want to
show a more detailed thing namely that the models are of the required form for T, T ′ : Un,k

no matter what k is.

We proceed by induction on k. For k = 0 we get:

Eq0(T ; t1, t2) = true

Hfiber0(f, t) =
∑

t′ : T ′.Eq0(t′, f(t)) = T ′

5

isheq0(f) =
∏

t : T.Contr(Hfiber0(f, t)) =
∏

t : T.Contr(T ′) = T → Contr(T ′)

since T, T ′ : Un,0 = U0 (we are on the model level) it means that T and T ′ are truth values.
Since we are given f : T ′ → T we know that T ′ ⇒ T . We also know that for T ′ : U0 one
has Contr(T ′) = T ′. A map of truth values T ′ → T is an equivalence iff there exists a map
T → T ′. OK.

Assume all is well for k and consider k + 1. First let’s check that the model of

Eqk+1(T ; t1, t2) =
∏

F : Rep(T).Heqk(F (t1), F (t2))

is indeed the space of paths or, from the point of view of higher groupoids that it is the
k-groupoid of equivalences between objects t1, t2 of T .

For T : Un,k+1 and F : Rep(T) we have by definition F (t) : Un,k. By induction the model
of Heqk(F (t1), F (t2)) is the space of homotopy equivalences from F (t1) to F (t2) i.e. the
groupoid of equivalences between k-groupoids F (t1), F (t2). Let t be the object which rep-
resents F . Then F (t1) (resp. F (t2)) is the groupoid of equivalences from t to t1 (resp. t2).
If t1 is not equivalent to t2 then F represented by t1, F (t2) is empty while F (t1) is not and
the product is empty. If t1 ∼= t2 then the product will contain only one term different from
the point and it will be exactly the groupoid of equivalences from ...

Heq0(T ′, T) =
∑

f : T ′ → T.isheq0(f)

Consider the evaluation map restricted to representable functors

rev : T → ((T → Un) → Un) → (Rep(T) → Un)

This map should be a full embedding. Hence we would expect that for t1, t2 : T one has

Eq(T ; t1, t2) = Eq((Rep(T) → Un), rev(t1), rev(t2))

On the other hand for F,G : T → T ′ one should have

Eq(T → T ′;F,G) =
∏

t : T.Eq(T ′;F (t), G(t))

(this is kind of functional extensionality of equality). Hence

[eqform]Eq(T ; t1, t2) =
∏

X : Rep(T).Eq(Un; rev(t1)(X), rev(t2)(X)). (1)

Thus we have reduced the problem of defining Eq(T ; t1, t2) for T : Un to the problem of defining
Eq(Un;X, Y) for X, Y : Un.

Let us now proceed to the equality types. The idea is that for T : Un,k the types rev(t1)(X) and
rev(t2)(T) which appear in (??) are in Un,k−1 (on the model level at least). Hence we may use
the induction on k in the definition of Eq(−;−,−).

If T : Un,0 then for t1, t2 : T and F : Rep(T) we have Contr(F (t1)) and Contr(F (t2)). Clearly for
contractible T1, T2 one has Eq(Un;T1, T2) = pt. Hence Eq(T ; t1, t2) = pt in this case.

6

In general, for T1, T2 : Un a member of Eq(Un;T1, T2) is a”homotopy eqivalence” from T1 to T2
i.e. a map f : T1 → T2 such that all its homotopy fibers are contractible. The trick is to define
the homotopy fiber of f over t : T2. From homotopy theory we have a formula:

hfiber(f, t) =
∑

t′ : T1.Eq(T2; t, f(t′))

I will write f−1(t) instead of hfiber(f, t). Set

heq(Un;T1, T2) =
∑

f : T1 → T2.
∏

t : T2.Contr(f−1(t))

Let Repk(T) be the type of representable functors on T which land in Un,k i.e.

Repk(T) =
∑

F : Rep(T).
∏

t : T.Lvk(F (t))

Let
Eq0(T ; t1, t2) =

∏
F : Rep

Eqk(T ; t1, t2) =
∏

F : Repk(T).Eqk−1(Un;F (t1), F (t2)).

Proceed by induction as follows:

1. For X, Y : U0 set Eq(U0;X, Y) = Equiv(X, Y) = (X → Y)× (Y → X)

2. Assuming that Eq(Un−1;−,−) are defined and therefore Eq(T ;−,−) are defined for T : Un

set:

Then M(Rep(T)) is the space of representable functors on T which should be equivalent to T if
T : Un. We may construct a map T → Rep(T) on the level of the type system as the composition
of two obvious maps:

The categories CC have an additional structure. Namely, there are functors U∞ and Ũ∞ from CC
to Sets and a morphism Ũ∞ → U∞ which are defined as follows. The functor U∞ sends a context
Γ to the set of all sequents of the form Γ ` T : Type, the functor Ũ∞ sends Γ to the set of all
sequents of the form Γ ` t : T where Γ ` T : Type. The morphism is obvious. The functor U∞ has
the representable functors Un for n < ∞ as its subfunctors according to the second group of rules.

Any functor M : C → D defines the inverse image functor M∗ : Funct(C,Sets) → Funct(D,Sets).
If F is representable by X then M∗(F) is representable by M(X). The functor M∗ also preserves
monomorphisms. Hence, any model M of T in D defines a morphism of functors F̃M → FM

where FM = M∗(U∞) and similarly for F̃M . The functor F (M) contains M(Un) as representable
subfunctors.

7

