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Introduction

The goal of this note is to give a definition of two universes [1] p : U — U and pp : Up — Up in
the category of cubical set. This first universe is a universe of cubical sets. The second universe is the
universe of “fibrant” cubical sets, and provides a model of type theory with dependent product, sum,
identity types and function extensionality. Furthermore, it is fibrant and univalent.

Cubical sets

Definition of the base category

A de Morgan algebra is a bounded distributive lattice A, with a top element 1 and a bottom element 0
and with an operation 1 — ¢ satisfying

1-0=1 1-1=0 1-(iVj)=00—-)A1-j) 1-(@rj)=1-i)V(1-j)

This notion differs from the one of Boolean algebra by requiring neither 1 =4V (1 —¢) nor 0 =4 A (1 —1).
A prime example of a de Morgan algebra, which is not a Boolean algebra, is the interval [0,1] with
max(i, 7), min(z, j) operations.

We assume a given (discrete) set of symbols/names/directions, not containing 0,1. We let I, J, K, . ..
denote finite sets of such symbols. We also assume a function fresh(I) which selects a name not in I.
Let C be the following precategory. The objects are finite sets of names I, J, K,.... A morphism I — J
is a map I — dM(J), where dM(J) is the free de Morgan algebra on J. We think of f as a substitution
and may write if the element f(i) in dM(J). If f : I — J and g : J — K we write fg : I — K the
composition of f and g. We write 1; : I — I the identity map. A cubical set is a presheaf on C°PP i.e. a
functor C — Set.

Another equivalent definition of C°PP(I,.J) is the set of monotone maps 27 x 27 — 27 x 27,

We shall need a few notions and properties of the base category that are listed in Appendix 1.

A cubical set X is thus given by a family of sets X (I) together with a restriction map
X(I)— X(J)

u+— uf

such that ul; = v and (uf)g = u(fg). (We write uf for what is usually written X (f)(u), since we want
to think about this operation as a substitution; the elements of X (I) for I =44, ...,1, are thought of as
elements u = u(i1,...,%,) depending on 41, ...,%, and the restriction uf as a substitution operation.)

If X is a presheaf on the slice category C/I we let I'(X) be the set X(I,1;). If X and Y are two
presheaves on C/I an element of I'(X — Y') is given by a family of maps ws s : X(J, f) = Y (J, f) such
that (w(s,5) u)g = w(k,tq) ug. We also can consider the presheaf P(X), with P(X)(J, f) = X(j,J, ft;)
where j = fresh(J). We can then define the set Iso(X,Y") as a subset of

N(X=2Y)x (Y =X)x (X = PY)) x (Y = P(X)))



The universe of cubical sets

We fix a set V' of small sets. Each element a in V' determines a small set El(a). The pair V, El defines
then a (pre)category by taking the set of morphisms between a and b to be El(a) — El(b). If D is a
(pre)category, we define the set of V-valued presheaves on D to be the set of functors from DPP to this
precategory.

Given I, we can consider the set of V-valued functors on the slice (pre)category C/I. Such a functor
A is given by a family of sets A(J, f) in V' and restriction maps El(A(J, f)) — EI(A(K, fg)). If A issuch
a functor, we can define a new functor P(A) by taking P(A)(I, f) to be A(i, I, fi;) where i = fresh([).
If pis in P(A)(I, f) we can consider p0 = p(i0) and pl = p(il) in A(I, f). If a is in A(I, f) we consider
the constant path @ = a¢; in P(A)(I, f).

We define U(I) to be the set of all V-valued presheaves on C/I. The restriction map U(I) —
U(J), A Af is defined by letting Af be the composition of A and the functor C/J — C/I.

If A is an element of the set U(I) we write T'(A4) the set of “global element” of A, which is the set
A(I,1p). If f : T — J, we have T'(Af) = A(J, f) and restriction maps I'(4) = T'(Af), u+— uf.

We let U(I) be the set of pairs A, u where A is an element of U (I) and v an element of the set I'(A).
We define (A, u)f = (Af,uf). We define the natural transformation p : U — U by p(A,u) = A.

Proposition 0.1 p: U — U defines a universe [1] in the category of cubical sets.

Indeed if X is a cubical set and ¢ : X — U then we can define the cubical set (X, o) by taking
(X,0)(I) to be the set of pairs z,u with z in X(I) and w in I'(oz).

