Universes in the category of cubical sets

May 14, 2015

Introduction

The goal of this note is to give a definition of two universes [1] $p : \tilde{U} \to U$ and $p_F : \tilde{U}_F \to U_F$ in the category of cubical set. This first universe is a universe of cubical sets. The second universe is the universe of "fibrant" cubical sets, and provides a model of type theory with dependent product, sum, identity types and function extensionality. Furthermore, it is fibrant and univalent.

Cubical sets

Definition of the base category

A de Morgan algebra is a bounded distributive lattice A, with a top element 1 and a bottom element 0 and with an operation 1 - i satisfying

 $1 - 0 = 1 \quad 1 - 1 = 0 \quad 1 - (i \lor j) = (1 - i) \land (1 - j) \quad 1 - (i \land j) = (1 - i) \lor (1 - j)$

This notion differs from the one of Boolean algebra by requiring neither $1 = i \lor (1-i)$ nor $0 = i \land (1-i)$. A prime example of a de Morgan algebra, which is not a Boolean algebra, is the interval [0, 1] with $\max(i, j), \min(i, j)$ operations.

We assume a given (discrete) set of symbols/names/directions, not containing 0, 1. We let I, J, K, \ldots denote finite sets of such symbols. We also assume a function $\mathsf{fresh}(I)$ which selects a name not in I. Let \mathcal{C} be the following precategory. The objects are finite sets of names I, J, K, \ldots . A morphism $I \to J$ is a map $I \to \mathsf{dM}(J)$, where $\mathsf{dM}(J)$ is the free de Morgan algebra on J. We think of f as a substitution and may write if the element f(i) in $\mathsf{dM}(J)$. If $f: I \to J$ and $g: J \to K$ we write $fg: I \to K$ the composition of f and g. We write $1_I: I \to I$ the identity map. A *cubical set* is a presheaf on \mathcal{C}^{opp} , i.e. a functor $\mathcal{C} \to \mathsf{Set}$.

Another equivalent definition of $\mathcal{C}^{opp}(I,J)$ is the set of monotone maps $2^I \times 2^I \to 2^J \times 2^J$.

We shall need a few notions and properties of the base category that are listed in Appendix I.

A cubical set X is thus given by a family of sets X(I) together with a restriction map

$$X(I) \to X(J)$$

$$u \longmapsto uf$$

such that $u1_I = u$ and (uf)g = u(fg). (We write uf for what is usually written X(f)(u), since we want to think about this operation as a substitution; the elements of X(I) for $I = i_1, \ldots, i_n$ are thought of as elements $u = u(i_1, \ldots, i_n)$ depending on i_1, \ldots, i_n and the restriction uf as a substitution operation.)

If X is a presheaf on the slice category \mathcal{C}/I we let $\Gamma(X)$ be the set $X(I, 1_I)$. If X and Y are two presheaves on \mathcal{C}/I an element of $\Gamma(X \to Y)$ is given by a family of maps $w_{(J,f)} : X(J,f) \to Y(J,f)$ such that $(w_{(J,f)} \ u)g = w_{(K,fg)} \ ug$. We also can consider the presheaf P(X), with $P(X)(J,f) = X(j,J,f\iota_j)$ where $j = \mathsf{fresh}(J)$. We can then define the set $\mathsf{lso}(X,Y)$ as a subset of

$$\Gamma((X \to Y) \times (Y \to X) \times (X \to P(Y)) \times (Y \to P(X)))$$

The universe of cubical sets

We fix a set V of small sets. Each element a in V determines a small set El(a). The pair V, El defines then a (pre)category by taking the set of morphisms between a and b to be $El(a) \to El(b)$. If \mathcal{D} is a (pre)category, we define the set of V-valued presheaves on \mathcal{D} to be the set of functors from \mathcal{D}^{opp} to this precategory.

