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Introduction

The goal of this note is to give a definition of two universes [1] p : Ũ ! U and p

F

: Ũ
F

! U

F

in
the category of cubical set. This first universe is a universe of cubical sets. The second universe is the
universe of “fibrant” cubical sets, and provides a model of type theory with dependent product, sum,
identity types and function extensionality.

Cubical sets

Definition of the base category

We assume a given (discrete) set of symbols/names/directions, not containing 0, 1. We let I, J,K, . . .

denote finite sets of such symbols. We also assume a function fresh(I) which selects a name not in I. Let
C be the following precategory. The objects are finite sets of names I, J,K, . . . . A morphism J ! I is
a monotone map 2J ! 2I . Equivalently, a morphism J ! I can be seen as a map f : I ! D(J) where
D(J) is the free bounded distributive lattice on J . (This follows from the fact that the free bounded
distributive lattice on J is the lattice of monotone maps 2J ! 2.)

We write 1
I

: I ! I the identity map. If f : J ! I and g : K ! J we write fg : K ! I their
composition.

A cubical set is a presheaf on C, i.e. a functor Copp ! Set.

We shall need a few notions and properties of the base category that are listed in Appendix I.

A cubical set X is thus given by a family of sets X(I) together with a restriction map

X(I) ! X(J)

u 7�! uf

such that u1
I

= u and (uf)g = u(fg). We write uf for what is usually written X(f)(u).

If X is a presheaf on the slice category C/I we let �(X) be the set X(I, 1
I

). If X and Y are two
presheaves on C/I, we can consider their exponential X ! Y and an element of �(X ! Y ) is given by
a family of maps w(J,f) : X(J, f) ! Y (J, f) such that (w(J,f) u)g = w(K,fg) ug for g : K ! J . We also
can consider the presheaf of paths P (X), with P (X)(J, f) = X(j, J, f ◆

j

) where j = fresh(J). We can
then define the set Iso(X,Y ) as a subset of

�((X ! Y )⇥ (Y ! X)⇥ (X ! P (Y ))⇥ (Y ! P (X)))

The universe of cubical sets

We fix a set V of small sets. Each element a in V determines a small set El(a). The pair V,El defines
then a (pre)category by taking the set of morphisms between a and b to be El(a) ! El(b). If D is a
(pre)category, we define the set of V -valued presheaves on D to be the set of functors from Dopp to this
precategory.
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Given I, we can consider the set of V -valued presheaves on the slice (pre)category C/I. Such a functor
A is given by a family of sets A(J, f) in V and restriction maps El(A(J, f)) ! El(A(K, fg)). If A is such
a functor, we can define a new functor P (A) by taking P (A)(I, f) to be A(i, I, f ◆

i

) where i = fresh(I).
If p is in P (A)(I, f) we can consider p0 = p(i0) and p1 = p(i1) in A(I, f). If a is in A(I, f) we consider
the constant path a = a◆

i

in P (A)(I, f).

We define U(I) to be the set of all V -valued presheaves on C/I. The restriction map U(I) !
U(J), A 7�! Af is defined by letting Af be the composition of A and the functor C/J ! C/I.

If A is an element of the set U(I) we write �(A) the set of “global element” of A, which is the set
A(I, 1

I

). If f : J ! I, we have �(Af) = A(J, f) and restriction maps �(A) ! �(Af), u 7�! uf .

We let Ũ(I) be the set of pairs A, u where A is an element of U(I) and u an element of the set �(A).
We define (A, u)f = (Af, uf). We define the natural transformation p : Ũ ! U by p(A, u) = A.

Proposition 0.1 p : Ũ ! U defines a universe [1] in the category of cubical sets.

Indeed if X is a cubical set and � : X ! U then we can define the cubical set (X,�) by taking
(X,�)(I) to be the set of pairs x, u with x in X(I) and u in �(�x).

Dependent sets

If X is a cubical set, the category of element of X has for object pair (I, ⇢) with ⇢ in X(I) and a morphism
between J, ⌫ and I, ⇢ is a map f : J ! I such that ⌫ = ⇢f . If X is a cubical set, a dependent set X ` B

over X is given by a V -valued presheaf on the category of element of X.
Such a dependent set defines a cubical set X.B by taking (X.B)(I) to be the set of pairs (⇢, v) with

⇢ in X(I) and v in B(I, ⇢).

The universe of fibrant cubical sets

If A is an element of the set U(I) we define the set of composition operations and the set of transport
operations for A.

