
Notes on homotopy λ-calculus

Vladimir Voevodsky

Started Jan. 18, Feb. 11, 2006

Contents

1 Introduction 1

2 Homotopy theory and foundations of mathematics 4

1 Univalent maps . 4

2 Universes and universe maps . 10

3 Classifying spaces of types with structures . 17

3 Homotopy λ-calculus 18

1 Expressions with variables . 18

2 An overview of homotopy λ-calculi . 21

3 The syntax of Hλ0 . 25

4 Parsing lemmas . 30

5 Theorems about reductions . 40

6 Semantics of Hλ0 . 45

7 Levels . 49

8 Basic layer - generalized models . 55

9 Homotopy λ-calculus - logic layer . 61

10 Homotopy λ-calculus - universe constructors . 61

11 Comparison with the Martin-Lof’s type system . 63

12 The leftovers . 64

1 Introduction

In this paper we suggest a new approach to the foundations of mathematics. In fact the adjective
”new” in the previous sentence may be superfluous since one can argue that pure mathematics as
it is practiced today has no foundations. We have come a long way from where we used to be at the
beginning of the century when the thesis that mathematics is that which can be formalized in the
framework of the Zermelo-Fraenkel theory became generally accepted. Contemporary constructions
and proofs can not be translated in any sensible way into the Zermelo-Fraenkel theory. One can
(may be!) translate the categorical definition of group cohomology into the ZF-theory using the

1

Grothendieck’s idea of universes but it is hardly fair to call an approach which requires one to believe
in strongly unreachable cardinals in order to interpret a simple algebraic construction sensible.

Because of the amazing intuitiveness of the basic concepts of category theory this foundational
insufficiency is not (yet) a serious problem in our everyday work. In my experience it becomes
noticeable only at the level of 2-categories which may be the reason why 2-categorical arguments
are not very common in mathematics. The real need of formalized foundations arises when one
attempts to use a computer to verify a proof. It is a fact of life that proofs in contemporary
mathematics are getting too long, complicated and numerous to be rigorously checked by the
community. Moreover it is precisely the most technical parts of the proofs where the probability
of a mistake is the highest which are most likely to be skipped in the verification process. Since
the ability to build on layers and layers of earlier results is probably the most important feature
which underlies the success of mathematics as an enterprise this is a very serious problem and
without finding its solution mathematics can not move forward. The idea to use computers in
proof verification is an old and obvious one. However, despite the fact that the first generation
proof verification systems such as Automath or Mizar are more than thirty years old now none of
the existing proof verification systems are practically usable in the context of pure mathematics.

Since the computer science is getting very good at working with complex formal systems I would
conjecture that the real reason for this situation is not that it is very difficult to create a good
proof verification system but that we do not have formalized foundations which we could pass
to the computer scientists and say - ”please create the software to verify proofs in this system”.
Mizar does a pretty good job of implementing the ZF-theory but it is nearly impossible to prove
even the most basic algebraic theorems with Mizar because it requires one to specify every single
isomorphism on a crazily detailed level. Clearly it is not a problem of Mizar but a problem of the
ZF-theory.

Attempts to develop alternatives to the ZF-theory and to the first order theories in general have
been made since the beginning of the century (at least). From what I know about the history of
mathematics the two such attempts which are most relevant here are the type theory of Russel
and Whitehead and Church’s λ-calculus. Type theory and λ-calculus were later unified in typed
λ-calculus. A key development (totally unnoticed by the mathematical community) occurred in
the 70-ies when the typed λ-calculus was enriched by the concept of dependent types. Most types
in mathematics are dependent on members of other types e.g the class (or type) of algebras over
a ring R is a type dependent on R which is a member of the type of rings. However, until fairly
recently there were no formal languages supporting dependent types.

Today the dependent type theory is a well developed subject but it belongs almost entirely to the
realm of computer scientists and in my experience there are very few mathematicians who have a
slightest idea of what dependent type systems are. One of these mathematicians is Makkai - the
key insight that dependent type systems are exactly what we need in order to formalize categorical
thinking is probably due to him (see []). His papers played the key role in convincing me that it
is indeed possible to build much better foundations of mathematics than the ones provided by the
ZF-theory.

One of the reasons mathematicians have not been more involved in the development of the de-
pendent type systems is that these systems for most part lack clear semantics. It does not mean

2

there is no semantics at all. The abstract categorical semantics for type systems was developed
by Jacobs [?] and his book was of great help to me. What was missing was semantics with values
in an intuitively accessible category. The concepts of first order logic are easy to explain precisely
because there is a straightforward notion of a (set-theoretic) model of a first order theory. The
ideas of simple type theory both in the intuitionist and in the Boolean versions are reasonably
easy to explain because we may use models in toposes of sheaves on topological spaces. For the
homotopy λ-calculus such ”standard” models take values in the homotopy category. In the same
way as a sort in a first order theory is thought of as a set a type in the homotopy λ-calculus can
be thought of as a homotopy type.

Let me try to explain what homotopy category has to do with the foundations of mathematics.
First of all I want to suggest a modification of the usual thesis stating that categories are higher
level analogs of sets. We will take a slightly different position. We will consider groupoids to be
the next level analogs of sets. Consider the following hierarchy of (higher) groupoids (we ignore
the large versus small distinction for now):

L−1 = pt L0 = {0, 1} L1 = {sets and isomorphisms} L2 = {groupoids and equivalences} etc.

Categories may be considered as groupoids C with an additional structure - a pairing

C × C → L1

which sends X,Y to Mor(X,Y) (plus some higher level structures which I will ignore at the
moment). Note that this is indeed a functor between groupoids even though it would not be a
functor between categories unless we replaced the first C with Cop. Hence a previous level analog
of a category is a set X together with a map

X ×X → L0

i.e. a set with a relation. The existence of compositions and units for categories corresponds to the
reflexivity and transitivity of this relation. We conclude that a category is the next level analog of
a partially ordered set.

The key argument for this modification of the basic thesis is the following observation - not all
interesting constructions on sets are functorial with respect to maps but they are all functorial with
respect to isomorphisms. Similarly, not all interesting constructions on groupoids or categories are
natural with respect to functors but they all are (by definition!) natural with respect to equivalences.

Once the modification of the basic thesis is accepted the connection between foundations and the
homotopy theory becomes obvious since we know that n-groupoids are the same as homotopy n-
types. We will see below (in ??) that the n-types corresponding to the groupoids similar to Ln
have a natural homotopy theoretic description in the elementary terms of univalent fibrations. They
show up as models of special types (in special contexts) of the homotopy λ-calculus. Similarly, for
a type of mathematical structures (e.g. groups) one can define a type in the homotopy λ-calculus
whose models are (the homotopy types of) groupoids or higher groupoids of the corresponding
structures and their equivalences. Since all the constructions of homotopy λ-calculus correspond
by design to homotopy invariant constructions on models it is impossible to make statements
which are not invariant under equivalences. This provides a build-in support in our system for the
important principle which says that two isomorphic or otherwise appropriately equivalent objects
are interchangeable.

3

Need to mention: Goedel Theorem, Giraurd(sp?) Theorem.

Mention: Goedel theorem implies that there does not exist a recursive well-pointed topos with a
natural numbers object (other than the trivial one).

Mention: In our approach every type ”is” or at least can be though of as a ”subtype” of an
equivalence type eqR(r1, r2) for appropriate R and ri.

Mention(?):Firmer foundations allow for a higher level of abstraction.

Mention(?):Some parts of Section ?? give us hope that the formal language of the homotopy λ-
calculus can be integrated well with the usual mathematical discourse.

Mention in the next section: Intuitionist models in Fib/B and Boolean but multi-valued ones in
Fib/B where B is K(π, 0).

A type system is said to be simple (or pure) if terms and types are distinct and there is no way
to produce types from terms. If there is a way to produce types from terms i.e. there are type
constructors which take terms of previously defined types as arguments then one says that the
type system allows dependent types1. If types and terms are mixed i.e. terms of some types
are themselves types then the type system is called polymorphic. The homotopy λ-calculus is
a dependent type system with (strong) dependent sums and dependent products. There is no
polymorphism in the usual sense i.e. terms and types never get mixed up but there are universe
constructors which provide a replacement for the traditional polymorphism.

2 Homotopy theory and foundations of mathematics

In this section I will describe several constructions of homotopy theoretic nature which I hope
explain the connection between the homotopy theory and the foundations. The foundations used
in this section itself are the intuitive ones.

1 Univalent maps

We fix a universe U and consider the homotopy category H = H(U) of spaces (or simplicial sets)
in U . Let us recall first recalling the ”levels” structure on the homotopy category in a convenient
for us form.

Definition 1.1 [levels] Define the level of a homotopy type inductively as follows:

1. X is of level −2 iff X is contractible,
1There are almost always term constructors which make terms dependent on types e.g. the identity term of the

function type T → T .

4

2. X is of level n ≥ 0 iff for any x, x′ ∈ X the paths space P (X;x, x′) is of level n− 1.

By definition there is only one type of level −2 - the point. One can also see easily that there are
only two types of level −1 namely ∅ and pt. For a non-negative n a type of level n is the same as
an n-type in the usual homotopy-theoretic sense i.e. one has:

Lemma 1.2 [levelsob] A space X is of level n ≥ 0 iff for all x ∈ X one has πi(X,x) = pt for
i ≥ n+ 1.

In particular equivalence classes of 0-types are in one to one correspondence with the isomorphism
classes of sets in U , equivalence classes of 1-types are in one to one correspondence with the equiva-
lence classes of groupoids in U and equivalence classes of n-types are in one to one correspondence
with the equivalence classes of n-groupoids in U if the later notion is properly defined (see e.g. [?]).

Let us extend the notion of a level from types to maps of types as follows.

Definition 1.3 [levelmap] A map f : Y → X is called a map of level n ≥ −2 if for any x ∈ X
the homotopy fiber f−1(x) is a type of level n.

Examples:

1. A map is of level −2 iff it is an equivalence.

2. A map is of level −1 iff it is equivalent to a map of the form Y → Y
∐
X ′.

3. A map is of level 0 iff it is equivalent to an unramified covering.

4. Consider a functor F : G1 → G2 between two groupoids and let N(F) : N(G1) → N(G2) be
the corresponding map between the nerves. Then one has the following:

(a) N(F) is of level −2 iff F is an equivalence of categories,

(b) N(F) is of level −1 iff F is a full embedding,

(c) N(F) is of level 0 iff F is a faithful functor,

(d) N(F) is of level n for any F and any n ≥ 1.

The most important concept which we will introduce is the concept of a univalent map. Let us
start with the following standard definition.

Definition 1.4 Let f : Y → X and f ′ : Y ′ → X be two continuous maps and g : Y → Y ′ be a
map over X. Then g is called a fiber-wise homotopy equivalence if for any x ∈ X the corresponding
map between the homotopy fibers of f and f ′ is a homotopy equivalence.

5

For two maps f : Y → X and f ′ : Y ′ → X let EqX(f, f ′) be the space of fiber-wise homotopy
equivalences from Y to Y ′ over X. It is fibered over X such that the fiber of EqX(f, f ′) → X
over x ∈ X is (homotopy equivalent to) the space of homotopy equivalences between the homotopy
fibers f−1(x) and (f ′)−1(x).

For a map f : Y → X consider the maps f × Id : Y ×X → X ×X and Id× f : X × Y → X ×X.
Let further

E(f) = EqX×X(f × Id, Id× f).

Then E(f) is fibered over X ×X and its fiber over (x, x′) is the space of homotopy equivalences
between the homotopy fibers of f over x and x′. In particular, E(f) → X × X has a canonical
section over the diagonal X → E(f) corresponding to the identity.

Definition 1.5 [univ] A map u : E → B is called univalent if the map B → E(u) is a fiber-wise
homotopy equivalence over B ×B.

The homotopy fiber of the diagonal B → B×B over (x, x′) is the space P (B;x, x′) of paths from x
to x′ in B. Hence a map u : E → B is univalent if and only if for any x, x′ the space of homotopy
equivalences between the fibers u−1(x) and u−1(x′) is naturally equivalent to the space of paths
P (B;x, x′).

Here are some examples of univalent maps:

1. There are only four univalent maps of level −1. They are ∅ → ∅, ∅ → pt, pt → pt and
pt→ pt

∐
pt. Of these four the last one is the universal one since the other three are obtained

from it by pull-back. These four maps are also the only univalent maps between types of level
0 i.e. between sets.

2. For n > 0 the map BSn−1 → BSn where Sn−1 → Sn is the standard embedding of symmetric
groups, is univalent. The homotopy fiber of this map is the set with n elements.

3. For n ≥ 0 the inclusion of the distinguished point pt→ K(Z/2, n) is univalent. For n = 0 one
gets the map pt→ pt

∐
pt from the first example and for n = 1 one gets the map BS1 → BS2

of the second example. I do not know at the moment any other examples of univalent maps
starting at the point.

4. A map X → pt is univalent iff X has no symmetries i.e. iff the space of homotopy auto-
equivalences of X is contractible. For a group G it means that the map BG→ pt is univalent
if the center and the group of outer automorphisms of G are trivial. In particular, for n > 2
the map BSn → pt is univalent.

Let us state some elementary properties of univalent maps.

Lemma 1.6 [lvun] Consider a (homotopy) cartesian square

E′ −−−→ E

u′
y yu
B′

f−−−→ B

6

such that u is univalent. Then u′ is univalent if and only if f is a map of level −1.

Proposition 1.7 [class] If for a given univalent u : E → B and a given f : Y → X there exists a
(homotopy) cartesian square of the form

Y −−−→ E

f

y yu
X −−−→ B

then such a square is unique up to an equivalence.

Theorem 1.8 [existun] For any map f : Y → X there exists a unique homotopy cartesian square

Y −−−→ Ũn(f)

f

y yun(f)

X
g−−−→ Un(f)

such that u is univalent and g is surjective on π0.

Proof: We will only sketch a proof. Assume first that X is connected and let x ∈ X be a point of
X. Let further F = f−1(x) be the homotopy fiber of f over x. Let M = Eq(F, F) be the topological
monoid of homotopy auto-equivalences of F We set Un(f) = BM and let Ũn(f) → Un(f) to be
the fibration with the fiber F defined by the obvious action of M on F . To get a map X → Un(f)
note that X ∼= BM ′ where M ′ = Ω1(X,x) is the topological monoid of (Moore) loops on X starting
in x. If we use Moore paths in the construction of the homotopy fiber we get an action of M ′ on
f−1(x) i.e. a homomorphism of monoids M ′ →M and therefore a map X = BM ′ → Un(f) = BM .
One verifies in the standard manner that this construction extends to a construction of a homotopy
cartesian square of the required form.

For a general X let X =
∐
a∈AXa be the decomposition of X into the union of its connected

components. Choose a point xa ∈ Xa in each component and let Fa be the homotopy fibers of f
over these points. Define an equivalence relation ∼= on A by the condition that a ∼= a′ iff the fibers
Fa and Fa′ are homotopy equivalent and let A′ ⊂ A be a subset which contains exactly one element
of each equivalence class. Set

Un(f) =
∐
a∈A′

Un(fa)

Ũn(f) =
∐
a∈A′

Ũn(f)

un(f) =
∐
a∈A′

un(fa)

where fa is the the map f−1(Xa)→ Xa. One verifies immediately that un(f) is univalent and that
a square of the required for exists. It is also clear that the map X → Un(f) is surjective on π0.

7

To prove the uniqueness part suppose that there are two homotopy cartesian squares of the required
form with the univalent maps u : E → B and u′ : E′ → B′. Consider the map u

∐
u′ and let us

apply the existence part of the poof to it creating a univalent map un(u
∐
u′). We get a square:

X
g−−−→ B

g′
y yj
B′ −−−→

j′
Un(u

∐
u′)

The pull-back of Ũn(u
∐
u′) to X with respect to the two paths in the square are equivalent to Y .

Therefore, by Proposition 1.7 the square commutes up to homotopy. By our assumption g, g′ and
j
∐
j′ are surjective on π0. Therefore, j and j′ each are surjective on π0. On the other hand by

Lemma 1.6, j and j′ are maps of level −1. We conclude that j and j′ are equivalences.

For f : Y → pt we will write un(Y) : Ũn(Y)→ Un(Y) instead of un(f) : Ũn(f)→ Un(f).

Remark 1.9 We used a very non-canonical construction in the proof of the existence part of
Theorem 1.8. The following canonical construction should work as well but it is less obvious. Let
f : Y → X be a map. Then E(f) together with the two maps to X, the section X → E(f)
and the obvious composition of equivalences form an internal category C(f) in Top. Its nerve is a
simplicial topological space. Let B be its geometric realization. Consider now the first projection
p : Y ×X Y → Y and its section ∆ given by the diagonal. Let C̃(f) be the subcategory in C(p)
which has the same objects (i.e. Y) and whose maps are equivalences preserving ∆. Let E be the
geometric realization of the nerve of C̃(f) and let u : E → B be the map corresponding to the
obvious functor. It is my understanding that u ∼= un(f).

Lemma 1.10 [levlev] For a space X of level n the space Un(X) is of level n+ 1.

Proof: If n = −2 then X is contractible and Un(X) = X is of level −2 and therefore of level −1.
If n = −1 then X = pt or X = ∅. We have already considered the first case. In the case X = ∅ we
again have Un(X) = pt since ∅ → pt is univalent. Suppose that n ≥ 0. The construction used in the
proof of Theorem 1.8 shows that Un(X) = BM where M = Eq(X,X) is the topological monoid
of homotopy auto-equivalences of X. Since this monoid is group-like we have Ω1(Un(X)) ∼= M . It
remains to note that Eq(X,X) is a union of connected components of End(X) = Hom(X,X) and
that for a space X of level n ≥ 0 and any space Y the space of continuous maps Hom(Y,X) is of
level n.

Definition 1.11 [classdef] Let u : E → B be a univalent map and f : Y → X a map. We say
that f is classifiable by u if a cartesian square as in Corollary 1.7 exists.

The role of univalent maps in foundations is based in the following theorem.

8

Theorem 1.12 [univ1] Given a set of isomorphism classes A in H there exists a unique univalent
map ω(A) : Ω̃(A)→ Ω(A) such that X → pt is classifiable by ω(A) iff X ∈ A. This correspondence
establishes a bijection between isomorphism classes of univalent maps in H and sets of isomorphism
classes of objects in H.

Proof: To prove the existence part let us choose a representative Xa for each isomorphism class
a ∈ A. Then set Ω(A) =

∐
a∈A Un(Xa), Ω̃(A) =

∐
a∈A(Ũn(Xa)) and ω(A) =

∐
a∈A un(Xa). If

there are two such maps ω : Ω̃ → Ω and ω′ : Ω̃′ → Ω′ consider Ũn(ω
∐
ω′) → Un(ω

∐
ω′). By

Lemma 1.6 the map Ω → Un(ω
∐
ω′) is of level −1. On the other hand one can easily see that it

is surjective on π0. Therefore, it is an equivalence. The same holds for Ω′ → Un(ω
∐
ω′).

Note that if A ⊂ A′ where A,A′ are sets of homotopy types then one has a cartesian square

Ω̃(A) −−−→ Ω̃(A′)y y
Ω(A) i−−−→ Ω(A′)

where i is a map of level −1. Let A be a set of types which contains ∅ and pt. Let further A≤n
be the subset of types of level n− 1 in A and Ω≤n(A) = Ω(A≤n) be the corresponding subspace in
Ω(A). We get a diagram

Ω̃≤−1(A) −−−→ Ω̃≤0(A) −−−→ Ω̃≤1(A) −−−→ . . . −−−→ Ω̃(A)

ω≤−1

y ω≤0

y ω≤1

y ω

y
Ω≤−1(A) −−−→ Ω≤0(A) −−−→ Ω≤1(A) −−−→ . . . −−−→ Ω(A)

where the squares are homotopy cartesian and horizontal maps are of level −1. The maps ω≤n for
n ≤ 2 can be described as follows:

1. Ω̃≤−1(A) = Ω≤−1(A) = pt since there is only one type of level −2 and we have assumed that
it lies in A,

2. Ω̃≤0(A) is the one point set, Ω≤0(A) = {0, 1} is the two point set, ω(A)≤0 : Ω̃≤0 → Ω≤0 is
the embedding whose image is 1,

3. Ω̃≤1(A) is the nerve of the groupoid of pointed sets in A and their isomorphisms, Ω≤1 is the
nerve of the groupoid of (free) sets in A and their isomorphisms and ω(A)≤1 : Ω̃≤1 → Ω≤1 is
the map corresponding to the forgetting functor from pointed sets to sets,

4. Ω̃≤2(A) is the nerve of the 2-groupoid of pointed groupoids in A (i.e. pairs of a groupoid and
an object in it) and their equivalences, Ω≤2 is the nerve of the 2-groupoid of (free) groupoids in
A and their equivalences and ω(A)≤2 : Ω̃≤2 → Ω≤2 is the map corresponding to the forgetting
functor.

