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Abstract

In this paper we consider the class of l-bijective C-systems, i.e., C-systems for which the
length function is a bijection. The main result of the paper is a construction of an isomorphism
between two categories - the category of l-bijective C-systems and the category of Lawvere
theories.
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1 Introduction

In this paper we consider the simplest class of C-systems (contextual categories) - the ones for
which the length function l : Ob(CC)→ N is a bijection. It turns out that such C-systems are very
closely related to Lawvere theories. We construct functors from the category of Lawvere theories to
the category of l-bijective C-systems and a functor in the opposite direction and show in Theorem
6.1 that these functors are mutually inverse isomorphisms of the corresponding categories. We
emphasize the unexpected aspect of this result which is that we obtain not simply an equivalence
but an actual isomorphism of the categories.

This is essentially the first result on C-systems that includes the description of their homomor-
phisms.

Since this paper as well as other papers in the series on C-systems is expected to play a role in
the mathematically rigorous construction of the simplicial univalent representation of the UniMath
language and the Calculus of Inductive Constructions and since such a construction itself can not
rely on the univalent foundations the paper is written from the perspective of the Zermelo-Fraenkel
formalism.

Constructions and proofs of the paper do not use the axiom of excluded middle or the axiom of
choice.

We use the diagrammatic order in writing compositions, i.e., for f : X → Y and g : Y → Z we
write f ◦ g for the composition of f and g.
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We do not make precise the concept of a universe that we use for some of the statements of the
paper. It would be certainly sufficient to assume that U is a Grothendieck universe. However, it
seems likely that sets U satisfying much weaker conditions can be used both for the statements and
for the proofs of our results.

2 The category of Lawvere theories

As usual, we let N denote the set of natural numbers. For m ∈ N let stn(m) = {i ∈ N | 0 ≤ i < m}
be the standard set with m elements. Let

Mor(F) = ∪n,m∈NFun(stn(n), stn(m))

where Fun(X,Y ) is the set of functions from X to Y . Since every function has a well defined domain
and codomain we can define a category F with the set of objects N and the set of morphisms Mor(F)
such that for each n and m the set

F(m,n) := {f ∈Mor(F) | dom(f) = m and codom(f) = n}

equals to Fun(stn(m), stn(n)) and composition, when restricted to these subsets, is the composition
of functions.

For m,n ∈ N let ιm,n1 : stn(m) → stn(m + n) and ιm,n2 : stn(n) → stn(m + n) be the injections of
the initial segment of length m and the concluding segment of length n.

Definition 2.1 [2015.11.24.def1] A Lawvere theory structure on a category T is a functor L :
F→ T such that the following conditions hold:

1. [2017.05.31.it1] L is a bijection on the sets of objects,

2. [2017.05.31.it2] L(0) is an initial object of T ,

3. [2017.05.31.it3] for any m,n ∈ N the square L(0) //

��

L(n)

L(ιm,n2 )

��

L(m)
L(ιm,n1 )

// L(m+ n)

is a pushout square.

A Lawvere theory is a pair (T, L) where T is a category and L is a Lawvere theory structure on T .

Let us denote the set of Lawvere theory structures on T by Lw(T ). Lawvere theories can be
constructed in the following two steps.

Let T be a category and L : F→ T a functor that satisfies the conditions 2.1.2 and 2.1.3, but not
necessarily 2.1.1. Define a new category TL as follows. We set Ob(TL) = N and

Mor(TL) =
∐

m,n∈N
MorT (L(m), L(n))

Then MorTL(m,n) is the set of iterated pairs ((m,n), f) where f ∈MorT (L(m), L(n)) and by the
usual abuse of notations we may identify it with the set MorT (L(m), L(n)). Consider the functor
data L′ : F→ TL given on objects by L′Ob = IdN and on morphism by L′Mor(a) = ((m,n), L(a)) for
a ∈MorF(m,n).
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Lemma 2.2 [2017.05.31.l1] The functor data (L′Ob, L
′
Mor) is a functor and moreover a Lawvere

theory structure on TL.

Proof: The functor axioms for L imply immediately the functor axioms for L′. It is easy to prove
that L′ satisfied 2.1.2 and 2.1.3 since L does. In addition L′ is a bijection (identity) on objects.
Therefore L′ is a Lawvere theory structure.

