
LAWVERE THEORIES AND C-SYSTEMS

VLADIMIR VOEVODSKY

Abstract. In this paper we consider the class of l-bijective C-systems, i.e., C-
systems for which the length function is a bijection. The main result of the paper is
a construction of an isomorphism between two categories - the category of l-bijective
C-systems and the category of Lawvere theories.

1. Introduction

In this paper we consider the simplest class of C-systems (contextual categories)
- the ones for which the length function l : Ob(CC) → N is a bijection. It turns
out that such C-systems are very closely related to Lawvere theories. We construct
functors from the category of Lawvere theories to the category of l-bijective C-systems
and a functor in the opposite direction and show in Theorem 6.1 that these functors
are mutually inverse isomorphisms of the corresponding categories. We emphasize the
unexpected aspect of this result which is that we obtain not simply an equivalence
but an actual isomorphism of the categories.

This is essentially the first result on C-systems that includes the description of their
homomorphisms.

Since this paper as well as other papers in the series on C-systems is expected to
play a role in the mathematically rigorous construction of the simplicial univalent
representation of the UniMath language and the Calculus of Inductive Constructions
and since such a construction itself can not rely on the univalent foundations the
paper is written from the perspective of the Zermelo-Fraenkel formalism.

Constructions and proofs of the paper do not use the axiom of excluded middle or
the axiom of choice.

We use the diagrammatic order in writing compositions, i.e., for f : X → Y and
g : Y → Z we write f ◦ g for the composition of f and g.

We do not make precise the concept of a universe that we use for some of the
statements of the paper. It would be certainly sufficient to assume that U is a
Grothendieck universe. However, it seems likely that sets U satisfying much weaker
conditions can be used both for the statements and for the proofs of our results.

2. The category of Lawvere theories

As usual, we let N denote the set of natural numbers. For m ∈ N let stn(m) =
{i ∈ N | 0 ≤ i < m} be the standard set with m elements.
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Let
Mor(F ) = ∪n,m∈NFun(stn(n), stn(m))

where Fun(X, Y ) is the set of functions from X to Y . We use the definition of a
function given in [1, p.81] where a function f from X to Y is defined as a triple
(X, Y,G) where G is an subset in X × Y satisfying the usual conditions. This means
that every function has a well defined domain and codomain which makes it possible
to define a category F with the set of objects N and the set of morphisms Mor(F )
such that for each n and m the set

F (m,n) := {f ∈Mor(F ) | dom(f) = m and codom(f) = n}

equals to Fun(stn(m), stn(n)) and composition, when restricted to these subsets, is
the composition of functions.

For m,n ∈ N let iim,n0 : stn(m)→ stn(m+ n) and iim,n1 : stn(n)→ stn(m+ n) be
the injections of the initial segment of length m and the concluding segment of length
n.

Definition 2.1. [2015.11.24.def1] A Lawvere theory structure on a category T is a
functor L : F → T such that the following conditions hold:

(1) L is a bijection on the sets of objects,
(2) L(0) is an initial object of T ,
(3) for any m,n ∈ N the square

L(0) −−−→ L(n)y yL(iim,n
1 )

L(m)
L(iim,n

0 )
−−−−−→ L(m+ n)

is a push-out square.

A Lawvere theory is a pair (T, L) where T is a category and L is a Lawvere theory
structure on T .

Let us denote the set of Lawvere theory structures on T by Lw(T ).

Problem 2.2. [2015.12.18.prob2] For a universe U , to construct a category LW (U)
of Lawvere theories in U .

Construction 2.3. [2015.12.18.constr2] Following Lawvere [4, p. 61] we define a
morphism from a Lawvere theory T1 = (T1, L1) to a Lawvere theory T2 = (T2, L2)
as a functor G : T1 → T2 such that L1 ◦ G = L2. We let HomLW (T1,T2) denote
the subset in the set of functors from T1 to T2 that are morphisms of the Lawvere
theories.