This kind of descriptions can be extended to higher n . In particular, Ω = Ω(A) is the nerve of
the ∞-groupoid of ∞-groupoids in A and their equivalences. However, since we do not have a
commonly accepted theory of ∞-groupoids we will not concentrate on this interpretation.

9

2 Universes and universe maps

Let U be a set of homotopy types. In order for U to be a ”universe” it should satisfy some closeness
conditions. In this section we will consider the following conditions:

Clsum - asserts that for a fibration f : Y → X such that X is in U and all fibers of f are in U one
has Y ∈ A,

Clprod - asserts that for f : Y → X as above the space of sections of f is in U ,

Cleq - asserts that for X in U and x, x′ ∈ X the paths space P (X;x, x′) is in U ,

Clun - asserts that for X in U one has Un(X) ∈ U .

We will first describe some elementary corollaries of different combinations of these conditions and
then show how to express Clsum, Clprod, Cleq and Clun as properties of the univalent map ω(U)
corresponding to U . We say ”a set in U” instead of ”a type of level 0 in U”.

Lemma 2.1 [cl1] Let U be a set of types satisfying Clsum. Then one has:

1. for any X,Y ∈ U one has X × Y ∈ U ,

2. for any set I ∈ U and any family of types (Xi)i∈I such that all Xi are in U one has
∐
i∈I Xi ∈

U .

Proof: The space X × Y is the total space of the fibration X × Y → X with the base and the
fibers in U . The space

∐
i∈I Xi is the total space of the fibration

∐
i∈I Xi → I with the base and

fibers in U .

Lemma 2.2 [cl2] Let U be a set of types satisfying Clprod. Then one has:

1. for any X,Y ∈ U one has Hom(X,Y) ∈ U ,

2. for any set I ∈ U and any family of types (Xi)i∈I such that all Xi are in U one has
∏
i∈I Xi ∈

U .

Proof: The space Hom(X,Y) is the space of sections of the fibration X × Y → X. The space∏
i∈I Xi is the space of sections of the fibration

∐
i∈I Xi → I.

Lemma 2.3 [fibers] Let U be a set of types satisfying Clsum and Cleq. Let further f : Y → X be
a map such that X,Y ∈ U . Then for any point x ∈ X the homotopy fiber f−1(x) is in U .

10

Proof: Consider the map i : f−1(x)→ Y . The homotopy fiber of this map over y ∈ Y is the space
P (X; f(y), x). Since U satisfies Clsum and Cleq we conclude that f−1(x) ∈ U .

The following lemma is a generalization of the previous one and its proof is similar.

Lemma 2.4 [homlim1] Let U be a set of types satisfying Clsum and Cleq. Then U is closed under
finite homotopy limits. In particular for a pair of maps f, g : Y → X with X,Y ∈ U the homotopy
equalizer heq(f, g) is in U .

Lemma 2.5 [point] Let U be a set of types satisfying Clsum and Cleq. If there exists X ∈ U such
that X 6= ∅ then pt ∈ U .

Proof: Let x be a point of X. The homotopy fiber of the map x : pt→ X is Ω1(X,x) which is in
U by Cleq. Therefore pt ∈ U by Clsum.

Lemma 2.6 [cl5] Let U be a set of types satisfying Cleq. Then if there exists X ∈ U such that
X 6= pt then ∅ ∈ U .

Proof: If X is not connected then X = ∅ or P (X;x, x′) = ∅ for some pair of points x, x′ ∈ X. By
Cleq we have Ωn(X,x) ∈ U where Ωn is the n-th loop space. If X is not contractible then for some
n the space Ωn(X,x) is not connected.

Lemma 2.7 [cl3] Let U be a set of types satisfying Clsum and such that pt ∈ U and ∅ ∈ U . Then
one has:

1. if f : Y → X is a map of level −1 such that X ∈ U then Y ∈ U ,

2. if X ∈ U is a set then for any subset Y ⊂ X one has Y ∈ U .

Proof: The second statement is a particular case of the first. To prove the first one observe that
the map f is a fibration with base in U and fibers being ∅ and pt which are also in U .

Lemma 2.8 [cl6] Let U be a set of types satisfying Clsum and Cleq. If there exists X ∈ U such
that X 6= ∅, pt then {0, 1} ∈ U .

Proof: Since we assume that X 6= pt we conclude by Lemma 2.6 that ∅ ∈ U . Since we assume
that X 6= ∅ we conclude by Lemma 2.5 that pt ∈ U . If X is a set then {0, 1} ∈ U as a subset of
X by Lemma 2.7. If X is not a set it has a connected component which is not contractible. Let

11

X ′ be such a component and let πn(X ′, x′) be the first non-trivial homotopy group of X ′. We have
X ′ ∈ U by Lemma 2.7. Let X ′′ be the connected component of x′ in Ωn(X ′, x′). Since all connected
components of Ωn(X ′, x′) are equivalent to each other we have a fibration Ωn(X ′, x′)→ X ′′ whose
fiber is πn(X ′, x′). We conclude that πn(X ′, x′) ∈ U by Lemma 2.3. Since it is a non-trivial set we
have {0, 1} ∈ U as a subset of πn(X ′, x′).

Lemma 2.9 [cl4] Let U be a set of types satisfying Clprod and such that {0, 1} ∈ U . Let further
X ∈ U be a set. Then the set PX of all subsets of X is in U .

Lemma 2.10 [sur] Let U be a set of types satisfying Clsum and Clprod and such that {0, 1} ∈ U .
Let further f : Y → X be a surjection of sets such that Y ∈ U . Then X ∈ U .

Proof: Assuming the axiom of choice we could take a section of f and conclude that X is in U
as a subset of Y . Without assuming the axiom of choice proceed as follows. Consider PX → PY
where as before P denotes the set of subsets functor. This is a mono. On the other hand X is a
subset in PX. Hence, X is a subset in PY and therefore is in U .

Lemma 2.11 [cl4] Let U be a set of types satisfying Clsum and Clprod and such that {0, 1} ∈ U .
Then for any X ∈ U one has π0(X) ∈ U .

Proof: It follows from Lemmas 2.2 and 2.7 since π0(X) is a subset of the set Hom(X, {0, 1}).

Lemma 2.12 [all0] Let U be a set of types satisfying Clsum, Clprod, Cleq and such that {0, 1} ∈ U .
Let X ∈ U . Then π0(X) ∈ U and for any n > 0 and any x ∈ X, πn(X,x) ∈ U .

Proof: We have π0(X) ∈ U by Lemma 2.11. By Cleq we have Ωn(X,x) ∈ U where Ωn is the n-th
loop space. Then πn(X,x) ∈ U since πn(X,x) = π0(Ωn(X,x)).

We say that a set U of homotopy types is a (closed) universe if it is closed under the conditions
Clsum, Clprod, Cleq and Clun. Lemma 2.8 implies that there are exactly three closed universes
which do not contain {0, 1} namely ∅, {pt} and {∅, pt}.

Proposition 2.13 [finitetower] Let U be a closed universe. Let further X be a type such that
one has:

1. π0(X) ∈ U ,

2. for any x ∈ X and any n > 0, πn(X,x) ∈ U ,

3. there exists N such that for any x ∈ X and any n > N one has πn(X,x) = 0.

12

Then X ∈ U .

Proof: If X = ∅ or X = pt then X = π0(X) and there is nothing to prove. Assume that X 6= ∅, pt.
By Lemma 2.8 we have {0, 1} ∈ U . Proceed by induction on N . For N = 0 we have X = π0(X).
Applying Clsum to the projection X → π0(X) we reduce the problem to a connected X. Let
x ∈ X. By the inductive assumption we have M = Ω1(X,x) ∈ U . The space M is a group-like
H-space and X = BM . It acts on itself by equivalences i.e. there is a map M → Eq(M,M).
Moreover, this map is a mono split by the map which takes an equivalence to its value on the unit
(the splitting is not a map of H-spaces). Consider the fibration f : BM → BEq(M,M). We have
BEq(M,M) = Un(M) ∈ U by the inductive assumption and Clun. It remains to show that the
homotopy fiber F = f−1(∗) of f over the distinguished point is in U .

The long exact sequence of homotopy groups defined by f looks as follows (we omit the base points
since they are clear):

. . .→ πi(BM)→ πi(BEq)→ πi−1(F)→ . . .→ π1(BM)→ π1(BEq)→ π0(F)→ pt

The maps πi(BM) → πi(BEq) are isomorphic to the maps πi−1(M) → πi−1(Eq) and since M →
Eq(M,M) is a split mono they are monomorphisms. By Lemma 1.10 and the inductive assumption
we conclude that πn(F) = 0 for n > N −1. It remains to check that the non-zero homotopy groups
of F are in U . This follows from our sequence and Lemma 2.10.

Lemma 2.14 [homlim2] Let U be a set of types satisfying Clsum, Clprod, Cleq and such that
N ∈ U . Let further . . . X2 → X1 → X0 be a sequence of maps with Xn ∈ U . Then holimXn ∈ U .

Proof: It follows from Lemmas 2.2 and 2.4 since holimXn is the homotopy equalized of two maps
from

∏
nXn to itself.

Theorem 2.15 [all] Let U be a closed universe such that N ∈ U . Then the following conditions
on X are equivalent:

1. X ∈ U

2. π0(X) ∈ U and for any x ∈ X and any n > 0, πn(X,x) ∈ U .

Proof: It follows easily from Lemma 2.14, Lemma 2.12 and Proposition 2.13.

Let us also note the following fact.

Proposition 2.16 [col] Let U be a closed universe. Then the following conditions are equivalent:

1. U is closed under finite homotopy colimits

13

2. U contains N

Let us show now how the conditions Clsum, Clprod, Cleq and Clun on U can be formulated in terms
of the properties of the corresponding univalent map ω(U) : Ω̃(U)→ Ω(U).

Given a fibration p : Y → X define Fam(p) as the space whose points are families of fibers of p
parametrized by a fiber of p i.e. Fam(p) is the space of pairs {x ∈ X, f : p−1(x) → X}. More
formally, one may define Fam(p) as the space of maps from Y to X ×X over X. It is fibered over
X with the fiber over x ∈ X being the space of (continuous) maps from p−1(X) to X. Consider
the following two fibrations over Fam(p):

1. Sum(p)→ Fam(p) whose fiber over (x, f) is p−1(x)×f Y ,

2. Prod(p)→ Fam(p) whose fiber over (x, f) is the space of sections of the projection p−1(x)×f
Y → p−1(x).

Proposition 2.17 [close1] Let U be a set of homotopy types and ω : Ω̃→ Ω be the corresponding
univalent map. Then following conditions are equivalent:

1. U satisfies Clsum (resp. Clprod),

2. the fibration Sum(ω) → Fam(ω) (resp. Prod(ω) → Fam(ω)) is classifiable by ω (see Defi-
nition 1.11).

Proposition 2.18 [close2] Let U be a set of homotopy types and ω : Ω̃→ Ω be the corresponding
univalent map. Then following conditions are equivalent:

1. U satisfies Cleq,

2. the diagonal map Ω̃→ Ω̃×Ω Ω̃ is classifiable by ω.

To describe Clun let us consider first the following construction. For a map f : Y → X let Im0(f)
be the set of connected components of X which contain images of points of Y . We can also
define Im0(f) → X as the universal map of level 0 through which f factors. The space Im0(f)
can be described as HomX(HomX(Y, ∅), ∅) where HomX denotes the space of maps over X. Let
[X] = Im0(∆X) where ∆X : X → X ×X is the diagonal. One observes easily that if X =

∐
Xa

where Xa are connected then [X] =
∐
X2
a .

Proposition 2.19 [close3] Let U be a set of homotopy types and ω : Ω̃→ Ω be the corresponding
univalent map. Then following conditions are equivalent:

1. U satisfies Clun,

14

2. each connected component of Ω is classifiable by ω,

3. the projection [Ω]→ Ω is classifiable by ω.

We can now give an elementary definition of a universe map and therefore of a universe:

Definition 2.20 [univmap] A map of homotopy types ω : Ω̃ → Ω is called a universe map if it
satisfies the following conditions:

1. ω is univalent,

2. the map Sum(ω)→ Fam(ω) is classifiable by ω,

3. the map Prod(ω)→ Fam(ω) is classifiable by ω,

4. the diagonal map Ω̃→ Ω̃×Ω Ω̃ is classifiable by ω,

5. the projection [Ω]→ Ω is classifiable by ω.

The condition that the maps corresponding to Clsum, Clprod, Cleq and Clun are classifiable by ω
implies in particular that there are canonical morphisms:

sum : Fam(ω)→ Ω

prod : Fam(ω)→ Ω

eq : Ω̃×Ω Ω̃→ Ω

un : Ω→ Ω

Let Ω × Ω → Fam(ω) be the map which sends (x, x′) to the pair {x, f : ω−1(x) → Ω} where f is
the constant map equal to x′. Composing this map with

∑
and

∏
we get two maps

× : Ω× Ω→ Ω

hom : Ω× Ω→ Ω

and one verifies immediately that these maps correspond to direct product and internal hom for
types in U i.e. there are canonical equivalences:

ω−1(×(x, x′)) ∼= ω−1(x)× ω−1(x′)

ω−1(hom(x, x′)) ∼= Hom(ω−1(x), ω−1(x′)).

Similarly, the composition of eq with the diagonal is a map

Ω̃→ Ω

which corresponds to the loop space construction (X,x)→ Ω1(X,x) on types in U .

Suppose now that our ambient universe U is large enough such that for any type X there exists a
a universe which contains X and which is small relative to U . Equivalently, it means that for any

15

type X there exists a universe map ω such that X → pt is classifiable by ω. Observe that if this
condition holds for any type X then it also holds for any set of types Xi. We let Ā denote the
universe generated by a set of types A.

Consider the following hierarchy of universes and spaces:

1. U−1 = ∅

2. Un+1 = {Ω̃(Un),Ω(Un)}

Note that since both Ω̃(Un) and Ω(Un) are in Un+1 all the fibers of the univalent map Ω̃(Un) →
Ω(Un) are in Un+1 by Lemma 2.3 i.e. Un ⊂ Un+1. We have the following picture:

1. By definition U−1 is empty. Therefore we have Ω−1 = Ω̃−1 = ∅.

2. We have U0 = {∅} = {∅, pt}. Therefore Ω0 = {0, 1} and Ω̃0 = pt which embeds to {0, 1} as 1.
The map Ω̃0 → Ω0 is the universal univalent map of level 0.

3. We have U1 = {pt, {0, 1}}. Form Proposition 2.13 it is easy to deduce that U1 is the set of
homotopy types X such that all πi of X are finite and there are only finitely many non-trivial
πi’s. Let us write:

Ω1 = Ω1,≤−1 ⊂ Ω1,≤0 ⊂ Ω1,≤1 . . .

where Ω1,≤n is the subtype in Ω1 corresponding to the types of level n − 1 in U1. We have
Ω1,≤0 = Ω0,≤0 = {0, 1}. We further have

Ω1,≤1 =
∐
n≥0

BSn

in particular π0(Ω1,≤1) = N.

4. The universe U2 contains N. Therefore by Corollary 2.15 it consists of all types X such that
all πn(X) are in U2. Therefore it is completely determined by its part U2,≤1 of 1-types i.e.
sets. This universe contains a lot of sets. It contains N, R etc. Moreover Lemma 2.1 implies
that it contains sets such as

∐
n>0 P

n(N). May be this is the whole ZF-universe. In any event
it is large enough for all normal mathematics. The universe U2 can also be described as the
closure of the set of finite types with respect to Clsum, Clprod and Cleq or as the closure of
{pt} with respect to Clsum, Clprod, Cleq and finite homotopy colimits.

5. The higher universes U>2 all contain N and therefore are determined by their subsets of types
of level 1. They probably correspond to the universes of ZF with the iterated models of ZF
in itself.

Let Un,≤i be the set of types of level i − 1 in Un. We have inclusions Un,≤i ⊂ Un+1,≤i which are
bijections for i = 0 and n ≥ 0. For i > 0 it is clear that U0,≤i 6= U1,≤i 6= U2,≤i. It seems that one
can prove that the same holds for the higher n i.e. for i > 0 and n ≥ 0 the set Un+1,≤i is strictly
bigger than the universe Un,≤i and any attempt to stabilize this sequence leads to an inconsistency.

16

3 Classifying spaces of types with structures

Let U be a small (relative to U) universe of types. The equivalence classes of types in U are in
one to one correspondence with the connected components of the base Ω of the univalent map
ω corresponding to U i.e. Ω is the ”classifying space” for types in U . One can also see that Ω̃
corresponds in the same sense to pointed types in U .

Let us show on examples how one can get similar ”classifying spaces” for types with structures in
U . We can not do it in full generality since we do not have a good definition of a structure. The
formal language which we describe in the following sections will give us a more systematic approach
to this problem.

Let us consider sets with structures. For any kind K of structures on sets we have a groupoid
G(K) whose objects are sets with a structure of kind K and morphisms are structure preserving
isomorphisms. For example, if K = group then G(K) is the groupoid of groups in U and their
isomorphisms. This groupoid has a nerve N(G(K)) which we call the classifying space of sets with
a structure of kind K in U . It is naturally associated with U and K and its connected components
are in one to one correspondence with isomorphism classes of sets with a structure of kind K in U .
Let us show how to construct this space in terms of ω : Ω̃→ Ω.

First of all observe that any K defines a functor FK from sets and isomorphisms to sets and
isomorphisms which takes a set to the set of structures of kind K on this set. For example Fgroup
sends a set X to the subset in the set of maps Hom(X × X,X) which satisfy the axioms of
multiplication in a group. Similarly, Ftop sends X top a subset in Hom(Hom(X, {0, 1}), {0, 1})
which consists of sets of subsets of X satisfying the axioms of a topology. A set with a structure of
kind K is a pair (X, s ∈ FK(X)) and isomorphisms of such pairs are defined in the obvious way.

Let us translate this description of G(K) now into our topological language. A functor from sets
and isomorphisms to itself is a map K : Ω≤1 → Ω≤1. Given such a map define Ω[K] as the fiber
product

Ω[K] = Ω≤1 ×K ˜Ω≤1.

One has the following obvious lemma.

Lemma 3.1 [str0] Let FK be a functor from sets and isomorphisms to itself. Then the space
Ω[K] defined above is equivalent to the nerve of the groupoid of pairs (X, s ∈ FK(X)) and their
isomorphisms.

This is basically the only observation which is needed to construct classifying spaces for types with a
structure from ω. The map K corresponding to a kind of structures can be obtained constructively
from the maps sum, prod, eq and un. We could do it by hand by it seems more efficient to discuss
this after we introduce the formal language to deal with this kind of issues.

One other example we can give here is the space of models of a first order theory T . Given such
a theory we may consider the groupoid G(T) of models of T in U -sets and their isomorphisms.
The nerve of this groupoid is again a space. If T is multi-sorted with sorts S1, . . . , Sn then one

17

can speak about models of T on a given collection of sets X1, . . . , Xn corresponding to these sorts.
Such models will form a set T (X1, . . . , Xn). The correspondence (X1, . . . , Xn) 7→ T (X1, . . . , Tn) is
functorial with respect to isomorphisms and therefore defines a map T : (Ω≤1)n → Ω≤1. The nerve
of the groupoid of models will again be equivalent to the fiber product

Ω[T] = (Ω≤1)n ×T Ω̃≤1

The map T corresponding to a theory T can be constructed explicitly from the ”generating” maps
sum, prod, eq and un.

It is clear what we get when we take T to be group or ring or something like that. If T is the
Peano arithmetic we get Ω[T] = pt or Ω[T] = ∅ depending on whether or not N ∈ U . If Ω[T] = pt
the the image of the projection Ω[T]→ Ω≤1 is the component corresponding to the type N. If T is
the Zermelo-Fraenkel theory ZF we get the following. Note first that if ZF is consistent it has a
countable model (just any any other first order theory). Note also that ZF is formulated in such a
way that its models have no automorphisms. Therefore the space Ω[ZF] will be a set. It definitely
has many points and its ”structure” is complicated. It is naturally a subset in the set of all trees
with no symmetries in U .

All the examples given above gave us at most 2-types in U as classifying spaces. To get a 3-type as
a classifying space consider the nerve of the 2-groupoid of categories in U and their equivalences.
This space Ω[Cat] projects to Ω≤2 by the map which sends a category to the underlying groupoid
with the same objects and isomorphisms as morphisms. The fiber of this map over a groupoid
G is the groupoid of (reduced) category structures on G. This groupoid is not in U i.e. the
projection Ω[Cat] → Ω is not classifiable by ω. For example, the reduced category structures on
a point are reduced monoids i.e. monoids without non-trivial invertible elements. The groupoid
of such monoids is too large. To classify the projection p : Ω[Cat] → Ω we need to extend the
universe setting U [1] = {Ω̃,Ω} and ω[1] = ω(U [1]). Now the projection p is classifiable by a map
Cat : Ω≤2 → Ω[1]

≤2 i.e.