The second step allows one to construct easily functors L : F→ T that satisfy 2.1.2 and 2.1.3. Let
T be any category, 0 an initial object of T , X and object of T and suppose that for all Y in T we
are given a pushout square of the form

0 //

��

X

ιY,X2
��

Y
ιY,X1 // Y qX

Example 2.3 [2017.05.28.ex1]Lawvere theories are ubiquitous. For example, given any object
X in a category with an initial object 0 and coproducts of the form (Y +X, ιY,X1 , ιY,X2 ) for all Y we
obtain a Lawvere theory in the sense of Def. 2.1 by taking the opposite to the subcategory of objects
of the form 0, X,X+X, (...(X+X) · · ·+X) with the inductively defined functor L. By duality the
same construction works when we have a final object pt and binary products (Y ×X,πY,X1 , πY,X2 ).

Problem 2.4 [2015.12.18.prob2] For a universe U , to construct a category LW (U) of Lawvere
theories in U .

Construction 2.5 [2015.12.18.constr2] Following Lawvere [4, p.61] we define a morphism from
a Lawvere theory T1 = (T1, L1) to a Lawvere theory T2 = (T2, L2) as a functor G : T1 → T2 such
that L1 ◦G = L2. We let HomLW (T1,T2) denote the subset in the set of functors from T1 to T2
that are morphisms of the Lawvere theories.

Note that here one uses the equality rather than isomorphism of functors. The composition of
morphisms is defined as composition of functors. The identity morphism is the identity functor.
The associativity and the left and right unity axioms follow immediately from the corresponding
properties of the composition of functors.

We let Ob(LW (U)) denote the set of Lawvere theories in U and Mor(LW (U)) the set

Mor(LW (U)) =
∐

T1,T2∈Ob(LW (U))

HomLW (T1,T2)

Together with the obvious domain, codomain, identity and composition functions the pair of sets
Ob(LW (U)) and Mor(LW (U)) forms a category that we denote LW (U) and call the category of
Lawvere theories in U .

Note that a morphism from T1 to T2 in this category is not a morphism of Lawvere theories but
an iterated pair ((T1,T2), G) where G is a morphism of Lawvere theories. However, there is an
obvious bijection

MorLW (U)(T1,T2)→ HomLW (T1,T2)

and by the common abuse of notation every time we have an expression which denotes an element
of one of these sets in a position where an element of the other is expected it is assumed to be
replaced by its image under this bijection.
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The following lemma will be used below in Construction 5.9.

Lemma 2.6 [2015.11.28.l4] Let T be a category and L : F→ T a functor such that the following
conditions hold:

1. L(0) is an initial object of T ,

2. for any m ∈ N the square

[2015.11.28.eq2] L(0) //

��

L(1)

L(ιm,12 )
��

L(m)
L(ιm,11 )

// L(m+ 1)

(1)

is a pushout square.

Then for any m,n ∈ N the square

L(0) //

��

L(n)

L(ιm,n2 )

��

L(m)
L(ιm,n1 )

// L(m+ n)

is a pushout square.

Proof: Let m,n ∈ N. Consider first the diagram

L(0) //

��

L(n)
L(ιm,n2 )

//

L(ιn,11 )
��

L(m+ n)

L(ιm+n,1
1 )

��

L(1)
L(ιn,12 )

// L(n+ 1)
L(ιm,n+1

2 )
// L(m+ n+ 1)

Then first square is the reflection relative to the diagonal of a square of the form (1) and therefore
it is a pushout square.

We have ιn,12 ◦ ι
m,n+1
2 = ιm+n,1

2 . Therefore the large square is the reflection relative to the diagonal
of a square of the form (1) and therefore it is a pushout square.

The right hand side square is commutative.

By the general properties of pushout squares which are obtained from the similar properties of the
pullback squares by duality we conclude that the right hand side square is a pushout square.

To prove the lemma proceed now by induction on n.

For n = 0 the horizontal arrows are isomorphisms and since the square commutes it is a pushout
square.

For n = 1 it is a square of the form (1).

For the successor consider the diagram

L(0) //

��

L(n)
L(ιn,11 )

//

L(ιm,n2 )

��

L(n+ 1)

L(ιm,n+1
2 )

��

L(m)
L(ιm,n1 )

// L(m+ n)
L(ιm+n,1

1 )
// L(m+ n+ 1)
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The first square is pushout by the inductive assumption. The second square is pushout by the
first part of the proof. Therefore the ambient square is pushout. Since ιm,n1 ◦ ιm+n,1

1 = ιm,n+1
1 this

completes the proof of the lemma.