Note that here one uses the equality rather than isomorphism of functors. The
composition of morphisms is defined as composition of functors. The identity mor-
phism is the identity functor. The associativity and the left and right unity axioms
follow immediately from the corresponding properties of the composition of functors.
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We let Ob(LW (U)) denote the set of Lawvere theories in U and Mor(LW (U)) the
set

Mor(LW (U)) =
∐

T1,T2∈Ob(LW (U))

HomLW (T1,T2)

Together with the obvious domain, codomain, identity and composition functions the
pair of sets Ob(LW (U)) and Mor(LW (U)) forms a category that we denote LW (U)
and call the category of Lawvere theories in U .

Note that a morphism from T1 to T2 in this category is not a morphism of Lawvere
theories but an iterated pair ((T1,T2), G) where G is a morphism of Lawvere theories.
However, there is an obvious bijection

MorLW (U)(T1,T2)→ HomLW (T1,T2)

that we will use in both directions as a coercion, in the terminology of the proof
assistant Coq, i.e., every time we have an expression which denotes an element of one
of these sets in a position where an element of the other is expected it is replaced by
its image under this bijection.

We will use below the following lemma.

Lemma 2.4. [2015.11.28.l4] Let T be a category and L : F → T a functor such
that the following conditions hold:

(1) L(0) is an initial object of T ,
(2) for any m ∈ N the square

(1) [2015.11.28.eq2]

L(0) −−−→ L(1)y yL(iim,1
1 )

L(m)
L(iim,1

0 )
−−−−→ L(m+ 1)

is a push-out square.

Then for any m,n ∈ N the square
L(0) −−−→ L(n)y yL(iim,n

1 )

L(m)
L(iim,n

0 )
−−−−−→ L(m+ n)

is a push-out square.

Proof. Let m,n ∈ N. Consider first the diagram

L(0) −−−→ L(n)
L(iim,n

1 )
−−−−−→ L(m+ n)y yL(iin,1

0 )

yL(iim+n,1
0 )

L(1)
L(iin,1

1 )
−−−−→ L(n+ 1)

L(iim,n+1
1 )

−−−−−−→ L(m+ n+ 1)

Then first square is the reflection relative to the diagonal of a square of the form 1
and therefore it is a push-out square.
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We have iin,11 ◦ii
m,n+1
1 = iim+n,1

1 . Therefore the large square is the reflection relative
to the diagonal of a square of the form 1 and therefore it is a push-out square.

The right hand side square is commutative.

By the general properties of push-out squares which are obtained from the similar
properties of the pull-back squares by inversion of the direction of arrows we conclude
that the right hand side square is a push-out square.

To prove the lemma proceed now by induction on n.

For n = 0 the horizontal arrows are isomorphisms and since the square commutes
it is a push-out square.

For n = 1 it is a square of the form (1).

For the successor consider the diagram

L(0) −−−→ L(n)
L(iin,1

0 )
−−−−→ L(n+ 1)y yL(iim,n

1 )

yL(iim,n+1
1 )

L(m)
L(iim,n

0 )
−−−−−→ L(m+ n)

L(iim+n,1
0 )

−−−−−−→ L(m+ n+ 1)

The first square is push-out by the inductive assumption. The second square is push-
out by the first part of the proof. Therefore the ambient square is push-out. Since
iim,n0 ◦ iim+n,1

0 = iim,n+1
0 this completes the proof of the lemma. �

3. The category of l-bijective C-systems

For the definition of a C-system see [2], [3] (where they are called contextual
categories) as well as [6]. A C-system structure on a category CC is a six-tuple
cs = (l, pt, ft, p, q, s) where l, ft and p are functions, pt an element of Ob(CC), q a
partial function on pairs and s a partial function. To be a C-system structure these
objects must satisfy the conditions of [6, Definitions 2.1 and 2.3].

Definition 3.1. [2015.11.24.def2] A l-bijective C-system is a C-system such that
the length function Ob(CC)→ N is a bijection.

We let CsN(CC) denote the set of l-bijective C-system structures on a category
CC.

Problem 3.2. [2015.12.18.prob3] Let U be a universe. To construct a category
CS(U) of C-systems in U .

Construction 3.3. A morphism of C-systems is a functor between the underlying
categories that is compatible with the corresponding C-system structures. For a
detailed definition see [5, Definition 3.1]. We let HomCS(CC1, CC2) denote the set
of homomorphisms from the C-system CC1 to the C-system CC2.