Ω[Cat] = Ω≤2 ×Cat Ω[1]
≤2

The map Cat takes a groupoid G to the groupoid of (reduced) category structures on G and can
again be described explicitly in terms of the generating maps. We will consider this example in
more detail after we describe the language of homotopy λ-calculus.

3 Homotopy λ-calculus

1 Expressions with variables

To define the syntax of the homotopy λ-calculus and to prove a number of syntax related results we
will need some basic theory of abstract expressions. It is especially important in our case because
homotopy λ-calculus is an unfinished theory and there is a good chance that the syntax described
in this paper will change later. To be able to carry over the proofs of the syntactic lemmas in the
case of such changes or extensions we need to formulate them in a sufficiently general form. There
exists a basic theory of ”formal languages” going back to Chomsky but it is inconvenient for our

18

purposes since it does not take into the account the rules for dealing with variables and since it
makes everything too dependent on the details of the syntax.

We will use the following definitions. Let M be a set and let T (M) be the set of finite rooted trees
whose vertices are labeled by elements of M and such that for any vertex the set of edges leaving
this vertex is ordered. Note that such ordered trees have no symmetries and therefore T (M) is
indeed a set. We will use the following notations. For T ∈ T (M) let v(T) be the set of vertices
of T and for v ∈ v(T) let l(v) = l(v)T ∈ M be the label on v. We will sometimes write v ∈ T
instead of v ∈ v(T). For v ∈ v(T) let [v] = [v]T ∈ T (M) be the subtree in T which consists of v
and all the vertices under v. Let val(v) be the valency of v i.e. the number of edges leaving v and
ch1(v), . . . , chval(v)(v) be the ”children” of v i.e. the end points of these edges in the order defined
by T . Let further bri(v) = [chi(v)] be the branches of [v]. We write v ≤ w (resp. v < w) if v ∈ [w]
(resp. v ∈ [w]− w). We say that two vertices v and w are independent if v /∈ [w] and w /∈ [v].

Let Con be a finite set and var be a countably infinite one. The elements of Con are called
”constructors” of our language and elements of var are called (names of) variables. Consider the
set T (Con

∐
var

∐
Con × var). Its elements are (ordered, finite, rooted) trees whose vertices are

labeled by an element of Con or an element of var or a pair (s, x) where s ∈ Con and x ∈ var.
For T ∈ T (Con

∐
var

∐
Con × var) let bnd(T) ⊂ var be the set of ”bound variables” of T i.e.

elements of var which occur among the labels of T of the form (s, x) and var(T) ⊂ var be the set
of all variables of T i.e. elements of var which occur in the labels of T both by themselves and in
the pairs (s, x). Let further free(T) = var(T)− bnd(T) be the set of ”free” variables of T .

We define an (abstract) expression over Con with variables from var as an element

T ∈ T (Con
∐

var
∐

Con× var)

which satisfies the following conditions:

1. if l(v) ∈ var then var(v) = 0

2. if v 6= v′, l(v) = (s, x) and l(v′) = (s′, x′) then x 6= x′

3. if l(v) = (s, x) and l(v′) = x then v′ ∈ [v]

The first conditions says that a vertex labeled by a variable is a leaf. The second one says that
all the bound variables in T are different. The third one says that if a variable is bound then
all the leaves labeled by this variable lie under the vertex where it is boud. One can weaken the
second condition by allowing the same variable name to be bound by several vertices if they are
independent but this seems to make exposition more involved and does not matter at the end. We
let Exp(Con) = Exp(Con, var) denote the set of expressions in Con with variables from var. Note
that for any expression T and v ∈ v(T) the subtree [v] is again an expression. We will sometimes
use the same notation for a label and the expression which consists of one vertex labeled by this
label.

Example 1.1 [propositional]Formulas of the propositional calculus form a subset in Exp(C0)
where C0 = {∨,∧, q,⇒}. This subset is completely characterized by the following ”local” condi-
tions:

19

1. l(v) ∈ C0
∐
var

2. if l(v) ∈ {∨,∧,⇒} then val(v) = 2

3. if l(v) =q then val(v) = 1.

All the labels are in Con and so there are no bound variables.

Example 1.2 [predicate] Formulas of the predicate calculus form a subset in Exp(C1
∐
GP)

where C1 = C0
∐
{∀,∃} and GP is the set of names of generating predicates. This subset is

completely characterized by the conditions:

1. l(v) ∈ C0
∐
C1 × var

∐
GP

∐
var

2. if l(v) ∈ {∨,∧,⇒} then val(v) = 2

3. if l(v) =q then val(v) = 1

4. if l(v) = (∀, x) or l(v) = (∃, x) then val(v) = 1

5. if l(v) ∈ GP then val(v) is the number of arguments of the corresponding predicate.

Example 1.3 [lambda] The terms of the untyped λ-calculus can be identified with a subset in
Exp({λ, ev}) which consists of expressions satisfying the conditions:

1. l(v) ∈ {λ} × var
∐
{ev}

∐
var

2. if l(v) = (λ, x) then val(v) = 1

3. if l(v) = ev then val(v) = 2.

Example 1.4 [multisorted] Consider again the predicate logic but suppose now that we have sev-
eral sorts GS = {S1, . . . , Sn}. Then we can identify formulas with a subset in Exp(C1

∐
GP

∐
GS)

with labels as in Example 1.2 plus labels from GS but with the vertices labeled by (∀, x) and (∃, x)
having valency two. For such a vertex v the first branch of [v] is one vertex labeled by an element
of GS giving the sort over which the quantification occurs and the second branch is the expression
which is quantified. Now however the local conditions on the vertices does characterize the well-
formed formulas completely and one needs to add ”global” conditions which express the consistency
of the declared sorts of bound variables with the sorts of the predicates where they occur as well
as the condition that the names of sorts only occur where they should.

For T, T ′ ∈ Exp(Con) we say that T is α-equivalent to T ′ and write T ∼= T ′ if T and T ′ differ only
by the names of bound variables i.e. if T = T ′ as ordered trees, free(T) = free(T ′) and there is a
bijection φ : bnd(T)→ bnd(T ′) such that for any v ∈ T one has:

20

1. if lT (v) ∈ Con then lT ′(v) = lT (v),

2. if lT (v) ∈ free(T) then lT ′(v) = lT (v),

3. if lT (v) ∈ bnd(T) then lT ′(v) = φ(lT (v)),

4. if lT (v) = (s, x) then lT ′(v) = (s, φ(x)).

For most part we want to consider expressions up to the α-equivalence. Unfortunately we can not
pass to the equivalence classes completely because for two α-equivalent expressions T1, T2 and a
vertex v ∈ v(T1) = v(T2) the expressions [v]T1 and [v]T2 need not be α-equivalent since some of the
variables which are bound in T1 may be free in [v].

The following operations on expressions are well defined up to the α-equivalence:

1. If m ∈ Con q Con × var is a possible label and T1, . . . , Tn ∈ Exp(Con) we will write
m(T1, . . . , Tn) for the expression whose root v is labeled by m, val(v) = n and bri(v) = T ′i
where T ′i is obtained from Ti by the change of bound variables such that the bound variables
of T ′i do not conflict with each other and with the possible variable name in m.

2. For T1, T2 ∈ Exp(Con) and v ∈ T1 we let T1(T2/[v]) be the expression obtained by replacing
[v] in T1 with T ′2 where T ′2 is obtained from T2 by the change of bound variables such that
the bound variables of T ′2 do not conflict with the variables of T1.

3. For T1, T2 ∈ Exp(Con) and y ∈ free(T) we let T1(T2/y) denote the expression obtained by
replacing all the leaves of T1 marked by y by copies of T2 where the names of bound variables
have been changed to ensure that they do not conflict with each other and with the names
of the remaining variables of T1.

In all the examples considered above these operations correspond to the usual operations on formu-
las. The first operation can be used to directly associate expressions in our sense with the formulas.
For example, the expression associated with the formula ∀x : S.P (x, y) in a multi-sorted predicate
calculus is (∀, x)(S, P (x, y)) where as was mentioned above we use the same notation for an element
of Con

∐
var and the one vertex tree with the corresponding label.

2 An overview of homotopy λ-calculi

The homotopy λ-calculus belongs to the class of syntactic constructs known as type systems. Since
there is no general definition of a type system this characterization is not very useful from the
practical point. We will give a definition of homotopy λ-calculus in the framework of abstract
expressions with variables introduced in the previous section. We will proceed in several steps
defining a series of type systems Hλ∗ with ∗ = 00, 01, 02, 1, 2 such that in the appropriate sense
one has

Hλ00 ⊂ Hλ01 ⊂ Hλ02 ⊂ Hλ1 ⊂ Hλ2

Informally speaking, Hλ0 = Hλ02 is the basic stage which is strictly constructive, Hλ1 is obtained
from Hλ0 by the addition of the empty type and the ”Boolean rule” and Hλ2 is obtained from Hλ1

21

by the addition of universe constructors. It is quite possible that further development will show a
need to extend Hλ2 further. One could of course hide the incremental nature of our construction
and speak only about Hλ = Hλ2 but for a number of reasons it seems unwise to do so. There is
also an additional parameter namely a finite set

GT = T1, . . . , Tn

whose elements are called generating types. We will for most part consider this set fixed. In the
application of Hλ to the formalization of mathematics the key role is played by the theory with
GT = ∅. In what follows we use lower case letters for elements of var, upper case letters for
elements of GT and boldface for abstract expressions.

Each of the systems Hλ∗ has the following components:

1. A set of constructors Con = Con(Hλ∗). We will write below Exp for Exp(Con
∐
GT, var).

2. Subsets:
S0 ⊂

∐
m≥0

(var × Exp)m

S1 ⊂ (
∐
m≥0

(var × Exp)m)× Exp

S0 ⊂ (
∐
m≥0

(var × Exp)m)× Exp× Exp

Elements of these subsets are called sequents. They represent ”complete sentences” of the
type system. Elements of S0 are written as

c1 : R1, . . . , cm : Rm `

elements of S1 are written as

c1 : R1, . . . , cm : Rm ` S : Type

and elements of S2 as
c1 : R1, . . . , cm : Rm ` s : S

We use capital Greek letters for elements of
∐
m≥0(var × Exp)m. For example a generic

element of S1 may be written as Γ ` S : Type. The part of a sequent to the left of ` is called
a context and the part to the right is called a judgement. In all systems one has the following
implications:

if Γ ` s : S is a sequent then Γ ` S : Type is a sequent

if Γ ` S : Type is a sequent then Γ ` is a sequent

In addition c1 : R1, . . . , cm : Rm ` is a sequent iff c1 : R, . . . , , cm−1 : Rm−1 ` Rm : Type is
and cm ∈ var − {c1, . . . , cm−1} − var(R1)− . . .− var(Rm).

22

Sequents of the homotopy λ-calculus are obtained from the empty sequent `∈ S0 by the constructor
rules. To describe the rules we will use the standard notation where one writes

s1 s2 . . . sn
s′

to say that if s1, . . . , sn are sequents then s′ is a sequent. The rules which generate sequents of the
form Γ ` are called context constructors, the rules which generate sequents of the form Γ ` S : Type
are called type constructors and the rules which generate sequents of the form Γ ` s : S are called
term constructors. For example Hλ00 has a constructor

∑
in its vocabulary and the associated

constructor rule:
Γ ` R : Type Γ, y : R ` Q : Type

Γ ` (
∑
, y)(R,Q) : Type

What it means is that for any

Γ ∈
∐
m≥0

(var × Exp)m R,Q ∈ Exp

and any y ∈ var such that Γ ` R : Type and Γ, y : R ` Q : Type are in S1 we have

Γ ` (
∑

, y)(R,Q) : Type ∈ S1.

Our semantics of Hλ is based on the idea that its sequents describe constructions in the homotopy
category. We take topological spaces in a given universe U as our standard model category. It
is actually easier to provide a rigorous description of the correspondence between sequents and
constructions for the category of Kan simplicial sets but we decided to consider topological spaces
because they are more familiar.

Let GT → Top be any map from the set GT to the class of topological spaces i.e. a collection
X1, . . . , Xn of spaces corresponding to the generating types T1, . . . , Tn. Then we associate

to any sequent Γ ` in S0 a space E(Γ) = E(Γ)X1,...,Xn ,

to any sequent Γ ` S : Type in S1 a fibration pS : E(Γ,S)→ E(Γ),

to any sequent Γ ` s : S in S2 a section s(s) : E(Γ)→ E(Γ,S) of pS.

In particular, any sequent of the form ` S : Type defines a space E(S) and any sequent of the form
` s : S defines a point s(s) of E(S).

The key feature of the homotopy λ-calculus is that all the constructions it describes are ho-
motopy invariant. Given a context Γ and a collection of spaces X1, . . . , Xn we get a space
E(Γ) = E(Γ)X1,...,Xn). If we replace X1, . . . , Xn by homotopy equivalent spaces X ′1, . . . , X

′
n the

space E(Γ) gets replaced by a homotopy equivalent one and the same applies to the objects de-
scribed by sequents of the form Γ ` S : Type and Γ ` s : S. Hence, while we speak of semantics in
Top the real target category is the homotopy category H. It is important to note that constructions
are not functorial with respect to maps Xi → X ′i (or even with respect to homotopy equivalences).
For example, it is not difficult to define in the context Γ = T : Type a type expression End such that

23

E(Γ,End)X will be homotopy equivalent to the space End(X) of endomorphisms of X. Clearly,
End(X) is not functorial with respect to X. However, if f : X → X ′ is a homotopy equivalence
then there exists a homotopy equivalence End(X)→ End(X ′).

It will be clear from our description that sequents of Hλ0 can be used to describe homotopy-
inavriant constructions not only in Top but also in a wide class of cartesian closed Quillen model
categories. The next stage Hλ1 is stronger and the constructions described by its sequents can
only be defined in rather special model categories and further restrictions apply to Hλ2. I do not
know at the moment how the theory of general categorical models of Hλi’s will look like.

When one uses Hλ to formalize mathematics one considers the case GT = ∅. Sequents of the form
Γ ` s : S are used both to encode particular representatives of types and theorems. For a given
mathematical statement F (e.g. Poincare conjecture) one can write a type expression F in the
empty context (i.e. a sequent of the form ` F : Type) such that the statement is true in U if and
only if the space E(F) is non-empty. Therefore, any sequent of the form ` p : F would give a proof
of T . Conversely, it is expected that any mathematical proof of F can be translated into a sequent
of the form ` p : F. As far as I understand, the full homotopy λ-calculus is incomplete in the
same way as any sufficiently complex theory i.e. there exist sequents ` F : Type such that E(F) is
non-empty but there is no sequent of the form ` p : F.

This approach to the semantics is easy to relate to the usual semantics of the first order logic.
There, one starts with a theory with some sorts S1, . . . , Sn, some predicate and functional symbols
and some axioms. Given a theory T a model of T is given by a collection of sets X1, . . . , Xn and
some subsets of (products of) these sets and maps between (products of) these sets which together
satisfy the conditions corresponding to the axioms. All models of T with the given X1, . . . , Xn

form a set E(T) = E(T)X1,...,Xn . A closed formula F in T defines a subset E(T, F) ⊂ E(T) of
E(T) which consists of models where F holds. If F is a theorem i.e. it has a proof then then
E(T, F) → E(T) is a bijection i.e. it has a section. If we consider contexts to be type-theoretic
analogs of theories this description of the semantics for first-order theories agrees with our semantics
for Hλ. We will see in Section ?? that this analogy can be made precise in Hλ1 where there is a
formal way to assign to any first order theory T a context Γ such that for any collection of sets
X1, . . . , Xn the set of models of T ”over” X1, . . . , Xn is equivalent to the space E(Γ) corresponding
to X1, . . . , Xn.

Another feature common to all the Hλ’s is an equivalence relation on sequents which is called
convertibility. It is my understanding that the homotopy λ-calculus has the ”strong normalization”
theorem which asserts that any type or term expression has a unique ”normal form” and that two
expressions are convertible to each other iff their normal forms coincide. In addition any expression
can be reduced to its normal form mechanically in a finitely many steps i.e. convertibility is
decidable.

In general one may call a type system decidable if the subsets Si of sequents are decidable in the
set corresponding sets of (sequences of) expressions. It is expected that Hλ is such a system. Since
proving theorems in a type system amounts to finding a completion of an incomplete sequent and
not to the verification of validity for a complete one the decidability of a type system is not directly
related to its expressive power. It is however a convenient property from the point of view of
computer implementation since it means that one can have a simple program which certifies that a

24

sentence submitted to it is a valid sequent. Once such a program (or programs) exists one can write
many different proof assistants which help to compose would-be proofs and these proof assistants
need not be rigorously checked for correctness.

3 The syntax of Hλ0

The vocabulary of Hλ0 consists of constructor names
∑
,
∏
, eq, pair, π, π′, λ, ev, id, ev′ and fex plus

the names of generating types GT and the names of variables var. The sets of sequents S0, S1, S2

are defined as the smallest subsets in the corresponding ambient sets which are closed under the
constructor rules listed below. As was mentioned above all the rules are divided into context
constructor rules which produce elements of S0, type constructor rules which produce elements of
S1 and term constructor rules which produce elements of S2.

Out of several equivalent forms of the rules we have chosen the ones which are more convenient
for the proof of the ”syntactic lemmas” below. These rules are not the shortest possible ones since
some of the sequents appearing in the ”nominator” parts of the rules are superfluous i.e. they
can be recovered from the remaining sequents. However, the ”cleaner” rules would require more
complicated inductions in the syntactic lemmas which does not seem to be worth it.

There are the following context constructor rules in Hλ:

• There is the ”empty” sequent ` i.e. we have the rule:

[tr0]
`

(1)

• One has
[tr3]

Γ ` R : Type
Γ, c : R `

(2)

if c ∈ var − var(Γ)− var(R).

There are the following four type constructor rules in Hλ0:

• One has
[tr2]

Γ `
Γ ` T : Type

(3)

if T ∈ GT .

•
[sumconstr]

Γ ` R : Type Γ, y : R ` Q : Type
Γ ` (

∑
, y)(R,Q) : Type

(4)

•
[prodconstr]

Γ ` R : Type Γ, y : R ` Q : Type
Γ ` (

∏
, y)(R,Q) : Type

(5)

25

•
[eqconstr]

Γ ` R : Type Γ ` r : R Γ ` r′ : R
Γ ` eq(R, r, r′) : Type

(6)

In the type theory one usually writes
∑
y : R.Q and

∏
y : R.Q instead of (

∑
, y)(R,Q) and

(
∏
, y)(R,Q). We will follow this type-theoretic notation below. One also writes R → Q instead

of
∏
y : R.Q and R ×Q instead of

∑
y : R.Q when Γ ` Q : Type i.e. when Q does not depend

on y. Note that when a sequent of the form Γ ` f : R → Q appears in the nominator of a rule it
should be treated as the pair of sequents Γ ` Q : Type and Γ ` f :

∏
y : R.Q.

Note that eq(−,−,−) is the only type constructor which allows one to produce types dependent
on terms. If any type expression Q depends on a term variable v it means that somewhere in this
expression there appears eq(S; s1(v), s2(v)) where S is a type expression which does not dependent
on v.

In the description of term constructors it will be convenient for us to further subdivide Hλ0 into
three stages Hλ00, Hλ01 and Hλ02. To simplify the notation we will write eq(r, r′) instead of
eq(R, r, r′) when the ambient type R is clear. We will also use the syntax of term constructors
which is standard in the type theory writing for example λy : R.q instead of (λ, y)(R,q).

There are the following term constructor rules in Hλ00:

• One has
[tr4]

c1 : R1, . . . , cm : Rm `
c1 : R1, . . . , cm : Rm ` cj : Rj

(7)

if j = 1, . . . ,m.

• One has the following ”introduction” and ”elimination” rules for the sum

[sumintro]
Γ, y : R ` Q : Type Γ ` r : R Γ ` q : Q(r/y)

Γ ` (pair, y)(Q, r,q) : (
∑
, y)(R,Q)

(8)

[sumelim]
Γ ` u :

∑
y : R.Q

Γ ` π(u) : R
Γ ` u :

∑
y : R.Q

Γ ` (π′, y)(Q,u) : Q[π(u)/y]
(9)

Unlike all other term constructors formation of a pair requires an explicit specification of
the target type. We will abbreviate pair(Q, y; r,q) to 〈r,q〉 when Q and y are clear. Note
that it is not always so because the type of q is not Q but Q(r/y) and it is unclear how to
recover the former from the later in particular because r might be already present in Q. We
also need to carry y and Q explicitly in the π′ constructor for syntactic reasons related to the
reduction lemmas proved below.