3 The category of l-bijective C-systems

For the definition of a C-system see [2], [3] (where they are called contextual categories) as well as
[6]. A C-system structure on a category CC is a six-tuple cs = (l, pt, ft, p, q, s) where l, ft and p are
functions, pt an element of Ob(CC), q a partial function on pairs and s a partial function. To be
a C-system structure these objects must satisfy the conditions of [6, Definitions 2.1 and 2.3]. One
of the main structures of a C-system is that for any X such that l(X) > 0 and any f : Y → ft(X)
there is given an object f∗(X) and a morphism q(f,X) : f∗(X)→ X such that

[2017.05.31.eq1]ft(f∗(X)) = Y (2)

and the square

f∗(X)
q(f,X)

//

pf∗(X)

��

X

pX
��

Y
f

// ft(X)

is a pullback. Squares of this form will be called the canonical squares of a C-system.

Definition 3.1 [2015.11.24.def2] A l-bijective C-system is a C-system such that the length func-
tion Ob(CC)→ N is a bijection.

We let CsN(CC) denote the set of l-bijective C-system structures on a category CC.

Problem 3.2 [2015.12.18.prob3] Let U be a universe. To construct a category CSys(U) of
C-systems in U .

Construction 3.3 A morphism of C-systems is a functor between the underlying categories that
is compatible with the corresponding C-system structures. In particular a morphism of C-systems
should commute with the length functions. For a detailed definition see [5, Definition 3.1]. We
let HomCS(CC1, CC2) denote the set of homomorphisms from the C-system CC1 to the C-system
CC2.

That the composition of functors that are homomorphisms is again a homomorphism is stated in [5,
Lemma 3.2]. That the identity functor is a homomorphism is very easy to prove. The associativity
and the left and right unity axioms for the composition of homomorphisms follow directly from the
similar properties of the composition of functors.

Repeating the approach that we used with Lawvere theories we obtain the category CSys(U) of
C-systems in U .

We let CSysN(U) denote the full subcategory in CSys(U) that consists of l-bijective C-systems.

The following result shows that l-bijective C-systems are abundant in the world of C-systems.

Theorem 3.4 [2015.12.26.th1] Let C be a C-system. Let X be an object of C such that l(X) = 1.
Let CX be the smallest C-subsystem of C that is a full subcategory of C and that contains X. Then
CX is an l-bijective C-system.
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Proof: Recall that we let pt denote the object of C of length 0 and for an object Y of C we let
πY denote the unique morphism Y → pt. Define objects X∗n for n ∈ N inductively as follows:

1. X∗0 = pt,

2. X∗1 = X,

3. X∗(n+1) = (πX∗n)∗(X).

Let CX be the full subcategory of C that is generated by objects X∗n for n ∈ N. Let us show
that it is a C-subsystem of C. Since it is a full subcategory, i.e., contains all morphisms between
its objects it is sufficient to show that it is closed under the operations of C-systems that generate
objects.

We have pt ∈ CX .

For X∗n ∈ CX we have ft(X∗n) ∈ CX . Indeed, ft(X) = pt because l(X) = 1 and ft(X∗(m+1)) = X∗m

by (2).

For f : X∗m → X∗n we have f∗(X∗(n+1)) ∈ CX . Indeed, by definition we have X∗(n+1) =
(πX∗n)∗(X). Therefore

f∗(X∗(n+1)) = f∗((πX∗n)∗(X)) = (f ◦ πX∗n)∗(X) = π∗X∗m(X) = X∗(m+1)

To finish the proof of the theorem it remains to show that the restriction of l to CX is a bijection
which is straightforward.

4 A functor from Lawvere theories to l-bijective C-systems

Problem 4.1 [2015.11.24.prob1] For a category T to construct a function

LC : Lw(T )→ CsN(T op)

from the Lawvere theory structures on T to the l-bijective C-system structures on T op.

Construction 4.2 [2015.11.24.constr1] Let CC = T op. We need to construct a l-bijective C-
system structure on CC. We set:

The length function l = L−1.

The distinguished final object pt is L(0).

The map ft : Ob(CC)→ Ob(CC) maps pt to pt and any object X such that l(X) > 0 to L(l(X)−1).

For pt the morphism ppt is the identity. For X such that l(X) > 0 the morphism pX : X → ft(X)

is L(ι
l(X)−1,1
1 ).

