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The homotopy λ-calculus is a hypothetical (at the moment) type system. To some extent one may
say that Hλ is an attempt to bridge the gap between the ”classical” type systems such as the ones
of PVS or HOL Light and polymorphic type systems such as the one of Coq. The main problem
with the polymorphic type systems lies in the properties of the equality types. As soon as we have
a universe U of which Prop is a member we are in trouble. In the Boolean case, Prop has an
automorphism of order 2 (the negation) and it is clear that this automorphism should correspond
to a member of Eq(U ;Prop, Prop). However, as far as I understand there is no way to produce
such a member in, say, Coq. A related problem looks as follows. Suppose T, T ′ : U are two type
expressions and there exists an isomorphism T → T ′ (the later notion of course requires the notion
of equality for members of T and T ′). Clearly, any proposition which is true for T should be true for
T ′ i.e. for all functions P : U → Prop one should have P (T ) = P (T ′). Again as far as I understand
this can not be proved in Coq no matter what notion of equality for members of T and T ′ we use.

Here is the general picture as I understand it at the moment. Let us consider the type system TS
which is generated by the sequents

` Ui : Ui+1

(for i = −1, 0, 1, . . .) and the rules:

1.
Γ ` T : Ui

Γ ` T : Ui+1

Γ ` T : Ui

Γ ` T : Type

2. The usual dependent
∏

-rules (inside each Un)

3. The usual dependent
∑

-rules with strong elimination (inside each Un)1

The system Hλ is supposed to be an extension of TS. In Hλ, U−1 becomes the empty type ∅ and
U0 becomes Prop. The natural numbers are defined (see (1) below) in terms of U1.

Let CC be the contexts category of TS. By a model of TS with values in a category D, I mean a
functor CC → D which ”preserves the relevant structures”. The main observation is that there is a
canonical model M of TS with values in the usual homotopy category H provided that we consider
homotopy types based on a sufficiently large universe of sets. To define this model one starts with
a not-so-canonical model N of TS with values in the category of spaces (actually simplicial sets,
but I will speak of spaces since they provide a more familiar model for homotopy types) and then
sets M to be the composition of N with the projection Spc → H. The main properties of N are
are follows.

1We may also consider systems TSX where X is any ”recursive” partially ordered set such that Ux is defined for
any x ∈ X and the rules are modified accordingly. Already the system TSpt where pt is the one point set seems to
be non-trivial.
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1. By definition N takes a context Γ to a space N(Γ).

2. A sequent of the form Γ ` T : Type (where T is an expression) defines a morphism

(Γ, x : T )→ Γ

in CC. Morphisms of this type go to fibrations

N(Γ;T ) : N(Γ, x : T )→ N(Γ),

3. A sequent of the form Γ ` t : T (where T and t are expressions) defines a morphism

Γ→ (Γ, x : T )

in CC. Morphisms of this type go to sections

N(Γ;T, t) : N(Γ)→ N(Γ, x : T )

of N(Γ;T ).

Given Γ ` P : Type and Γ, x : P ` Q : Type we can form Γ `
∏
x : P.Q and Γ `

∑
x : P.Q. On

the model level our data defines two fibrations

N(Γ, x : P, y : Q)
q→ N(Γ, x : P )

p→ N(Γ)

The fibration
N(Γ, z :

∏
x : P.Q)→ N(Γ)

is the ”p∗(q)”. Its fiber over x ∈ N(Γ) is the space of sections (continuous ones!) of the fiber of q
over x.

The fibration
N(Γ, z :

∑
x : P.Q)→ N(Γ)

is the ”p!(q)”. It is simply the composition of p and q. The meaning of term constructors associated
with

∑
and

∏
is the obvious one. If we took a model with values in Sets where all maps are

fibrations we would get the usual rules for interpretation of
∑

and
∏

but formulated in a slightly
unusual way.

The rigorous description of the value of N on Un’s is complicated. Up to homotopy equivalence,
the space N(Un) is the nerve of the n-groupoid of (n− 1)-groupoids in the ZF with n− 2 universes
(see below for the explicit form in the case n ≤ 1). Alternatively, one may say that Un is the base
of the universal fibration whose fibers are (n − 1)-types which lie in ZF with n − 2 universes (so
that itself it lies in the ZF with n− 1 universe. The equivalence of these two points of view follows
from the fact that n-groupoids are the same as n-homotopy types.

In particular,
M(U−1) = ∅

and
M(U0) = {0, 1}.
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We further have
M(U1) =

∐
n≥0

BSn

where BSn is the classifying space of the permutation group on n elements (BS0 is empty, BS1 is
one point and BS2 is homotopy equivalent to RP∞ = BZ/2). In particular, π0(M(U1)) = N and
one uses U1 to define the type of natural numbers in Hλ. As far as I understand at the moment
M(U2) is

∐
X∈u2

BAut(X) where u2 is the set of equivalence classes of all groupoids with sets of
morphisms and objects being ZF -sets. Starting with U2 one needs ZF with universes in order for
the model to be defined. The model of U3 is the nerve of the 3-groupoid of 2-groupoids in ZF with
one universe.