• One has the following ”introduction” and ”elimination” rules for the product

[prodintro]
Γ, y : R ` q : Q

Γ ` (λ, y)(R,q) : (
∏
, y)(R,Q)

(10)

[prodelim]
Γ ` f : (

∏
, y)(R,Q) Γ ` r : R

Γ ` ev(f , r) : Q[r/y]
(11)

26

• One has the following two elementary rules for the equivalence types:

[idrule]
Γ ` r : R

Γ ` id(r) : eq(r, r)
(12)

[smart0]
Γ ` f : R→ Q Γ ` u : eq(R; r, r′)

Γ ` ev′(R, f ,u) : eq(Q; ev(f , r), ev(f , r′))
(13)

The next term constructor rule is know as a conversion rule in some type theories. It is a simple
rule with a complicated domain of definition which we need to describe first. In order to do it
we will define a partial order on Exp which is called the reducibility relation and which plays an
important role in the theory. Since we want our description to remain valid as we extend the set
of constructors of the theory we will do it in the following general situation.

Let Con be a set of constructors which contains the constructors of Hλ00 i.e.∑
,
∏
, eq, pair, π, π′, λ, ev, id, ev′ ∈ Con.

Consider T ∈ Exp = Exp(Con, var) and v ∈ v(T). Consider further the following conditions on v:

1. r1(v) = true iff [v] is of the form ev((λ, y)(R,q), r),

2. r2(v) = true iff [v] is of the form (λ, y)(R, ev(f , y)),

3. r3(v) = true iff [v] is of the form π((pair, y)(Q, r,q)),

4. r4(v) = true iff [v] is of the form (π′, y)(Q, (pair, y)(Q, r,q)),

5. r5(v) = true iff [v] is of the form (pair, y)(Q, π(z), (π′, y)(Q, z)),

6. r6(v) = true iff [v] is of the form ev′(R, f , ev′(Q,g,u)),

7. r7(v) = true iff [v] is of the form ev′(R, f , id(r)),

8. r8(v) = true iff [v] is of the form ev′(R, (λ, y)(R, y),u).

One define these conditions in a more formal way avoiding ”is of the form”. For example, the first
condition means that l(v) = ev and l(ch1(v)) = (λ, y) which is how it should be formulated when
the system is programmed. We will use our ”semi-formal” approach since it is easier to digest.

Let T and v be as above and suppose that ri(v) holds. Then we define a new expression ri(T, v)
which is called the reduction of T in v by replacing the subexpression [v] with T′ where T′ is
is a certain rearrangement of [v]. We write below the form of [v] and the form of its reduction
T′ as [v] 7→ T′. Note that for i = 1 and i = 6 the expression ri(T, v) is defined only up to an
α-equivalence.

1. if r1(v) then ev((λ, y)(R,q), r) 7→ q(r/y),

2. if r2(v) then (λ, y)(R, ev(f , y)) 7→ f ,

27

3. if r3(v) then π((pair, y)(Q, r,q)) 7→ r,

4. if r4(v) then (π′, y)(Q, (pair, y)(Q, r,q)) 7→ q,

5. if r5(v) then (pair, y)(Q, π(z), (π′, y)(Q, z)) 7→ z,

6. if r6(v) then ev′(R, f , ev′(Q,g,u)) 7→ ev′(Q, (λ, z)(Q, ev(f , ev(g, z)),u),

7. if r7(v) then ev′(R, f , id(r)) 7→ id(ev(f , r)),

8. if r8(v) then ev′(R, (λ, y)(R, y),u) 7→ u.

Again, one can write these rules in a more formal way. For example one can define r1(T, v) as
T(T′/[v]) where T′ = br2ch1(v)(br2(v)/y).

Definition 3.1 [redrel] We say that T′ is a reduction of T and write T � T′ if there exists a
sequence of expressions T ∼= T0, . . . ,Tn

∼= T′, vertices vi ∈ Ti and numbers ni ∈ {1, . . . , 8} such
that Ti+1

∼= rni(Ti, vi).

Let us write T ∼ T′ if there exists T′′ such that T � T′′ and T′ � T′′. We can now formulate
the ”conversion rule”. It is a term constructor of the following form:

• One has

[conversion]
Γ ` r : R Γ ` R′ : Type

Γ ` r : R′
(14)

if R ∼ R′.

The part of Hλ which is described above is very similar to other dependent type theories. The
introduction and elimination rules for the dependent sum and the dependent product as well as the
related conversions are the standard ones with the elimination rule for the sums being the ”strong”
version (see e.g. [?,]). The first of the equivalence rules is the usual introduction rule which
provides the canonical identity term in the equivalences between a term and itself. The second
rule essentially says that equivalences can be pushed through functions i.e. given a function f , two
terms r and r′ in the source and an equivalence between these two terms one gets an equivalence
between the images of these terms. The notation ev′(f ,u) signifies that we ”evaluate” f not on
a term but on an equivalence between two terms. The three associated conversions ensure that
pushing an equivalence through a composition is the same as pushing it through the first function
and then through the second, that pushing an equivalence through the identity does nothing and
that pushing through the identity equivalence in the source one gets the identity in the target.

We will now introduce a number of additional rules related to equivalence types. These are purely
”introduction” rules i.e. they come without any additional conversions. The term constructor rules
in Hλ01 are the ones in Hλ00 plus the following ones:

[smart1a]
Γ ` u : eq(r, r′) Γ ` v : eq(r, r′′)

Γ ` σ(u,v) : eq((
∑
, y)(R, eq(r, y)), 〈r′,u〉, 〈r′′,v〉)

(15)

28

Set
s(u,v) = ev′(

∑
y : R.eq(r, y), λz :

∑
y : R.eq(r, y).π z, σ(u,v)).

It is a term of type eq(R, r′, r′′).

[smart1b]
Γ ` u : eq(r, r′)

Γ ` ι(u) : eq(s(id(r),u),u)
(16)

[smart1c]
Γ ` u : eq(r, r′)

Γ ` ε(u) : eq(s(s(u, id(r)), id(r′)),u)
(17)

The rule (15) asserts that for two equivalences u,v in R starting at the same term r we are given an
equivalence σ(u,v) between them in the space of equivalences starting in r. Pushing this equivalence
through the projection π :

∑
y : R.eq(r, y) → R we get s(u,v) which is a member of eq(r′, r′′)

corresponding on the intuitive level to the composition of the inverse to the first equivalence with
the second. In particular s(id,u) should be equivalent to u as the composition of u with the identity
and s(s(u, id), id) should be equivalent to u as the inverse to the inverse to u. This is the meaning
of the rules (16) and (17). The rule (15) implies in particular that the inhabitation of the types
eq(R;−,−) defines an equivalence relation on terms of R. We will see more sophisticated examples
of how these rules are used in the section about the levels structure. Semantically, these rules are
related to the extension of covering homotopy property for fibrations which plays an important role
in many basic constructions. I am not completely sure at the moment that the rules (15)-(17) are
sufficient to cover all the cases where some analog of the extension of covering homotopy property
is required but there is a chance that they are.

In some dependent type systems there is also the equality elimination rule. It ensures that if we
have a type expression Q depending on a variable y of type R and if we have an equivalence
φ : eq(R; y, y′) then there is a way to produce terms of type Q(y′/y) from terms of type Q (one
in fact considers the case when Q depends on two variables from R). As was mentioned above
the only way to create a type expression dependent on a term variable in Hλ is through the use
of the eq-constructor. Since equivalences can be ”pushed through” all term expressions with the
help of rule (13) this implies that we only need an analog of the equality elimination rule for
the expressions Q = eq(R;x, y). This is achieved by our rules (15)-(17) which therefore may be
considered as a replacement for the equality elimination rule in Hλ. From this point of view the
rule (16) corresponds to the β-conversion for the equality. We could have introduced a conversion
instead of the equivalence ι(−) but this approach allows more flexibility in the models.

To complete the description of Hλ0 we will add one more rule which in our system expresses
functional extensionality. In its original form it was meant to encode the fact if two functions give
the same result when applied to any input then they are equal. In our semantics it corresponds to
the fact that a homotopy between two maps is the same as a path from the point corresponding
to the first map to the point corresponding to the second in the space of maps. To avoid new
conversions we introduce functional extensionality through the condition that a certain map is an
equivalence. Let us first introduce some abbreviations which will play an important role throughout
the theory.

29

For a type expression R set:

Contr(R) =
∑

y0 : R.
∏

y : R.eq(y0, y)

For a function f : R→ Q and a term q : Q set:

f−1(q) =
∑

y : R.eq(Q; ev(f , y),q)

and
Eq(f) =

∏
z : Q.Contr(f−1(z)).

For f , f ′ :
∏
y : R.Q define a function

χ(f , f ′) : eq(f , f ′)→
∏

y : R.eq(Q; ev(f , y), ev(f ′, y))

by the formula:

χ(f , f ′) = λu : eq(f , f ′).λy′ : R.ev′(
∏

y : R.Q, λg :
∏

y : R.Q.ev(g, y′), u).

The last rule of Hλ0 which completes Hλ01 to Hλ02 looks as follows:

•
[fex]

Γ ` f :
∏
y : R.Q Γ ` f ′ :

∏
y : R.Q

Γ ` fex(f , f ′) : Eq(χ(f , f ′))
. (18)

We will see in the next section that for any map f the type Eq(f) is a ”property” i.e. if it is
inhabited then all its inhabitants are canonically equivalent to each other. Taking this into account
one can say that our last constructor is actually an axiom and not a structure.

4 Parsing lemmas

In the previous section we defined the sets of sequents of Hλ0 as the subsets of the corresponding
ambient sets of ”sentences” generated by some operations. In this section we prove a number
of technical lemmas which characterize these sets in a way which can be used by a computer to
recognize when a given sentence is a sequent. This lemmas will also be used to prove the Semantics
Theorem ??. We do not get complete algorithms for recognizing sequents in this section. What
remains is how to recognize when two expressions are convertible to each other i.e. when T ∼ T′.
This part is unnecessary for the semantic theorem and will be considered in Section ??.

The proofs of the more basic syntactic lemmas is based on the concept of a numbered sequent.
Define the set of numbered sequents as a subset in the set of pairs (s, n) where s is a sentence in
the vocabulary of Hλ0 and n ∈ N which is generated by the following rules:

1. (`, 0) is a numbered sequent,

30

2. for any of the generating rules of Hλ0 of the form

s1 . . . sk
s

there is a rule for numbered sequents of the form

(s1, n1) . . . (sn, nk)
(s,max(n1, . . . , nk) + 1)

.

Clearly, for any sequent s there exist numbers n such that (s, n) is a numbered sequent. Morally,
(s, n) is a numbered sequent iff s can be obtained from the empty sequent by a tree of rule applica-
tions whose longest branch is of length n. Since numbered sequents come equipped with a natural
counter it is easy to do inductive proofs with them. We start with the following two lemmas. We
let G in these lemmas denote any of the possible endings of a sequent. They are proved using
numbered sequents and the obvious induction. Since the proofs are very boring they are omitted.
We also systematically ignore the fact that in some lemmas some expressions have to be replaced
by α-equivalent ones.

Lemma 4.1 [substitution] Let Γ ` t : T and Γ, z : T,∆ ` G be sequents. Then Γ,∆(t/z) `
G(t/z) is a sequent.

Lemma 4.2 [extcont] If Γ ` G is a sequent and Γ,∆ ` is a sequent then Γ,∆ ` G is a sequent.

Let Exp be as in the discussion preceding the rule (14). For each sequent Γ ` let Rexp(Γ) be
the subset in Exp which consists of expressions S such that Γ ` S : Type (is a sequent) and for
S ∈ Rexp(Γ) let lexp(Γ; S) be the subset in Exp which consists of all expressions s such that

Γ ` s : S. We let
Γ
≈ (resp.

Γ
≈S) denote the equivalence relation on Rexp(Γ) (resp. lexp(Γ; S))

generated by the relation ∼. Note that in view of the rule (14) we have

lexp(Γ; S) = lexp(Γ; S′)

if S
Γ
≈ S′. We will see below that

Γ
≈ and

Γ
≈S coincide with ∼ but for now we do not know this since

we do not know that ∼ is transitive.

Lemma 4.3 [eqrep] Let Γ, y : R ` G and Γ ` R′ : Type be sequents such that R
Γ
≈ R′. Then

Γ, y : R′ ` G is a sequent.

Proof: Follows by induction on numbered sequents using the rule (14).

Lemma 4.4 [eqrep2] Let Γ, y : R ` Q : Type, Γ, y : R ` Q′ : Type and Γ ` r : R be sequents. If

Q
∆
≈ Q′ where ∆ = Γ, y : R then Q(r/y)

Γ
≈ Q′(r/y).

31

Proof: If Q ∼ Q′ the statement follows from Lemma ??. The general case Q ∼ Q1 ∼ . . . ∼ Qn ∼
Q′ follows by obvious induction.

This lemma has an important for us particular case which we formulate separately.

Lemma 4.5 [eqrep3] If Γ ` Q : Type, Γ ` Q′ : Type and Γ ` r : R then Q
∆
≈ Q′ (where

∆ = Γ, y : R)implies Q
Γ
≈ Q′.

Let us for convenience list the rules producing sequents of different kinds. We have:

Γ ` - (1), (2)

Γ ` S : Type - (3), (4), (5), (6)

Γ ` s : S - (7), (8), (9), (10), (11), (12), (13), (15), (16), (17), (18) and (14).

Lemma 4.6 [triv] If Γ ` is a sequent and Γ is non-empty then Γ is of the form Γ′, c : R such that
Γ′ ` R : Type is a sequent and c ∈ var − var(Γ′)− var(R).

Proof: Any non-empty sequent of the form Γ ` is generated by the rule (7). This implies the
lemma.

Lemma 4.7 [simple11] If Γ ` S : Type is a sequent then Γ ` is a sequent.

Proof: By induction using numbered sequents and the explicit form of the type constructor rules.

Lemma 4.8 [contextdeconstr] A sequence

[context2]c1 : R1, . . . , cm : Rm ` (19)

is a sequent iff the following conditions hold:

1. c1, . . . , cm ∈ var − ∪mj=1var(Rj) and ci 6= cj for i 6= j,

2. for any j = 0, . . . ,m− 1 the sentence

c1 : R1, . . . , cj : Rj ` Rj : Type

is a sequent.

32

Proof: The ”if” part follows immediately from the rule (2). Then ”only if” part follows by induction
on m from Lemmas 4.6 and 4.7.

Lemma 4.9 [deconstr] If Γ ` s : S is a sequent then Γ ` S : Type is a sequent.

Proof: By induction using numbered sequents. The inductive step is straightforward for sequents
generated by all the rules except (7), (9b) and (11). For the first of these rules one has to use
Lemmas 4.8 and Lemma 4.2 for the other two Lemma 4.1.

For an expression T let Nd(T) be the number of occurrences among labels of T of the names of
type constructors i.e. elements of the set {

∑
,
∏
, eq}.

Lemma 4.10 [typeind1] A sentence Γ ` S : Type is a sequent iff one of the following mutually
exclusive conditions holds:

1. S = T for some T ∈ GT and one has

(a) Γ ` is a sequent,

(b) Nd(S) = 0

2. S = (
∑
, y)(R,Q) and one has

(a) Γ ` R : Type and Γ, y : R ` Q : Type are sequents,

(b) Nd(S) = 1 +Nd(R) +Nd(Q).

3. S = (
∏
, y)(R,Q) and one has

(a) Γ ` R : Type and Γ, y : R ` Q : Type are sequents,

(b) Nd(S) = 1 +Nd(R) +Nd(Q).

4. S = eq(R, r, r′) and one has:

(a) Γ ` R : Type, Γ ` r : R and Γ ` r′ : R are sequents

(b) Nd(S) = 1 +Nd(R) +Nd(r) +Nd(r′)

Proof: The fact that the conditions are mutually exclusive is obvious. Sequents of the form
Γ ` S : Type are generated by the rules (3), (4), (5) and (6). They exactly correspond to the four
different cases of the lemma.

Lemma 4.11 [typeconstreq] Let Γ ` and S,S ∈ Rexp(Γ) be two expressions. Then S
Γ
≈ S′ iff

one of the following mutually exclusive conditions holds:

1. S = S′ = T for some T ∈ GT ,

33

2. S = (
∑
, y)(R,Q), S′ = (

∑
, y)(R′,Q′) and one has R

Γ
≈ R′ and Q

∆
≈ Q′ where ∆ = Γ, y : R,

3. S = (
∏
, y)(R,Q), S′ = (

∏
, y)(R′,Q′) and one has R

Γ
≈ R′ and Q

∆
≈ Q′ where ∆ = Γ, y : R,

4. S = eq(R, r, r′), S′ = eq(R′, r′′, r′′′) and one has R
Γ
≈ R′, r

Γ
≈R r′′ and r′

Γ
≈R r′′′.

Proof: Let us prove the ”only if” part first. It is clear from the definition of the relation ∼ that if
T ∼ T′ where T is an expression such that the root label of T contains one of the type constructors∑
,
∏
, eq then the root label of T′ coincides with the root label of T and the branches of T and T′ are

in the relation ∼ with each other. Together with Lemma 4.10 this implies immediately that if S ∼ S′

then one of the four conditions of the lemma holds. Suppose now that S ∼ S1 ∼ . . . ∼ Sn ∼ S′ for
some Si ∈ Rexp(Γ). By obvious induction it is sufficient to consider the case n = 1. If the first
condition holds for both pairs S,S1 and S1,S′ there is nothing to do. Suppose that the second one
does. Then S = (

∑
, y)(R1,Q1) where R ∼ R1 ∼ R′ and Q ∼ Q1 ∼ Q′. On the other hand by

Lemma 4.10 and Lemma 4.3 we know that R1 ∈ Rexp(Γ) and Q1 ∈ Rexp(∆) therefore R
Γ
≈ R′

and Q
∆
≈ Q′. The case when the third condition holds is strictly analogous. Suppose that the

fourth condition holds. Then S1 = eq(R1, r1, r′1) and the same reasoning works.

Consider now the ”if” part. In the first case the statement is obvious. Suppose that the second
possibility occurs. Obvious induction shows again that it is enough to consider the case when
R ∼ R1 ∼ R′ and Q ∼ Q1 ∼ Q′ with R1 ∈ Rexp(Γ) and Q1 ∈ Rexp(∆). Then by the sum
constructor rule we have

S1 = (
∑

, y)(R1,Q1) ∈ Rexp(Γ)

and since S ∼ S1 ∼ S′ we conclude that S
Γ
≈ S′. The case of the product is strictly analogous.

Consider the eq case. We have R ∼ R1 ∼ R′, r ∼ r1 ∼ r′′ and r′ ∼ r′1 ∼ r′′′ where R1 ∈ Rexp(Γ)
and r1, r′1 ∈ lexp(Γ; R). Then

S1 = eq(R1, r1, r′1) ∈ Rexp(Γ)

by the eq-constructor rule and (14) and since S ∼ S1 ∼ S′ we conclude that S
Γ
≈ S′.

Lemma 4.12 [tr110] Let Γ ` s : S be a sequent. Then there exist a sequent of the form Γ ` s : S′

such that one has:

1. S
Γ
≈ S′

2. the sequent Γ ` s : S′ is the output of one of the rules (7), (8), (9), (10), (11), (12), (13),
(15), (16), (17) and (18).

Proof: Any sequent of the form Γ ` s : S is the output of one of the rules in our list or (14). By
the obvious induction it follows that any such sequent is obtained by one of the rules (7), (8), (9),
(10), (11), (12), (13), (15), (16), (17), (18) followed by sequence of rules (14). Together with the

definition of
Γ
≈ this implies the lemma.

34

For an expression (a sentence) T let nd(T) be the number of occurrences in T of term constructor
symbols i.e. elements of the set

{ev, λ, π, π′, pair, id, ev′, σ, ι, ε, fex}.

Lemma 4.13 [termind1] A sentence Γ ` s : S where Γ = c1 : R1, . . . , cm : Rm is a sequent iff
Γ ` S : Type and one of the following mutually exclusive conditions holds:

1. s = cj for some j = 1, . . . ,m and one has:

(a) S
Γ
≈ Rj,

(b) nd(s) = 0

2. s = (pair, y)(Q, r,q) and one has:

(a) there are sequents of the form Γ, y : R ` Q : Type, Γ ` r : R and Γ ` q : Q(r/y),

(b) S
Γ
≈ (

∑
, y)(R,Q),

(c) nd(s) = 1 + nd(r) + nd(q) + nd(Q).

3. s = πz and one has:

(a) there is a sequent of the form Γ ` z : (
∑
, y)(R,Q),

(b) S
Γ
≈ R,

(c) nd(s) = 1 + nd(z).

