Universes in the category of cubical sets

May 15, 2015

Introduction

The goal of this note is to give a definition of two universes [1] $p: \tilde{U} \rightarrow U$ and $p_{F}: \tilde{U}_{F} \rightarrow U_{F}$ in the category of cubical set. This first universe is a universe of cubical sets. The second universe is the universe of "fibrant" cubical sets, and provides a model of type theory with dependent product, sum, identity types and function extensionality.

Cubical sets

Definition of the base category

We assume a given (discrete) set of symbols/names/directions, not containing 0,1 . We let I, J, K, \ldots denote finite sets of such symbols. We also assume a function fresh (I) which selects a name not in I. Let \mathcal{C} be the following precategory. The objects are finite sets of names I, J, K, \ldots A morphism $J \rightarrow I$ is a monotone map $2^{J} \rightarrow 2^{I}$. Equivalently, a morphism $J \rightarrow I$ can be seen as a map $f: I \rightarrow \mathrm{D}(J)$ where $\mathrm{D}(J)$ is the free bounded distributive lattice on J. (This follows from the fact that the free bounded distributive lattice on J is the lattice of monotone maps $2^{J} \rightarrow 2$.)

We write $1_{I}: I \rightarrow I$ the identity map. If $f: J \rightarrow I$ and $g: K \rightarrow J$ we write $f g: K \rightarrow I$ their composition.

A cubical set is a presheaf on \mathcal{C}, i.e. a functor $\mathcal{C}^{\text {opp }} \rightarrow$ Set.
We shall need a few notions and properties of the base category that are listed in Appendix I.
A cubical set X is thus given by a family of sets $X(I)$ together with a restriction map

$$
\begin{gathered}
X(I) \rightarrow X(J) \\
u \longmapsto u f
\end{gathered}
$$

such that $u 1_{I}=u$ and $(u f) g=u(f g)$. We write $u f$ for what is usually written $X(f)(u)$.
If X is a presheaf on the slice category \mathcal{C} / I we let $\Gamma(X)$ be the set $X\left(I, 1_{I}\right)$. If X and Y are two presheaves on \mathcal{C} / I, we can consider their exponential $X \rightarrow Y$ and an element of $\Gamma(X \rightarrow Y)$ is given by a family of maps $w_{(J, f)}: X(J, f) \rightarrow Y(J, f)$ such that $\left(w_{(J, f)} u\right) g=w_{(K, f g)} u g$ for $g: K \rightarrow J$. We also can consider the presheaf of paths $P(X)$, with $P(X)(J, f)=X\left(j, J, f \iota_{j}\right)$ where $j=\operatorname{fresh}(J)$. We can then define the set Iso (X, Y) as a subset of

$$
\Gamma((X \rightarrow Y) \times(Y \rightarrow X) \times(X \rightarrow P(Y)) \times(Y \rightarrow P(X)))
$$

The universe of cubical sets

We fix a set V of small sets. Each element a in V determines a small set $E l(a)$. The pair $V, E l$ defines then a (pre)category by taking the set of morphisms between a and b to be $E l(a) \rightarrow E l(b)$. If \mathcal{D} is a (pre)category, we define the set of V-valued presheaves on \mathcal{D} to be the set of functors from $\mathcal{D}^{\text {opp }}$ to this precategory.

Given I, we can consider the set of V-valued presheaves on the slice (pre)category \mathcal{C} / I. Such a functor A is given by a family of sets $A(J, f)$ in V and restriction maps $E l(A(J, f)) \rightarrow E l(A(K, f g))$. If A is such a functor, we can define a new functor $P(A)$ by taking $P(A)(I, f)$ to be $A\left(i, I, f \iota_{i}\right)$ where $i=\operatorname{fresh}(I)$. If p is in $P(A)(I, f)$ we can consider $p 0=p(i 0)$ and $p 1=p(i 1)$ in $A(I, f)$. If a is in $A(I, f)$ we consider the constant path $\bar{a}=a \iota_{i}$ in $P(A)(I, f)$.