Of course there are many other models of TS in H. To define a model

This model is very ”incomplete” in the sense that there are many type expressions T such that
M(T ) is non-empty while T has no terms in TS. This is of course unavoidable because of the
Goedel’s theorem. However, some of these incompletenesses are of a special kind. For example
M(U−1) = ∅ hence we may add the empty type rule

Γ ` c : U−1 Γ ` T : Type
Γ ` ι(c, T ) : T

which expresses the fact that if the empty type is inhabited in a context then any other type is. It
does not look provable in TS.

Other examples of such rules involve the equality types. Given a valid type expression T : Un and
two term expressions t1, t2 : T we get on the level of models a space X = M(T ) (up to homotopy)
and two points x1, x2 ∈ X. One of the most important observations concerning the picture outlined
so far is that it is possible to define equality (equivalence) types Eq(T ; t1, t2) in TS such that the
model of Eq(T ; t1, t2) is (homotopy equivalent to) the space P (X;x1, x2) of paths from x1 to x2
in X.

The definition proceeds in the following steps:

Define the contractibility on the level of TS. Set

true = (U−1 → U−1) : U0

false = U−1 : U0.

For T, T ′ : U0 set
Equiv(T, T ′) = (T → T ′)× (T ′ → T ).

For T : Un set
Contr(T ) =

∏
F : Un → U0.Equiv(F (T ), F (true))

then M(Contr(T )) 6= ∅ iff M(T ) belongs to the same connected component of M(Un) as
M(true) i.e. if M(T ) is a contractible space. In that case M(Contr(T )) is itself contractible.
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Define representable functors on the level of TS. Suppose T : Un is a type (expression). I
want to think of its model X = M(T ) as of the nerve of some n-groupoid in Un. The
members of T correspond to objects. For T = Un we get the groupoid of all groupoids.
Functions T → Un correspond to functors from T to the groupoid of all groupoids. Among
these functors there are representable ones i.e. we have the homotopy type Rep(T ) which
maps to T → Un. For F : T → Un set

rep(F ) = Contr(
∑

t : T.F (T )).

One verifies that on the level of models rep(F ) 6= ∅ iff F is representable. Set

Rep(T ) =
∑

F : T → Un.rep(F ).

then the model of Rep(T ) is the space of representable functors on T . By abuse of notation
I will write F (t) : Un instead of the formal (πF )(t) for F : Rep(T ) and t : T .

Define the equality types. For T : Un and T1, t2 : T one sets:

Eq(T ; t1, t2) =
∏

F : Rep(T ).F (t1)→ F (t2)

where I write F (t) for F : Rep(T ) instead of the correct but long (πF )(t).

Theorem 1 There is a homotopy equivalence

M(Eq(T ; t1, t2)) = P (M(T );M(t1),M(t2)).

Once the equality types (path spaces) are defined many other constructions familiar on the model
level can be formulated on the level of the type system. The first thing to define is the level
”filtration” on type expressions or, equivalently on the types Un. The model of Un has a natural
filtration by subspaces Un,k, k = 0, . . . , n where Un,k is (the nerve of) the k-groupoid of (k − 1)-
groupoids in the universe Un. In particular Un,1 is the (nerve of) the usual groupoid of sets in Un

and their isomorphisms. We define a (−1)-groupoid as a set where any two elements are equal
i.e. one of the two sets ∅ and pt. Hence for any n ≥ 0 the model of Un,0 is the two point set
{0, 1} = {true, false}.

U0,0 U1,0 U2,0 U3,0 . . .y y y
U1,1 −−−→ U2,1 −−−→ U3,1 −−−→ . . .y y

U2,2 −−−→ U3,2 −−−→ . . .y
U3,3 −−−→ . . .

All the arrows are inclusions with the image being a disjoint union of some of the connected
components of the target and the usual arguments a-la Russell’s paradox imply that except for the
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ones marked as equalities the arrows are proper inclusions e.g. U2,1 (which is responsible for sets
in U2) is strictly larger than U1,1 (which is responsible for sets in U1) etc.

To get Un,k’s as type expressions we first define type expressions Lvk(T ) : U0 for T : Un which are
”indicator functions” for Un,k setting:

Lv−1(T ) = Contr(T )

and for k ≥ 0
Lvk(T ) =

∏
t1 : T.

∏
t2 : T.Lvk−1(Eq(T ; t1, t2)).

Then
Un,k =

∑
T : Un.Lvk(T ).

One verifies easily that this definition is consistent with the model level definition given above. We
will also use the following notations. For F : T ′ → T and t : T set

Hfiber(F, t) =
∑

t′ : T ′.Eq(T ; t, F (t′))

one verifies easily that the model of Hfiber is the homotopy fiber of F over t. Set further

isheq(F ) =
∏

t : T.Contr(hfiber(F, t)).