To define q(f,X) observe first that for any X such that l(X) > 0 we have a pullback square in CC
of the form

[2015.11.24.eq1]

X
L(ι

l(X)−1,1
2 )

−−−−−−−→ L(1)

pX

y y
ft(X) −−−−→ L(0)

(3)
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Given f : Y → X we set
f∗(X) = L(l(Y ) + 1)

Since (3) is a pullback square and L(0) is a final object there is a unique morphism q(f,X) :
f∗(X)→ X such that

[2015.12.02.eq7]q(f,X) ◦ pX = pf∗(X) ◦ f (4)

and
[2015.12.02.eq8]q(f,X) ◦ L(ι

l(X)−1,1
2 ) = L(ι

l(Y ),1
2 ) (5)

Let us check the conditions of [6, Definition 2.1] that will show that we obtained a C0-system. We
have l−1(0) = L(0) = {pt}. For X such that l(X) > 0 we have l(ft(X)) = l(L(l(X)− 1)) = l(X)− 1.
We also have ft(pt) = pt. The object pt = L(0) is final.

The square

[2015.11.24.eq2]

f∗(X)
q(f,X)−−−−→ X

pf∗(X)

y pX

y
Y

f−−−−→ ft(X)

(6)

commutes by the construction of q(f,X).

If f = Idft(X) then l(Y ) = l(X) and therefore f∗(X) = X. Therefore q(f,X) ◦ pX = pX and

q(f,X) ◦ L(ι
l(X)−1,1
2 ) = L(ι

l(X)−1,1
2 ) which proves that q(f,X) = IdX .

Given g : Z → Y we have to verify that q(g ◦ f,X) = q(g, f∗(X)) ◦ q(f,X). We have (g ◦ f)∗(X) =
L(l(Z) + 1) = g∗(f∗(X)). Taking into account that (3) is a pullback square, it remains to verify
two equalities

q(g ◦ f,X) ◦ pX = q(g, f∗(X)) ◦ q(f,X) ◦ pX
and

q(g ◦ f,X) ◦ L(ι
l(X)−1,1
2 ) = q(g, f∗(X)) ◦ q(f,X) ◦ L(ι

l(X)−1,1
2 )

For the first equality we have

q(g ◦ f,X) ◦ pX = p(g◦f)∗(X) ◦ g ◦ f = pg∗(f∗(X)) ◦ g ◦ f =

q(g, f∗(X)) ◦ pf∗(X) ◦ f = q(g, f∗(X)) ◦ q(f,X) ◦ pX
and for the second

q(g ◦ f,X) ◦L(ι
l(X)−1,1
2 ) = L(ι

l(Z),1
2 ) = q(g, f∗(X)) ◦L(ι

l(Y ),1
2 ) = q(g, f∗(X)) ◦ q(f,X) ◦L(ι

l(X)−1,1
2 )

According to [6, Proposition 2.4] it remains to show that the squares (6) are pullback squares.

Consider the diagram

f∗(X)
q(f,X)−−−−→ X

L(ι
l(X)−1,1
2 )

−−−−−−−→ L(1)

pf∗(X)

y pX

y y
Y

f−−−−→ ft(X) −−−−→ L(0)

where both the right hand side square and the outside square are of the form (3) and in particular
are pullback squares and the left hand side square has been shown to be commutative. Therefore,
the left hand side square is a pullback square. We conclude, by [6, Proposition 2.4] that there exists
a unique s such that (l, pt, ft, p, q, s) is a C-system structure.
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Lemma 4.3 [2015.12.06.prob1] Let G : (T1, L1)→ (T2, L2) be a morphism of Lawvere theories.
Then the functor Gop is a homomorphism of C-systems (T op1 , LC(L1))→ (T op2 , LC(L2)).

Proof:[2015.12.06.constr1] For convenience we will write H instead of Gop. In view of [5, Lemma
3.4] it is sufficient to verify that H is compatible with the length function, distinguished final object,
ft map, p-morphisms and q-morphisms.

The fact that l1 = H ◦ l2 is equivalent to the fact that L1 ◦G = L2.

The fact that H(L1(0)) = L2(0) follows from the same property of G.

The fact that H(ft(X)) = ft(H(X)) again follows from the same property of G.

The fact that H(pX) = pH(X) follows from the fact that L1 ◦G = L2 on objects and on morphisms

of the form ιn,11 .

It remains to verify that for X such that l(X) > 0 and f : Y → ft(X) one has

H(q(f,X)) = q(H(f), H(X))

where the right hand side is defined because H is compatible with l and ft.