Glueing operation on cubical sets

We assume to have an operation glue; A & in U(I), for A in U(I) and a system of maps o, in T,, — A«
which satisfies

1. glue;, AG=Tif5is ()~ owitho: T — A
2. regularity: glue; A (¢, idas) = glue; A &
3. uniformity: (glue; A &) f =glue; Af gfif f: 1 —J

A system of maps & is given by a sieve L in S(I) (as defined in Appendix I) and a compatible family
of maps o(s,5) in Ty — Af indexed by (J, f) in L. If we have two systems on L and M respectively
which coincide on L N M then they define a system over the union L, M. For the regularity condition,
it is assumed that the system defined by a — id4, and the system & are compatible, that is we have
oupu=uif f <a.

Furthermore any element of I'(glue; A &) is uniquely determined by a tuple u,# with u in T'(4) and
to in D(T,), such that ua = oats. If we write (u,?) this element, we have (u,?)f = (uf,tf). We also
have a map &; : glue; A & — A such that 67(u, ) = u.

If we don’t require the regularity condition, then we can define I'(glue; A &) to be the set of all
such tuple u, t. (This is actually enough for showing that the universe Ug defined later is univalent; the
regularity condition is needed to show that this universe is fibrant.) One possible definition of such a
glueing operation satisfying the regularity condition is in Appendix II.

Dependent sets

If X is a cubical set, the category of element of X has for object pair (I, p) with p in X (I) and a morphism
between I,p and J,v is a map f: I — J such that v = pf. If X is a cubical set, a fibration X - B over
X is given by a V-valued presheaf on the category of element of X.

Such a fibration defines a cubical set X.B by taking (X.B)(I) to be the set of pairs (p,v) with p in
X(I) and v in B(I, p).



The universe of fibrant cubical sets

If A is an element of the set U(I) we define the set of composition operations and the set of transport
operations for A.
Composition

A composition operation for A is given by a family of operations comp; u p element in El(A(I, f)), u in
the set EI(A(I, f)) and p a system for P(A) such that ua = p,0. We should have

1. comp; u [() = p] = pl
2. regularity: comp; u (P, o+ UQ) = compy u P

3. uniformity: (comp; u p)g = compjcg ugpgifg:J — K.

Transport
A transport operation for A is given by a family of operations tra nsplj} in
El(A(J — i, f(i0))) = El(A(J — i, f(i1)))
for f: I — J and i in J. Furthermore we should have
1. regularity: transp? ug = ug if we have f = f(i0)¢;
2. uniformity: (transp’]} Uug)g = transp;(g’i:j) upg if g: J —i — K and j not in K

We let Up(I) be the set of element in U(I) together with a composition and transport operation.

If (compy,, transp? ) is a composition and transport for A, V-valued presheaf on C/I, then (compgcg7 comp}g)
is a composition and transport for Af, V-valued presheaf on C/.J.

We define in this way a restriction map Up(I) — Ur(J) and a cubical set Up.

There is a projection map Ur — U but Up is not a subpresehaf of U.

A particular case of regularity can be seen as a kind of a-conversion for transport

transp}uo = transp;( Ug

1K ,i=7)

if f:I — K,iand j is not in K.

Kan cubical sets
Notice that an element of U() is given by a V-valued presheaf on C and each transport function
transp’ : A;_; — Ar_;

is constant by regularity.
A Kan cubical set is a cubical set X together with a composition operation comp; u 7 in X (I) with
win X(I) and p a system for X such that

L. comp; u [() = p] = pl
2. regularity: comp; u (P, « — ua) = comp; u P

3. uniformity: (comp; u p)f = comp?] uf pf



Kan fibration

If X is a cubical set, the category of element of X has for object pair (I, p) with p in A(I) and a morphism
between I, p and J,v is a map f : I — J such that v = pf. If X is a cubical set, a Kan fibration X - B
over X is given by a V-valued presheaf on the category of element of X which admits composition and
transport operations. We should have

1. comp; , u [() = p] =pl

2. regularity: compy , u (P, — u@) = compy , u P

3. uniformity: (comp; , u p)f = compipf uf pfifg: I — J and j is not in J
for the composition operation, and

1. regularity: transpip ug = wo if we have p = p(i0)¢;

2. uniformity: (transpﬁ’p ug)g = transp{ upg if g: I —i — J and j not in J

J,3):p(9,i=7)
for the transport operation.

Whenever X + B we can define the associated total space X.B by taking (X.B)(I) to be the set of
pairs p,u with p in A(I) and w in B(I,p) and (p,u)f = pf,uf. We have a projection p : X.B — X
defined by p(p, u) = p.