Given I, we can consider the set of V-valued functors on the slice (pre)category C/I. Such a functor A is given by a family of sets A(J, f) in V and restriction maps $El(A(J, f)) \to El(A(K, fg))$. If A is such a functor, we can define a new functor P(A) by taking P(A)(I, f) to be $A(i, I, f\iota_i)$ where i = fresh(I). If p is in P(A)(I, f) we can consider p0 = p(i0) and p1 = p(i1) in A(I, f). If a is in A(I, f) we consider the constant path $\overline{a} = a\iota_i$ in P(A)(I, f).

We define U(I) to be the set of all V-valued presheaves on \mathcal{C}/I . The restriction map $U(I) \to U(J)$, $A \mapsto Af$ is defined by letting Af be the composition of A and the functor $\mathcal{C}/J \to \mathcal{C}/I$.

If A is an element of the set U(I) we write $\Gamma(A)$ the set of "global element" of A, which is the set $A(I, 1_I)$. If $f: I \to J$, we have $\Gamma(Af) = A(J, f)$ and restriction maps $\Gamma(A) \to \Gamma(Af)$, $u \mapsto uf$.

We let $\tilde{U}(I)$ be the set of pairs A, u where A is an element of U(I) and u an element of the set $\Gamma(A)$. We define (A, u)f = (Af, uf). We define the natural transformation $p: \tilde{U} \to U$ by p(A, u) = A.

Proposition 0.1 $p: \tilde{U} \to U$ defines a universe [1] in the category of cubical sets.

Indeed if X is a cubical set and $\sigma : X \to U$ then we can define the cubical set (X, σ) by taking $(X, \sigma)(I)$ to be the set of pairs x, u with x in X(I) and u in $\Gamma(\sigma x)$.

Glueing operation on cubical sets

We assume to have an operation $\mathsf{glue}_I A \vec{\sigma}$ in U(I), for A in U(I) and a system of maps σ_{α} in $T_{\alpha} \to A\alpha$, which satisfies

- 1. glue $A \vec{\sigma} = T$ if $\vec{\sigma}$ is () $\mapsto \sigma$ with $\sigma : T \to A$
- 2. regularity: $\mathsf{glue}_I A (\vec{\sigma}, \alpha \mapsto id_{A\alpha}) = \mathsf{glue}_I A \vec{\sigma}$
- 3. uniformity: $(\mathsf{glue}_I \ A \ \vec{\sigma})f = \mathsf{glue}_I \ Af \ \vec{\sigma}f \ \text{if} \ f: I \to J$

A system of maps $\vec{\sigma}$ is given by a sieve L in S(I) (as defined in Appendix I) and a compatible family of maps $\sigma_{(J,f)}$ in $T_{(J,f)} \to Af$ indexed by (J, f) in L. If we have two systems on L and M respectively which coincide on $L \cap M$ then they define a system over the union L, M. For the regularity condition, it is assumed that the system defined by $\alpha \mapsto id_{A\alpha}$ and the system $\vec{\sigma}$ are compatible, that is we have $\sigma_{(J,f)}u = u$ if $f \leq \alpha$.

Furthermore any element of $\Gamma(\mathsf{glue}_I \ A \ \vec{\sigma})$ is uniquely determined by a tuple u, \vec{t} with u in $\Gamma(A)$ and t_{α} in $\Gamma(T_{\alpha})$, such that $u\alpha = \sigma_{\alpha}t_{\alpha}$. If we write (u, \vec{t}) this element, we have $(u, \vec{t})f = (uf, \vec{t}f)$. We also have a map δ_I : $\mathsf{glue}_I \ A \ \vec{\sigma} \to A$ such that $\delta_I(u, \vec{t}) = u$.

If we don't require the regularity condition, then we can define $\Gamma(\mathsf{glue}_I \ A \ \vec{\sigma})$ to be the set of all such tuple u, \vec{t} . (This is actually enough for showing that the universe U_F defined later is univalent; the regularity condition is needed to show that this universe is fibrant.) One possible definition of such a glueing operation satisfying the regularity condition is in Appendix II.