Morphism q(H(f), H(X)) is defined as the unique morphism such that

q(H(f), H(X)) ◦ pH(X) = pH(f)∗(H(X)) ◦H(f)

and
q(H(f), H(X)) ◦ L2(ι

l2(H(X))−1,1
2 ) = L2(ι

l2(H(Y )),1
2 )

Therefore we need to verify the same equalities for the morphism H(q(f,X)). For the first equality
we have

H(q(f,X)) ◦ pH(X) = H(q(f,X)) ◦H(pX) = H(q(f,X) ◦ pX) = H(pf∗(X) ◦ f) = pH(f∗(X)) ◦H(f)

It remains to show that H(f∗(X)) = H(f)∗(H(X)). It follows from the fact that f∗(X) =
L1(l1(X) + 1) and H(f)∗(H(X)) = L2(l2(H(X)) + 1).

For the second equality we have

H(q(f,X)) ◦ L2(ι
l2(H(X))−1,1
2 ) = H(q(f,X)) ◦H(L1(ι

l0(X)−1,1
2 )) = H(q(f,X) ◦ L1(ι

l1(X)−1,1
2 )) =

H(L1(ι
l1(Y ),1
2 )) = L2(ι

l2(H(Y )),1
2 )

This completes the construction.

Problem 4.4 [2015.12.08.prob1] To construct, for any universe U , a functor LCU : LW (U) →
CSysN(U).

Construction 4.5 [2015.12.08.constr1] We set LCOb to be the function that takes a Lawvere
theory to the opposite category of its underlying category with the C-system structure defined by
Construction 4.2. We set LCMor to be the function that takes a functor G that is a morphism of
Lawvere theories to Gop. It is well defined by Lemma 4.3. That the functions (LCOb, LCMor) form
a functor, i.e., commute with the identity morphisms and compositions is straightforward.
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Remark 4.6 [2015.11.24.rem1] Let (T, L) be a Lawvere theory. Consider T op. The morphism
p : L(1)→ L(0), pullback squares (3) and the final object L(0) make T op into a universe category
(T op, p) (see [5]). It is easy to prove that the C-system of Construction 4.2 is isomorphic to the
C-system CC(T op, p) of this universe category. However this isomorphism is not an equality since
the set of objects of the category CC(T op, p) is not equal to the set of objects of T op. Indeed, an
object of CC(T op, p) is a sequence of the form

(pt;πL(0), . . . , πL(n))

where πL(i) is the unique morphism L(i)→ L(0).

5 A functor from l-bijective C-systems to Lawvere theories

Problem 5.1 [2015.11.24.prob2] For a category CC to construct a function

CL : CsN(CC)→ Lw(CCop)

To perform a construction we will need a number of lemmas and intermediate constructions. Let
us fix a category CC and a l-bijective C-system structure cs = (l, pt, ft, p, q, s) on CC. We will often
write CC both for the category and for the C-system (CC, cs).

Problem 5.2 For n ∈ N and i = 0, . . . ,m − 1 to construct a morphism πmi : l−1(m) → l−1(1) in
CC.

Construction 5.3 [2015.11.28.constr1] By induction on m.

For m = 0 there are no morphisms to construct.

For m = 1 we set π10 = Idl−1(1).

For the successor consider the canonical square:

[2015.11.28.eq1]

l−1(m+ 1)
q(π,l−1(1))−−−−−−−→ l−1(1)

pl−1(m+1)

y y pl−1(1)

l−1(m)
π−−−−→ l−1(0)

(7)

where we use π to denote the unique morphisms from objects of CC to the final object l−1(0). We
set

πm+1
i =

{
pl−1(m+1) ◦ πni for i < m

q(π, l−1(1)) for i = m

Problem 5.4 For any m,n ∈ N and a function f : stn(m) → stn(n) to construct a morphism
Lf : l−1(n)→ l−1(m) in CC.

Construction 5.5 [2015.11.28.constr2] By induction on m.

For m = 0 we set Lf = π.

