Universes in the category of cubical sets
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Introduction

The goal of this note is to give a definition of two universes [1] p : U — U and pp : Up — Up in
the category of cubical set. This first universe is a universe of cubical sets. The second universe is the
universe of “fibrant” cubical sets, and provides a model of type theory with dependent product, sum,
identity types and function extensionality.

Cubical sets

Definition of the base category

We assume a given (discrete) set of symbols/names/directions, not containing 0,1. We let I, J, K ...
denote finite sets of such symbols. We also assume a function fresh(I) which selects a name not in I. Let
C be the following precategory. The objects are finite sets of names I, J, K,.... A morphism J — I is
a monotone map 27 — 2/. Equivalently, a morphism J — I can be seen as a map f : I — D(J) where
D(J) is the free bounded distributive lattice on J. (This follows from the fact that the free bounded
distributive lattice on J is the lattice of monotone maps 27 — 2.)

We write 17 : I — I the identity map. If f : J — I and g : K — J we write fg : K — I their
composition.

A cubical set is a presheaf on C, i.e. a functor C°PP — Set.

We shall need a few notions and properties of the base category that are listed in Appendix I.

A cubical set X is thus given by a family of sets X (I) together with a restriction map
X(I)— X(J)

u+— uf
such that uly = u and (uf)g = u(fg). We write uf for what is usually written X (f)(u).

If X is a presheaf on the slice category C/I we let I'(X) be the set X (I,1;). If X and Y are two
presheaves on C/I, we can consider their exponential X — Y and an element of I'(X — Y') is given by
a family of maps ws sy : X(J, f) = Y (J, f) such that (w; ) u)g = wk, sq) ug for g : K — J. We also
can consider the presheaf of paths P(X), with P(X)(J, f) = X(4,J, ft;) where j = fresh(J). We can
then define the set Iso(X,Y") as a subset of

(X > Y)x (Y = X) x (X = P(Y)) x (Y = P(X)))

The universe of cubical sets

We fix a set V' of small sets. Each element a in V' determines a small set Fl(a). The pair V, El defines
then a (pre)category by taking the set of morphisms between a and b to be El(a) — El(b). If D is a
(pre)category, we define the set of V-valued presheaves on D to be the set of functors from DPP to this
precategory.



Given I, we can consider the set of V-valued presheaves on the slice (pre)category C/I. Such a functor
A is given by a family of sets A(J, f) in V and restriction maps BI(A(J, f)) = EI(A(K, fg)). If A is such
a functor, we can define a new functor P(A) by taking P(A)(I, f) to be A(i, I, fu;) where i = fresh(I).
If pis in P(A)(I, f) we can consider p0 = p(i0) and pl = p(il) in A(I, f). If a is in A(I, f) we consider
the constant path @ = at; in P(A)(I, f).

We define U(I) to be the set of all V-valued presheaves on C/I. The restriction map U(I) —
U(J), A Af is defined by letting Af be the composition of A and the functor C/J — C/I.

If A is an element of the set U(I) we write I'(A4) the set of “global element” of A, which is the set
A(I,1p). If f : J — I, we have I'(Af) = A(J, f) and restriction maps I'(4) — I'(Af), v +— uf.

We let U(I) be the set of pairs A, u where A is an element of U(I) and u an element of the set I'(A).
We define (A, u)f = (Af,uf). We define the natural transformation p : U — U by p(A,u) = A.

Proposition 0.1 p: U — U defines a universe [1] in the category of cubical sets.

Indeed if X is a cubical set and ¢ : X — U then we can define the cubical set (X, o) by taking
(X,0)(I) to be the set of pairs z,u with  in X(I) and w in I'(ox).

Dependent sets

If X is a cubical set, the category of element of X has f6F object pair (I, p) with p in X (I) and a morphism
between J,v and I,p is amap f: J — I such that v = pf. If X is a cubical set, a dependent set X - B
over X is given by a V-valued presheaf on the category of element of X.

Such a dependent set defines a cubical set X.B by taking (X.B)(I) to be the set of pairs (p,v) with
pin X(I) and v in B(I, p).