4. s = (π′, y)(Q, z) and one has:

(a) there is a sequent of the form Γ ` z : (
∑
, y)(R,Q),

(b) S
Γ
≈ Q(π(z)/y),

(c) nd(s) = 1 + nd(z) + nd(Q).

5. s = (λ, y)(R,q) and one has:

(a) there are sequents of the form Γ ` (
∏
, y)(R,Q) and Γ, y : R ` q : Q,

(b) S
Γ
≈ (

∏
, y)(R,Q),

(c) nd(s) = 1 + nd(q) + nd(R).

6. s = ev(f , r) and one has:

(a) there are sequents of the form Γ ` f : (
∏
, y)(R,Q) and Γ ` r : R,

(b) S
Γ
≈ Q(r/y),

(c) nd(s) = 1 + nd(f) + nd(r).

7. s = id(r) and one has:

(a) there is a sequent of the form Γ ` r : R,

35

(b) S
Γ
≈ eq(R, r, r),

(c) nd(s) = 1 + nd(r).

8. s = ev′(R, f ,u) and one has:

(a) there are sequents of the form Γ ` f : R→ Q, Γ ` u : eq(R, r, r′),

(b) S
Γ
≈ eq(Q, ev(f , r), ev(f , r′)),

(c) nd(s) = 1 + nd(R) + nd(f) + nd(u).

9. s = σ(u,v) and one has:

(a) there are sequents of the form Γ ` u : eq(R, r, r′), Γ ` v : eq(R, r, r′′),

(b) S
Γ
≈ eq((

∑
, y)(R, eq(r, y)), 〈r′,u〉, 〈r′′,v〉)

(c) nd(s) = 1 + nd(u) + nd(v).

10. s = ι(u) and one has:

(a) there is a sequent of the form Γ ` u : eq(R, r, r′),

(b) S
Γ
≈ eq(s(id(r),u),u),

(c) nd(s) = 1 + nd(u).

11. s = ε(u) and one has:

(a) there is a sequent of the form Γ ` u : eq(R, r, r′),

(b) S
Γ
≈ eq(s(s(u, id(r)), id(r′)),u),

(c) nd(s) = 1 + nd(u).

12. s = fex(f , f ′) and one has:

(a) there are sequents of the form Γ ` f : (
∏
, y)(R,Q), Γ ` f ′ : (

∏
, y)(R,Q),

(b) S
Γ
≈ Eq(χ(f , f ′)) where the right hand side is the type expression introduced before the

rule (18),

(c) nd(s) = 1 + nd(f) + nd(f ′).

Proof: Follows immediately from Lemma 4.12 and the explicit form of the term constructor rules.

Let lexp(Γ) be the set of all valid term expressions in Γ i.e.

lexp(Γ) =
⋃

S∈Rexp(Γ)

lexp(Γ; S).

Lemma 4.14 [cantype] For any Γ ` there exists a unique mapping

Θ : lexp(Γ)→ Rexp(Γ)

such that for s ∈ lexp(Γ) one has:

36

1. If s = cj then
Θ(s) = Rj

2. If s = (pair, y)(Q, r,q) then

Θ(s) = (
∑

, y)(Θ(r),Q) = (
∑

, y)(Θ(br2s), br1s)

3. If s = πz then
Θ(s) = R = br1Θ(br1s)

4. If s = (π′, y)(Q, z) then

Θ(s) = Q(π(z)/y) = br1s(π(br1s)/y)

5. If s = (λ, y)(R,q) then

Θ(s) = (
∏
, y)(R,Θ(q)) = (

∏
, y)(br1s,Θ(br2s))

6. If s = ev(f , r) then
Θ(s) = br2Θ(f)(r/y) = br2Θ(br1s)(br2s/y)

7. If s = id(r) then
Θ(s) = eq(Θ(r), r, r) = eq(Θ(br1s), br1s, br1s)

8. If s = ev′(R, f ,u) then

Θ(s) = eq(Q, ev(f , r), ev(f , r′)) = eq(br2Θ(br2s), ev(br2s, br2Θ(br3s)), ev(br2s, br3Θ(br3s)))

9. If s = σ(u,v) then
Θ(s) = eq((

∑
, y)(R, eq(r, y)), 〈r′,u〉, 〈r′′,v〉)

In this and in the following three cases we will not write the expression for Θ(s) explicitly
in terms of branches since it is too long and can be easily deduced from our semi-formal
description. More detailed formulas are given in the proof of the lemma.

10. If s = ι(u) then
Θ(s) = eq(s(id(r),u),u)

11. If s = ε(u) then
Θ(s) = eq(s(s(id(r)), id(r′)),u)

12. If s = fex(f , f ′) then
Θ(s) = Eq(χ(f , f ′))

This mapping has the following two properties:

1. one has Γ ` s : Θ(s),

2. if Γ ` s : S then S
Γ
≈ Θ(s).

37

Proof: Let lexp(Γ)≤n be the subset of lexp(Γ) which consists of s such that nd(s) ≤ n. Let us
show by induction on n that for any n there exists a unique map

Θ : lexp(Γ)≤n → Rexp(Γ)

satisfying conditions (1)-(12) and (1)-(2). The uniqueness is obvious from Lemma 4.13. To start the
induction consider the case nd(s) = 0. Then by Lemma 4.13 we have s = cj and we set τ(s) = Rj .
Since Γ ` cj : Rj we know that τ(s) ∈ Rexp(Γ) by Lemma 4.9 and condition (1) holds. Condition

(2) saying that if Γ ` cj : S then S
Γ
≈ Rj holds by Lemma 4.13(1a).

To make the inductive step we should show that for s of each kind the expression τ(s) defined by
the corresponding clause of our lemma is in Rexp(Γ) and that the conditions (1) and (2) hold.

1. s = cj only occurs in the case nd = 0 which we have already dealt with.

2. s = (pair, y)(Q, r,q) - by Lemma 4.13(2) we have

Γ, y : R ` Q : Type Γ ` r : R Γ ` q : Q(r/y)

for some R. By the clause (2) of our lemma we set

τ(s) = (
∑

, y)(τ(r), Q)

to check that it is a well-formed type expression in Γ we need to know that Γ, y : τ(r) ` Q.

By the inductive assumption τ(r)
Γ
≈ R and our claim follows from Lemma 4.3. By Lemma

4.11 we have
τ(s)

Γ
≈ (

∑
, y)(R,Q)

and therefore S
Γ
≈ τ(s) which implies conditions (1) and (2).

3. s = πz - by Lemma 4.13(3) we have

Γ ` z : (
∑

, y)(R,Q)

for some R and Q. By the inductive assumption we have

τ(z)
Γ
≈ (

∑
, y)(R,Q)

and therefore by Lemma 4.11 we have

τ(z) = (
∑

, y)(R′,Q′)

where R
Γ
≈ R′. By the clause (3) of our lemma we set

τ(s) = R′.

Conditions (1) and (2) follow.

38

4. s = (π′, y)(Q, z) - by Lemma 4.13(4) we have

Γ ` z : (
∑

, y)(R,Q)

for some R. By the inductive assumption we have

τ(z)
Γ
≈ (

∑
, y)(R,Q)

By clause (4) of our lemma we set

τ(s) = Q(π(z)/y)

This expression is well-formed and has the property that τ(s)
Γ
≈ S by Lemma 4.13(4b).

5. s = (λ, y)(R,q) - by Lemma 4.13(5) we have

Γ ` (
∏
, y)(R,Q) : Type Γ, y : R ` q : Q

for some Q. By clause (5) of our lemma we set

τ(s) = (
∏
, y)(R, τ(q))

Using again the inductive assumption and Lemma 4.3 we conclude that τ(s) is well-formed

and τ(s)
Γ
≈ S which implies conditions (1) and (2).

6. s = ev(f , r) - by Lemma 4.13(6) we have

Γ ` f : (
∏
, y)(R,Q) Γ ` r : R

for some R and Q. By the inductive assumption and Lemma 4.3 we have

τ(f) = (
∏
, y)(R′,Q′)

where R′
Γ
≈ R and Q′

∆
≈ Q for ∆ = Γ, y : R. By clause (6) of our lemma we set

τ(s) = Q′(r/y)

By Lemma 4.4 we conclude that this expression is well-formed in Γ and τ(s)
Γ
≈ S.

7. s = id(r) - by Lemma 4.13(7) we have

Γ ` r : R

for some R. By clause (6) of our lemma we set

τ(s) = eq(τ(r), r, r)

By the inductive assumption we have τ(r)
Γ
≈ R and everything follows as above.

39

8. s = ev′(R, f ,u) - by Lemma 4.13(8) we have

Γ ` Q : Type Γ ` f : (
∏
, y)(R,Q) Γ ` u : eq(R, r, r′)

for some Q, r and r′. By the inductive assumption and Lemma 4.3 we have

τ(f) = (
∏
, y)(R′,Q′)

where R
Γ
≈ R′ and Q

∆
≈ Q′ where ∆ = Γ, y : R and

τ(u) = eq(R′′, r′′, r′′′)

where R
Γ
≈ R′′, r

Γ
≈R r′′ and r′

Γ
≈R r′′′. By clause (8) of our lemma we set

τ(s) = eq(Q′, ev(f , r′′), ev(f , r′′′))

The inductive assumption implies easily that this expression is well-formed and that S
∆
≈ τ(s)

where ∆ is as above. Using Lemma 4.5 we conclude that S
Γ
≈ τ(s).

9. s = σ(u,v) - by Lemma 4.13(9) we have

Γ ` u : eq(R, r, r′) Γ ` v : eq(R, r, r′′)

for some R, r and r′. By the inductive assumption and Lemma 4.11 we have

τ(u) = eq(R1, r1, r′1) τ(v) = eq(R2, r2, r′′2)

where R2
Γ
≈ R

Γ
≈ R1, r1

Γ
≈R r

Γ
≈R r2 and r′

Γ
≈R r′1, r′′2

Γ
≈R r′′. By clause (9) of our lemma we

set

τ(s) = eq((
∑

, y)(R1, eq(R1, r1, y)), (pair, y)(eq(R1, r1, y), r′1,u), (pair, y)(eq(R1, r1, y), r′′2,v))

(of course we might have chosen a slightly different expression for example taking R2 every-
where instead of R1).UsingagaintheinductiveassumptionandLemma4.11weconcludethatτ(s)

is well-formed in Γ and τ(s)
Γ
≈ S.

10. Similar to (9)

11. Similar to (9)

12. Similar to (9)

5 Theorems about reductions

Before we define the language of Hλ we need to define a ”pre-language”. The need for such a
two-step process is due to the fact that the units of Hλ are naturally not sentences in a certain
vocabulary but equivalence classes of such sentences. While it is possible to describe the whole
structure (i.e. the generating rules and the equivalence relation) in one step it is more convenient

40

to do it in two steps. The formalism described in this section is a generalization of the formalism of
expressions and conversions which appears in many situations in type theory. The classic example
of such a formalism is the untyped λ-calculus going back to the work of A. Church in the 1930-ies.
Describing syntactic constructions mathematically is never a pleasant affair. The constructions of
this section are not very neat but I do not know how to do it in a more elegant way. One way or
another one needs to prove things analogous to the Church-Rosser theorem and in order to proof
statements about something one first need to define this something formally.

Informally speaking we consider the following situation. There is some kind of a language with the
notion of free and bound variables and an unknown collection of special symbols. Unknown because
we will extend the language as we move on and we want the results of this section to remain valid.
This unknown collection includes the special symbols λ, ev, pair, π, π′, id, ev′ which will appear in
the next section as the basic term constructors of the homotopy λ-calculus. Now one considers a
number of rearrangements of the expressions in this language which are called reductions. They are

directional and we can write something like E
(v,6)−→ F to say that the expression E can be reduced

(rearranged) at place v according to the rule No.6 and the result of this reduction is F. One says
that E ∼= E′ if E and E′ can be reduced to a same expression F i.e. if one has E→ F← E′ where
the arrows denote an arbitrary sequence of reductions performed in the correct direction. The main
result we need is Theorem 5.2 saying that ∼= is an equivalence relation i.e. that it is transitive.
There is as far as I know absolutely no reason why this should be true other than the fact that
the particular form of reductions was chosen by trial and error to make it work. In our case we
have 8 kinds of reductions. Five of them are standard in the dependent type theories and three
additional ones are peculiar to the homotopy λ-calculus. In the case of the classical Church-Rosser
theorem one has to consider only one kind of reduction and also does not have to worry about the
”unknown” part of the language. To be fair I should say that this original kind of reduction, called
β-reduction, is the most troublesome one of the eight.

We now consider the following very particular situation. Assume that Sp contains the set Sp0 =
{λ, ev, pair, π, π′, id, ev′}. Let S be the subset in T (Sp, var) which consists of T such that for any
v ∈ v(T) the following conditions hold:

1. if l(v) = (λ, y) then val(v) = 2

2. if l(v) = ev then val(v) = 3

3. if l(v) = (pair, y) then val(v) = 3

4. if l(v) = π then val(v) = 1

5. if l(v) = (π′, y) then val(v) = 2

6. if l(v) = id then val(v) = 1

7. if l(v) = ev′ then val(v) = 3.

The class S has the following obvious properties:

1. S is closed under α-equivalence,

41

2. for T1, . . . , T3 ∈ S the trees ev(T1, T2, T3), (λ, y)(T1, T2), (pair, y)(T1, T2, T3), π(T1), (π′, y)(T1, T2),
id(T1) and ev′(T1, T2, T3) are in S,

3. for T, T ′ ∈ S and v ∈ v(T) the trees [v] and T (T ′/[v]) are in S,

4. for T, T ′ ∈ S and y ∈ var(T)− bnd(T) the tree T (T ′/y) is in S.

Let T ∈ S and v ∈ v(T).

Lemma 5.1 [alpha] Let T, T ′ ∈ S be α-equivalent. Then form any v ∈ v(T) = v(T ′) and any
i = 1, . . . , n one has ri(v)T ⇔ ri(v)T ′ and if ri(v) holds then ri(T, v) is α-equivalent to ri(T ′, v).

Proof: Clear.

For n = 1, . . . , 8 let us write T n→ T ′ if there exists v ∈ v(T) such that rn(v) and rn(T, v) = T ′ where
the equality holds up to an α-equivalence. We will also write T 0→ T ′ if T and T ′ are α-equivalent.

Let us write T nk

→ T ′ if there exist a sequence T = T0
n→ T1

n→ . . .
n→ Tk = T ′. Let us write T I→ T ′

where I = (n1, . . . , nk) if there exists a sequence T = T0
n1→ . . .

nk→ Tk = T ′. Finally let us write
T → T ′ if there exists I such that T I→ T ′.

Theorem 5.2 [mainthis] Let T, T ′, T ′′ ∈ S and T → T ′, T → T ′′. Then there exists T ′′′ ∈ S such
that

T −−−→ T ′′y y
T ′ −−−→ T ′′′

One can easily see that it is sufficient to consider the case when the first reduction is an elementary
one i.e. when T

n→ T ′ for some n = 1, . . . , 8. This gives us eight cases to consider. We start with
the following special lemma and then proceed to consider all eight cases one after another. It turns

out to be more convenient to consider the first reduction to be of the form T
nk

→ T ′.

Lemma 5.3 [chro] Let T 1→ T ′ and T 1k

→ T ′′. Then there exists T ′′′ and l,m such that

T
1k

−−−→ T ′′

1

y y1m

T ′
1l

−−−→ T ′′′

Proof: This is basically the classical ”strip lemma” from the λ-calculus in our context. Later.

42

Proposition 5.4 [case1] Let T 1k

→ T ′ and T I→ T ′′ where I = (n1, . . . , nl). Then there exists T ′′′,
m and J such that

T
I−−−→ T ′′

1k

y y1m

T ′
J−−−→ T ′′′

Proof: We start with the following lemma.

Lemma 5.5 [case1n] Let T 1→ T ′ and T n→ T ′′ where n 6= 1. Then there exist T ′′′ , k and e = 0, 1
such that

T
n−−−→ T ′′

1

y y1e

T ′
nk

−−−→ T ′′′

Proof: Let v be the vertex of the T → T ′ reduction and w be the vertex of T → T ′′ reduction.
Since n 6= 1 we have l(v) 6= l(w) and therefore v 6= w. If w /∈ [v] and v /∈ [w] then it is clear that
two reductions ”commute” and we can take k = 1 and e = 1. We will now use the notations used
in the description of ri(T,−). If w ∈ [v] there are the following cases. If n 6= 2 then the form of
l(w) implies that we must have w ∈ R, w ∈ q or w ∈ r. In the first case one can take k = 0 and
e = 1. In the second case the n-reduction occurs inside q and we can take k = 1 and e = 1. In the
third case the n-reduction occurs inside r which gets reproduced in T ′ as many times as there were
occurrences of y in q. We need to take k to be this number and e = 1.

If n = 2 there is an extra possibility that [v] is of the form ev((λ, y)(R, ev(f, y)), r). Then we have:

ev((λ, y)(R, ev(f, y)), r) 2−−−→ ev(f, r)

1

y y0

ev(f, r) 0−−−→ ev(f, r)

i.e. T ′ = T ′′ and we take k = 0 and e = 0.

Consider now the case v ∈ [w]. If n 6= 2 then v lies in one of the subtrees of [w] which either
disappears completely in the n-conversion or is reproduced in the resulting tree once without change.
In the first case we need to take e = 0 and k = 1 and in the second case we need to take e = 1
and k = 1. If n = 2 there is also a possibility that [w] is of the form (λ, y)(R, ev((λ, z)(Q, s), y))).
Then we have:

(λ, y)(R, ev((λ, z)(Q, s), y))) 2−−−→ (λ, z)(Q, s)

1

y y0

(λ, y)(R, s(y/z)) 0−−−→ (λ, y)(R, s(y/z))

i.e. T ′ is α-equivalent to T ′′ and we take k = 0 and e = 0.

43

Let us now prove Proposition 5.4. Will have to do a nested induction. First proceed by induction
on a1 where a1 is the number of 1’s in I. For a1 = 0 proceed by induction on k. For k = 0 there
is nothing to prove. The inductive step follows immediately from Lemma 5.5 since e = 1 or e = 0.
To make the inductive step in a1 one uses Lemma 5.3.

Proposition 5.6 [case2] Let T 2k

→ T ′ and T I→ T ′′ where I = (n1, . . . , nl). Then there exists T ′′′,
m and J such that

T
I−−−→ T ′′

2k

y y2m

T ′
J−−−→ T ′′′

Proof: We start with the following lemma.

Lemma 5.7 [case2n] Let T 2→ T ′ and T
n→ T ′′ where n 6= 1. Then there exist T ′′′ , f = 0, 1 and

e = 0, 1 such that
T

n−−−→ T ′′

2

y y2e

T ′
nf

−−−→ T ′′′

Proof: Let v be the vertex of T → T ′ reduction and w the vertex of T → T ′′ reduction. We
have l(v) = (λ, y). We have the following four cases v = w, v ∈ [w] − w, w ∈ [v] − v and the
remaining case when v and w are independent. The first case may only occur when n = 2 and we
take e = f = 1. In the second case the form of the reductions implies that v occurs in a subtree of
[w] which either disappears in the n-conversion or is passed down without change. Correspondingly
we take f = 1 and e = 0 or e = 1. In the third case we again have the same situation i.e. w lies
in R part of [v] which disappears or in the f part of [v] which is passed down without change.
Correspondingly we take e = 1 and f = 0 or f = 1. Finally in the fourth case when v and w are
independent we take e = f = 1.

To prove the proposition start with the induction by the number a1 of 1’s in I. If a1 = 0 then the
statement follows easily from Lemma 5.7. To make the inductive step in a1 one uses Lemma 5.5
with n = 2.

Proposition 5.8 [case3] Let T 2k

→ T ′ and T I→ T ′′ where I = (n1, . . . , nl). Then there exists T ′′′,
m and J such that

T
I−−−→ T ′′

3k

y y3m

T ′
J−−−→ T ′′′

44

Proof: We start with the following lemma.

Lemma 5.9 [case3n] Let T 3→ T ′ and T
n→ T ′′ where n 6= 1. Then there exist T ′′′ , f = 0, 1 and

e = 0, 1 such that
T

n−−−→ T ′′

3

y y3e

T ′
nf

−−−→ T ′′′

Proof: We use similar reasoning as in the proofs of Lemmas 5.5 and 5.7. The only case which one
has to look closely at is the case n = 5. Let v be the T → T ′ conversion vertex and w the T → T ′′

conversion vertex. There are two non-trivial possibilities. If v ∈ [w]− w lies there non-trivially we
have [w] = (pair, y)(π((pair, z)(Q, r,q)), π′((pair, z)(Q, r,q))) we have:

(pair, y)(S, π((pair, z)(Q, r,q)), π′((pair, z)(Q, r,q))) 5−−−→ (pair, z)(Q, r,q)

3

y y
(pair, y)(S, r, π′((pair, z)(Q, r,q))) 4−−−→ (pair, y)(S, r,q)

6 Semantics of Hλ0

Let us describe now the semantics of Hλ0. We will assume that we have chosen spaces X1, . . . , Xn

corresponding to the generating types T1, . . . , Tn.

