Homotopy λ-calculus

Vladimir Voevodsky

Started September 23, 2006

Here is the general picture as I understand it at the moment. Let us consider the type system $T S_{\infty}$ which is generated by the following rules:
1.

$$
\frac{\vdash}{\vdash U_{i}: U_{i+1}}
$$

for all $i=-1,0,1, \ldots$
2.

$$
\frac{\Gamma \vdash T: U_{i}}{\Gamma \vdash T: U_{i+1}}
$$

3.

$$
\frac{\Gamma \vdash T: U_{i}}{\Gamma \vdash T: T y p e}
$$

4. The usual dependent \prod-rules (inside each U_{n})
5. The usual dependent \sum-rules with strong elimination (inside each U_{n})

We may also consider systems $T S_{n}$ where U_{i} are only defines for $i \leq n$. E.g. $T S_{-2}$ will be empty, $T S_{-1}$ will have one generating type U_{-1} with no terms. It looks similar to the usual λ-calculus with one generating type. Starting with $T S_{0}$ there are real dependencies.

Let $C C_{\infty}$ (resp. $C C_{n}$) be the contexts category of $T S_{\infty}$. The category $C C_{-2}$ is empty and $C C_{-1}$ is probably the free Cartesian closed category generated by one object U_{-1}.

Let us consider now models of $T S_{\infty}$ with values in a category D i.e. functors $C C_{\infty} \rightarrow D$ which "preserve the relevant structures". I claim that there is a canonical model M of $T S_{\infty}$ with values in the usual homotopy category H provided that we consider homotopy types based on a sufficiently large universe of sets. This model takes U_{-1} to \emptyset and U_{0} to $\{0,1\}$. The object U_{1} goes to the homotopy type $\coprod_{n \geq 0} B S_{n}$ where $B S_{n}$ is the classifying space of the permutation group on n elements (e.g. $B S_{0}$ is empty, $B S_{1}$ is one point and $B S_{2}$ is homotopy equivalent to $\mathbf{R} P^{\infty}=B \mathbf{Z} / 2$. In particular, $\pi_{0}\left(M\left(U_{1}\right)\right)=\mathbf{N}$. As far as I understand at the moment $M\left(U_{2}\right)$ is $\coprod_{X \in u_{2}} B A u t(X)$ where u_{2} is the set of equivalence classes of all groupoids with sets of morphisms and objects being $Z F$-sets. Starting with U_{2} one needs $Z F$ with universes in order for the model to be defined. The model of U_{3} is the nerve of the 2-groupoid of 1-groupoids in ZF with one universe. In general the model of U_{n} is the nerve of the $(n-1)$-groupoid of $(n-2)$-groupoids in the ZF with $n-2$ universes. Since n-groupoids are the same as n-homotopy types one can also say it in a purely homotopy-theoretic way.

This model is very "incomplete" in the sense that there are many type expressions T such that $M(T)$ is non-empty while T has no terms in $T S$. This is of course unavoidable because of the Goedel's theorem. However, some of these incompletenesses are of a special kind. For example for any T the space $M\left(\left(\left(T \rightarrow U_{-1}\right) \rightarrow U_{-1}\right) \rightarrow T\right)$ is non-empty (this is a combination of Boolean property with some weak form of the axiom of choice) while the type $\left(\left(T \rightarrow U_{-1}\right) \rightarrow U_{-1}\right) \rightarrow T$ may well have no terms. There are other more sophisticated examples.

The homotopy λ-calculus $H \lambda$ is the hypothetical extension of $T S_{\infty}$ which includes new rules which are necessary to prevent such "obvious" incompletenesses. There are three groups of rules which I can see right away. The Boolean rule, the axiom of choice rule and a whole group of rules which are related to the equality types. The later ones are most interesting.

Given a space X (I use the word "space" pretty much as a synonym for the "homotopy type") and two points $p, q \in X$ let $P(X ; p, q)$ be the space of paths from p to q. If X is (the nerve of) a groupoid and p, q are objects then $P(X ; p, q)$ is the set of isomorphisms from p to Q in X. The first non-trivial observation is that for a type expression T and two term expressions $t 1, t 2$ of type T it is possible to write down a type expression $e q(T ; t 1, t 2)$ such that $M(e q(T ; t 1, t 2))=P(M(T) ; M(t 1), M(t 2))$. I want to call $e q(T ; t 1, t 2)$ the equality type for $t 1, t 2$ in T. Here is one way to get it. We start with $T: U_{n}$ and $T 1: T, T 2: T$. The formula for $e q$ will depend on n and will be defined by induction on n. Set

$$
\begin{gathered}
\text { true }=\left(U_{-1} \rightarrow U_{-1}\right): U_{0} \\
\text { false }=U_{-1}: U_{0} .
\end{gathered}
$$

and for $T, T^{\prime}: U_{0}$ set

$$
\operatorname{Equiv}\left(T, T^{\prime}\right)=\left(T \rightarrow T^{\prime}\right) \times\left(T^{\prime} \rightarrow T\right)
$$