We define $U(I)$ to be the set of all V-valued presheaves on \mathcal{C} / I. The restriction map $U(I) \rightarrow$ $U(J), A \longmapsto A f$ is defined by letting $A f$ be the composition of A and the functor $\mathcal{C} / J \rightarrow \mathcal{C} / I$.

If A is an element of the set $U(I)$ we write $\Gamma(A)$ the set of "global element" of A, which is the set $A\left(I, 1_{I}\right)$. If $f: J \rightarrow I$, we have $\Gamma(A f)=A(J, f)$ and restriction maps $\Gamma(A) \rightarrow \Gamma(A f), u \longmapsto u f$.

We let $\tilde{U}(I)$ be the set of pairs A, u where A is an element of $U(I)$ and u an element of the set $\Gamma(A)$. We define $(A, u) f=(A f, u f)$. We define the natural transformation $p: \tilde{U} \rightarrow U$ by $p(A, u)=A$.

Proposition $0.1 p: \tilde{U} \rightarrow U$ defines a universe [1] in the category of cubical sets.
Indeed if X is a cubical set and $\sigma: X \rightarrow U$ then we can define the cubical set (X, σ) by taking $(X, \sigma)(I)$ to be the set of pairs x, u with x in $X(I)$ and u in $\Gamma(\sigma x)$.

Dependent sets

If X is a cubical set, the category of element of X has for object pair (I, ρ) with ρ in $X(I)$ and a morphism between J, ν and I, ρ is a map $f: J \rightarrow I$ such that $\nu=\rho f$. If X is a cubical set, a dependent set $X \vdash B$ over X is given by a V-valued presheaf on the category of element of X.

Such a dependent set defines a cubical set $X . B$ by taking $(X . B)(I)$ to be the set of pairs (ρ, v) with ρ in $X(I)$ and v in $B(I, \rho)$.

The universe of fibrant cubical sets

If A is an element of the set $U(I)$ we define the set of composition operations and the set of transport operations for A.

Composition

A composition operation for A is given by a family of operations comp f u \vec{p} element in $E l(A(J, f)), u$ in the set $E l(A(J, f))$ and \vec{p} a system for $P(A)$ such that $u \alpha=p_{\alpha} 0$. We should have

1. $\operatorname{comp}_{f} u[() \mapsto p]=p 1$
2. regularity: $\operatorname{comp}_{f} u(\vec{p}, \alpha \mapsto \overline{u \alpha})=\operatorname{comp}_{f} u \vec{p}$
3. uniformity: $\left(\operatorname{comp}_{f} u \vec{p}\right) g=\operatorname{comp}_{f g} u g \vec{p} g$ if $g: K \rightarrow I$.
and a dual family of operations where we swap 0 and 1 .

Transport

A transport operation for A is given by a family of operations transp ${ }_{f}^{i}$ in

$$
E l(A(J-i, f(i 0))) \rightarrow E l(A(J-i, f(i 1)))
$$

for $f: J \rightarrow I$ and i in J. Furthermore we should have

1. regularity: $\operatorname{transp}_{f}^{i} u_{0}=u_{0}$ if we have $f=f(i 0) \iota_{i}$
2. uniformity: $\left(\operatorname{transp}_{f}^{i} u_{0}\right) g=\operatorname{transp}_{f(g, i=j)}^{j} u_{0} g$ if $g: J-i \rightarrow K$ and j not in K
and a dual family of operations where we swap 0 and 1 .
We let $U_{F}(I)$ be the set of elements in $U(I)$ together with a composition and transport operation.
If $\left(\operatorname{comp}_{h}, \operatorname{transp}_{h}^{i}\right)$ is a composition and transport for A, V-valued presheaf on \mathcal{C} / I, then $\left(\operatorname{comp}_{f g}^{j}, \operatorname{transp}_{f g}^{j}\right)$ is a composition and transport for $A f, V$-valued presheaf on \mathcal{C} / J.