As noted above we want to construct for any Γ ` a tower of fibrations:

E(Γ)→ E(Γ≤m−1)→ . . .→ E(Γ≤0) = pt

for any sequent of the form Γ ` R : Type a fibration

pR : E(Γ,R)→ E(Γ),

and for any sequent of the form Γ ` r : R a section s(r) of pR. We also want to check that for any
sequent of the form Γ ` r ≡ r′ : R one has s(r) = s(r′).

We will be doing inductively the following:

1. Assuming that E(Γ) is constructed and Γ ` S : Type we will construct pS : E(Γ,S)→ E(Γ)
and define a fibration pS : E(Γ,S)→ E(Γ) setting E(Γ,S) = E(Γ)×S Ω̃.

2. Assuming the same as above and in addition that Γ ` s : S we will construct s : E(Γ) → Ω̃
and define a section s(s) of pS as the map E(Γ)→ E(Γ,S) corresponding to s.

45

3. Assuming the same as above and in addition that Γ ` s ≡ s′ : S we will show that the sections
s(s) and s(s′) coincide. There is no need to consider sequents of the form Γ ` S ≡ S′ : Type
separately.

For Γ of the form T1, . . . , Tn : Type we set E(Γ) = Ωn and to define E(Γ≤j+1) from E(Γ≤j) we set
E(Γ≤j+1) = E(Γ≤j ,Rj+1).

Let us describe the semantics of type constructors (1)-(4) i.e. given E(Γ) and a type expression S
formed according to one of these four rules we will describe the fibration E(Γ,S)→ E(Γ).

1. In the case S = Ti we set E(Γ, S) = E(Γ)×Xi.

2. In the case S =
∑
y : R.Q we proceed as follows. Since R is a valid type expression in Γ we

have by the inductive assumption a fibration pR : E(Γ,R) → E(Γ). Since Q is a valid type
expression in (Γ, y : R) we further have a fibration pQ : E(Γ,R,Q)→ E(Γ,R). We set

E(Γ,S) = E(Γ,R,Q)

with the projection to E(Γ) being the composition of the projections pQ and pR.

3. In the case S =
∏
y : R.Q we proceed as follows. As in the previous case we have two

fibrations:
E(Γ,R,Q)

pQ→ E(Γ,R)
pR→ E(Γ)

We define E(Γ,S) to be the fibration over E(Γ) whose fiber over x ∈ E(Γ) is the space of
(continuous) sections of the fibration

p−1
Q p−1

R (x)→ p−1
R (x).

More formally, this space is defined by the universal property saying that for any Z over E(Γ)
the set of maps from Z to E(Γ,S) over E(Γ) is naturally isomorphic to the set of maps from
Z ×E(Γ) E(Γ,R) to E(Γ,R,Q) over E(Γ,R).

4. In the case S = eq(Q; y1,y2) we proceed as follows. Since Q is a valid type expression in Γ
we have a fibration pQ : E(Γ,Q) → E(Γ). Since yi, i = 1, 2 are valid term expressions of
type Q in Γ we have two sections

si = s(yi) : E(Γ)→ E(Γ,Q).

We define E(Γ,S) to be the fibration over E(Γ) whose fiber over x ∈ E(Γ) is the space of
(continuous) paths from s1(x) to s2(x) in the fiber p−1

Q (x).

Let us describe now the semantics of our term constructors. Given a context Γ, a type expression
S in Γ and a term expression s of type R which is produced by one of our term constructors we
need to describe the corresponding section s(s) of the fibration E(Γ,R)→ E(Γ).

46

1. In the case R = Ri and s = ci we proceed as follows. Since Ri is independent on cj for
j > i− 1 we have a pull-back square

E(Γ,Ri) −−−→ E(Γ≤i,Ri) −−−→ E(Γ<i,Ri)y y y
E(Γ) −−−→ E(Γ≤i) −−−→ E(Γ<i)

where Γ≤i = (T1, . . . , Tn; c1 : R1, . . . , ci : Ri). Since E(Γ≤i) = E(Γ<i,Ri) there is the
diagonal section of the middle vertical arrows which pulls back to a section of the left hand
side vertical arrow. We define s(s) as this pull-back.

2. The sum constructors:

(a) In the case s = 〈y, z〉 we proceed as follows. We have the fiber square:

E(Γ,R,Q,
∑
y : R.Q) −−−→ E(Γ,

∑
y : R.Q)y y

E(Γ,R,Q) −−−→ E(Γ)

By definition E(Γ,
∑
y : R.Q) = E(Γ,R,Q). Therefore we again have the diagonal

section ∆ of the left hand side arrow. We set s(s) = ∆.

(b) In the case s = (πu) and s′ = (π′u) we proceed as follows. We have fibrations

E(Γ,
∑

y : R.Q) = E(Γ,R,Q)
pQ→ E(Γ,R)

pR→ E(Γ)

and a section s(u) : E(Γ) → E(Γ,R,Q). We set s(πu) to be the composition s(πu) =
pQs(u). Then we get a pull-back square

E(Γ,Q[πu/y]) −−−→ E(Γ,R,Q)y y
E(Γ)

s(πu)−−−→ E(Γ,R)

and we set s(π′u) to be the map E(Γ)→ E(Γ,Q[πu/y]) which is the product of Id and
s(u).

3. The product constructors:

(a) In the case s = λy : Rq we proceed as follows. We have a section s(q) of the fibration

pQ : E(Γ,R,Q)→ E(Γ,R)

We need a section of the fibration

[prodsem1]E(Γ,
∏

y : R.Q)→ E(Γ) (20)

By definition the fiber of the later projection over x ∈ E(Γ) is the space of sections of
the fibration p−1

Q p−1
R (x) → p−1

R (x). Using this description or the universal property of
E(Γ,

∏
y : R.Q) one concludes that sections of (20) are in natural one to one correspon-

dence with sections of pQ. We define s(s) as the image of s(q) under this correspondence.

47

(b) In the case s = f r we proceed as follows. We have sections s(f) and s(r) of the fibrations

E(Γ,
∏

y : RQ)→ E(Γ)

and
E(Γ,R)→ E(Γ)

respectively. Observe that there is a pull-back square

[anothersq]

E(Γ,Q[r/y]) −−−→ E(Γ,R,Q)y y
E(Γ)

s(r)−−−→ E(Γ,R)

(21)

and we need to get a section of the left hand side vertical arrow.
By definition of E(Γ,

∏
y : RQ) the section s(f) takes a point x ∈ E(Γ) to a section of

p−1
Q p−1

R (x)→ p−1
R (x). Evaluating this section on s(r)(x) we get an element of p−1

Q p−1
R (x).

This means we got a map g : x 7→ s(f)(s(r)(x)) from E(Γ) to E(Γ,R,Q). By construc-
tion this map has the property pQ ◦ g = s(r) and therefore defines a section of the left
hand side arrow in (21). We define s(s) as this section.

4. The equality constructors.

(a) In the case s = r[φ/v] we proceed as follows. We have fibrations pR : E(Γ,R) → E(Γ)
and pQ : E(Γ,Q) → E(Γ). The term expression r defines a map E(Γ,Q) → E(Γ,R)
over E(Γ). By abuse of notation we will denote this map by s(r). We further have two
sections s(qi), i = 1, 2 of pQ. We need to get a section of

[needsec]E(Γ, eq(Q; q1,q2), eq(R; r[q1/v], r[q2/v]))→ E(Γ, eq(Q; q1,q2)) (22)

The map s(r) defines a map on the spaces of paths

E(Γ, eq(Q; q1,q2)→ E(Γ, eq(R; r[q1/v], r[q2/v]))

over E(Γ). Such maps are in one to one correspondence with sections of (22).
(b) In the case s = c(φ, ψ) we proceed as follows. We have a fibration pR : E(Γ,R)→ E(Γ).

Since everything will be happening fiber by fiber over E(Γ) let us fix a point p ∈ E(Γ)
and look at fibers over this point. Let L = p−1

R (p). The fiber of E(Γ, x, y, z : R, φ :
eq(R;x, y), ψ : eq(R;x, z)) over p is the fibration F over L × L × L whose fiber over
(l1, l2, l3) is the space of pairs γ12, γ13 where γ12 is a path from l1 to l2 and γ13 is a path
from l1 to l3. The fiber over p of the fibration

E(Γ, x, y, z : R, φ : eq(R;x, y), ψ : eq(R;x, z), eqP
u:R.eq(R;x,u)(〈y, φ〉, 〈z, ψ〉))

↓
E(Γ, x, y, z : R, φ : eq(R;x, y), ψ : eq(R;x, z))

is a fibration w : E → F such that the fiber of w over a point (l1, l2, l3, γ12, γ13) of F is
the space of paths from γ12 to γ13 in the space of paths in X starting in l1. To construct
s(s) we need to get a section of w. In other words for any pair of paths starting in l1
we need to assign in a continuous way a path from the first path to the second in the
space of paths starting in l1. There are clearly many way of doing this and we pick any
one. Intuitively we can say that we first contract the first path to the source point l1
and then take the inverse to the contraction of the second path to l1.

48

(c) In the case s = ε(φ) we use any homotopy which relates the previous construction to
identity when the first of two passes is degenerate.

(d) In the case s = ex(e) we proceed as follows. Everything again happens fiber by fiber
over E(Γ). We fix a point p ∈ E(Γ) and look at fibers over this point. Let w : F → L
be the fiber over p of the fibration

E(Γ,R,Q)→ E(Γ,R).

We have two sections s1, s2 of this fibration (which are fibers of s(ri), i = 1, 2) and the
section γ (which is the fiber of s(bfe)) of the fibration of paths from s1 to s2 i.e. a map
which assigns to any l ∈ L a path γ(l) from s1(l) to s2(l) in the fiber w−1(l). We need
to construct a point in the fiber M of

E(Γ, eq(
∏

y : R.Q;λy : R.r1, λy : R.r2))→ E(Γ)

over p. By construction this fiber is the space of paths from the section s1 to the section
s2 in the space of sections of w. This space is the same as the space of sections of the
space of paths where we already have a point γ.

Example 6.1 [function] For the context Γ = (T1, T2 : Type; f : T1 → T2) the space E(Γ)
corresponding to the given model X1, X2 of (T1, T2) is the space Hom(X1, X2) of continuous
maps from X1 to X2. An individual model of Γ is therefore, as one would expect, a triple
(X1, X2; f : X1 → X2).

7 Levels

We will not be entirely formal both because the complete formality is only possible to achieve in a
computer implementation and because it is important to develop some sort of semi-formal language
which then can be used as a higher level language of the implementation. We will usually write

{y : R, z : Q}

instead of
∑
y : R.Q and similarly use notations such as

{y : R, z : Q, u : S}

for iterated sums (in this case
∑
y : R.

∑
z : Q.S). When we do use sums we may write

∑
y, y′ : R

instead of
∑
y : R.

∑
y′ : R and similarly for products. To make notation shorter we will sometimes

write contexts in the form (T1, . . . , Tn; . . .) instead of (. . .)

We start with the most important type expression Contr(T). It is defined in the context T : Type
by the formula:

Contr(T) = {t0 : T, φ : eqT→T (λt : T.t0, λt : T.t)}

Models of (T ; a : Contr(T)) are contractible spaces. Indeed, a model Contr(X) of Cont(T)
over a model X of T is the space of pairs (x0, h) where x0 is a point of X and h is a homotopy
from the map X → X which is identically equal to x0 to the identity map. Clearly a model of

49

(T ; a : Contr(T)) is a space with a point and a contraction to this point. This is the same as a
contractible space since for any X such that Cont(X) is not empty it is contractible. We will prove
the last fact on the level of the type system in Theorem 7.3 i.e. we will show that in the context
(T ; a : Contr(T)) (I am using an abbreviated expression for the context) there is a term expression
c of type Contr(Contr(T)). This theorem provides a good demonstration of how one uses the
constructors and conversions of the previous section to translate homotopy-theoretic arguments
into the formal language of our type system.

Define now by induction type expressions Lvn for all n ≥ −1. We set:

Lv−1(T) = Contr(T)

Lvn(T) =
∏

t, t′ : T.Lvn−1(eqT (t, t′))

We already know that a model of (T ; a : Lv−1(T)) is a contractible space.

Lemma 7.1 [lvmodels] For n ≥ 0 a model of (T : Type; a : Lvn(T)) is a space X such that for
all x ∈ X one has πi(X,x) = 0 for i ≥ n. In particular, for n = 0 there are only two models the
empty space and the contractible space.

Proof: For n = 0 a model is a space X together with a point in

Lv0(X) =
∏

x,x′∈X
Contr(P (X;x, x′))

where P (X;x, x′) is the space of paths from x to x′ in X. There are only two spaces for which such
a point exist - the empty space and the contractible space. Note also that if the space Lv0(X) is
non-empty it is contractible. Proceed now by induction on n assuming that for any X the space

Lvn(X) =
∏

x,x′∈X
Lvn−1(P (X;x, x′))

is non-empty if and only if for all x ∈ X one has πi(X,x) = 0 for i ≥ n and in this case it is
contractible. Consider Lvn+1(X). One can easily see that it is non-empty if and only if for any
x ∈ X the loop space ΩX,x of X in x has the property Lvn and that in this case it is contractible.
This clearly implies the inductive step.

Before proving the basic properties of the level expressions on the system level we need to establish
a few basic facts about equivalences. Let us start with the following notations. In the context
(T ;x, y : T, a : eqT (x, y)) set

inv(a) = πs(a, x) : eqT (y, x)

Recall that our rule (13) allows us to write x for the identity equivalence from x to x. Recall further
that π is the projection from a dependent sum to its index type. One verifies easily that for a model
(X;x, y ∈ X, γ ∈ P (X;x, y)) of our context the model inv(γ) of inv(a) is a path from y to x which
represents up to homotopy the inverse to γ. In the context (T ;x, y, z : T, a : eqT (x, y), b : eqT (y, z))
set

comp(a, b) = πs(inv(a), b) : eqT (x, z)

50

Again one verifies easily that on models this corresponds to the composition of paths. The following
lemma shows that identities are identities with respect to comp and inv is an inverse with respect
to comp.

Lemma 7.2 [invcomp]

1. There are term expression c, c′ such that

T : Type;x, y : T, a : eqT (x, y) ` c : eqeqT (x,y)(a, comp(x, a))

T : Type;x, y : T, a : eqT (x, y) ` c′ : eqeqT (x,y)(a, comp(a, y))

2. There are term expressions c, c′ such that

T : Type;x, y, z : T, a : eqT (x, y), b : eqT (y, z) ` c : eqeqT (x,y)(a, comp(comp(a, b), inv(b)))

T : Type;x, y, z : T, a : eqT (x, y), b : eqT (y, z) ` c′ : eqeqT (x,y)(b, comp(inv(a), comp(a, b)))

Proof: Later.

We have already seen that on the model level the space Lvn(X) is of level 0 for any X. The
following result proves this statement on the type system level.

Theorem 7.3 [main1] For any n ≥ −1 there exists a term expression c such that

T : Type ` c : Lv0(Lvn(T)).

Proof: The proof will be considered later.

On the model level it is obvious that any Lvn space is Lvn+1 space. The following theorem asserts
the same fact on the type system level.

Theorem 7.4 [main2] For any n ≥ −1 there exists a term expression c such that

T : type; a : Lvn(T) ` c : Lvn+1(T).

We shall say that a type expression R in a context Γ is of level n if there exists a term expression
in the same context of type Lvn(R).

Here is another useful construction. It asserts that a product of types of level n is itself of level n
and that the product of types is contractible if and only if each type is contractible.

51

Proposition 7.5 [lvprod] Let Γ, y : R ` Q : Type. Then for any n ≥ −1 there exists is a term
expression c such that

Γ ` c : (
∏

y : R.Lvn(Q))→ Lvn(
∏

y : R.Q)

and if n = −1 then there is a term expression d such that

Γ ` d : Lv−1(
∏

y : R.Q)→ (
∏

y : R.Lv−1(Q)).

Proof: Later.

It is clear from Lemma 7.1 that models of types of level 0 are truth values (i.e. either empty or
equivalent to a point). Form this point of view an addition to a context Γ of a constant c of type
R where R is a type expression of level zero means that we add an axiom to Γ while an addition
of a constant c of type whose level is greater than zero means that we add a structure.

Before describing the type expression Un = Un(f) (defined in the context (T1, T2; f : T1 → T2))
which corresponds to the univalence of f we need to do some preliminary work. We start with the
following expression defined in Γ = (T1, T2; f : T1 → T2, v : T2):

Fb(f, v) = {u : T1, φ : eqT2(f u, v)}

we will further abbreviate Fb(f, v) to f−1(v). Note that for am model (X1, X2; p : X1 → X2, y : X2)
of our context the model of f−1(v) is the homotopy fiber of p over y. In the context (Γ, v′ : T2, a :
eqT (v, v′), z : f−1(v)) define

ha(f, a, z) = (unpack z as 〈u, φ〉 in 〈u, comp(φ, a)〉) : f−1(v′)

On the model level this construction gives us the usual action of the paths of the base on the fibers
of a fibration.

In the context (T1, T2; f : T1 → T2) set

Eq(f) =
∏

v : T2.Contr(f−1(v)).

One verifies easily that Eq(f) is a level 0 expression. Its model is non-empty if and only if the
model of f is a homotopy equivalence. The following lemma show that the paths of the base act
on the fibers by equivalences.

Lemma 7.6 [haeq] There is a term expression c such that

T1, T2 : Type; f : T1 → T2, v, v
′ : T2, a : eqT2(v, v′) ` c : Eq(λz : f−1(v).ha(f, a, z))

Proof: Later.

In the basic context T1, T2 set:

Eq(T1, T2) = {f : T1 → T2, e : Eq(f)}.

52

Since Eq(f) is a type expression of level 0, Eq(T1, T2) is in a sense a subtype of T1 → T2. For
a model (X1, X2) of the context the model Eq(X1, X2) of this type is the subspace of homotopy
equivalences in Hom(X1, X2). Note also that since Contr(T) projects to T and since f−1(v)
projects to T1 any member 〈f, e〉 of Eq(T1, T2) defines a member of

∏
v : T2.T1 = (T1 → T2) which

corresponds on the model level to the equivalence inverse to f .

In (T1, T2; f : T1 → T2, v, v
′ : T2) we have

haeq(f, v, v′) = λa : eqT2(v, v′).〈λz : f−1(v).ha(f, a, z), c〉 : eqT2(v, v′)→ Eq(f−1(v), f−1(v′))

where c is the term expression of Lemma 7.6. This gives a mapping from paths to the equivalences
between the homotopy fibers.

We can now translate the definition of a univalent map given in Section ?? into the type system.
In the context (T1, T2; f : T1 → T2) set

[univdef]Un(f) =
∏

v, v′ : T2.Eq(haeq(f, v, v′)) (23)

Clearly, Un(f) is a level 0 type which is non-empty iff for each pair v, v′ : T2 the map haeq(f)
from the paths between v and v′ to the equivalences between the corresponding homotopy fibers
of f is an equivalence. Models of (T1, T2; f : T1 → T2, a : Un(f)) are exactly the univalent maps
p : X1 → X2 in the sense of Definition 1.5.

To complete the definition of a universe context we need to find a way to express in the system
the condition that the class of types defined by a univalent map is closed under enough operations
to serve as a universe where models of homotopy λ-calculus may be considered. Fix a context
Γ = (U , Ũ ; υ : Ũ → U) which we will eventually extend to create a universe context. We assume
that this context is included into all the contexts considered below unless the opposite is explicitly
mentioned. We also fix a model p : Ũ → U of Γ.

Let R be a valid type expression in Γ and S be a valid type expression in the context (Γ, y : R).
Set

Class(R,S, υ) = {f : R→ U , coh :
∏

y : R.Eq(υ−1(f y),S)}

Theorem 7.7 [main2] For any R and S as above there is a term expression c such that

a : Un(υ) ` c : Lv0(Class(R,S, υ))

In other words for any univalent υ and any R, S the type Class(R,S, υ) is of level 0.

Proof: Later.

Theorem 7.7 shows that for univalent υ we may treat Class(R,S, υ) as a condition on R and S.
Let us see what it means on the model level.

For a fixed model p : Ũ → U of Γ the sequent (Γ, y : R ` S) defines a fibration pS : E(R,S)→ E(R).
The model of Class(R,S, υ) is the space of all possible ways of inducing this fibration from p. The

53

first component gives a map E(R)→ U and the second an equivalence of Ũ ×U E(R) with E(R,S)
over E(R). In particular it is non-empty if and only if pS can be obtained as a pull-back of p
i.e. if and only if it is classifiable by p. Due to the universal property of univalent maps this is
equivalent to the condition that the fibers of pS belong to the set A(p) of homotopy types occurring
as fibers of p. Theorem 7.7 asserts that in this case the space of all possible ways to achieve such
a classification it is contractible.