Composition

A composition operation for A is given by a family of operations comp

f

u ~p element in El(A(J, f)), u in
the set El(A(J, f)) and ~p a system for P (A) such that u↵ = p

↵

0. We should have

1. comp

f

u [() 7! p] = p1

2. regularity: comp

f

u (~p,↵ 7! u↵) = comp

f

u ~p

3. uniformity: (comp

f

u ~p)g = comp

fg

ug ~pg if g : K ! I.

and a dual family of operations where we swap 0 and 1.

Transport

A transport operation for A is given by a family of operations transpi
f

in

El(A(J � i, f(i0))) ! El(A(J � i, f(i1)))

for f : J ! I and i in J . Furthermore we should have

1. regularity: transpi
f

u0 = u0 if we have f = f(i0)◆
i

2. uniformity: (transpi
f

u0)g = transp

j

f(g,i=j) u0g if g : J � i ! K and j not in K
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and a dual family of operations where we swap 0 and 1.

We let U
F

(I) be the set of elements in U(I) together with a composition and transport operation.
If (comp

h

, transp

i

h

) is a composition and transport forA, V -valued presheaf on C/I, then (comp

j

fg

, transp

j

fg

)
is a composition and transport for Af , V -valued presheaf on C/J .

We define in this way a restriction map U

F

(I) ! U

F

(J) and a cubical set U
F

.

There is a projection map U

F

! U but U
F

is not a subpresehaf of U .

A particular case of regularity can be seen as a kind of ↵-conversion for transport

transp

i

f

u0 = transp

j

f(1K ,i=j)u0

if f : K, i ! I and j is not in K.

Kan cubical sets

Notice that an element of U() is given by a V -valued presheaf on C and each transport function

transp

i : A
I�i

! A

I�i

is constant by regularity.
A Kan cubical set is a cubical set X together with a composition operation comp

I

u ~p in X(I) with
u in X(I) and ~p a system for X such that

1. comp

I

u [() 7! p] = p1

2. regularity: comp

I

u (~p,↵ 7! u↵) = comp

I

u ~p

3. uniformity: (comp

I

u ~p)f = comp

j

J

uf ~pf

and a dual family of operations where we swap 0 and 1.

Kan fibration

If X is a cubical set, a Kan fibration X ` B over X is given by a V -valued presheaf on the category of
element of X, that is a dependent set over X, which admits composition and transport operations. We
should have

1. comp

I,⇢

u [() 7! p] = p1

2. regularity: comp

I,⇢

u (~p,↵ 7! u↵) = comp

I,⇢

u ~p

3. uniformity: (comp

I,⇢

u ~p)f = comp

j

J,⇢f

uf ~pf if g : J ! I and j is not in J

for the composition operation, and

1. regularity: transpi
I,⇢

u0 = u0 if we have ⇢ = ⇢(i0)◆
i

2. uniformity: (transpi
I,⇢

u0)g = transp

j

(J,j),⇢(g,i=j) u0g if g : J ! I � i and j not in J

for the transport operation, together with the dual family of operations where we swap 0 and 1.

Whenever X ` B we can define the associated total space X.B by taking (X.B)(I) to be the set of
pairs ⇢, u with ⇢ in A(I) and u in B(I, ⇢) and (⇢, u)f = ⇢f, uf . We have a projection p : X.B ! X

defined by p(⇢, u) = ⇢.

Definition of ŨF ! UF

By change of base of p : Ũ ! U along the projection U

F

! U we get a map Ũ

F

! U

F

. Concretely, an
element of Ũ

F

(I) is given by an element A in U(I), a composition and a transport operation on A, and
an element of �(A). This corresponds to a dependent set U

F

` B.
We define comp

I,A

u ~u to be comp1I u ~u and transp

i

I,A

to be transp

i

1I .

Proposition 0.2 With these operations of composition and transport, U

F

` B is a Kan fibration.
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Glueing operation on cubical sets

We now define an operation glue

I

A ~� in U(I), for A in U(I) and a system of maps �
↵

in T

↵

! A↵,
which satisfies

1. glue

I

A ~� = T if ~� is () 7! � with � : T ! A

2. glue

I

A ~� = A if ~� is empty

3. uniformity: (glue
I

A ~�)f = glue

J

Af ~�f if f : I ! J

A system of maps ~� is given by a sieve L in S(I) (as defined in Appendix I; in particular L is
determined by a finite discrete set of faces on I) and a compatible family of maps �(J,f) in T(J,f) ! Af

indexed by (J, f) in L.
We assume that V,El is rich enough so that we can define the following operation. Given a system

of element t
↵

in V and u in V we can form the element glue(u,~t) with

1. glue(u,~t) = u if L is empty

2. glue(u,~t) = t if L is the total sieve

3. glue(u,~t) is the tuple (u,~t) otherwise

We define then (glue
I

A ~�)(J,f) to be the set of elements glue(u,~t) with u in Af and ~t a Lf -system
compatible with u.