Definition of Ur — Up

By change of base of p : U—U along the projection Ur — U we get a map Up — Up. Concretely, an
element of Up(I) is given by an element A in U(I), a composition and a transport operation on A, and
an element of I'(A4).

We define comp; 4 u @ to be comp,, u @ and transpiLA to be transp} .

Proposition 0.2 With these operations of composition and transport, U = B is a Kan fibration.

Given A and B in Up(I) we can define Id(I, A, B) to be the set of elements E in Up(I, i) satisfying
E(i0) = A and E(il) = B, where i = fresh(I). We also have defined already the set Iso(I, A, B). This
corresponds to two fibrations Ugp X Up F Id and Up x Up F Iso.

Theorem 0.3 We have a natural transformation Iso(I, A, B) — Id(I, A, B).

Theorem 0.4 Up has a structure of a Kan cubical set.

All operations are defined in term of the glueing operation on cubical sets.

Appendix I: Properties of the base precategory

We say that a map f : I — J is strict if ¢f is neither 0 nor 1 for all ¢ in I. One key remark is the
following.

Lemma 0.5 If f : [ — J is strict and ¢ in dM(I) such that ¢ f = b (where b is 0 or 1) then already
P =b.

(This does not hold if we work with Boolean algebra instead of de Morgan algebra. For instance the
map (i = j) : {i,4} — {4} is strict and (i A (1 — j))(# = j) = 0 in a Boolean algebra, but i A (1 — j) is
neither 0 nor 1.)

A face map a : I — I, is a map such that i« is either 0,1 or ¢ for all ¢ in I. We write I, the subset

of element 4 such that i« = i, and dom(a) = I — I, is the domain of a. If ¢y : I, — I is the inclusion,
we have (o = 1 and hence any face map a is epi. If f: I — J we write f < a to mean that there



exists a map f’ (uniquely determined) such that f = af’. This means that if = i« for all ¢ in the
domain of .. This defines a poset structure on the set of face maps o : I — I, and this poset is a partial
meet-semilattice: if o and 3 are compatible then they have a meet v = a A 8 with I, = I, N Ig.

Corollary 0.6 If fg < « and g is strict then f < a.

Proof. For any i in the domain of a we have iov = ifg and so iav = if since ia = 0 or 1 and by Lemma
0.5. O

Any map f : I — J can be written uniquely as the composition f = ah of a face map o : I — I,
and a map h : I, — J which is strict.

If ¢ not in I we write ¢; : I — I, the inclusion. If ¢ is in I we write (i0) : I — I —i and (il) : [ — I —1
the two face operation for 7.

Lemma 0.7 If we have af = g with f : I, — J and g : I3 — J then a and 8 are compatible. If
is the meet of o and (3, then there exists a unique h : I, — J such that af = vh = Bg. If we write

aay = = BB then a1 f = h = p1g.

Systems

We define S(I) to be the set of sieves L over I such that f is in L whenever fg is in L and g is strict.
Such a sieve L is completely characterised by its subset of face maps « : I — I,,. This defines a cubical
set S.

If A is a presheaf on the slice category C°PP/I and L in S(I) a L-system for A is given by a family
acfy in Af for (J, f) in L such that a(j 59 = a(x,tq) forall g: J — K.

If f: I — J and we have a L-system d we define a Lf system b= af by taking bx gy = a(k fq)-

A L-system for A is completely determined by the family [« — a,] for « face in L. If L is the union

of M and N, and we have a M-system @ and a N-system b that coincide on M N N then they define a
system @, b on the union M, N.

Appendix II: Definition of the glueing operation

An I-element in V is a tuple (u,) indexed by the face operations of I. An I-set is a set all element of
which are I-elements. If X is an I-set, and u is an element of X we can consider the element u,, for each
face operation « on I.

We refine the definition of U(I) by imposing A(J, f) to be a J-set and the restriction operation
A(J, f) = A(JB, fB), ur— uf to satisfy uf, = ugy for each face operation v on JJ.

With this refinement, we can define, given u in I'(A) and ¢, in I'(T,) such that o,t, = ua, a tuple
(u,t) by (u,1)s = tg if B < L and (u,t)s = up otherwise. Notice that we have (u,t) = u if all o, are
identity maps. We then define I'(glue; A &) to be the I-set of elements (u, t).

If v is in T'(glue; A &) we define (6;v)p = opvg if § < L and (6;v)g = vg otherwise.
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