That the composition of functors that are homomorphisms is again a homomor-
phism is stated in [5, Lemma 3.2]. That the identity functor is a homomorphism
is very easy to prove. The associativity and the left and right unity axioms for
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the composition of homomorphisms follow directly from the similar properties of the
composition of functors.

Repeating the approach that we used with Lawvere theories we obtain the category
CS(U) of C-systems in U .

We let CSN(U) denote the full subcategory in CS(U) that consists of l-bijective
C-systems.

The following result shows that l-bijective C-systems are abundant in the world of
C-systems.

Theorem 3.4. [2015.12.26.th1] Let C be a C-system. Let X be an object of C such
that l(X) = 1. Let CX be the smallest C-subsystem of C that is a full subcategory of
C and that contains X. Then CX is an l-bijective C-system.

Proof. Recall that we let pt denote the object of C of length 0 and for an object Y
of C we let πY denote the unique morphism Y → pt. Define objects X∗n for n ∈ N
inductively as follows:

(1) X∗0 = pt,
(2) X∗1 = X,
(3) X∗(n+1) = (πX∗n)∗(X).

Let CX be the full subcategory of C that is generated by objects X∗n for n ∈ N. Let
us show that it is a C-subsystem of C. Since it is a full subcategory, i.e., contains
all morphisms between its objects it is sufficient to show that it is closed under the
operations of C-systems that generate objects.

We have pt ∈ CX .
For X∗n ∈ CX we have ft(X∗n) ∈ CX . This is proved by an easy induction on n.

For f : X∗m → X∗n we have f ∗(X∗(n+1)) ∈ CX . Indeed, by definition we have
X∗(n+1) = (πX∗n)∗(X). Therefore

f ∗(X∗(n+1)) = f ∗((πX∗n)∗(X)) = (f ◦ πX∗n)∗(X) = π∗X∗m(X) = X∗(m+1)

To finish the proof of the theorem it remains to show that CX is an l-bijective C-
system which is straightforward. �

4. A functor from Lawvere theories to l-bijective C-systems

Problem 4.1. [2015.11.24.prob1] For a category T to construct a function

LC : Lw(T )→ CsN(T
op)

from the Lawvere theory structures on T to the l-bijective C-system structures on T op.

Construction 4.2. [2015.11.24.constr1] Let CC = T op. We need to construct a
l-bijective C-system structure on CC. We set:

The length function l = L−1.

The distinguished final object pt is L(0).
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The map ft : Ob(CC) → Ob(CC) maps pt to pt and any object X such that
l(X) > 0 to L(l(X)− 1).

For pt the morphism ppt is the identity. For X such that l(X) > 0 the morphism
pX : X → ft(X) is L(iil(X)−1,1

0 ).

To define q(f,X) observe first that for any X such that l(X) > 0 we have a pull-
back square in CC of the form

(2) [2015.11.24.eq1]

X
L(ii

l(X)−1,1
1 )

−−−−−−−→ L(1)

pX

y y
ft(X) −−−→ L(0)

Given f : Y → X we set
f ∗(X) = L(l(Y ) + 1)

Since (2) is a pull-back square and L(0) is a final object there is a unique morphism
q(f,X) : f ∗(X)→ X such that

(3) [2015.12.02.eq7]q(f,X) ◦ pX = pf∗(X) ◦ f
and

(4) [2015.12.02.eq8]q(f,X) ◦ L(iil(X)−1,1
1 ) = L(ii

l(Y ),1
1 )

Let us check the conditions of [6, Definition 2.1] that will show that we obtained
a C0-system. We have l−1(0) = L(0) = {pt}. For X such that l(X) > 0 we have
l(ft(X)) = l(L(l(X)−1)) = l(X)−1. We also have ft(pt) = pt. The object pt = L(0)
is final.

The square

(5) [2015.11.24.eq2]

f ∗(X)
q(f,X)−−−−→ X

pf∗(X)

y pX

y
Y

f−−−→ ft(X)

commutes by the construction of q(f,X).