Set
Fam(υ) = {u : U , f : υ−1(u)→ U}

If a model of p is a univalent map p : Ũ → U corresponding to a set of homotopy types A = A(p)
then a point in the model of Fam(p) is a homotopy type I from A together with a map to U i.e.
it is a family of homotopy types from A indexed by I. It is further the same as a fibration J → I
which is classifiable by p i.e. such that all its fibers are in A.

In (Γ, y : Fam(υ)) consider the type expressions:

Prod =
∏

z : υ−1(π y).υ−1(π′y z)

Sum =
∑

z : υ−1(π y).υ−1(π′y z)

where π and π′ are the term constructors of (9) which take 〈u, f〉 to u and f respectively.

Set in Γ:
Cl prod = Class(Fam(υ),Prod, υ)

Cl sum = Class(Fam(υ),Sum, υ)

According to Theorem 7.7 in the presence of a : Un(υ) these types are of level 0 and one verifies
immediately that for a univalent model p : Ũ → U of Γ the model of Cl Prod (resp. Cl Sum) is
non-empty if and only if A(p) is closed under products (resp. sums) of families. We also need to
ensure that A(p) is closed under the formation of the space of paths. On the level of models this
means that the diagonal Ũ → Ũ ×U Ũ is classifiable i.e. that there is a homotopy pull-back square

Ũ −−−→ Ũ

∆

y yp
Ũ ×U Ũ

Eq−−−→ U

In on the type system level this amounts to the inhabitation condition for a Class expression
defined as follows. Set in Γ:

Path = {u : U, x : υ−1(u), x′ : υ−1(u)}

Set in (Γ, y : Path):
Diag = eqυ−1(π y)(π

′y, π′′y)

where π〈u, x, x′〉 = u, π′〈u, x, x′〉 = x, π′′〈u, x, x′〉 = x′. Finally set in Γ:

Cl eq = Class(Path(υ),Diag, υ).

We can now define the standard universe context as follows.

54

Definition 7.8 [standuniv] The standard universe context Ω is given by:

Ω = (Ũ ,U : Type; υ : Ũ → U , aprod : Cl prod, asum : Cl sum, aeq : CL eq).

It is my current understanding that this indeed defines a universe context i.e. that we may construct
vertical models of any context Γ in Ω. In particular no further structures or axioms are needed in
order to deal with term constructors and conversions. Let me describe now what I mean by that
in detail.

Mention: not all (R,S) are classifiable e.g. (U ,U) whose model is U × U → U is not classifiable.
Similarly, the pair whose model is Fam(p)→ U is not classifiable or ”large”. If we make U×U → U
classifiable then only the trivial and the empty models survive (Th. Girard).

Mention: Class(S). Show that Class(R,S) is equivalent to
∏
y : R.Class(S)?

???? Cl eq is actually provable? ????

8 Basic layer - generalized models

For a category C and two morphisms f : X → Y , g : X ′ → Y we let Hom(f, g) denote the set
of morphisms from X to X ′ over Y . We also write Tot(f) for the source of a morphism f and
Base(f) for the target. A set-based category is an internal category in the category of sets i.e. a
set with a structure.

Define an H00-category as the following collection of data:

1. A set-based category C.

2. A final object pt in C.

3. A subset F of the set Mor(C) of morphisms in C whose elements are called fibrations such
that:

(a) F contains isomorphisms,

(b) for each X ∈ C the map tX : X → pt is in F ,

(c) F is closed under compositions.

4. For any f : X → Y and any p : Y ′ → Y with p ∈ F a pull-back square

Tot(f∗(p))
p∗(f)−−−→ Y ′

f∗(p)

y yp
X

f−−−→ Y

such that f∗(p) ∈ F . We will write X ×X for Top(t∗X(tX)).

55

5. For any X
p→ Y

q→ Z with p, q ∈ F a morphism q∗(p) : Tot(q∗(p))→ Z in F and a morphism
η : q∗q∗(p)→ p over Y such that for any r : W → Z the map

Hom(r, q∗p)→ Hom(q∗r, q∗q∗p)→ Hom(q∗r, p)

is a bijection.

6. A functor E : C → C.

7. Three natural transformations i : Id→ E and d0, d1 : E → Id such that:

(a) d0 ◦ i = d1 ◦ i = id,

(b) for any X the map d1(X)× d2(X) : E(X)→ X ×X is in F .

Note that the condition on q∗(p) and η means simply that p → q∗(p) is a functor from Fib/Y to
Fib/Z which is right adjoint to the pull-back functor r 7→ q∗(r).

Lemma 8.1 [cartcl] Any H00-category is Cartesian closed i.e. it has finite products and internal
hom-objects.

Proof: Since all morphisms tX are fibrations and C has fiber products for corners where at least
one side is a fibration we know that any H00-category has finite products. For X,Y ∈ C define
Hom(X,Y) as Tot((tX)∗t∗X(tY)). One can easily see using the properties of t∗X and (tX)∗ that it
is indeed an internal hom-object.

Example 8.2 [etriv] Consider the case when Id → E is a fibration. Then every morphism is a
fibration. Indeed any morphism f : X → Y is the composition of the graph inclusion X → X × Y
with the projection X × Y → Y . The projection is a fibration in any H00-category. The graph
inclusion is the pull-back of the diagonal Y → Y ×Y and the diagonal is a fibration as a composition
of two fibrations Y → E(Y)→ Y × Y .

Example 8.3 Let us say that H00-category is discreet if Id → E is an isomorphisms. Such H00-
categories are up to an equivalence the same as categories with finite limits an such that for any
f : X → Y the pull-back functor f∗ : C/Y → C/X has a right adjoint. For example any small
elementary topos is a discreet H00-category.

Example 8.4 [Kan] Let C be the category of Kan simplicial sets in some universe U , F be the class
of Kan fibrations, EX = Hom(∆1, X) be the space of free paths on X and X → EX, EX → X×X
be the obvious morphisms. Then C is a H00-category with respect to the usual fiber products and
the direct images q∗(p) defined as follows. Let X

p→ Y
q→ Z be a pair of fibrations. Consider the

relative internal hom-object HomZ(Y,X) and the map φ : HomZ(Y,X)→ HomZ(Y, Y) define by
the composition with p. Then Tot(q∗(p)) = φ−1(IdY). It is pretty clear how to define η and verify

56

the main condition on q∗(p). To verify that q∗(p) is a fibration note that by adjunction fillings of
the square

A −−−→ q∗(p)y y
B −−−→ Z

are in one to one correspondence with fillings of the square

A×Z Y −−−→ Xy y
B ×Z Y −−−→ Y

If A→ B is a trivial cofibration then A×Z Y → B×Z Y is because q : Y → Z is a fibration. Hence,
if p : X → Y is a fibration then so is q∗(p). The fiber of this fibration over z ∈ Z0 is the space of
sections of the fibration Xz → Yz. This example clearly extends to the categories of fibrant objects
in model categories with appropriate properties.

For a fibration p : X → Y we let sec(p) denote the set of sections of p. For a fibration p : X → Y
and a pair of sections s, s′ we let P (p; s, s′) denote the fibration given by the pull-back square:

Tot(P (p; s, s′)) −−−→ EX

P (p;s,s′)

y y
Y

s×s′−−−→ X ×X

Note that in the case of C as in Example 8.4 we P (p; s, s′) is the fibration over Y whose fiber over
y ∈ Y0 is the space of paths from s(y) to s′(y) in Xy = p−1(y). ne to. need relative E.

An interpretation of Hλ00 in an H00-category C is a triple of maps

Φ0 : S0 → ob(C)

Φ1 : S1 → Fin(C)

Φ2 : S2 →Mor(C)

which satisfy a number of conditions. To simplify the notation we will write Φ without the index
since the index is clear from the form of the argument. The conditions are as follows:

1. One has:
Base(Φ(Γ ` S : Type)) = Φ(Γ `)

Tot(Φ(Γ ` S : Type)) = Φ(Γ, y : S `)

Φ(Γ ` s : S) ∈ sec(Φ(Γ ` S : Type))

Note that these conditions make sense by Lemmas ??,??.

57

2. One has:

Φ(Γ ` (
∑

, y)(R,Q)) = Φ(Γ ` R : Type) ◦ Φ(Γ, y : R ` Q : Type)

Φ(Γ ` (
∏
, y)(R,Q)) = (Φ(Γ ` R : Type))∗(Φ(Γ, y : R ` Q : Type))

Φ(Γ ` eq(R, r, r′)) =

We can now formulate the ”semantics theorem” for Hλ00. Recall that GT is the set of generating
types of Hλ00.

Theorem 8.5 [semantics] Let C be an H00-category. Then for any map X : GT → ob(C) there
exists a unique interpreation Φ of Hλ00 in C such that Φ(`) = pt and for any T ∈ GT ,

Φ(` T : Type) = (X(T)→ pt).

For a context Γ let Rexp(Γ) be the set of all R such that Γ ` R : Type is a sequent. For Γ and
R ∈ Rexp(Γ) let Lexpp(Γ,R) be the set of all r such that Γ ` r : R. Finally let Lexp(Γ,R) be the
quotient of Lexpp(Γ,R) by the equivalence relation defined by the condition that Γ ` r = r′ : R.
Elements of Rexp are called (valid) type expressions in Γ and elements of the Lexp(Γ,R) are
called (valid) term expressions of type R (in Γ). We do not distinguish term expressions which are
convertible to each other. The letters R and L are there because elements of Lexp occur to the left
of : and elements of Rexp mostly occur to the right of :.

Contexts are analogs of theories in the languages defined by type systems and the semantics of a
type system is based on the notion of a model of a context. In the case of λ-calculus models can
take values in any Cartesian closed category but for the illustrative purposes it makes sense to start
with set-theoretic models.

One defines models of
Γ = c1 : R1, . . . , cm : Rm

by induction on m. Such an induction makes sense because the rules of lambda calculus imply that
for any context Γ the sequences Γ≤j = c1 : R1, . . . , cj : Rj are also contexts. Moreover, for a context
Γ and an expression R the sequence Γ≤j , c : R is a context if and only if c ∈ var − {c1, . . . , cm}
and T1, . . . , Tn : Type ` R : Type.

A context with m = 0 is called a basic context and the basic context underlying a given Γ is
called the base of Γ. A model M0 of the basic context T1, . . . , Tn : Type is just a collection of sets
Xi = M0(Ti) corresponding to the generating types Ti. We assume the model M0 of the base of
Γ fixed. Let T1, . . . , Tn : Type ` S : Type. Any sequent of this form can be obtained from the
sequents T1, . . . , Tn : Type ` Ti : Type by the constructors (??). Define a set M(S) = M(S,M0)
inductively as follows:

1. M(Ti) = Xi

2. M(R→ Q) = Hom(M(R),M(Q))

58

whereHom(X,Y) is the set of maps of sets fromX to Y . Then a modelM of Γ overM0 is a sequence
of points M(cj) ∈ M(Rj). For example, a model of the context (T1, T2 : Type; f : T1 → T2) is a
pair of sets X1, X2 together with a function φ : X1 → X2.

We already know that a model M of Γ defines for any S ∈ Rexp(Γ) a set M(S) (which actually
depends only on M0). Let us show now that M further defines for any s ∈ Lexp(S) an element
M(s) ∈M(S).

We first define M(s) for a sequent Γ ` s : S and then show that if Γ ` s = s′ : S then for any M
one has M(s) = M(s′). For a given base model M0 the collection of all models of Γ over M0 is
identified with the set

E(Γ) = E(Γ;M0) =
m∏
j=1

M(Rj)

All sequents of the form Γ ` s : S are obtained from the sequents Γ ` cj : Rj by the rules (??).
Define for each Γ ` s : S a map e(s) : E(Γ)→M(S) inductively as follows:

1. for R = Rj and r = cj let e(s) be the projection E(Γ)→M(Rj)

2. for S = R→ Q and s = λy : R.q let

s(λy : R.q) : E(Γ)→ Hom(M(R),M(Q))

to be the map adjoint to the map

e(q) : E(Γ, y : R) = E(Γ)×M(R)→M(Q)

3. for S = Q and s = ev(f , r) let

e(ev(f , r)) : E(Γ)→M(R)

to be the composition

E(Γ)
e(f)×e(r)−→ Hom(M(R),M(Q))×M(R) ev→M(R)

where ev is the usual evaluation map.

We can now define M(s) for M ∈ E(Γ) as e(s)(M). To verify that this construction indeed agrees
with the conversions it is clearly sufficient to check that e(s) = e(s′) when s and s′ are as in the
rules (??). The β-conversion involves a substitution q(y/r) and we need first to describe e(q(r/y)).
One has the following lemma.

Lemma 8.6 [subst] Given Γ, y : R ` q : Q and Γ ` r : R one has Γ ` q(r/y) : Q. The map

e(q(r/y)) : E(Γ)→M(Q)

is the composition

E(Γ)
Id×e(r)−→ E(Γ)×M(R) = E(Γ, y : R)

e(q)→ E(Q).

59

We can now verify the conversions:

1. For the β-conversion we have Γ, y : R ` q : Q and Γ ` r : R and we need to check that the
composition

E(Γ)
Id×e(r)−→ E(Γ)×M(R)

e(q)→ E(Q)

coincides with
e(ev(λy : R.q, r)) = ev(e(λy : R.q), e(r)).

This follows immediately from the definition of e(λy : R.q) as the function adjoint to e(q).

2. For the η-conversion we have Γ ` f : R→ Q and we need to check that

e(λy : R.ev(f , r)) = e(f).

This is a simple exercise in opening up the definitions.

It is clear from the constructions of M(R) and M(r) given above that they can be repeated with
the category of sets replaced by any Cartesian closed category i.e. a category with finite products
(including the final object) and internal Hom-objects. Given a model M of Γ in such a category
C and a functor F : C → C′ which preserves products and internal Hom-objects one gets a model
F (M) of Γ in C′. One of the reasons why these generalized models are interesting is that for any
context there is a universal generalized model. More precisely to each context Γ one can associate
a Cartesian closed category C(Γ) and a model M of Γ in C(Γ) such that for any C′ models of Γ in
C′ are in one to one correspondence (up to an isomorphism) with Cartesian functors from C(Γ) to
C′. These observation provides a connection between lambda calculus and the theory of Cartesian
closed categories which extends in a non-trivial way to other more complex type systems.

The construction of C(Γ) is very simple and can be outlined as follows. The category C(Γ) is a small
category in a very strict sense i.e. its objects and morphisms form sets. The set of objects of C(Γ)
is

∐
i≥0Rexp(Γ)i. One denotes its element corresponding to i = 0 by pt. The set of morphisms

from (R1, . . . ,Ri) to Q is

Mor((R1, . . . ,Ri),Q) = Lexp((R1 → (R2 → (. . .→ (Ri → Q) . . .))))

in particular the setMor(pt,Q) is Lexp(Q). The set of morphisms from (R1, . . . ,Ri) to (Q1, . . . ,Qj)
is

Mor((R1, . . . ,Ri), (Q1, . . . ,Qj)) =
∏

k=1,...,j

Mor((R1, . . . ,Ri),Qj).

In particular the set Mor((R1, . . . ,Ri),pt) is the one element set i.e. pt is the final object and for
j > 0 the object (Q1, . . . ,Qj) is the product of objects Qk for k = 1, . . . , j.

For a basic context T1, . . . , Tn : Type one gets a free Cartesian closed category generated by objects
T1, . . . , Tn. For a more complex context one gets a free Cartesian closed category generated by
objects T1, . . . , Tn and morphisms c1, . . . , cm from the final object to the corresponding Rj . Since
morphisms between two objects are identified with the morphisms from the point to the correspond-
ing internal Hom-object one can obtain in this way a Cartesian closed category freely generated by
any finite set of objects and morphisms.

60

Note also that objects of C(T1, . . . , Tn : Type) are in one to one correspondence with contexts
with the base T1, . . . , Tn : Type up to the change of names of generating constants cj . This is a
reflection of the fact that for Γ of the usual form (??) the category C(Γ) can be identified with
the slice category C(T1, . . . , Tn : Type)/B where B is the object of C(T1, . . . , Tn : Type) given by
(R1, . . . ,Rj) i.e. a category given by generating objects and generating morphisms can be identified
with the category of objects over an appropriate base in the category generated by objects only.

9 Homotopy λ-calculus - logic layer

10 Homotopy λ-calculus - universe constructors

Going back to the homotopy λ-calculus we see that models of the context (T1, T2 : Type; f : T1 →
T2, a : Un) are in one to one correspondence with sets of isomorphism classes of homotopy types.
We will describe below (see Section ??) type expressions Lvn in the context (T : Type) such that
models of (T : Type; a : Lvn) are exactly spaces with πi = 0 for i ≥ n. In particular models of
(T : Type; a : Lv−1) are contractible spaces i.e. there is essentially only one model - the point,
models of models of (T : Type; a : Lv0) are truth values i.e. there are essentially two models the
empty space and the point, models of (T : Type; a : Lv1) are sets etc. Combining this with the
expression Un we see that models of the context (T1, T2 : Type; f : T1 → T2, a : Un, b : Lvn+1(T2))
are exactly subsets in the superset of the isomorphism classes of n-types. In particular, models of
(T1, T2 : Type; f : T1 → T2, a : Un, b : Lv2(T2)) are the subsets in the superset of isomorphism
classes of sets.

So far the empty context of our type system is exactly that - empty. One can follow two approaches
in the further development of the system. In one approach one would leave the empty context
empty and set up a context which is rich enough to be able to encode mathematics in it. In
another approach one introduces new type constructors which allow one to populate the empty
context. I will take the first approach. The context I want to consider is the universe context of
the preceding section together with a number of additional axioms. One can vary these additional
axioms obtaining for example boolean or intuitionist universes. The main reason for choosing this
approach over the other one is that there is no consensus over the exact properties a universe should
posses. Some may want to work with weaker universes which therefore will have a wider class of
external models and some with stronger ones. Because of this it seems to be a good idea to keep
the type system itself as simple as possible and introduce the additional bells and whistles on the
level of the universe context.

1. The basic universe structure i.e. υ : Ũ → U , a : Un(υ)

2. The basic closeness axioms aprod : Cl prod(υ), asum : Cl sum(υ), aeq : Cl eq(υ).

3. Define the empty type ∅ = ∅(υ) =
∏
y : U .υ−1(y). Require ∅ to be small i.e. a∅ : Class(∅, υ).

4. Define Un = {u : U , a : Lvn(υ−1(u))} i.e. Un is the part of the universe span by n-types.
Require U0 to be small i.e. aprop : Class(U0, υ). This is an analog of ”impredicativity of
Prop”.

61

5. If desired add the boolean axiom abool :
∏
u : U0.(((υ−1(u)→ ∅)→ ∅)→ υ−1(u)).

6. Impose an analog of Proposition ?? combined with the fact that any set of types is contained
in a set of types closed under the sum, product and path operations. To do it add to our
universe context the following. For each pair u : U , f : υ−1(u)→ U fix

univ(u, f) : U , Θ(u, f) : υ−1(univ(u, f))→ U .

Set
U(u, f) = υ−1(univ(u, f))

Ũ(u, f) = {z : U(u, f), v : Ũ , φ : eqU (Θ(u, f)(z), v)}

and υ(u, f) : Ũ(u, f)→ U(u, f) let be the projection. Fix further:

a0 : Un(υ(u, f))

a1 : Cl prod(υ(u, f)), a2 : Cl sum(υ(u, f)), a3 : Cl eq(υ(u, f))

a4 : Class(υ−1(u), υ−1(f y), υ(u, f)).

In human language it means that any family with small fibers and small base can be induced
from a univalent family such that the corresponding class of fibers is closed under the standard
operations while both the base and the fibers are again small.

We will sometimes call models of the kind discussed above external models. They are extremely
useful at the stage of type system development. However, if one wants to use a type system to
build foundations of mathematics one has to be able to speak of models defined entirely inside
the type system. One may consider two types of such internal models - the horizontal models
or interpretations and the vertical models. Both types of ”models” exist in the first order logic.
Interpretations of one theory in another assign sorts to the second theory to sorts of the first,
formulas of the second theory to predicate symbols of the first and possibly complex function-like
expressions of the second theory to functional symbols of the first. Interpretations are ”horizontal”
in a sense that they provide a correspondence between entities of the same kinds in two theories.
Models on the other hand assign constants of the second theory to sorts of the first. For example Z/2
may be treated as a model of group theory in the set theory which assigns to the only generating
sort of group theory a constant corresponding to a set with two elements. In order to be able
to speak about models of one theory in another the target theory should have special properties
because otherwise it is unclear how to extend the correspondence from sorts to functional and
predicate symbols. Since the notion of a map between constants is essential for the construction
of such an extension and because there is no sensible way to say what properties or structures the
target theory should have to enable one to discuss maps between constants, models in the first
order logic are considered only with values in versions of the set theory.