Dependent sets

If X is a cubical set, the *category of element of* X has for object pair (I, ρ) with ρ in X(I) and a morphism between I, ρ and J, ν is a map $f: I \to J$ such that $\nu = \rho f$. If X is a cubical set, a *fibration* $X \vdash B$ over X is given by a V-valued presheaf on the category of element of X.

Such a fibration defines a cubical set X.B by taking (X.B)(I) to be the set of pairs (ρ, v) with ρ in X(I) and v in $B(I, \rho)$.

The universe of fibrant cubical sets

If A is an element of the set U(I) we define the set of composition operations and the set of transport operations for A.

Composition

A composition operation for A is given by a family of operations $\operatorname{comp}_f u \vec{p}$ element in El(A(I, f)), u in the set El(A(I, f)) and \vec{p} a system for P(A) such that $u\alpha = p_{\alpha}0$. We should have

- 1. $\operatorname{comp}_f u [() \mapsto p] = p1$
- 2. regularity: $\operatorname{comp}_{f} u \ (\vec{p}, \alpha \mapsto \overline{u\alpha}) = \operatorname{comp}_{f} u \ \vec{p}$
- 3. uniformity: $(\operatorname{comp}_f u \ \vec{p})g = \operatorname{comp}_{fg}^j ug \ \vec{pg}$ if $g: J \to K$.

Transport

A transport operation for A is given by a family of operations $transp_{f}^{i}$ in

$$El(A(J-i, f(i0))) \rightarrow El(A(J-i, f(i1)))$$

for $f: I \to J$ and i in J. Furthermore we should have

- 1. regularity: transpⁱ_f $u_0 = u_0$ if we have $f = f(i0)\iota_i$
- 2. uniformity: $(\operatorname{transp}_{f}^{i} u_{0})g = \operatorname{transp}_{f(g,i=j)}^{j} u_{0}g$ if $g: J i \to K$ and j not in K

We let $U_F(I)$ be the set of element in U(I) together with a composition and transport operation. If $(\mathsf{comp}_h, \mathsf{transp}_h^i)$ is a composition and transport for A, V-valued presheaf on \mathcal{C}/I , then $(\mathsf{comp}_{fg}^j, \mathsf{comp}_{fg}^j)$ is a composition and transport for Af, V-valued presheaf on \mathcal{C}/J .

We define in this way a restriction map $U_F(I) \to U_F(J)$ and a cubical set U_F .

There is a projection map $U_F \to U$ but U_F is not a subpresent of U.

A particular case of regularity can be seen as a kind of α -conversion for transport

$$\mathsf{transp}_{f}^{i}u_{0} = \mathsf{transp}_{f(1_{K},i=j)}^{j}u_{0}$$

if $f: I \to K, i$ and j is not in K.

Kan cubical sets

Notice that an element of U() is given by a V-valued presheaf on \mathcal{C} and each transport function

$$\mathsf{transp}^i:A_{I-i}\to A_{I-i}$$

is constant by regularity.

A Kan cubical set is a cubical set X together with a composition operation $\operatorname{comp}_I u \vec{p}$ in X(I) with u in X(I) and \vec{p} a system for X such that

- 1. $\operatorname{comp}_{I} u [() \mapsto p] = p1$
- 2. regularity: $\operatorname{comp}_{I} u (\vec{p}, \alpha \mapsto \overline{u\alpha}) = \operatorname{comp}_{I} u \vec{p}$
- 3. uniformity: $(\operatorname{comp}_{I} u \ \vec{p})f = \operatorname{comp}_{J}^{j} uf \ \vec{p}f$

Kan fibration

If X is a cubical set, the category of element of X has for object pair (I, ρ) with ρ in A(I) and a morphism between I, ρ and J, ν is a map $f: I \to J$ such that $\nu = \rho f$. If X is a cubical set, a Kan fibration $X \vdash B$ over X is given by a V-valued presheaf on the category of element of X which admits composition and transport operations. We should have