For m = 1 we set Lf = πnf(0).
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For the successor consider f : stn(m+ 1)→ stn(n) and the square (7). We define Lf as the unique
morphism such that:

[2015.11.30.eq2]Lf ◦ pl−1(m+1) = L
ιm,11 ◦f (8)

and
[2015.11.30.eq3]Lf ◦ q(π, l−1(1)) = L

ιm,12 ◦f (9)

where, let us recall,
ιm,11 : stn(m)→ stn(m+ 1)

ιm,12 : stn(1)→ stn(m+ 1)

are the morphism that define the representation

stn(m+ 1) = stn(m)q {m+ 1}

Lemma 5.6 [2015.11.28.l1] Let m,n ∈ N and f : stn(m)→ stn(n). Then for any i = 0, . . . ,m−1
one has

Lf ◦ πmi = πnf(i)

Proof: By induction on m.

For m = 0 there is nothing to prove.

For m = 1 we need to prove that Lf ◦ πn0 = πnf(0). By construction, πn0 = Idl−1(1) and Lf = πnf(0)
which implies the goal.

For the successor f : stn(m+ 1)→ stn(n) and the square (7) for m+ 1.

If i = m then πm+1
i = q(π, l−1(1)) and by the construction of Lf we have Lf ◦ q(π, l−1(1)) = πnf(m).

If i < m then πm+1
i = pl−1(m+1) ◦ πmi . Therefore

Lf ◦ πm+1
i = Lf ◦ pl−1(m+1) ◦ πmi = L

ιm,11 ◦f ◦ π
m
i

and by the inductive assumption

L
ιm,11 ◦f ◦ π

m
i = πn

f(ιm,11 )
= πnf(i)

The lemma is proved.

Lemma 5.7 [2015.11.28.l2] Let m,n ∈ N and f, g : l−1(n) → l−1(m) are two morphisms such
that for all i = 0, . . . ,m− 1 one has

f ◦ πmi = g ◦ πmi
Then f = g.

Proof: By induction on m.

For m = 0 , l−1(m) is a final object and f = g.

For m = 1, π10 = Idl−1(1) and f = f ◦ Id = g ◦ Id = g.

For the successor the square (7) for m+ 1. Since the square is a pullback square it is sufficient to
show that

f ◦ pl−1(m+1) = g ◦ pl−1(m+1)
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and
f ◦ q(π, l−1(1)) = g ◦ q(π, l−1(1))

The second equality follows from the fact that q(π, l−1(1)) = πm+1
m .

The first equality follows by the inductive assumption since for i = 0, . . . ,m− 1 we have

(f ◦ pl−1(m+1)) ◦ πmi = f ◦ πm+1
i

and
(g ◦ pl−1(m+1)) ◦ πmi = g ◦ πm+1

i

The lemma is proved.

Lemma 5.8 [2015.11.28.l3]

1. for any m ∈ N one has LIdstn(m)
= Idl−1(m),

2. for k,m, n ∈ N and f : stn(k)→ stn(m), g : stn(m)→ stn(n) one has

Lf◦g = Lg ◦ Lf

Proof: Both cases follow in a straightforward way from Lemmas 5.7 and 5.6.

We can now provide a construction for Problem 5.1.

Construction 5.9 [2015.11.30.constr1] We need to construct a Lawvere theory structure on
CCop, i.e. a functor L : F→ CCop satisfying the conditions of Definition 2.1. We define the object
part of L as l−1. We define the morphism part of L as LMor(f) = Lf . Lemma 5.8 shows that L is
a covariant functor to CCop.

The first condition of Definition 2.1 is obvious. The second condition as well (it follows from the
axioms of a C-system). To prove the third condition we first apply Lemma 2.6. It remains to prove
that squares of the form (1) are pushout squares in CCop or, equivalently, that squares of the form

[2015.11.30.eq1]

l−1(m+ 1)
L
ι
m,1
2−−−−→ l−1(1)

L
ι
1,m
1

y y
l−1(m) −−−−→ l−1(0)

(10)

in CC are pullback squares. We will do it by showing that the square (10) equals to the canonical
square of the C-system structure for the pair (πl−1(m), l

−1(1)). The right hand side vertical mor-
phism, πl−1(1), is a unique morphism from l−1(1) to l−1(0) and since ft(l−1(1)) = l−1(0) it equals
pl−1(1).

It remains to show that
[2015.12.02.eq1]L

ιm,11
= pl−1(m+1) (11)

and
[2015.12.02.eq2]L

ιm,12
= q(πl−1(m), l

−1(1)) (12)

These equalities follow from the equalities (8) and (9) for f = Idl−1(m+1) because of Lemma 5.8(1).
The construction is completed.
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Next we will show that our function on objects extends to a functor from the category of l-bijective
C-systems to the category of Lawvere theories. First we need the following lemma.

