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Introduction

The goal of this note is to give a definition of two universes [1] p : Ũ ! U and p

F

: Ũ
F

! U

F

in
the category of cubical set. This first universe is a universe of cubical sets. The second universe is the
universe of “fibrant” cubical sets, and provides a model of type theory with dependent product, sum,
identity types and function extensionality. Furthermore, it is fibrant and univalent.

Cubical sets

Definition of the base category

A de Morgan algebra is a bounded distributive lattice A, with a top element 1 and a bottom element 0
and with an operation 1� i satisfying

1� 0 = 1 1� 1 = 0 1� (i _ j) = (1� i) ^ (1� j) 1� (i ^ j) = (1� i) _ (1� j)

This notion di↵ers from the one of Boolean algebra by requiring neither 1 = i_ (1� i) nor 0 = i^ (1� i).
A prime example of a de Morgan algebra, which is not a Boolean algebra, is the interval [0, 1] with
max(i, j),min(i, j) operations.

We assume a given (discrete) set of symbols/names/directions, not containing 0, 1. We let I, J,K, . . .

denote finite sets of such symbols. We also assume a function fresh(I) which selects a name not in I.
Let C be the following precategory. The objects are finite sets of names I, J,K, . . . . A morphism I ! J

is a map I ! dM(J), where dM(J) is the free de Morgan algebra on J . We think of f as a substitution
and may write if the element f(i) in dM(J). If f : I ! J and g : J ! K we write fg : I ! K the
composition of f and g. We write 1

I

: I ! I the identity map. A cubical set is a presheaf on Copp, i.e. a
functor C ! Set.

Another equivalent definition of Copp(I, J) is the set of monotone maps 2I ⇥ 2I ! 2J ⇥ 2J .

We shall need a few notions and properties of the base category that are listed in Appendix I.

A cubical set X is thus given by a family of sets X(I) together with a restriction map

X(I) ! X(J)

u 7�! uf

such that u1
I

= u and (uf)g = u(fg). (We write uf for what is usually written X(f)(u), since we want
to think about this operation as a substitution; the elements of X(I) for I = i1, . . . , in are thought of as
elements u = u(i1, . . . , in) depending on i1, . . . , in and the restriction uf as a substitution operation.)

If X is a presheaf on the slice category C/I we let �(X) be the set X(I, 1
I

). If X and Y are two
presheaves on C/I an element of �(X ! Y ) is given by a family of maps w(J,f) : X(J, f) ! Y (J, f) such
that (w(J,f) u)g = w(K,fg) ug. We also can consider the presheaf P (X), with P (X)(J, f) = X(j, J, f ◆

j

)
where j = fresh(J). We can then define the set Iso(X,Y ) as a subset of

�((X ! Y )⇥ (Y ! X)⇥ (X ! P (Y ))⇥ (Y ! P (X)))
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The universe of cubical sets

We fix a set V of small sets. Each element a in V determines a small set El(a). The pair V,El defines
then a (pre)category by taking the set of morphisms between a and b to be El(a) ! El(b). If D is a
(pre)category, we define the set of V -valued presheaves on D to be the set of functors from Dopp to this
precategory.

Given I, we can consider the set of V -valued functors on the slice (pre)category C/I. Such a functor
A is given by a family of sets A(J, f) in V and restriction maps El(A(J, f)) ! El(A(K, fg)). If A is such
a functor, we can define a new functor P (A) by taking P (A)(I, f) to be A(i, I, f ◆

i

) where i = fresh(I).
If p is in P (A)(I, f) we can consider p0 = p(i0) and p1 = p(i1) in A(I, f). If a is in A(I, f) we consider
the constant path a = a◆

i

in P (A)(I, f).

We define U(I) to be the set of all V -valued presheaves on C/I. The restriction map U(I) !
U(J), A 7�! Af is defined by letting Af be the composition of A and the functor C/J ! C/I.

If A is an element of the set U(I) we write �(A) the set of “global element” of A, which is the set
A(I, 1

I

). If f : I ! J , we have �(Af) = A(J, f) and restriction maps �(A) ! �(Af), u 7�! uf .

We let Ũ(I) be the set of pairs A, u where A is an element of U(I) and u an element of the set �(A).
We define (A, u)f = (Af, uf). We define the natural transformation p : Ũ ! U by p(A, u) = A.

Proposition 0.1 p : Ũ ! U defines a universe [1] in the category of cubical sets.

Indeed if X is a cubical set and � : X ! U then we can define the cubical set (X,�) by taking
(X,�)(I) to be the set of pairs x, u with x in X(I) and u in �(�x).

Glueing operation on cubical sets

We assume to have an operation glue

I

A ~� in U(I), for A in U(I) and a system of maps �
↵

in T

↵

! A↵,
which satisfies

1. glue

I

A ~� = T if ~� is () 7! � with � : T ! A

2. regularity: glue
I

A (~�,↵ 7! id

A↵

) = glue

I

A ~�

3. uniformity: (glue
I

A ~�)f = glue

J

Af ~�f if f : I ! J

A system of maps ~� is given by a sieve L in S(I) (as defined in Appendix I) and a compatible family
of maps �(J,f) in T(J,f) ! Af indexed by (J, f) in L. If we have two systems on L and M respectively
which coincide on L \M then they define a system over the union L,M . For the regularity condition,
it is assumed that the system defined by ↵ 7! id

A↵

and the system ~� are compatible, that is we have
�(J,f)u = u if f 6 ↵.