If f = Idft(X) then l(Y ) = l(X) and therefore f ∗(X) = X. Therefore q(f,X)◦pX =

pX and q(f,X) ◦ L(iil(X)−1,1
1 ) = L(ii

l(X)−1,1
1 ) which proves that q(f,X) = IdX .

Given g : Z → Y we have to verify that q(g◦f,X) = q(g, f ∗(X))◦q(f,X). We have
(g ◦ f)∗(X) = L(l(Z) + 1) = g∗(f ∗(X)). Taking into account that (2) is a pull-back
square, it remains to verify two equalities

q(g ◦ f,X) ◦ pX = q(g, f ∗(X)) ◦ q(f,X) ◦ pX
and

q(g ◦ f,X) ◦ L(iil(X)−1,1
1 ) = q(g, f ∗(X)) ◦ q(f,X) ◦ L(iil(X)−1,1

1 )

For the first equality we have

q(g ◦ f,X) ◦ pX = p(g◦f)∗(X) ◦ g ◦ f = pg∗(f∗(X)) ◦ g ◦ f =

q(g, f ∗(X)) ◦ pf∗(X) ◦ f = q(g, f ∗(X)) ◦ q(f,X) ◦ pX
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and for the second

q(g◦f,X)◦L(iil(X)−1,1
1 ) = L(ii

l(Z),1
1 ) = q(g, f ∗(X))◦L(iil(Y ),1

1 ) = q(g, f ∗(X))◦q(f,X)◦L(iil(X)−1,1
1 )

According to [6, Proposition 2.4] it remains to show that the squares (5) are pull-back
squares.

Consider the diagram

f ∗(X)
q(f,X)−−−−→ X

L(ii
l(X)−1,1
1 )

−−−−−−−→ L(1)

pf∗(X)

y pX

y y
Y

f−−−→ ft(X) −−−→ L(0)

where both the right hand side square and the outside square are of the form (2)
and in particular are pull-back squares and the left hand side square has been shown
to be commutative. Therefore, the left hand side square is a pull-back square. We
conclude, by [6, Proposition 2.4] that there exists a unique s such that (l, pt, p, q, s)
is a C-system structure.

Lemma 4.3. [2015.12.06.prob1] Let G : (T1, L1)→ (T2, L2) be a morphism of Law-
vere theories. Then the functor Gop is a homomorphism of C-systems (T op1 , LC(L1))→
(T op2 , LC(L2)).

Proof. [2015.12.06.constr1] For convenience we will write H instead of Gop. In
view of [5, Lemma 3.4] it is sufficient to verify that H is compatible with the length
function, distinguished final object, ft map, p-morphisms and q-morphisms.

The fact that it l1 = H ◦ l2 is equivalent to the fact that L1 ◦G = L2.

The fact that H(L1(0)) = L2(0) follows from the same property of G.

The fact that H(ft(X)) = ft(H(X)) again follows from the same property of G.

The fact that H(pX) = pH(X) follows from the fact that L1 ◦ G = L2 on objects
and on morphisms of the form iin,10 .

It remains to verify that for X such that l(X) > 0 and f : Y → ft(X) one has

H(q(f,X)) = q(H(f), H(X))

where the right hand side is defined because H is compatible with l and ft.

Morphism q(H(f), H(X)) is defined as the unique morphism such that

q(H(f), H(X)) ◦ pH(X) = pH(f)∗(H(X)) ◦H(f)

and
q(H(f), H(X)) ◦ L2(ii

l2(H(X))−1,1
1 ) = L2(ii

l2(H(Y )),1
1 )

Therefore we need to verify the same equalities for the morphism H(q(f,X)). For
the first equality we have

H(q(f,X))◦pH(X) = H(q(f,X))◦H(pX) = H(q(f,X)◦pX) = H(pf∗(X)◦f) = pH(f∗(X))◦H(f)

It remains to show that H(f ∗(X)) = H(f)∗(H(X)). It follows from the fact that
f ∗(X) = L1(l1(X) + 1) and H(f)∗(H(X)) = L2(l2(H(X)) + 1).
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For the second equality we have

H(q(f,X))◦L2(ii
l2(H(X))−1,1
1 ) = H(q(f,X))◦H(L1(ii

l0(X)−1,1
1 )) = H(q(f,X)◦L1(ii

l1(X)−1,1
1 )) =

H(L1(ii
l1(Y ),1
1 )) = L2(ii

l2(H(Y )),1
1 )

This completes the construction. �

Problem 4.4. [2015.12.08.prob1] To construct, for any universe U , a functor LCU :
LW (U)→ CSN(U).