The situation in the homotopy λ-calculus looks as follows. Horizontal models of one context in
another can again be defined for any pair of contexts and correspond naturally to interpretations
of one first order theory in another. As the adjective ”horizontal” suggests such models assign a
type expression in the target context to each generating type in the source context and similarly
map term constants to appropriately typed term expressions.

62

Vertical models of a context can only be considered with values in special contexts which I will
call universe contexts. Vertical models in a given universe context Ω are quantifiable i.e. for a
context Γ the vertical models of Γ in Ω can be identified (in an appropriate sense) with terms of
a type Γ(Ω) defined in Ω. For example, taking the context Gr which corresponds to the group
theory (formulated as a first order theory) one gets for any universe context Ω a type Gr(Ω) whose
members can be thought of as groups in the universe Ω.

In particular, any universe context has a type U(Ω) which corresponds to vertical models of the
basic context U = (T : Type) in Ω. The adjective ”vertical” comes from the fact that vertical
models assign to type expressions in Γ term expressions of type U(Ω) in Ω. Since a type expression
in Γ is the same as an interpretation of the basic context T : Type in Γ this is a particular case of
the fact that interpretations of Γ′ in Γ defines functions from Ω(Γ) to Ω(Γ′).

Let me explain the semantics of universe contexts with respect to models in Top. Any universe
context has among its generating types two distinguished ones - the type U mentioned above and the
type Ũ corresponding to the models of the context (T : Type; t : T). In addition there is a constant
υ : Ũ → U which corresponds to the obvious interpretation of (T : Type) in (T : Type; t : T). In the
most simple case there are no other generating types and all other generating constants are in an
appropriate sense axioms rather than structures. Therefore, a model of Ω is given by two spaces Ũ
and U and a continuous map p : Ũ → U satisfying certain conditions. By the invariance principle
Ũ , U and p can be replaced by any homotopy equivalent triple (Ũ ′, U ′, p′) and we may assume that
p is a fibration.

The definition of univalent maps given above can be directly translated into the homotopy λ-
calculus such that we get a type expression Un in the context (T1, T2 : Type; f : T1 → T2) with the
property that models of the context (T1, T2 : Type; f : T1 → T2, a : Un) are exactly the univalent
maps (see (23)).

11 Comparison with the Martin-Lof’s type system

Let me discuss briefly the equality issues in the (intensional) Martin-Lof’s type system which seems
to be the closest relative of the homotopy λ-calculus among the known type systems. In this system
equality shows up in two ways. There are so called equality judgments which are of the form

a = b : R.

This judgement translates into the human language as - ”R is a valid type expression, a and b are
valid term expressions of type R and these expressions are definitionally equal”. There are also
equality types (originally called identity types) which are introduced in the same way as our types
eq i.e. by the rule

Γ ` T : Type
Γ, x, y : T ` eqT(x, y) : Type

The validity of the equality judgement is known as definitional equality and the inhabitation of the
equality type as propositional equality.

In our type system we do have analogs of both. Our equivalence types are clearly analogs of Martin-
Lof’s equality types. The definitional equality of two terms in our system means that these two

63

terms are convertible into each other. While we do not have a special form of judgement reserved
for it, the rules of our system show that the judgement

a : eqR(a,b) (24)

will be valid if and only if R is a valid type expression, a and b are valid term expressions of
type R and these two term expressions can be converted to each other. A somewhat strange form
of (24) is a consequence of the fact that in the current syntax of homotopy λ-calculus we use the
same symbol for a term and the corresponding identity equivalence from it to itself. Convertibility
is expected to have two main properties (which are at the moment conjectural):

1. Convertibility should be decidable

2. Convertibility should be context independent i.e. if two term expressions a and b are well
defined in Γ then they are convertible to each other in Γ if and only if they are convertible
to each other in Γ,∆ where Γ,∆ is an extension of Γ.

The first of these two properties implies that convertibility does not require a proof - it can be
checked automatically. The second one implies that the convertibility can not be imposed by
adding something to the context. Due to these two properties we do not treat definitional equality
(= convertibility) as a part of the language but in a sense as a property of the language. As far
as I understand the same can be said about the definitional equality in the intensional version of
Martin-Lof’s type theory except that there it is made more explicit through the equality judgments.

The properties of the equality types however differ considerably between the Martin-Lof’s system
and our system. First of all in Martin-Lof’s system the equality (identity) types are actually
defined as special instances of the inductive types. Since at the moment I do not understand how
to introduce general inductive types into the homotopy λ-calculus I do not know whether or not
something like this is possible there.

There is another approach to the definition of equality based on the Leibniz idea that two things
are equal if they have the same properties. To make this into a formal definition one needs a
distinguished type Prop (discussed in []). Then one says that for x, y : T one has x =L y if for all
P : T → Prop one has P (x) = P (y). The equality in Prop is defined as equivalence of propositions.
This can be made precise in any context which has Prop and it seems it should be equivalent to
the inhabitation of our equality type eqT (x, y). However even if we fix a Leibniz equality between
x and y it does not give us enough information to replace x by y in constructions since it does not
tell us anything about which equivalence to choose.

12 The leftovers

Remark 12.1 Doing foundations for a mathematician is a little like doing mathematics for a
physicist. One has intuitive ideas of what should be right and what should be wrong but does not
know exactly how to formalize these ideas.

64

The standard example of a type system is the (pure) typed λ-calculus. It is a very general but not
a very rich type system. Consider for example the context (T : Type, f : T → T). A set-theoretic
model M of this context is given by a set X = M(T) together with an endomorphism φ = M(f).
Suppose now that we want to define a context whose model is a set with an involution i.e. with an
endomorphism φ such that φ2 = 1. In order to do so we need to be able to require that f2 = Id.
This ”axiom” should be a part of the context so it has to be expressed in the form e : Rexp(T, f)
where Rexp(T, f) is some type expression of T band f and e is a new variable. On the level of
models it means that we must express the condition that φ2 = Id in terms of non-emptiness of some
set constructed in the language of λ-calculus out of X and φ. One observes that there is not way
of doing this. In the classical λ-calculus one deals with this problem by adding the axiom f2 = Id
as a new conversion rule. This clearly contradicts the philosophy outlined above which considers
conversions to be a part of the type system and the type system to be fixed. In the human language
analogy one would say that one does not modify the grammar of the language each time one wants
to describe a new scene.

Another problem which one encounters in the λ-calculus is the following one. Let us again consider a
set-theoretic model M = (X,φ) of the context (T : Type, f : T → T). The pair (X,φ) ”generates”
many other sets, for example one may consider the set of fixed points of φ i.e. the set {x ∈
X|φ(x) = x}. There is however no way to produce a type R in our context such that M(R) = {x ∈
X|φ(x) = x} which shows that even with equations introduced on the conversion level the usual
typed λ-calculus lacks enough constructors to emulate the most basic set-theoretic operations.

In oder to use a type system to formalize pure mathematics we need it to have, for any type of
mathematical structure, a context whose models are exactly the structures of this type. Let us see
what this meta-condition means. In order to even start thinking about it we have to answer two
questions. What do we mean by a type of mathematical structure? Where our models take values?
Since these questions have no mathematical sense outside of an already chosen formalization of
mathematics we need to address them on the intuitive level.

We can deal with the first question by choosing a few basic types of structure and hoping that if
we can find contexts to represent these types then we will also manage to find contexts to represent
all other types. To get started let us consider for example finite sets. Thus we want to see what is
required from a type system so that we can find a context Γ whose models are finite sets. In this
case we probably should not reflect too much on where our models take values and consider models
in sets.

Suppose now that we want to construct a theory (in a given type system) where we can conveniently
express pure mathematics. Since the notion of a set is central to contemporary pure math there
has to be a type S in this theory whose members we want to think of as sets. One can achieve this
to some extend in classical type systems by creating a context which provides an encoding in terms
of this type system of the Zermelo theory or some version of it (see e.g. [?] where this is done in
the type system of Coq). Doing such a thing however recreates all the problems with the Zermelo
approach to set theory the major one of which from my point of view is the fact that in this theory
one can formulate and prove theorems about sets which are not invariant under isomorphisms of
sets.

The version I am looking into right now is based on the idea that along with the usual dependent

65

sum and dependent product there is a group of additional type constructors of the following form.
First, for any finite (labeled) simplicial set B and any type T there is a new type T (B). Second
for any B as above, any simplicial subset A of B and any term x : T (A) there is a type T (B,A, x).
One has term constructors and conversions to ensure among other things that T (pt) = T and
T (A

∐
B) = T (A)× T (B). The basic example is that for < x, y >: T × T = T ({0}

∐
{1}) the type

eq(x, y) = T (∆1, ∂∆1, < x, y >)

is the type of equivalences between x and y in T . There are also term constructors and conversions
which ensure that T (B,A, x) is contravariantly functorial with respect to maps of pairs (B,A) →
(B′, A′) and that T (A)(A′) = T (A×A′). Together with a sort of Kan axiom these structures allow
one to define things like compositions of equivalences and prove that these compositions have good
properties.

What is outlined is a language. As always in type theory a theory in this language is given by a
context i.e. a series of declarations of generating types and terms of the form T1, ...Tn : Type and
c1 : R1, ..., cn : Rn where Ri is a type expression of T1, .., Tn and c1, ...ci−1. Given a context Γ it
makes sense to speak of models of the theory which Γ defines. Standard models in my approach
take values not in the (a) category of sets but in the (a) homotopy category which one can think
of as the category of ∞-groupoids.

It can still be defined for members of types but is not reflexive unless the type is of level 1 i.e. is
mapped to a set (as opposed to a general infinity groupoid) by any model.

It is crucial to understand what we mean by a model. We will distinguish three kinds of models:
external models, horizontal (internal) models and vertical (internal) models.

If one wants to use a type system to build foundations of mathematics external models can only be
used for illustrative purposes. Indeed, one of the major problems in any approach to foundations
is to formalize the notion of a set and before speaking about sets in the definition of a model or
in any other context we need to say what a set is first. Therefore on the formal level we can only
consider models of one context in another. As it turns out there are two possible notions of such
models. I shall call them horizontal models and vertical models. Horizontal models correspond to
the logical notion of interpretation while vertical models correspond to models proper.

Suppose first that I have a set-theoretic model of a context Γ = (T : Type, t : R(T)) in the intuitive
sense outlined above. How to translate this model into some structure defined entirely in the
framework of our type system? First we should choose a formalization of set theory in our system.
It means that we have to define a context SetTheory whose set-theoretic models are set-theoretic
models of set theory. In particular there should be a type Sets in SetTheory whose members we
think of as sets and enough structures on this type to emulate the usual operations with sets. Our
intuitive model M assigned a set X to T and an element x in R(X) to t where R(X) refers to
the set obtained by applying the type constructor R(−) to the set X according to some procedure
for doing so. Hence, the formal version of M should assign a member X of Sets to T and ”an
element x of R(X)” to t. In order to make sense of the part of the sentence in the quotes we
should be able to do two things. First we should be able to define a new member r(X) of sets by
translating somehow the type constructor R into a term constructor r for terms of Sets. Second,
we should be able to assign a type τ(A) to each member A of Sets in a manner compatible with

66

our constructor translation. Then the quoted phrase above can be replaced by ”and a member x
of the type τ(r(X))”.

This will be called a (slanted) model of Γ in Sets. The name slanted comes from the fact that our
model assigns a term to a type. Horizontal models discussed above assign a type to a type. The
key advantage of slanted models is that they are classifiable i.e. for any context Γ and any universe
Ω the set of all models of Γ in Ω can be identified with the set of all terms of a type Γ(Ω) which
is defined in the context Ω. For example, if Gr is the context encoding the notion of a group then
Gr(Ω) will be the type of groups in Ω.

To describe the second problem suppose that we want to have a context (theory) useful for the
formalization of our intuitive dealings with finite sets. In particular this means that we want to
have a type S in this context whose members we want to think of as finite sets.

The next thing to understand is what happens given (Γ, v : Q ` R(v) : Type) and (Γ, φ : eqQ(x, y)).
It is clear that ultimately one should have then R(φ) : EqType(R(x), R(y)). The question is can we
then provide all necessary conversions in a concise way. Eq(T1, T2) can be defined as:

[eqdef1]{f : T1 → T2, b : T2 → T1, φ : eqT1→T1(Id, bf), ψ : eqT2→T2(Id, fb), α : eqeqT1→T2
(f,fbf)(ψ∗f, f∗φ)}

(25)
Another approach is to define Eq(T1, T2) as having infinitely many components. One could also

define it through the use of ∃ but this looks like bad idea since ∃ normally should appear in the
theory much later (together with ∅). Let’s see if we can rewrite the definition (25) more explicitly
i.e. without so far undefined compositions. Instead of bf we have to write λx : T1.bfx, instead
of fb should write λy : T2.fby. Instead of fbf should write λx : T1.fbfx. So far so good. What
should we write instead of ψ ∗ f? Looks like λx : T1.ψfx. This works by our rule (13). According
to this rule the expression λx : T1.ψfx lies in

eqT1→T1(λx : T1.(λy : T2.y)fx, λx : T1.(λy : T2.fby)fx)

which through β-conversion will give us

eqT1→T1(λx : T1.fx, λx : T1.fbfx).

Good. Now f ∗ φ. This seems to be λx : T1.fφx. It lies in

eqT1→T1(λx : T1.f(λx′ : T1.x
′)x, λx : T1.f(λx′ : T1.bfx

′)x)

It is fine provided we know that λx : T1.f(λx′ : T1.x
′)x : T1 → T1. Do we? Looks OK. Summarizing:

ψ ∗ f = λx : T1.ψfx

f ∗ φ = λx : T1.fφx.

Going back to what happens given (Γ, v : Q ` R(v) : Type) and (Γ, φ : eqQ(x, y)). What if we
simply require that R(φ) : R(x)→ R(y). Can we then construct R(y)→ R(x) and the rest of the
equivalence structure?

We will most likely need to introduce the inverses for equivalences first. E.g. lets state the rule

[inv1]
Γ ` φ : eqQ(x, y)

Γ ` φ−1 : eqQ(y, x),Θ : eqeqQ(x,x)(φ−1φ, Id)
(26)

67

This should be enough for everything. First need to formulate the rule properly i.e. expand/explain
φ−1φ. In general given φ : eqQ(x, y), ψ : eqQ(y, z) what is ψφ? First it seems that we can do even
better with (26) by requiring both left and right inverses with the corresponding homotopies and
providing no relation between the two. Of course one can be constructed from another but may
be more notationally convenient to have both? Back to the composition ψφ. This composition is
obtained from our ”R(φ)” rule. Note first that we should be able to write

eq(φ, y) : eq(x, y)→ eq(y, y)

eq(φ, x) : eq(x, x)→ eq(y, x)

eq(x, φ) : eq(x, x)→ eq(x, y)

eq(y, φ) : eq(y, x)→ eq(y, y).

Clearly, our idea is that eq(φ, x)Idx = φ−1. Strange that we are getting only one inverse. For φ, ψ
we have:

eq(x, ψ) : eq(x, y)→ eq(x, z)

and ψφ := eq(x, ψ)φ.

Sum associated term expressions:

1. if Q is a valid type expression in Γ and S is a valid type expression in (Γ, y : Q) if further
l1 is a valid term expression of type Q in Γ and l2 is a valid term expression of type S in
(Γ, y : Q) then 〈l1, l2〉 is a valid type expression in Γ of type

∑
y:Q S.

For a type X and n ≥ −1 let Πn(X) be the i-th stage of its Postnikoff tower which we define for
n = −1 as ∅ if X = ∅ and pt if X 6= ∅. For any X the space Πn(X) is of level n+ 1 and the functor
X 7→ Πn(X) is the left adjoint to the inclusion of the types of level n+ 1 to all types. We will use
the following description of Π−1 and Π0:

Lemma 12.2 [pi01] For any X one has:

1. Π−1(X) = Hom(Hom(X, ∅), ∅)

2. Π0(X) is the image of the natural map X → Hom(Hom(X, {0, 1}), {0, 1}).

The lemmas formulated below are simple corollaries of the (sem-)formal description of the syntax
which is given in the appendix. The formal description in terms of rules is needed only to ensure
that a language satisfying these lemmas exists. In practice the lemmas provide a more convenient
description than the rules. When we formulate a lemma for Hλ without an index it means that it
holds in all three systems Hλi. The equality sign everywhere below is used in the notational sense
i.e. to indicate that both sides are syntactically equal.

Lemma 12.3 [context0] A sentence of the form c1 : R1, . . . , cm : Rm ` is a sequent in Hλ iff
one of the following conditions holds:

68

1. m = n = 0 i.e. the sentence is of the form `,

2. m = 0, n ≥ 1, T1, . . . , Tn ∈ GT and Ti 6= Tj for i 6= j,

3. m > 0, c1 : R1, . . . , cm−1 : Rm−1 ` Rm : Type is a sequent and cm ∈ var − {c1, . . . , cm−1}.

Lemma 12.4 [context1] Let Γ = c1 : R1, . . . , cm : Rm be such that Γ ` is a sequent in Hλ. Then
one has:

1. Ti 6= Tj for i 6= j

2. ci 6= cj for i 6= j

3. let j < m and Γ≤j = c1 : R1, . . . , cj : Rj then Γ≤j ` Rj+1 : Type is a sequent.

Lemma 12.5 [type0] Let Γ be a sentence of the standard form (??). A sentence of the form
Γ ` S : Type is a sequent in Hλ0 iff Γ ` is a sequent and one of the following conditions holds:

1. S ∈ {T1, . . . , Tn}

2. S =
∑
y : R.Q and Γ, y : R ` Q : Type is a sequent,

3. S =
∏
y : R.Q and Γ, y : R ` Q : Type is a sequent,

4. S = eq(R; r, r′) and Γ ` r : R and Γ ` r′ : R are sequents.

Lemma 12.6 [term0] Let Γ be a sentence of the standard form (??). A sentence of the form
Γ ` s : S is a sequent in Hλ0 iff Γ ` S : Type is a sequent and one of the following conditions
holds:

1. s : S = cj : Rj for some j = 1, . . . ,m

2.

A model M of Γ in Top is given by a sequence of topological spaces Xi = M(Ti) one for each of the
generating types T1 . . . Tn and points xi = M(ci) in the spaces M(Ri) corresponding to the type
expressions Ri.

The key feature of the homotopy λ-calculus is the ”invariance” of models with respect to homotopy
equivalences. Consider for example the context Γ = (T1, . . . , Tn : Type). A model M of Γ is a
collection of topological spaces Xi = M(Ti) for i = 1, . . . , n. Let X ′i = M ′(Ti) be another model
of Γ and let fi : Xi → X ′i be homotopy equivalences. The invariance property in this case means
that for any type expression R in Γ there exists a homotopy equivalence f(R) : M(R)→ M ′(R).
Hence, while we speak of models in Top the real target category is the homotopy category H.
It is important to note that models are not functorial with respect to maps Xi → X ′i (or even

69

with respect to homotopy equivalences). For example, it is not difficult to define in the context
(T : Type) a type expression End such that for a model X = M(T) the space M(End) will
be homotopy equivalent to the space End(X) of endomorphisms of X. Clearly, End(X) is not
functorial with respect to X. However, if f : X → X ′ is a homotopy equivalence then there exists
a homotopy equivalence End(X)→ End(X ′).

Lemma 12.7 [typeeq] A sentence Γ ` S ≡ S′ : Type is a sequent iff one of the following mutually
exclusive conditions holds:

1. Condition (1) of Lemma 4.10 holds for S and S = S′

2. Condition (2) of Lemma 4.10 holds for S and one has:

(a) S′ =
∑
y′ : R′.Q′

(b) Γ ` R ≡ R′ : Type and Γ ` Q ≡ Q′(y/y′) : Type are sequents.

3. Condition (3) of Lemma 4.10 holds for S and one has:

(a) S′ =
∏
y′ : R′.Q′

(b) Γ ` R ≡ R′ : Type and Γ ` Q ≡ Q′(y/y′) : Type are sequents.

4. Condition (4) of Lemma 4.10 holds for S and one has

(a) S′ = eq(R′; r′′, r′′′)

(b) Γ ` R ≡ R′, Γ ` r ≡ r′′ : R and Γ ` r′ ≡ r′′ : R are sequents.

Proof: The fact that the conditions are mutually exclusive follows from the fact that the conditions
in Lemma 4.10 are mutually exclusive. Let us show that for each Γ ` S ≡ S′ : Type one of the four
conditions holds.

Sequents of the form Γ ` S ≡ S′ : Type are generated by the rules (??), (??) and (??). Assume
that S satisfies condition (1) of Lemma 4.10.

References

70

