
Dear Bill and Peter,

I asked the question about free toposes in connection with an old dream of mine which now seems
to be getting more solid. The ultimate goal is to find a way to formulate mathematics which
would be suitable for creating a formal ”database” of math knowledge (on a computer). This
should eventually require all the proofs there to be computer verified but as a first step it looks
more important to find a good way to catalogue the definitions and the statements which we
(mathematicians) claim to be proved.

Anyway, the approaches currently in use (type theory etc.) always looked to me very unfortunate
from the intuitive point of view. In my mind, at least, the math world looks like a category. Its
objects (called further m-objects) correspond to the classes of math objects i.e. there is an m-object
called [sets] and an m-object called [rings] and an m-object called [sheavesofringsonatopologicalspace].
Its morphisms (called further m-morphisms) correspond to constructions. For example there is an
m-morphism [groups] → [groups] which takes a group to its group of automorphisms. Subobjects
correspond to properties of math objects (e.g [abeliangroups] is a subobject of [groups]). Mathe-
matical theorems are statements asserting that two morphisms coincide or that one subobject lies
in another.

”Concrete” mathematical objects are m-constants i.e. morphisms from the final m-object pt.
E.g there is a morphism pt → [abelian groups] called ”natural numbers” and a morphism pt →
[categories] called ”the category of (small) sets”. In particular, morphisms pt → [sets] should cor-
respond to the constructively definable sets. The whole category should be countable. A particular
”model” of mathematics is a good functor from this category to the category of sets (sufficiently
large sets will be required) but these models are not of much importance. There not enough models
to use them directly to establish theorems but they may be used to establish that some theorems
do not hold (i.e. are not provable).

For all this to be useful from the practical point of view there should be an effective way to
describe our state of knowledge about this category. Eventually one expects to have a searchable
and somehow structured database containing known m-objects, m-morphisms , identities between
morphisms etc.

There are probably many categories which can be used for this purpose just as there are many
programming languages. Here is a possible candidate. Let me denote it by M. It is an elementary
booleans topos freely generated by a ”seed”. To describe the seed and for the further use let me
denote the power object of an object X in a topos by S̄X. One of the reasons I am not using the
standard notation PX is that I want to treat X 7→ X̄ as a covariant functor.

The seed looks as follows. It is given by two objects E and S and two monomorphisms ν : S → E
and ι : S → S̄E. The second one will be considered as the defining i.e. we’ll think of S as
a subobject in S̄E. The triple (S, ν, ι) should satisfy some conditions which I will discuss in a
moment.

The meaning of the components of the seed are as follows. The unusual one is E. It is to be
understood as the class of everything in the world which can be an element. Intuitively it includes
apples, trees, real numbers etc. By definition S̄E corresponds to subobjects of E. They correspond
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to (possibly large) sets. The subobject S in S̄E corresponds to small sets. The map ν is the
”naming map” it takes a small set to its name which is considered as an element.

The elementary conditions on the seed are as follows:

1. all singletons are small sets

2. union of two small sets is a small set

3. any subset of a small set is small

4. for any small set the set of names of its subsets is small

When only these conditions are required there is a ”finite” model for our category which sends E
to any infinite set and S to the set of finite subsets of E. We will now introduce ”axiom of infinity”.
Consider the m-morphism φ : S → S which takes a small set A to the small set A ∪ ν(A). Define
ZF-natural numbers ZN ⊂ S as the intersection of all subobjects of S which contain ∅ and are
closed under operation φ. Then ν(ZN) is a subobject in E. We require that ν(ZN) ∈ S i.e. ν(ZN)
is a small set. This is the axiom of infinity. The small set N = ν(ZN) is called the set of natural
numbers. I have not quite checked it yet but it seems likely that one can prove that N is a natural
numbers object in our topos.

As far as I understand the infinity axiom implies that any model of our category (or equivalently
of the seed) will have to send E to a large cardinal.

There is another way to introduce the natural numbers which does not require the naming map.
Denote S̄E by [sets]. It is not hard then to define the m-object [maps] and morphisms s, t :
[maps] → [sets], Id : [sets] → [maps], ◦ : [maps] ×[sets] [maps] → [maps] which form an internal
category in M and such that [maps] corresponds in models to maps between sets. After that one
can define the isomorphism equivalence relation Iso ⊂ [sets]× [sets] on [sets]. Then one can define
finite sets as the ones not isomorphic to a proper subset. Then one can define a subobject CN of
S̄S̄[sets] = S̄S̄S̄E whose elements are isomorphism classes of finite sets. Provided the naming map
satisfying the appropriate properties is given one should be able to show that CN ∼= ZN and in
particular can be embedded into S̄E. The infinity axiom would them imply that it can be further
embedded into E.

While the seed (E,S, ν, ι) is probably sufficient in order to formulate most of mathematics it seems
that in reality we use a more complex seed in our thinking. One of the attractive points of the
point of view outlined above is that it is easy to modify the seed without introducing dramatic
changes to the general approach. One particular modification which appears both quite harmless
and very useful is as follows. Let us add to our see a morphism c : E×E → E about which we will
assume two things

1. c is associative

2. c is a monomorphism.
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Intuitively, the idea is that if we have two elements a, b then we can form their ”ordered pair” ab in
a strictly associative way. I do not know if one may construct c with these properties from ν and ι.
In any event such a morphism corresponds quite well to our intuitive way of thinking about finite
sequences of elements. Once we added c to the seed we can, for example, define strictly associative
finite products of sets (which should also imply strictly associative finite coproducts) which makes
life dramatically easier.

There may be other useful enlargements of the seed. As long as we keep the seed consisting of
structures which are intuitively accepted and follow strict rules of generating further structures
from the seed we should be OK.
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