Construction 4.5. [2015.12.08.constr1] We set LCOb to be the function that takes
a Lawvere theory to the opposite category of its underlying category with the C-
system structure defined by Construction 4.2. We set LCMor to be the function that
takes a functor G that is a morphism of Lawvere theories to Gop. It is well defined
by Lemma 4.3. That the functions (LCOb, LCMor) form a functor, i.e., commute with
the identity morphisms and compositions is straightforward.

Remark 4.6. [2015.11.24.rem1] The morphism p : L(1)→ L(0), pull-back squares
(2) and the final object L(0) make T op into a universe category (T op, p) (see [5]). It
is easy to prove that the C-system of Construction 4.2 is isomorphic to the C-system
CC(T op, p) of this universe category. However this isomorphism is not an equality
since the set of objects of the category CC(T op, p) is not equal to the set of objects
of T op. Indeed, at object of CC(T op, p) is a sequence of the form

(pt; πL(0), . . . , πL(n))

where πL(i) is the unique morphism L(i)→ L(0).

5. A functor from l-bijective C-systems to Lawvere theories

Problem 5.1. [2015.11.24.prob2] For a category CC to construct a function

CL : CsN(CC)→ Lw(CCop)

To perform a construction we will need a number of lemmas and intermediate
constructions. Let us fix a category CC and a l-bijective C-system structure cs =
(l, pt, ft, p, q, s) on CC. We will often write CC both for the category and for the
C-system (CC, cs).

Problem 5.2. For n ∈ N and i = 0, . . . ,m − 1 to construct a morphism πmi :
l−1(m)→ l−1(1) in CC.

Construction 5.3. [2015.11.28.constr1] By induction on m.

For m = 0 there are no morphisms to construct.

For m = 1 we set π1
0 = Idl−1(1).

For the successor consider the canonical square:

(6) [2015.11.28.eq1]

l−1(m+ 1)
q(π,l−1(1))−−−−−−→ l−1(1)

pl−1(m+1)

y y pl−1(1)

l−1(m)
π−−−→ l−1(0)
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where we use π to denote the unique morphisms from objects of CC to the final
object l−1(0). We set

πm+1
i =

{
pl−1(m+1) ◦ πni for i < m
q(π, l−1(1)) for i = m

Problem 5.4. For any m,n ∈ N and a function f : stn(m)→ stn(n) to construct a
morphism Lf : l

−1(n)→ l−1(m) in CC.

Construction 5.5. [2015.11.28.constr2] By induction on m.

For m = 0 we set Lf = π.

For m = 1 we set Lf = πnf(0).

For the successor consider f : stn(m+ 1)→ stn(n) and the square (6). We define
Lf as the unique morphism such that:

(7) [2015.11.30.eq2]Lf ◦ pl−1(m+1) = Liim,1
0 ◦f

and

(8) [2015.11.30.eq3]Lf ◦ q(π, l−1(1)) = Liim,1
1 ◦f

where, let us recall,
iim,10 : stn(m)→ stn(m+ 1)

iim,11 : stn(1)→ stn(m+ 1)

are the morphism that define the representation

stn(m+ 1) = stn(m)q {m+ 1}

Lemma 5.6. [2015.11.28.l1] Let m,n ∈ N and f : stn(m)→ stn(n). Then for any
i = 0, . . . ,m− 1 one has

Lf ◦ πmi = πnf(i)

Proof. By induction on m.

For m = 0 there is nothing to prove.

For m = 1 we need to prove that Lf ◦ πn0 = πnf(0). By construction, πn0 = Idl−1(1)

and Lf = πnf(0) which implies the goal.

For the successor f : stn(m+ 1)→ stn(n) and the square (6) for m+ 1.