For $T: U_{n}$ set

$$
\operatorname{Contr}(T)=\prod F: U_{n} \rightarrow U_{0} \cdot \operatorname{Equiv}(F(T), F(\text { true }))
$$

then $M(\operatorname{Contr}(T)) \neq \emptyset$ iff $M(T)$ belongs to the same connected component of $M\left(U_{n}\right)$ as $M($ true $)$ i.e. if $M(T)$ is a contractible space. In that case $M(\operatorname{Contr}(T))$ is itself contractible.

For $F: T \rightarrow U_{n}$ set

$$
\operatorname{rep}(F)=\operatorname{Contr}\left(\sum t: T \cdot F(T)\right)
$$

On the level of models envisioned as higher groupoids the type $T \rightarrow U_{n}$ is the type of all functors from T to the n-groupoid of all ($n-1$)-groupoids (of bounded size) and their equivalences. Among these there are representable functors. One verifies that on the level of models $\operatorname{rep}(F) \neq \emptyset$ iff F is representable. Set

$$
\operatorname{Rep}(T)=\sum F: T \rightarrow U_{n} \cdot \operatorname{rep}(F) .
$$

i.e. $\operatorname{Rep}(T)$ is the space of representable functors on T. Consider the evaluation map restricted to representable functors

$$
\text { rev }: T \rightarrow\left(\left(T \rightarrow U_{n}\right) \rightarrow U_{n}\right) \rightarrow\left(\operatorname{Rep}(T) \rightarrow U_{n}\right)
$$

This map should be a full embedding. Hence we would expect that for $t 1, t 2: T$ one has

$$
e q(T ; t 1, t 2)=e q\left(\left(\operatorname{Rep}(T) \rightarrow U_{n}\right), \operatorname{rev}(t 1), \operatorname{rev}(t 2)\right)
$$

On the other hand for $F, G: T \rightarrow T^{\prime}$ one should have

$$
e q\left(T \rightarrow T^{\prime} ; F, G\right)=\prod t: T . e q\left(T^{\prime} ; F(t), G(t)\right)
$$

(this is kind of functional extensionality of equality). Hence

$$
e q(T ; t 1, t 2)=\prod X: \operatorname{Rep}(T) \cdot e q\left(U_{n} ; \operatorname{rev}(t 1)(X), \operatorname{rev}(t 2)(X)\right) .
$$

Thus we have reduced the problem of defining $e q(T ; t 1, t 2)$ for $T: U_{n}$ to the problem of defining $e q\left(U_{n} ; X, Y\right)$ for $X, Y: U_{n}$. Proceed by induction as follows:

1. For $X, Y: U_{0}$ set $e q\left(U_{0} ; X, Y\right)=\operatorname{Equiv}(X, Y)=(X \rightarrow Y) \times(Y \rightarrow X)$
2. Assuming that $e q\left(U_{n-1} ;-,-\right)$ are defined and therefore $e q(T ;-,-)$ are defined for $T: U_{n}$ set:

Then $M(\operatorname{Rep}(T))$ is the space of representable functors on T which should be equivalent to T if $T: U_{n}$. We may construct a map $T \rightarrow \operatorname{Rep}(T)$ on the level of the type system as the composition of two obvious maps:

The categories $C C$ have an additional structure. Namely, there are functors U_{∞} and \tilde{U}_{∞} from $C C$ to Sets and a morphism $\tilde{U}_{\infty} \rightarrow U_{\infty}$ which are defined as follows. The functor U_{∞} sends a context Γ to the set of all sequents of the form $\Gamma \vdash T$: Type, the functor \tilde{U}_{∞} sends Γ to the set of all sequents of the form $\Gamma \vdash t: T$ where $\Gamma \vdash T:$ Type. The morphism is obvious. The functor U_{∞} has the representable functors U_{n} for $n<\infty$ as its subfunctors according to the second group of rules.

Any functor $M: C \rightarrow D$ defines the inverse image functor $M^{*}: F u n c t(C, S e t s) \rightarrow F u n c t(D, S e t s)$. If F is representable by X then $M^{*}(F)$ is representable by $M(X)$. The functor M^{*} also preserves monomorphisms. Hence, any model M of T in D defines a morphism of functors $\tilde{F}_{M} \rightarrow F_{M}$ where $F_{M}=M^{*}\left(U_{\infty}\right)$ and similarly for \tilde{F}_{M}. The functor $F(M)$ contains $M\left(U_{n}\right)$ as representable subfunctors.