Furthermore any element of �(glue
I

A ~�) is uniquely determined by a tuple u,

~

t with u in �(A) and
t

↵

in �(T
↵

), such that u↵ = �

↵

t

↵

. If we write (u,~t) this element, we have (u,~t)f = (uf,~tf). We also
have a map �

I

: glue
I

A ~� ! A such that �
I

(u,~t) = u.

If we don’t require the regularity condition, then we can define �(glue
I

A ~�) to be the set of all
such tuple u,

~

t. (This is actually enough for showing that the universe U

F

defined later is univalent; the
regularity condition is needed to show that this universe is fibrant.) One possible definition of such a
glueing operation satisfying the regularity condition is in Appendix II.

Dependent sets

If X is a cubical set, the category of element of X has for object pair (I, ⇢) with ⇢ in X(I) and a morphism
between I, ⇢ and J, ⌫ is a map f : I ! J such that ⌫ = ⇢f . If X is a cubical set, a fibration X ` B over
X is given by a V -valued presheaf on the category of element of X.

Such a fibration defines a cubical set X.B by taking (X.B)(I) to be the set of pairs (⇢, v) with ⇢ in
X(I) and v in B(I, ⇢).
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The universe of fibrant cubical sets

If A is an element of the set U(I) we define the set of composition operations and the set of transport
operations for A.

Composition

A composition operation for A is given by a family of operations comp

f

u ~p element in El(A(I, f)), u in
the set El(A(I, f)) and ~p a system for P (A) such that u↵ = p

↵

0. We should have

1. comp

f

u [() 7! p] = p1

2. regularity: comp

f

u (~p,↵ 7! u↵) = comp

f

u ~p

3. uniformity: (comp

f

u ~p)g = comp

j

fg

ug ~pg if g : J ! K.

Transport

A transport operation for A is given by a family of operations transpi
f

in

El(A(J � i, f(i0))) ! El(A(J � i, f(i1)))

for f : I ! J and i in J . Furthermore we should have

1. regularity: transpi
f

u0 = u0 if we have f = f(i0)◆
i

2. uniformity: (transpi
f

u0)g = transp

j

f(g,i=j) u0g if g : J � i ! K and j not in K

We let U
F

(I) be the set of element in U(I) together with a composition and transport operation.
If (comp

h

, transp

i

h

) is a composition and transport forA, V -valued presheaf on C/I, then (comp

j

fg

, comp

j

fg

)
is a composition and transport for Af , V -valued presheaf on C/J .

We define in this way a restriction map U

F

(I) ! U

F

(J) and a cubical set U
F

.

There is a projection map U

F

! U but U
F

is not a subpresehaf of U .

A particular case of regularity can be seen as a kind of ↵-conversion for transport

transp

i

f

u0 = transp

j

f(1K ,i=j)u0

if f : I ! K, i and j is not in K.

Kan cubical sets

Notice that an element of U() is given by a V -valued presheaf on C and each transport function

transp

i : A
I�i

! A

I�i

is constant by regularity.
A Kan cubical set is a cubical set X together with a composition operation comp

I

u ~p in X(I) with
u in X(I) and ~p a system for X such that

1. comp

I

u [() 7! p] = p1

2. regularity: comp

I

u (~p,↵ 7! u↵) = comp

I

u ~p

3. uniformity: (comp

I

u ~p)f = comp

j

J

uf ~pf
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Kan fibration

If X is a cubical set, the category of element of X has for object pair (I, ⇢) with ⇢ in A(I) and a morphism
between I, ⇢ and J, ⌫ is a map f : I ! J such that ⌫ = ⇢f . If X is a cubical set, a Kan fibration X ` B

over X is given by a V -valued presheaf on the category of element of X which admits composition and
transport operations. We should have

1. comp

I,⇢

u [() 7! p] = p1

2. regularity: comp

I,⇢

u (~p,↵ 7! u↵) = comp

I,⇢

u ~p

3. uniformity: (comp

I,⇢

u ~p)f = comp

j

J,⇢f

uf ~pf if g : I ! J and j is not in J

for the composition operation, and

1. regularity: transpi
I,⇢

u0 = u0 if we have ⇢ = ⇢(i0)◆
i

2. uniformity: (transpi
I,⇢

u0)g = transp

j

(J,j),⇢(g,i=j) u0g if g : I � i ! J and j not in J

for the transport operation.

Whenever X ` B we can define the associated total space X.B by taking (X.B)(I) to be the set of
pairs ⇢, u with ⇢ in A(I) and u in B(I, ⇢) and (⇢, u)f = ⇢f, uf . We have a projection p : X.B ! X

defined by p(⇢, u) = ⇢.