If i = m then πm+1
i = q(π, l−1(1)) and by the construction of Lf we have Lf ◦

q(π, l−1(1)) = πnf(m).

If i < m then πm+1
i = pl−1(m+1) ◦ πmi . Therefore

Lf ◦ πm+1
i = Lf ◦ pl−1(m+1) ◦ πmi = Liim,1

0 ◦f ◦ π
m
i

and by the inductive assumption

Liim,1
0 ◦f ◦ π

m
i = πn

f(iim,1
0 )

= πnf(i)

The lemma is proved. �
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Lemma 5.7. [2015.11.28.l2] Let m,n ∈ N and f, g : l−1(n) → l−1(m) are two
morphisms such that for all i = 0, . . . ,m− 1 one has

f ◦ πmi = g ◦ πmi
Then f = g.

Proof. By induction on m.

For m = 0 , l−1(m) is a final object and f = g.

For m = 1, π1
0 = Idl−1(1) and f = f ◦ Id = g ◦ Id = g.

For the successor the square (6) for m + 1. Since the square is a pull-back square
it is sufficient to show that

f ◦ pl−1(m+1) = g ◦ pl−1(m+1)

and
f ◦ q(π, l−1(1)) = g ◦ q(π, l−1(1))

The second equality follows from the fact that q(π, l−1(1)) = πm+1
m .

The first equality follows by the inductive assumption since for i = 0, . . . ,m− 1 we
have

(f ◦ pl−1(m+1)) ◦ πmi = f ◦ πm+1
i

and
(g ◦ pl−1(m+1)) ◦ πmi = g ◦ πm+1

i

The lemma is proved. �

Lemma 5.8. [2015.11.28.l3]

(1) for any m ∈ N one has LIdstn(m)
= Idl−1(m),

(2) for k,m, n ∈ N and f : stn(k)→ stn(m), g : stn(m)→ stn(n) one has

Lf◦g = Lg ◦ Lf

Proof. Both cases follow in a straightforward way from Lemmas 5.7 and 5.6. �

We can now provide a construction for Problem 5.1.

Construction 5.9. [2015.11.30.constr1] We need to construct a Lawvere theory
structure on CCop, i.e. a functor L : F → CCop satisfying the conditions of Definition
2.1. We define the object part of L as l−1. We define the morphism part of L as
LMor(f) = Lf . Lemma 5.8 shows that L is a covariant functor to CCop.

The first condition of Definition 2.1 is obvious. The second condition as well (it
follows from the axioms of a C-system). To prove the third condition we first apply
Lemma 2.4. It remains to prove that squares of the form (1) are push-out squares in
CCop or, equivalently, that squares of the form

(9) [2015.11.30.eq1]

l−1(m+ 1)
L
ii
m,1
1−−−→ l−1(1)

L
ii
1,m
0

y y
l−1(m) −−−→ l−1(0)
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in CC are pull-back squares. We will do it by showing that the square (9) equals
to the canonical square of the C-system structure for the pair (πl−1(m), l

−1(1)). The
right hand side vertical morphism, πl−1(1), is a unique morphism from l−1(1) to l−1(0)
and since ft(l−1(1)) = l−1(0) it equals pl−1(1).

It remains to show that
(10) [2015.12.02.eq1]Liim,1

0
= pl−1(m+1)

and
(11) [2015.12.02.eq2]Liim,1

1
= q(πl−1(m), l

−1(1))

These equalities follow from the equalities (7) and (8) for f = Idl−1(m+1) because of
Lemma 5.8(1). The construction is completed.

Next we will show that our function on objects extends to a functor from the
category of l-bijective C-systems to the category of Lawvere theories. First we need
the following lemma.

Lemma 5.10. [2015.12.08.l3] Let H : CC1 → CC2 be a homomorphism of l-
bijective C-systems. Then for any n ∈ N and i = 0, . . . , n− 1 one has

(12) [2015.12.08.eq3]H(πni ) = πni

Proof. Note that since we have l2(H(X)) = l1(X) both sides of (12) are morphisms
from l−12 (n) to l−12 (1).

The proof is by induction on n.

For n = 0 there are no equations to prove.

For n = 1 we have π1
0 = Idl−1(1) and the statement of the lemma follows from the

identity axiom of the definition of a functor.