Lemma 5.10 [2015.12.08.l3] Let H : CC1 → CC2 be a homomorphism of l-bijective C-systems.
Then for any n ∈ N and i = 0, . . . , n− 1 one has

[2015.12.08.eq3]H(πni ) = πni (13)

Proof: Note that since we have l2(H(X)) = l1(X) both sides of (13) are morphisms from l−12 (n)
to l−12 (1).

The proof is by induction on n.

For n = 0 there are no equations to prove.

For n = 1 we have π10 = Idl−1(1) and the statement of the lemma follows from the identity axiom
of the definition of a functor.

For the successor we have two cases. For i < n we have

H(πn+1
i ) = H(pl−1(n+1) ◦ πni ) = H(pl−1(n+1)) ◦H(πni ) = pl−1(n+1) ◦ πni = πn+1

i

where the third equality uses the inductive assumption. For i = n we have

H(πn+1
n ) = H(q(π, l−1(1))) = q(π, l−1(1)) = πn+1

n

The lemma is proved.

Lemma 5.11 [2015.12.08.l2] Let G : (CC1, cs1)→ (CC2, cs2) be a homomorphism of C-systems.
Then the functor Gop : CCop1 → CCop2 is a morphism of Lawvere theories (CCop1 , CL(cs1)) →
(CCop2 , CL(cs2)).

Proof: Let CL(cs1) = L1 and CL(cs2) = L2. We need to show that L1 ◦Gop = L2. The equality
between the object components of these functors follows from the fact that a homomorphism of C-
systems is compatible with the length functions. For the morphism component it is more convenient
to consider equivalent equation

L′1 ◦G = L′2

where L′i : Fop → CCi. Then we have to show that for any f : stn(m)→ stn(n) one has G(L1,f ) =
L2,f . Both sides of this equality are morphisms l−12 (n)→ l−12 (m). By Lemma 5.7 it is sufficient to
show that G(L1,f ) ◦ πni = L2,f ◦ πni for all i = 0, . . . , n− 1. We have

G(L1,f ) ◦ πni = G(L1,f ) ◦G(πni ) = G(L1,f ◦ πni ) = G(πnf(i)) = πnf(i)

where we used Lemma 5.6 and twice Lemma 5.10. On the other hand

L2,f ◦ πni = πnf(i)

again by Lemma 5.6. This completes the proof of Lemma 5.11.

Problem 5.12 [2015.12.08.prob2] For any universe U to construct a functor CLU : CSysN(U)→
LW (U).
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Construction 5.13 [2015.12.08.constr3] The object component of CLU takes a C-system (CC, cs)
to the Lawvere theory (CCop, CL(cs)) where CL(cs) is defined by Construction 5.9.

The morphism component takes a homomorphism G : (CC1, cs1) → (CC2, cs2) to Gop. It is well
defined by Lemma 5.11.

The identity and composition axioms are straightforward from the corresponding properties of
functor composition and its compatibility with the function G 7→ Gop.

6 Isomorphism theorem

Theorem 6.1 [2015.12.08.th1] For any universe U , Constructions 4.5 and 5.13 define mutually
inverse isomorphisms between the categories of Lawvere theories in U and l-bijective C-systems in
U .

Proof: Let us show first that the object components of the functors LCU and CLU are mutually
inverse bijections of sets. We write LC for (LCU )Ob and similarly for CL.

Let us consider first the composition LC ◦CL of the function of Construction 4.2 with the function
of Construction 5.9.

Let Lw be a Lawvere theory structure on T and let

Lw′ = (LC ◦ CL)(Lw) = CL(LC(Lw))

We have Lw = (L : F → T ) and Lw′ = (L′ : F → T ). We have to prove that L′(f) = L(f). To
distinguish L′ and L more clearly we will use the notation L′f for L′(f) as we did in Construction
5.9.

On objects we have
L′(n) = l−1(n) = (L−1)−1(n) = L(n)

Let f : stn(m)→ stn(n) be a morphism in F.

Since L and L′ coincide on objects both morphisms L(f) and L′f are of the form L(n) → L(m)
when considered as contravariant functors to CC = T op.

The proof is by induction on m.

If m = 0, L(m) = L′(m) is a final object and any two morphisms with it as a codomain are equal.

If m = 1 we have by Constructions 5.9 and 5.5 that

L′(f) = L′f = πnf(0)

We need to show that
L(f) = πnf(0)

We prove these equalities by induction on n.