We define in this way a restriction map $U_{F}(I) \rightarrow U_{F}(J)$ and a cubical set U_{F}.
There is a projection map $U_{F} \rightarrow U$ but U_{F} is not a subpresehaf of U.
A particular case of regularity can be seen as a kind of α-conversion for transport

$$
\operatorname{transp}_{f}^{i} u_{0}=\operatorname{transp}_{f\left(1_{K}, i=j\right)}^{j} u_{0}
$$

if $f: K, i \rightarrow I$ and j is not in K.

Kan cubical sets

Notice that an element of $U()$ is given by a V-valued presheaf on \mathcal{C} and each transport function

$$
\text { transp }^{i}: A_{I-i} \rightarrow A_{I-i}
$$

is constant by regularity.
A Kan cubical set is a cubical set X together with a composition operation comp ${ }_{I} u \vec{p}$ in $X(I)$ with u in $X(I)$ and \vec{p} a system for X such that

1. $\operatorname{comp}_{I} u[() \mapsto p]=p 1$
2. regularity: $\operatorname{comp}_{I} u(\vec{p}, \alpha \mapsto \overline{u \alpha})=\operatorname{comp}_{I} u \vec{p}$
3. uniformity: $\left(\operatorname{comp}_{I} u \vec{p}\right) f=\operatorname{comp}_{J}^{j}$ uf $\vec{p} f$
and a dual family of operations where we swap 0 and 1 .

Kan fibration

If X is a cubical set, a Kan fibration $X \vdash B$ over X is given by a V-valued presheaf on the category of element of X, that is a dependent set over X, which admits composition and transport operations. We should have

1. $\operatorname{comp}_{I, \rho} u[() \mapsto p]=p 1$
2. regularity: $\operatorname{comp}_{I, \rho} u(\vec{p}, \alpha \mapsto \overline{u \alpha})=\operatorname{comp}_{I, \rho} u \vec{p}$
3. uniformity: $\left(\operatorname{comp}_{I, \rho} u \vec{p}\right) f=\operatorname{comp}_{J, \rho f}^{j} u f \vec{p} f$ if $g: J \rightarrow I$ and j is not in J
for the composition operation, and
4. regularity: $\operatorname{transp}_{I, \rho}^{i} u_{0}=u_{0}$ if we have $\rho=\rho(i 0) \iota_{i}$
5. uniformity: $\left(\operatorname{transp}_{I, \rho}^{i} u_{0}\right) g=\operatorname{transp}_{(J, j), \rho(g, i=j)}^{j} u_{0} g$ if $g: J \rightarrow I-i$ and j not in J
for the transport operation, together with the dual family of operations where we swap 0 and 1 .
Whenever $X \vdash B$ we can define the associated total space $X . B$ by taking $(X . B)(I)$ to be the set of pairs ρ, u with ρ in $A(I)$ and u in $B(I, \rho)$ and $(\rho, u) f=\rho f, u f$. We have a projection $p: X . B \rightarrow X$ defined by $p(\rho, u)=\rho$.

Definition of $\tilde{U}_{F} \rightarrow U_{F}$

By change of base of $p: \tilde{U} \rightarrow U$ along the projection $U_{F} \rightarrow U$ we get a map $\tilde{U}_{F} \rightarrow U_{F}$. Concretely, an element of $\tilde{U}_{F}(I)$ is given by an element A in $U(I)$, a composition and a transport operation on A, and an element of $\Gamma(A)$. This corresponds to a dependent set $U_{F} \vdash B$.

We define comp $I_{I, A} u \vec{u}$ to be $\operatorname{comp}_{1_{I}} u \vec{u}$ and $\operatorname{transp}_{I, A}^{i}$ to be $\operatorname{transp}_{1_{I}}^{i}$.
Proposition 0.2 With these operations of composition and transport, $U_{F} \vdash B$ is a Kan fibration.