Definition of ŨF ! UF

By change of base of p : Ũ ! U along the projection U

F

! U we get a map Ũ

F

! U

F

. Concretely, an
element of Ũ

F

(I) is given by an element A in U(I), a composition and a transport operation on A, and
an element of �(A).

We define comp

I,A

u ~u to be comp1I u ~u and transp

i

I,A

to be transp

i

1I .

Proposition 0.2 With these operations of composition and transport, U ` B is a Kan fibration.

Given A and B in U

F

(I) we can define Id(I, A,B) to be the set of elements E in U

F

(I, i) satisfying
E(i0) = A and E(i1) = B, where i = fresh(I). We also have defined already the set Iso(I, A,B). This
corresponds to two fibrations U

F

⇥ U

F

` Id and U

F

⇥ U

F

` Iso.

Theorem 0.3 We have a natural transformation Iso(I, A,B) ! Id(I, A,B).

Theorem 0.4 U

F

has a structure of a Kan cubical set.

All operations are defined in term of the glueing operation on cubical sets.

Appendix I: Properties of the base precategory

We say that a map f : I ! J is strict if if is neither 0 nor 1 for all i in I. One key remark is the
following.

Lemma 0.5 If f : I ! J is strict and  in dM(I) such that  f = b (where b is 0 or 1) then already

 = b.

(This does not hold if we work with Boolean algebra instead of de Morgan algebra. For instance the
map (i = j) : {i, j} ! {j} is strict and (i ^ (1 � j))(i = j) = 0 in a Boolean algebra, but i ^ (1 � j) is
neither 0 nor 1.)

A face map ↵ : I ! I

↵

is a map such that i↵ is either 0, 1 or i for all i in I. We write I

↵

the subset
of element i such that i↵ = i, and dom(↵) = I � I

↵

is the domain of ↵. If ◆
↵

: I
↵

! I is the inclusion,
we have ◆

↵

↵ = 1 and hence any face map ↵ is epi. If f : I ! J we write f 6 ↵ to mean that there
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exists a map f

0 (uniquely determined) such that f = ↵f

0. This means that if = i↵ for all i in the
domain of ↵. This defines a poset structure on the set of face maps ↵ : I ! I

↵

and this poset is a partial
meet-semilattice: if ↵ and � are compatible then they have a meet � = ↵ ^ � with I

�

= I

↵

\ I

�

.

Corollary 0.6 If fg 6 ↵ and g is strict then f 6 ↵.

Proof. For any i in the domain of ↵ we have i↵ = ifg and so i↵ = if since i↵ = 0 or 1 and by Lemma
0.5.

Any map f : I ! J can be written uniquely as the composition f = ↵h of a face map ↵ : I ! I

↵

and a map h : I
↵

! J which is strict.
If i not in I we write ◆

i

: I ! I, i the inclusion. If i is in I we write (i0) : I ! I� i and (i1) : I ! I� i

the two face operation for i.

Lemma 0.7 If we have ↵f = �g with f : I
↵

! J and g : I
�

! J then ↵ and � are compatible. If �

is the meet of ↵ and �, then there exists a unique h : I
�

! J such that ↵f = �h = �g. If we write

↵↵1 = � = ��1 then ↵1f = h = �1g.

Systems

We define S(I) to be the set of sieves L over I such that f is in L whenever fg is in L and g is strict.
Such a sieve L is completely characterised by its subset of face maps ↵ : I ! I

↵

. This defines a cubical
set S.

If A is a presheaf on the slice category Copp

/I and L in S(I) a L-system for A is given by a family
a(J,f) in Af for (J, f) in L such that a(J,f)g = a(K,fg) for all g : J ! K.

If f : I ! J and we have a L-system ~a we define a Lf system ~

b = ~af by taking b(K,g) = a(K,fg).

A L-system for A is completely determined by the family [↵ 7! a

↵

] for ↵ face in L. If L is the union

of M and N , and we have a M -system ~a and a N -system ~

b that coincide on M \N then they define a
system ~a,

~

b on the union M,N .

Appendix II: Definition of the glueing operation

An I-element in V is a tuple (u
↵

) indexed by the face operations of I. An I-set is a set all element of
which are I-elements. If X is an I-set, and u is an element of X we can consider the element u

↵

for each
face operation ↵ on I.

We refine the definition of U(I) by imposing A(J, f) to be a J-set and the restriction operation
A(J, f) ! A(J�, f�), u 7�! u� to satisfy u�

�

= u

��

for each face operation � on J�.

With this refinement, we can define, given u in �(A) and t

↵

in �(T
↵

) such that �
↵

t

↵

= u↵, a tuple
(u,~t) by (u,~t)

�

= t

�

if � 6 L and (u,~t)
�

= u

�

otherwise. Notice that we have (u,~t) = u if all �
↵

are
identity maps. We then define �(glue

I

A ~�) to be the I-set of elements (u,~t).
If v is in �(glue

I

A ~�) we define (�
I

v)
�

= �

�

v

�

if � 6 L and (�
I

v)
�

= v

�

otherwise.
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