For the successor we have two cases. For i < n we have
H(πn+1

i ) = H(pl−1(n+1) ◦ πni ) = H(pl−1(n+1)) ◦H(πni ) = pl−1(n+1) ◦ πni = πn+1
i

where the third equality uses the inductive assumption. For i = n we have
H(πn+1

n ) = H(q(π, l−1(1))) = q(π, l−1(1)) = πn+1
n

The lemma is proved. �

Lemma 5.11. [2015.12.08.l2] Let G : (CC1, cs1)→ (CC2, cs2) be a homomorphism
of C-systems. Then the functor Gop : CCop

1 → CCop
2 is a morphism of Lawvere

theories (CCop
1 , CL(cs1))→ (CCop

2 , CL(cs2)).

Proof. Let CL(cs1) = L1 and CL(cs2) = L2. We need to show that L1 ◦ Gop = L2.
The equality between the object components of these functors follows from the fact
that a homomorphism of C-systems is compatible with the length functions. For the
morphism component it is more convenient to consider equivalent equation

L′1 ◦G = L′2

where L′i : F op → CCi. Then we have to show that for any f : stn(m)→ stn(n) one
has G(L1,f ) = L2,f . Both sides of this equality are morphisms l−12 (n) → l−12 (m). By
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Lemma 5.7 it is sufficient to show that G(L1,f )◦πni = L2,f ◦πni for all i = 0, . . . , n−1.
We have

G(L1,f ) ◦ πni = G(L1,f ) ◦G(πni ) = G(L1,f ◦ πni ) = G(πnf(i)) = πnf(i)

where we used Lemma 5.6 and twice Lemma 5.10. On the other hand

L2,f ◦ πni = πnf(i)

again by Lemma 5.6. This completes the proof of Lemma 5.11. �

Problem 5.12. [2015.12.08.prob2] For any universe U to construct a functor
CLU : CSN(U)→ LW (U).

Construction 5.13. [2015.12.08.constr3] The object component of CLU takes a
C-system (CC, cs) to the Lawvere theory (CCop, CL(cs)) where CL(cs) is defined by
Construction 5.9.

The morphism component takes a homomorphism G : (CC1, cs1) → (CC2, cs2) to
Gop. It is well defined by Lemma 5.11.

The identity and composition axioms are straightforward from the corresponding
properties of functor composition and its compatibility with the function G 7→ Gop.

6. Isomorphism theorem

Theorem 6.1. [2015.12.08.th1] For any universe U , Constructions 4.5 and 5.13
define mutually inverse isomorphisms between the categories of Lawvere theories in
U and l-bijective C-systems in U .

Proof. Let us show first that the object components of the functors LCU and CLU
are mutually inverse bijections of sets. We write LC for (LCU)Ob and similarly for
CL.

Let us consider first the composition LC ◦ CL of the function of Construction 4.2
with the function of Construction 5.9.

Let Lw be a Lawvere theory structure on T and let

Lw′ = (LC ◦ CL)(Lw) = CL(LC(Lw))

We have Lw = (L : F → T ) and Lw′ = (L′ : F → T ). We have to prove that
L′(f) = L(f). To distinguish L′ and L more clearly we will use the notation L′f for
L′(f) as we did in Construction 5.9.

On objects we have

L′(n) = l−1(n) = (L−1)−1(n) = L(n)

Let f : stn(m)→ stn(n) be a morphism in F .

Since L and L′ coincide on objects both morphisms L(f) and L′f are of the form
L(n)→ L(m) when considered as contravariant functors to CC = T op.

The proof is by induction on m.
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If m = 0, L(m) = L′(m) is a final object and any two morphisms with it as a
codomain are equal.

If m = 1 we have by Constructions 5.9 and 5.5 that

L′(f) = L′f = πnf(0)

We need to show that
L(f) = πnf(0)

We prove these equalities by induction on n.

If n = 0 then f exists only if m = 0 and we have already considered this case.

Let (l, pt, ft, p, q, s) be the components of LC(L). If n = 1 then by Construction
5.3 we have πnf(0) = πn0 = Idl−1(1) and since L is a functor and f = Idl−1(0) we have
L(f) = Idl−1(1).