Any isomorphism in Iso(A, T ) defines in particular a map T ! A. So we can define a glueing operation
glue

I

A ~� where now ~� is a system of isomorphisms �
↵

in Iso(A↵, T
↵

).

Given A and B in U

F

(I) we let Id(I, A,B) be the set of elements E in U

F

(I, i) satisfying E(i0) = A

and E(i1) = B, where i = fresh(I). We also have defined already the set Iso(I, A,B). This defines two
dependent sets U

F

⇥ U

F

` Id and U

F

⇥ U

F

` Iso over U

F

⇥ U

F

that is two presheaves on the category
of elements of U

F

⇥ U

F

.

Theorem 0.3 We have a natural transformation Iso(I, A,B) ! Id(I, A,B).

This uses the glueing operation defined above. We “lift” this glueing operation on cubical sets to an
operation on Kan cubical sets. We define an operation glue

I

A ~� in U

F

(I), for A in U

F

(I) and a system
of maps �

↵

in Iso(A↵, T
↵

) which satisfies

1. glue

I

A ~� = T if ~� is () 7! � with � in Iso(A, T )

2. glue

I

A ~� = A if ~� is empty

3. uniformity: (glue
I

A ~�)f = glue

J

Af ~�f if f : I ! J

This is the first main point to be formalized.

Once this operation is defined, for any isomorphism � in Iso(A, T ) we can consider

glue

I,i

A◆

i

[(i1) 7! �]

which is an element of Id(I, A, T ).

Appendix I: Properties of the base precategory

A map f : J ! I can be seen as a map I ! D(J). We think of f as a substitution and can thus consider
the element f(i) in D(J) for i in I and the element  f in D(J) if  is an element in D(I). We say that
a map f : J ! I is strict if f(i) is neither 0 nor 1 for all i in I.

Lemma 0.4 If f : J ! I is strict and  in D(I) such that  f = b (where b is 0 or 1) then already  = b.
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A face map ↵ : I↵! I is a map such that ↵(i) is either 0, 1 or i for all i in I. We write I↵ the subset
of element i such that ↵(i) = i, and dom(↵) = I � I

↵

is the domain of ↵. If ◆
↵

: I↵! I is the inclusion,
we have ◆

↵

↵ = 1 and hence any face map ↵ is mono. If f : J ! I we write f 6 ↵ to mean that there
exists a map f

0 (uniquely determined) such that f = ↵f

0. This means that f(i) = ↵(i) for all i in the
domain of ↵. This defines a poset structure on the set of face maps ↵ : I↵! I and this poset is a partial
meet-semilattice: if ↵ and � are compatible then they have a meet � = ↵ ^ � with I� = I↵ \ I�.

Corollary 0.5 If fg 6 ↵ and g is strict then f 6 ↵.

Proof. For any i in the domain of ↵ we have ↵(i) = g(f(i)) and so ↵(i) = f(i) since ↵(i) = 0 or 1 and
by Lemma 0.4.

Any map f : J ! I can be written uniquely as the composition f = ↵h of a face map ↵ : I↵ ! I

and a map h : J ! I↵ which is strict.
If i not in I we write ◆

i

: I, i ! I the projection 2I,i ! 2I . If i is in I we write (i0) : I � i ! I and
(i1) : I � i ! I the two face operation for i.

Lemma 0.6 If we have ↵f = �g with f : J ! I↵ and g : J ! I� then ↵ and � are compatible. If �

is the meet of ↵ and �, then there exists a unique h : J ! I� such that ↵f = �h = �g. If we write

↵↵1 = � = ��1 then ↵1f = h = �1g.

Systems

We define S(I) to be the set of sieves L over I such that f is in L whenever fg is in L and g is strict.
Such a sieve L is completely characterised by its subset of face maps ↵ : I↵ ! I, and we require this
subset to be decidable. This defines a cubical set S.

If A is a presheaf on the slice category C/I and L in S(I) a L-system for A is given by a family a(J,f)

in Af for (J, f) in L such that a(J,f)g = a(K,fg) for all g : J ! K.

If f : I ! J and we have a L-system ~a we define a Lf system ~

b = ~af by taking b(K,g) = a(K,fg).

A L-system for A is completely determined by the family [↵ 7! a

↵

] for ↵ face in L. If L is the union

of M and N , and we have a M -system ~a and a N -system ~

b that coincide on M \N then they define a
system ~a,

~

b on the union M,N .
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