If n = 0 then f exists only if m = 0 and we have already considered this case.

Let (l, pt, ft, p, q, s) be the components of LC(L). If n = 1 then by Construction 5.3 we have
πnf(0) = πn0 = Idl−1(1) and since L is a functor and f = Idl−1(0) we have L(f) = Idl−1(1).

For the successor we should consider diagram (7). We have that πn+1
f(0) is given by:

πn+1
f(0) =

{
pl−1(n+1) ◦ πn(f(0) for f(0) < n

q(π, l−1(1)) for f(0) = n

13



Assume that f(0) < n. Then, by the inductive assumption we have πn(f(0) = L(f). By (11) we have

pl−1(n+1) = L(ιn,11 ) and since L is a functor we get

πn+1
f(0) = L(ιn,11 ) ◦ πn(f(0)) = L(ιn,11 ) ◦ L(g)

where g : stn(1)→ stn(n) is such that g(0) = f(0). Since L is a contravariant functor we get

L(ιn,11 ) ◦ L(g) = L(g ◦ ιn,11 ) = L(f)

For f(0) = n we have πn+1
f(0) = q(π, l−1(1)) = L(ιn,12 ) = L(f) where the second equality is by (12).

We have to consider now the case of the successor of m.

The morphism L′f for f : stn(m + 1) → stn(n) is defined in (8) and (9) as the unique morphism
such that

L′f ◦ pl−1(m+1) = L′
ιm,11 ◦f (14)

and
L′f ◦ q(π, l−1(1)) = L′

ιm,12 ◦f (15)

By the inductive assumption we have

L′
ιm,11 ◦f = L(ιm,11 ◦ f)

L′
ιm,12 ◦f = L(ιm,12 ◦ f)

It remains to prove that

[2015.12.02.eq5]L(f) ◦ pl−1(m+1) = L(ιm,11 ◦ f) (16)

and
[2015.12.02.eq6]L(f) ◦ q(πl−1(m), l

−1(1)) = L(ιm,12 ◦ f) (17)

By (11) and (12) we have
pl−1(m+1) = L′

ι1,m1

= L(ι1,m1 )

q(πl−1(m), l
−1) = L′

ιm,12

= L(ιm,12 )

Where the second equalities are by the inductive assumption on m. This proves equalities (16) and
(17).

Let us consider now the composition CL ◦LC. Fix a category CC in U . We need to show that for
a l-bijective C-system structure cs one has LC(CL(cs)) = cs. Let CL(cs) = (L) and let

cs = (l, pt, ft, p, q, s)

and
LC(CL(cs)) = (l′, pt′, ft′, p′, q′, s′)

Then on objects L = l−1 and l′ = L1−. Therefore l = l′.

Next pt = l−1(0) = (l′)−1(0) = pt′. Similarly we see that ft = ft′ since on a l-bijective C-system ft
is determined by l.

14



For X such that l(X) > 0 we have by Construction 4.2 that p′X = L(ι
l(X)−1,1
1 ). Together with (11

we obtain
p′X = L(ι

l(X)−1,1
1 ) = pl−1(l(X)

since the C-system is l-bijective we have X = l−1(l(X) and therefore p′ = p.

The morphism q′ is defined in Construction 4.2 as the unique morphism such that (4) and (5) hold.
In our notation these equations take the form:

q′(f,X) ◦ p′X = p′f∗(X) ◦ f (18)

and
[2015.12.02.eq9]q′(f,X) ◦ L(ι

l(X)−1,1
2 ) = L(ι

l(Y ),1
2 ) (19)

We need to check that the same equations hold for q. For the first one it follows immediately from
the fact that p′ = p.

To prove the second one consider equation (12). Applying this equation to (19) for q and using the
fact that of C-systems are l-bijective we get

q(f,X) ◦ q(πft(X), l
−1(1) = q(πY , l

−1(1))

which a particular case of the composition axiom for q (see [6, Definition 2.1(7)]).

This proves that CLU and LCU are mutually inverse bijections on the sets of objects of our cate-
gories.

The fact that they give mutually inverse functions on morphisms between each pair of objects is
straightforward. Indeed

CLU,Mor(G) = Gop

and
LCU,Mor(G) = Gop

as functors and since the mappings from morphisms of Lawvere theories and homomorphisms of
C-systems to functors between the corresponding categories are injective we see that CLU,Mor and
LCU,Mor are mutually inverse bijections.
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