- 1. $\operatorname{comp}_{I,\rho} u \ [() \mapsto p] = p1$
- 2. regularity: comp_{I,\rho} u $(\vec{p}, \alpha \mapsto \overline{u\alpha}) = \text{comp}_{I,\rho} u \vec{p}$
- 3. uniformity: $(\operatorname{comp}_{I,\rho} u \ \vec{p})f = \operatorname{comp}_{J,\rho f}^{j} uf \ \vec{p}f$ if $g: I \to J$ and j is not in J

for the composition operation, and

- 1. regularity: transpⁱ_I $u_0 = u_0$ if we have $\rho = \rho(i0)\iota_i$
- 2. uniformity: $(\operatorname{transp}_{I,\rho}^{i} u_{0})g = \operatorname{transp}_{(J,j),\rho(g,i=j)}^{j} u_{0}g$ if $g: I i \to J$ and j not in J

for the transport operation.

Whenever $X \vdash B$ we can define the associated total space X.B by taking (X.B)(I) to be the set of pairs ρ, u with ρ in A(I) and u in $B(I, \rho)$ and $(\rho, u)f = \rho f, uf$. We have a projection $p : X.B \to X$ defined by $p(\rho, u) = \rho$.

Definition of $\tilde{U}_F \to U_F$

By change of base of $p: \tilde{U} \to U$ along the projection $U_F \to U$ we get a map $\tilde{U}_F \to U_F$. Concretely, an element of $\tilde{U}_F(I)$ is given by an element A in U(I), a composition and a transport operation on A, and an element of $\Gamma(A)$.

We define $\operatorname{comp}_{I,A} u \ \vec{u}$ to be $\operatorname{comp}_{1_I} u \ \vec{u}$ and $\operatorname{transp}_{I,A}^i$ to be $\operatorname{transp}_{1_I}^i$.

Proposition 0.2 With these operations of composition and transport, $U \vdash B$ is a Kan fibration.

Given A and B in $U_F(I)$ we can define $\mathsf{Id}(I, A, B)$ to be the set of elements E in $U_F(I, i)$ satisfying E(i0) = A and E(i1) = B, where $i = \mathsf{fresh}(I)$. We also have defined already the set $\mathsf{Iso}(I, A, B)$. This corresponds to two fibrations $U_F \times U_F \vdash \mathsf{Id}$ and $U_F \times U_F \vdash \mathsf{Iso}$.

Theorem 0.3 We have a natural transformation $lso(I, A, B) \rightarrow ld(I, A, B)$.

Theorem 0.4 U_F has a structure of a Kan cubical set.

All operations are defined in term of the glueing operation on cubical sets.

Appendix I: Properties of the base precategory

We say that a map $f: I \to J$ is *strict* if *if* is neither 0 nor 1 for all *i* in *I*. One key remark is the following.

Lemma 0.5 If $f: I \to J$ is strict and ψ in dM(I) such that $\psi f = b$ (where b is 0 or 1) then already $\psi = b$.

(This does not hold if we work with Boolean algebra instead of de Morgan algebra. For instance the map $(i = j) : \{i, j\} \to \{j\}$ is strict and $(i \land (1 - j))(i = j) = 0$ in a Boolean algebra, but $i \land (1 - j)$ is neither 0 nor 1.)

A face map $\alpha: I \to I_{\alpha}$ is a map such that $i\alpha$ is either 0, 1 or *i* for all *i* in *I*. We write I_{α} the subset of element *i* such that $i\alpha = i$, and $dom(\alpha) = I - I_{\alpha}$ is the *domain* of α . If $\iota_{\alpha}: I_{\alpha} \to I$ is the inclusion, we have $\iota_{\alpha}\alpha = 1$ and hence any face map α is *epi*. If $f: I \to J$ we write $f \leq \alpha$ to mean that there exists a map f' (uniquely determined) such that $f = \alpha f'$. This means that $if = i\alpha$ for all i in the domain of α . This defines a poset structure on the set of face maps $\alpha : I \to I_{\alpha}$ and this poset is a partial meet-semilattice: if α and β are compatible then they have a meet $\gamma = \alpha \land \beta$ with $I_{\gamma} = I_{\alpha} \cap I_{\beta}$.