Glueing operation on cubical sets

We now define an operation glue ${ }_{I} A \vec{\sigma}$ in $U(I)$, for A in $U(I)$ and a system of maps σ_{α} in $T_{\alpha} \rightarrow A \alpha$, which satisfies

1. glue ${ }_{I} A \vec{\sigma}=T$ if $\vec{\sigma}$ is ()$\mapsto \sigma$ with $\sigma: T \rightarrow A$
2. glue ${ }_{I} A \vec{\sigma}=A$ if $\vec{\sigma}$ is empty
3. uniformity: $\left(\right.$ glue $\left._{I} A \vec{\sigma}\right) f=$ glue $_{J} A f \vec{\sigma} f$ if $f: I \rightarrow J$

A system of maps $\vec{\sigma}$ is given by a sieve L in $\mathrm{S}(I)$ (as defined in Appendix I ; in particular L is determined by a finite discrete set of faces on I) and a compatible family of maps $\sigma_{(J, f)}$ in $T_{(J, f)} \rightarrow A f$ indexed by (J, f) in L.

We assume that $V, E l$ is rich enough so that we can define the following operation. Given a system of element t_{α} in V and u in V we can form the element glue (u, \vec{t}) with

1. glue $(u, \vec{t})=u$ if L is empty
2. glue $(u, \vec{t})=t$ if L is the total sieve
3. glue (u, \vec{t}) is the tuple (u, \vec{t}) otherwise

We define then (glue $\left.{ }_{I} A \vec{\sigma}\right)_{(J, f)}$ to be the set of elements glue (u, \vec{t}) with u in $A f$ and \vec{t} a $L f$-system compatible with u.

Any isomorphism in Iso (A, T) defines in particular a map $T \rightarrow A$. So we can define a glueing operation glue ${ }_{I} A \vec{\sigma}$ where now $\vec{\sigma}$ is a system of isomorphisms σ_{α} in $\operatorname{Iso}\left(A \alpha, T_{\alpha}\right)$.

Given A and B in $U_{F}(I)$ we let $\operatorname{Id}(I, A, B)$ be the set of elements E in $U_{F}(I, i)$ satisfying $E(i 0)=A$ and $E(i 1)=B$, where $i=\operatorname{fresh}(I)$. We also have defined already the set Iso (I, A, B). This defines two dependent sets $U_{F} \times U_{F} \vdash$ Id and $U_{F} \times U_{F} \vdash$ Iso over $U_{F} \times U_{F}$ that is two presheaves on the category of elements of $U_{F} \times U_{F}$.

Theorem 0.3 We have a natural transformation $\operatorname{Iso}(I, A, B) \rightarrow \operatorname{ld}(I, A, B)$.
This uses the glueing operation defined above. We "lift" this glueing operation on cubical sets to an operation on Kan cubical sets. We define an operation glue ${ }_{I} A \vec{\sigma}$ in $U_{F}(I)$, for A in $U_{F}(I)$ and a system of maps σ_{α} in Iso $\left(A \alpha, T_{\alpha}\right)$ which satisfies

1. glue ${ }_{I} A \vec{\sigma}=T$ if $\vec{\sigma}$ is ()$\mapsto \sigma$ with σ in Iso (A, T)
2. glue ${ }_{I} A \vec{\sigma}=A$ if $\vec{\sigma}$ is empty
3. uniformity: $\left(\right.$ glue $\left._{I} A \vec{\sigma}\right) f=$ glue $_{J} A f \vec{\sigma} f$ if $f: I \rightarrow J$

This is the first main point to be formalized.
Once this operation is defined, for any isomorphism σ in $\operatorname{Iso}(A, T)$ we can consider

$$
\operatorname{glue}_{I, i} A \iota_{i}[(i 1) \mapsto \sigma]
$$

which is an element of $\operatorname{Id}(I, A, T)$.

