
Homotopy λ-calculus

Vladimir Voevodsky

Started September 23, 2006

Here is the general picture as I understand it at the moment. Let us consider the type system TS∞
which is generated by the following rules:

1.
`

` Ui : Ui+1

for all i = −1, 0, 1, . . .

2.
Γ ` T : Ui

Γ ` T : Ui+1

3.
Γ ` T : Ui

Γ ` T : Type

4. The usual dependent
∏

-rules (inside each Un)

5. The usual dependent
∑

-rules with strong elimination (inside each Un)

We may also consider systems TSn where Ui are only defines for i ≤ n. E.g. TS−2 will be empty,
TS−1 will have one generating type U−1 with no terms. It looks similar to the usual λ-calculus
with one generating type. Starting with TS0 there are real dependencies.

Let CC∞ (resp. CCn) be the contexts category of TS∞. The category CC−2 is empty and CC−1

is probably the free Cartesian closed category generated by one object U−1.

Let us consider now models of TS∞ with values in a category D i.e. functors CC∞ → D which
”preserve the relevant structures”. I claim that there is a canonical model M of TS∞ with values in
the usual homotopy category H provided that we consider homotopy types based on a sufficiently
large universe of sets. This model takes U−1 to ∅ and U0 to {0, 1}. The object U1 goes to the
homotopy type

∐
n≥0 BSn where BSn is the classifying space of the permutation group on n

elements (e.g. BS0 is empty, BS1 is one point and BS2 is homotopy equivalent to RP∞ = BZ/2.
In particular, π0(M(U1)) = N. As far as I understand at the moment M(U2) is

∐
X∈u2

BAut(X)
where u2 is the set of equivalence classes of all groupoids with sets of morphisms and objects being
ZF -sets. Starting with U2 one needs ZF with universes in order for the model to be defined. The
model of U3 is the nerve of the 2-groupoid of 1-groupoids in ZF with one universe. In general
the model of Un is the nerve of the (n − 1)-groupoid of (n − 2)-groupoids in the ZF with n − 2
universes. Since n-groupoids are the same as n-homotopy types one can also say it in a purely
homotopy-theoretic way.

1



This model is very ”incomplete” in the sense that there are many type expressions T such that
M(T ) is non-empty while T has no terms in TS. This is of course unavoidable because of the
Goedel’s theorem. However, some of these incompletenesses are of a special kind. For example for
any T the space M(((T → U−1) → U−1) → T ) is non-empty (this is a combination of Boolean
property with some weak form of the axiom of choice) while the type ((T → U−1) → U−1) → T
may well have no terms. There are other more sophisticated examples.

The homotopy λ-calculus Hλ is the hypothetical extension of TS∞ which includes new rules which
are necessary to prevent such ”obvious” incompletenesses. There are three groups of rules which I
can see right away. The Boolean rule, the axiom of choice rule and a whole group of rules which
are related to the equality types. The later ones are most interesting.

Given a space X (I use the word ”space” pretty much as a synonym for the ”homotopy type”) and
two points p, q ∈ X let P (X; p, q) be the space of paths from p to q. If X is (the nerve of) a groupoid
and p, q are objects then P (X; p, q) is the set of isomorphisms from p to Q in X. The first non-trivial
observation is that for a type expression T and two term expressions t1, t2 of type T it is possible
to write down a type expression eq(T ; t1, t2) such that M(eq(T ; t1, t2)) = P (M(T );M(t1),M(t2)).
I want to call eq(T ; t1, t2) the equality type for t1, t2 in T . Here is one way to get it. We start with
T : Un and T1 : T , T2 : T . The formula for eq will depend on n and will be defined by induction
on n. Set

true = (U−1 → U−1) : U0

false = U−1 : U0.

and for T, T ′ : U0 set
Equiv(T, T ′) = (T → T ′)× (T ′ → T ).

For T : Un set
Contr(T ) =

∏
F : Un → U0.Equiv(F (T ), F (true))

then M(Contr(T )) 6= ∅ iff M(T ) belongs to the same connected component of M(Un) as M(true)
i.e. if M(T ) is a contractible space. In that case M(Contr(T )) is itself contractible.

For F : T → Un set
rep(F ) = Contr(

∑
t : T.F (T )).

On the level of models envisioned as higher groupoids the type T → Un is the type of all functors
from T to the n-groupoid of all (n− 1)-groupoids (of bounded size) and their equivalences. Among
these there are representable functors. One verifies that on the level of models rep(F ) 6= ∅ iff F is
representable. Set

Rep(T ) =
∑

F : T → Un.rep(F ).

i.e. Rep(T ) is the space of representable functors on T . Consider the evaluation map restricted to
representable functors

rev : T → ((T → Un) → Un) → (Rep(T ) → Un)

This map should be a full embedding. Hence we would expect that for t1, t2 : T one has

eq(T ; t1, t2) = eq((Rep(T ) → Un), rev(t1), rev(t2))

2



On the other hand for F,G : T → T ′ one should have

eq(T → T ′;F,G) =
∏

t : T.eq(T ′;F (t), G(t))

(this is kind of functional extensionality of equality). Hence

eq(T ; t1, t2) =
∏

X : Rep(T ).eq(Un; rev(t1)(X), rev(t2)(X)).

Thus we have reduced the problem of defining eq(T ; t1, t2) for T : Un to the problem of defining
eq(Un;X, Y ) for X, Y : Un. Proceed by induction as follows:

1. For X, Y : U0 set eq(U0;X, Y ) = Equiv(X, Y ) = (X → Y )× (Y → X)

2. Assuming that eq(Un−1;−,−) are defined and therefore eq(T ;−,−) are defined for T : Un

set:

Then M(Rep(T )) is the space of representable functors on T which should be equivalent to T if
T : Un. We may construct a map T → Rep(T ) on the level of the type system as the composition
of two obvious maps:

The categories CC have an additional structure. Namely, there are functors U∞ and Ũ∞ from CC
to Sets and a morphism Ũ∞ → U∞ which are defined as follows. The functor U∞ sends a context
Γ to the set of all sequents of the form Γ ` T : Type, the functor Ũ∞ sends Γ to the set of all
sequents of the form Γ ` t : T where Γ ` T : Type. The morphism is obvious. The functor U∞ has
the representable functors Un for n < ∞ as its subfunctors according to the second group of rules.

Any functor M : C → D defines the inverse image functor M∗ : Funct(C,Sets) → Funct(D,Sets).
If F is representable by X then M∗(F ) is representable by M(X). The functor M∗ also preserves
monomorphisms. Hence, any model M of T in D defines a morphism of functors F̃M → FM

where FM = M∗(U∞) and similarly for F̃M . The functor F (M) contains M(Un) as representable
subfunctors.

3