The universe of fibrant cubical sets

If A is an element of the set U(I) we define the set of composition operations and the set of transport
operations for A.
Composition

A composition operation for A is given by a family of operations comp; u pelement in EI(A(J, f)), u in
the set EI(A(J, f)) and § a system for P(A) such that ua = p,0. We should have

1. comp; u [() = p] = pl
2. regularity: comp; u (p, o UQX) = comp, u p
3. uniformity: (comp; u p)g = comp;, ug pg if g: K — I.

and a dual family of operations where we swap 0 and 1.

Transport

A transport operation for A is given by a family of operations tra nspz} in
El(A(J — i, f(i0))) — El(A(J — 1, f(i1)))
for f:J — I and i in J. Furthermore we should have
1. regularity: transp’]} ug = ug if we have f = f(i0)¢;

2. uniformity: (transp} Uug)g = transpjc(g i—j) Uog ifg:J—i— K and j not in K
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and a dual family of operations where we swap 0 and 1.

We let Urp(I) be the set of elements in U(I) together with a composition and transport operation.
If (compy,, transp}, ) is a composition and transport for A, V-valued presheaf on C/I, then (compifg7 transpgcg)
is a composition and transport for Af, V-valued presheaf on C/J.
We define in this way a restriction map Up(I) — Up(J) and a cubical set Up.
There is a projection map Ur — U but U is not a subpresehaf of U.
A particular case of regularity can be seen as a kind of a-conversion for transport
i _ )
transp;ug = transpf(

Lic,i=) 10

if f: K,72— I and j is not in K.

Kan cubical sets
Notice that an element of U() is given by a V-valued presheaf on C and each transport function
transp’ : A;_; — Ar_;

is constant by regularity.
A Kan cubical set is a cubical set X together with a composition operation comp; u p'in X (I) with
win X(I) and p' a system for X such that

L. comp; u [() = p] = pl
2. regularity: comp; u (P, o — wa) = comp; u P
3. uniformity: (comp; u p)f = comp?, uf pf

and a dual family of operations where we swap 0 and 1.

Kan fibration
If X is a cubical set, a Kan fibration X = B over X is given by a V-valued presheaf on the category of

element of X, that is a dependent set over X, which admits composition and transport operations. We
should have
1. comp; , u [() = p] = pl

2. regularity: comp; , u (P, = Q) = comp; , u p
3. uniformity: (comp; , u p)f = comp§7pf uf pfifg:J — I and j is not in J
for the composition operation, and

1. regularity: transpiI,p ug = wo if we have p = p(i0)¢;

2. uniformity: (transpip Ug)g = transp{ upg if g: J — I —i and j not in J

J.3):p(g,i=5)
for the transport operation, together with the dual family of operations where we swap 0 and 1.

Whenever X F B we can define the associated total space X.B by taking (X.B)(I) to be the set of
pairs p,u with p in A(I) and w in B(I,p) and (p,u)f = pf,uf. We have a projection p : X.B — X
defined by p(p,u) = p.

Definition of Up — Up

By change of base of p : U—U along the projection Ur — U we get a map Up — Up. Concretely, an
element of U #(I) is given by an element A in U(I), a composition and a transport operation on A, and
an element of I'(A). This corresponds to a dependent set Up - B.

We define comp; 4 u @ to be comp,, u @ and transp?A to be transpﬁl.

Proposition 0.2 With these operations of composition and transport, Ur - B is a Kan fibration.



Glueing operation on cubical sets

We now define an operation glue; A & in U(I), for A in U(I) and a system of maps o, in T, = Aq,
which satisfies

1. glue;, Ag=Tifdis()—»owitheo: T — A
2. glue; A6 = Aif & is empty
3. uniformity: (glue; A &)f =glue; Af fif f: I —J

A system of maps & is given by a sieve L in S(I) (as defined in Appendix I; in particular L is
determined by a finite discrete set of faces on I) and a compatible family of maps o (s sy in T(; ) — Af
indexed by (J, f) in L.