Appendix I: Properties of the base precategory

A map $f: J \rightarrow I$ can be seen as a map $I \rightarrow \mathrm{D}(J)$. We think of f as a substitution and can thus consider the element $f(i)$ in $\mathrm{D}(J)$ for i in I and the element ψf in $\mathrm{D}(J)$ if ψ is an element in $\mathrm{D}(I)$. We say that a map $f: J \rightarrow I$ is strict if $f(i)$ is neither 0 nor 1 for all i in I.

Lemma 0.4 If $f: J \rightarrow I$ is strict and ψ in $\mathrm{D}(I)$ such that $\psi f=b$ (where b is 0 or 1) then already $\psi=b$.

A face map $\alpha: I \alpha \rightarrow I$ is a map such that $\alpha(i)$ is either 0,1 or i for all i in I. We write $I \alpha$ the subset of element i such that $\alpha(i)=i$, and $\operatorname{dom}(\alpha)=I-I_{\alpha}$ is the domain of α. If $\iota_{\alpha}: I \alpha \rightarrow I$ is the inclusion, we have $\iota_{\alpha} \alpha=1$ and hence any face map α is mono. If $f: J \rightarrow I$ we write $f \leqslant \alpha$ to mean that there exists a map f^{\prime} (uniquely determined) such that $f=\alpha f^{\prime}$. This means that $f(i)=\alpha(i)$ for all i in the domain of α. This defines a poset structure on the set of face maps $\alpha: I \alpha \rightarrow I$ and this poset is a partial meet-semilattice: if α and β are compatible then they have a meet $\gamma=\alpha \wedge \beta$ with $I \gamma=I \alpha \cap I \beta$.

Corollary 0.5 If $f g \leqslant \alpha$ and g is strict then $f \leqslant \alpha$.
Proof. For any i in the domain of α we have $\alpha(i)=g(f(i))$ and so $\alpha(i)=f(i)$ since $\alpha(i)=0$ or 1 and by Lemma 0.4.

Any map $f: J \rightarrow I$ can be written uniquely as the composition $f=\alpha h$ of a face map $\alpha: I \alpha \rightarrow I$ and a map $h: J \rightarrow I \alpha$ which is strict.

If i not in I we write $\iota_{i}: I, i \rightarrow I$ the projection $2^{I, i} \rightarrow 2^{I}$. If i is in I we write ($i 0$) : $I-i \rightarrow I$ and (i1) : $I-i \rightarrow I$ the two face operation for i.

Lemma 0.6 If we have $\alpha f=\beta g$ with $f: J \rightarrow I \alpha$ and $g: J \rightarrow I \beta$ then α and β are compatible. If γ is the meet of α and β, then there exists a unique $h: J \rightarrow I \gamma$ such that $\alpha f=\gamma h=\beta g$. If we write $\alpha \alpha_{1}=\gamma=\beta \beta_{1}$ then $\alpha_{1} f=h=\beta_{1} g$.

Systems

We define $\mathbf{S}(I)$ to be the set of sieves L over I such that f is in L whenever $f g$ is in L and g is strict. Such a sieve L is completely characterised by its subset of face maps $\alpha: I \alpha \rightarrow I$, and we require this subset to be decidable. This defines a cubical set S.

If A is a presheaf on the slice category \mathcal{C} / I and L in $\mathrm{S}(I)$ a L-system for A is given by a family $a_{(J, f)}$ in $A f$ for (J, f) in L such that $a_{(J, f)} g=a_{(K, f g)}$ for all $g: J \rightarrow K$.

If $f: I \rightarrow J$ and we have a L-system \vec{a} we define a $L f$ system $\vec{b}=\vec{a} f$ by taking $b_{(K, g)}=a_{(K, f g)}$.
A L-system for A is completely determined by the family $\left[\alpha \mapsto a_{\alpha}\right]$ for α face in L. If L is the union of M and N, and we have a M-system \vec{a} and a N-system \vec{b} that coincide on $M \cap N$ then they define a system \vec{a}, \vec{b} on the union M, N.

References

[1] V. Voevodsky. Notes on type systems. github.com/vladimirias/old_notes_on_type_systems, 2009-2012.