This is a truth value and the model of isheq(f) is true iff the model of f is a homotopy equivalence.
Set further

Heq(T ′, T ) =
∑

F : T ′ → T.isheq(F )

then M(Heq(T ′, T )) is the space of homotopy equivalences from T ′ to T . For a type expression T
set:

Π−1(T ) = (T → U−1)→ U−1

it is a truth value and on the model level Π−1(T ) = true iff T is not empty. For F : T ′ → T set

Im(F ) =
∑

t : T.Π−1(Hfiber(F, t)).

The model of Im(F ) is the union of connected components of T whose pre-image under F is
non-empty. Set

ev(T ′, T ) = λt : T.λF : T ′ → T.F (t) : T ′ → ((T ′ → T )→ T )

Π0(T ) = Im(ev(T,U0)).

The model of Π0(T ) is the set of connected components of T .

We can now give more examples of things which hold on the model level but (probably) can not
be proved on the level of TS or even TS with the empty type rule.

1. The natural maps Un,0 → Un+1,0 are equivalences on the model level for n ≥ 0. It seems to
be unprovable in TS. To fix it one may add the rule

Γ ` T : Type Γ ` a : Lv0(T )
Γ ` T : U0

.
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Alternatively one can impose stabilization together with the Boolean rule by adding a term
constructor

Γ ` T : Type Γ ` a : Lv0(T )
Γ ` boo(T, a) : ((T → ∅)→ ∅)→ T

2. Set
N = Π0(U1). (1)

The model of N is of course N – the set of natural numbers. It is not clear however to what
extend N is a natural numbers object in the sense of type theory.

3. For T : Un we may consider T also as a member of Un+1. Thus we have two definitions of
Rep(T ) one using Un and another one using Un+1. They should agree i.e. any F : T → Un+1

such that rep(F ) = true should factor through Un. More precisely there are two expressions
Repn(T ) and Repn+1(T ) and it should be possible to construct a function Repn+1(F ) →
Repn(F ) which is ”inverse” to the obvious one going in the opposite direction.

4. Given T, T ′ : Un there are two different expressions which both model to the space of equiva-
lences from T ′ to T . One is Eq(Un;T ′, T ) and another one is Heq(T ′, T ). So we should have
an equivalence

Heq(T ′, T )→ Eq(Un;T ′, T ).

Again it is unclear how to construct it on the level of the type system.

A subtle thing about imposing all these properties on TS is that while they all hold for M it is not
clear which ones one may get on the level of N . In particular the stabilization of U0,k’s does not
hold for the version of N which I have been considering. For example N(U0,2) is much smaller as a
space then N(U0,3) since there are many more one point sets in ZF with a universe then there are
in ”pure” ZF.

The context category CHλ of Hλ has a structure reminiscent of a Quillen model structure or
rather of the structure of a category with fibrations and weak equivalences considered by Baues in
”Algebraic Homotopy”. The associated homotopy category HH is some sort of a free homotopy
category.

Originally, I was considering a different approach to Hλ where the equality types where introduced
as ”primitives” along with

∑
and

∏
and the universes where ”defined” but it seems to me now that

it is nicer to start with
∑

,
∏

and universes and define the equality types later. What is left from this
earlier stage is certain understanding of which properties of/structures on the equality types might
be sufficient to ensure that they behave nicely (e.g. that for any t : T , π1(T ; t) = Π0(Eq(T ; t, t)) is
a group or that there is a long exact sequence of ”homotopy groups” associated to a fibration).

The advantage of Hλ and its homotopy-theoretic model over the less sophisticated type systems
is that it better reflects the way mathematicians envision ”types” corresponding to mathematical
structures of higher level. For example if we fix the size of the universe n and write in the usual
way the type expression for, say, the type Gr(Un) of groups in Un then the model of Gr(Un) will
be (the nerve of) the groupoid of groups in the universe Un and their isomorphisms. Similarly,
if we write down the definition of a category in a proper way then the model of Cat(Un) will be
(the nerve of) the 2-groupoid of categories in Un, their equivalences and natural isomorphisms

6



between equivalences. Moreover, any construction on categories described in the language of Hλ
is automatically ”invariant” under equivalences of categories. E.g. any function we can describe in
Hλ from Cat(Un) to Gr(Un) will on the model level correspond to a construction which produces
a group from a category which maps equivalences between categories to isomorphisms between the
corresponding groups. In the usual type systems we can do something like that for types of ”level
1” i.e. sets with structures but not for higher levels (e.g. categories).

At the moment much of what I said above is at the level of conjectures. Even the definition of the
model of TS in the homotopy category is non-trivial. Similarly, the definition of equality types in
terms of universes is rather involved and I am not sure which of the properties of these types have
to be imposed so that the rest will follow.
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