We assume that V, Fl is rich enough so that we can define the following operation. Given a system
of element ¢, in V and u in V we can form the element glue(u, ) with

1. glue(u,t) = u if L is empty
2. glue(u,t) = t if L is the total sieve
3. glue(u, ) is the tuple (u,f) otherwise

We define then (glue; A &)(s,5) to be the set of elements glue(u, ) with w in Af and ¢ a Lf-system
compatible with w.

Any isomorphism in Iso(A, T') defines in particular a map T — A. So we can define a glueing operation
glue; A & where now & is a system of isomorphisms o, in Iso(Aa, Ty,).

Given A and B in Up(I) we let Id(I, A, B) be the set of elements E in Up(I,) satisfying E(i0) = A
and F(il) = B, where i = fresh(I). We also have defined already the set Iso(I, A, B). This defines two
dependent sets Up X Up F Id and Up x Up F Iso over Up x Up that is two presheaves on the category
of elements of Urp x Up.

Theorem 0.3 We have a natural transformation Iso(I, A, B) — 1d(I, A, B).

This uses the glueing operation defined above. We “lift” this glueing operation on cubical sets to an
operation on Kan cubical sets. We define an operation glue; A ¢ in Up(I), for A in Up(I) and a system
of maps o, in Iso(Aa, T, ) which satisfies

1. glue;, AG=Tif & is () — o with o in Iso(A,T)

2. glue; A ¢ = Aif & is empty

3. uniformity: (glue; A &)f =glue; Af afif f: 1 —J
This is the first main point to be formalized.

Once this operation is defined, for any isomorphism o in Iso(A,T) we can consider
gluey; Au; [(i1) = 0]

which is an element of Id(I, A, T).

Appendix I: Properties of the base precategory

A map f:J — I can be seen as a map I — D(J). We think of f as a substitution and can thus consider
the element f(i) in D(J) for ¢ in I and the element ¢ f in D(J) if ¢ is an element in D(I). We say that
amap f:J — Iis strict if f(i) is neither 0 nor 1 for all 7 in I.

Lemma 0.4 If f : J — I is strict and ¢ in D(I) such that ¢)f = b (where b is 0 or 1) then already ¢ = b.



A face map a : Ta — I is a map such that «(7) is either 0,1 or ¢ for all ¢ in 7. We write T« the subset
of element ¢ such that «(i) = ¢, and dom(a) = I — I, is the domain of a. If 1, : T — T is the inclusion,
we have t,a = 1 and hence any face map « is mono. If f: J — I we write f < « to mean that there
exists a map f’ (uniquely determined) such that f = af’. This means that f(i) = «(i) for all ¢ in the
domain of o. This defines a poset structure on the set of face maps « : o — I and this poset is a partial
meet-semilattice: if @ and (8 are compatible then they have a meet v = a A 8 with Iy = IanNIf.

Corollary 0.5 If fg < « and g is strict then f < a.

Proof. For any i in the domain of a we have a(i) = ¢g(f(i)) and so a(i) = f(i) since a(i) = 0 or 1 and
by Lemma 0.4. 0

Any map f: J — I can be written uniquely as the composition f = ah of a face map a : T — I
and a map h : J — I« which is strict.

If i not in I we write ¢; : I,i — I the projection 20t — 21, If 4 is in I we write (i0) : I —i — I and
(i1) : I — i — I the two face operation for i.

Lemma 0.6 If we have af = g with f : J — I and g : J — I then o and [ are compatible. If
is the meet of a and (3, then there exists a unique h : J — Ivy such that af = vh = [Bg. If we write

aoy = = P then ay f = h = Pig.

Systems

We define S(I) to be the set of sieves L over I such that f is in L whenever fg is in L and g is strict.
Such a sieve L is completely characterised by its subset of face maps « : Taw — I, and we require this
subset to be decidable. This defines a cubical set S.

If Ais a presheaf on the slice category C/I and L in S(I) a L-system for A is given by a family a
in Af for (J, f) in L such that a(; )9 = a(x,fq) forallg: J — K.

If f: 1 — J and we have a L-system a we define a Lf system b= af by taking bix gy = a(k fg)-

A L-system for A is completely determined by the family [a — a,] for « face in L. If L is the union

of M and N, and we have a M-system @ and a N-system b that coincide on M N N then they define a
system d, b on the union M, N.
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