Corollary 0.6 If $fg \leq \alpha$ and g is strict then $f \leq \alpha$.

Proof. For any *i* in the domain of α we have $i\alpha = ifg$ and so $i\alpha = if$ since $i\alpha = 0$ or 1 and by Lemma 0.5.

Any map $f: I \to J$ can be written uniquely as the composition $f = \alpha h$ of a face map $\alpha: I \to I_{\alpha}$ and a map $h: I_{\alpha} \to J$ which is strict.

If i not in I we write $\iota_i : I \to I, i$ the inclusion. If i is in I we write $(i0) : I \to I - i$ and $(i1) : I \to I - i$ the two face operation for i.

Lemma 0.7 If we have $\alpha f = \beta g$ with $f: I_{\alpha} \to J$ and $g: I_{\beta} \to J$ then α and β are compatible. If γ is the meet of α and β , then there exists a unique $h: I_{\gamma} \to J$ such that $\alpha f = \gamma h = \beta g$. If we write $\alpha \alpha_1 = \gamma = \beta \beta_1$ then $\alpha_1 f = h = \beta_1 g$.

Systems

We define S(I) to be the set of sieves L over I such that f is in L whenever fg is in L and g is strict. Such a sieve L is completely characterised by its subset of face maps $\alpha : I \to I_{\alpha}$. This defines a cubical set S.

If A is a presheaf on the slice category C^{opp}/I and L in S(I) a L-system for A is given by a family $a_{(J,f)}$ in Af for (J, f) in L such that $a_{(J,f)}g = a_{(K,fg)}$ for all $g: J \to K$.

If $f: I \to J$ and we have a L-system \vec{a} we define a Lf system $\vec{b} = \vec{a}f$ by taking $b_{(K,g)} = a_{(K,fg)}$.

A L-system for A is completely determined by the family $[\alpha \mapsto a_{\alpha}]$ for α face in L. If L is the union of M and N, and we have a M-system \vec{a} and a N-system \vec{b} that coincide on $M \cap N$ then they define a system \vec{a}, \vec{b} on the union M, N.

Appendix II: Definition of the glueing operation

An *I*-element in V is a tuple (u_{α}) indexed by the face operations of I. An *I*-set is a set all element of which are *I*-elements. If X is an *I*-set, and u is an element of X we can consider the element u_{α} for each face operation α on I.

We refine the definition of U(I) by imposing A(J, f) to be a *J*-set and the restriction operation $A(J, f) \to A(J\beta, f\beta), u \mapsto u\beta$ to satisfy $u\beta_{\gamma} = u_{\beta\gamma}$ for each face operation γ on $J\beta$.

With this refinement, we can define, given u in $\Gamma(A)$ and t_{α} in $\Gamma(T_{\alpha})$ such that $\sigma_{\alpha}t_{\alpha} = u\alpha$, a tuple (u, \vec{t}) by $(u, \vec{t})_{\beta} = t_{\beta}$ if $\beta \leq L$ and $(u, \vec{t})_{\beta} = u_{\beta}$ otherwise. Notice that we have $(u, \vec{t}) = u$ if all σ_{α} are identity maps. We then define $\Gamma(\mathsf{glue}_I A \vec{\sigma})$ to be the *I*-set of elements (u, \vec{t}) .

If v is in $\Gamma(\mathsf{glue}_I \ A \ \vec{\sigma})$ we define $(\delta_I v)_\beta = \sigma_\beta v_\beta$ if $\beta \leq L$ and $(\delta_I v)_\beta = v_\beta$ otherwise.

References

[1] V. Voevodsky. Notes on type systems. github.com/vladimirias/old_notes_on_type_systems, 2009-2012.