Dynamic logic. Stage 1

Vladimir Voevodsky

Started May 14, 2005

1 The seed

- 1. Basic p-classes:
 - (a) E class of elements
 - (b) S class of small sets
- 2. Basic p-constructions:
 - (a) $c: E \times E \to E$ concatenation
 - (b) $\nu: S \to E$ naming
 - (c) $\eta: S \to \bar{S}E$
- 3. Basic properties:
 - (a) c is a monomorphism
 - (b) c is associative
 - (c) ν is a monomorphism
 - (d) η is a defining monomorphism
 - (e) $\emptyset \in S$
 - (f) Let $s: E \to \overline{S}E$ be the singleton map. Then $s(E) \subset S$.
 - (g) Let $u: \overline{S}E \times \overline{S}E \to \overline{S}E$ be the union map. Then $u(S \times S) \subset S$.
 - (h) Let $A \in S$ and $B \subset A$, then $A \in S$.
 - (i) Let $A \in S$ and $2^A \in \overline{SS}$ the set of subsets of A. Then $\overline{S\nu}(2^A) \in S$.

2 Beginning of the story

Definition 2.1 /md1/

- 1. A set is an object of $\overline{S}E$
- 2. A small set is an object of S

Definition 2.2 [d2] Product construction is a morphism prod : $barSE \times \overline{S}E \rightarrow \overline{S}E$ defined as the composition

$$\bar{S}E \times \bar{S}E \to \bar{S}(E \times E) \xrightarrow{Sc} \bar{S}E$$

It is denoted by $(A, B) \mapsto A \times B$.

Lemma 2.3 /11/ The product construction is strictly associative i.e.

$$prod \circ (prod \times Id_E) = prod \circ (Id_E \times prod).$$

Proof: ???

Definition 2.4 [md3] An embedded pair of sets $(A \subset B)$ is an object of $\overline{S}E \times \overline{S}E$ which belongs to inclusion subobject $Incl \subset \overline{S}E\overline{S}E$.

Definition 2.5 [md3] A correspondence (between sets) is an object (A, B, ϕ) of $\overline{S}E \times \overline{S}E \times \overline{S}E$ which belongs to

$$Cor\bar{S}E = (prod \times Id_{\bar{S}E})^{-1}(Incl)$$

i.e. such that ϕ is a subset in $A \times B$.

Definition 2.6 [md4] A map from a set A to a set B is an object of $Maps\bar{S}E \subset Cor\bar{S}E$ where $(A, B, \phi) \in Maps$ iff $\forall a \in A \exists ! b \in B$ such that $c(a, b) \in \phi$.