For the successor we should consider diagram (6). We have that πn+1
f(0) is given by:

πn+1
f(0) =

{
pl−1(n+1) ◦ πn(f(0) for f(0) < n

q(π, l−1(1)) for f(0) = n

Assume that f(0) < n. Then, by the inductive assumption we have πn(f(0) = L(f).
By (10) we have pl−1(n+1) = L(iin,10 ) and since L is a functor we get

πn+1
f(0) = L(iin,10 ) ◦ πn(f(0)) = L(iin,10 ) ◦ L(g)

where g : stn(1)→ stn(n) is such that g(0) = f(0). Since L is a contravariant functor
we get

L(iin,10 ) ◦ L(g) = L(g ◦ iin,10 ) = L(f)

For f(0) = n we have πn+1
f(0) = q(π, l−1(1)) = L(iin,11 ) = L(f) where the second equality

is by (11).

We have to consider now the case of the successor of m.

The morphism L′f for f : stn(m + 1) → stn(n) is defined in (7) and (8) as the
unique morphism such that

(13) L′f ◦ pl−1(m+1) = L′
iim,1
0 ◦f

and

(14) L′f ◦ q(π, l−1(1)) = L′
iim,1
1 ◦f

By the inductive assumption we have

L′
iim,1
0 ◦f = L(iim,10 ◦ f)

L′
iim,1
1 ◦f = L(iim,11 ◦ f)

It remains to prove that

(15) [2015.12.02.eq5]L(f) ◦ pl−1(m+1) = L(iim,10 ◦ f)
and

(16) [2015.12.02.eq6]L(f) ◦ q(πl−1(m), l
−1(1)) = L(iim,11 ◦ f)
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By (10) and (11) we have

pl−1(m+1) = L′
ii1,m0

= L(ii1,m0 )

q(πl−1(m), l
−1) = L′

iim,1
1

= L(iim,11 )

Where the second equalities are by the inductive assumption on m. This proves
equalities (15) and (16).

Let us consider now the composition CL ◦ LC. Fix a category CC in U . We need
to show that for a l-bijective C-system structure cs one has LC(CL(cs)) = cs. Let
CL(cs) = (L) and let

cs = (l, pt, ft, p, q, s)

and
LC(CL(cs)) = (l′, pt′, ft′, p′, q′, s′)

Then on objects L = l−1 and l′ = L1−. Therefore l = l′.

Next pt = l−1(0) = (l′)−1(0) = pt′. Similarly we see that ft = ft′ since on a
l-bijective C-system ft is determined by l.

For X such that l(X) > 0 we have by Construction 4.2 that p′X = L(ii
l(X)−1,1
0 ).

Together with (10 we obtain

p′X = L(ii
l(X)−1,1
0 ) = pl−1(l(X)

since the C-system is l-bijective we have X = l−1(l(X) and therefore p′ = p.

The morphism q′ is defined in Construction 4.2 as the unique morphism such that
(3) and (4) hold. In our notation these equations take the form:

(17) q′(f,X) ◦ p′X = p′f∗(X) ◦ f
and

(18) [2015.12.02.eq9]q′(f,X) ◦ L(iil(X)−1,1
1 ) = L(ii

l(Y ),1
1 )

We need to check that the same equations hold for q. For the first one it follows
immediately from the fact that p′ = p.

To prove the second one consider equation (11). Applying this equation to (18) for
q and using the fact that of C-systems are l-bijective we get

q(f,X) ◦ q(πft(X), l
−1(1) = q(πY , l

−1(1))

which a particular case of the composition axiom for q (see [6, Definition 2.1(7)]).

This proves that CLU and LCU are mutually inverse bijections on the sets of objects
of our categories.

The fact that they give mutually inverse functions on morphisms between each pair
of objects is straightforward. Indeed

CLU,Mor(G) = Gop

and
LCU,Mor(G) = Gop
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as functors and since the mappings from morphisms of Lawvere theories and homo-
morphisms of C-systems to functors between the corresponding categories are injective
we see that CLU,Mor and LCU,Mor are mutually inverse bijections. �
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