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Abstract

In this paper we consider the class of `-bijective C-systems, i.e., C-systems for which the
length function is a bijection. The main result of the paper is a construction of an isomorphism
between two categories - the category of `-bijective C-systems and the category of Lawvere
theories.

1 Introduction

C-systems in their present form were introduced in [7] by a small modification of the concept of
contextual categories of John Cartmell [1], [2].

C-systems are among several categorical structures that can be used to define on them systems
of operations corresponding to the systems of inference rules of dependent type theories. Another
such categorical structure is the structure of a category with families [3]. A C-system together with
such system of operations is called a C-system model of the corresponding type theory. In this
definition the C-system plays the role analogous to the role that the carrier set plays for a model
of a first order theory.

A C-system is a category CC together with a function ` : CC → N called the length function and
a number of other structures. An `-bijective C-system is a C-system such that its length function
is a bijection.

Lawvere theories were introduced by Bill Lawvere in his thesis under the name algebraic theories [4]
as a syntax-free approach to the theory of algebraic theories.

It turns out that `-bijective C-systems are very closely related to Lawvere theories. We construct
a functor from the category of Lawvere theories to the category of `-bijective C-systems and a
functor in the opposite direction and show in Theorem 6.1 that these functors are mutually inverse
isomorphisms of the corresponding categories. We emphasize the unexpected aspect of this result
which is that we obtain not simply an equivalence but an actual isomorphism of the categories.

This is essentially the first result on C-systems that includes the description of their homomor-
phisms.

An algebraic theory, such as the theory of groups, can be presented in the form of a type theory
following the idea of Cartmell [2]. Then we find ourselves in a seemingly contradictory situation
since C-systems with some operations are models of this theory and at the same time, following our
bijection, a particular C-system is a form of presentation of the theory itself. We conjecture that
given a Lawvere theory the C-system that we construct in this paper is the carrier of the initial
model of the type-theoretic inference rules corresponding to this Lawvere theory by Cartmell’s
construction. Moreover, the C-system structure of the initial C-system model is rich enough to
allow on the one hand side for only one possibility for the additional operations and on the other
for the reconstruction from it of the theory itself.
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Let F be the category whose set of objects is the set of natural numbers N and Mor(m,n) =
Fun(stn(m), stn(n)), where stn(m) = {i ∈ N | i < m} is the standard set with m elements and
Fun(X,Y ) is the set of functions between two sets.

In Definition 2.1 we define a Lawvere theory, following the definition given by Lawvere himself in [4,
Def. on p.62] with S0 = F, as a pair (T, L : F→ T ) where T is a category and L a functor that is a
bijection on objects, maps 0 to an initial object and standard pushout squares to pushout squares.

Lawvere theories are ubiquitous. It seems intuitively clear that given an object X in a category
C with an initial object 0 and coproducts of the form (Y + X, ιY,X1 , ιY,X2 ) for all Y we obtain a
Lawvere theory in the sense of Definition 2.1 by taking the subcategory of objects of the form
0, X,X + X, (...(X + X) . . . ) + X with the inductively defined functor L. By duality the same
construction should work when we have a final object pt and binary products (Y ×X,πY,X1 , πY,X2 ).
This intuitive construction as presented here is incorrect - there is no reason for all the coproducts of
X with itself to be different. However, it can be made precise by a composition of two constructions
of this paper - Construction 3.5 defines from the data specified above an `-bijective C-system and
Construction 5.9 defines from an `-bijective C-system a Lawvere theory (T, L : F→ T ) in the sense
of Definition 2.1. One can then prove that if all coproducts the (...(X +X) . . . ) +X are different
then the functor int : T op → C is an isomorphism to its image.

Since we need to construct an isomorphism of categories we have well defined tasks - to construct
the first category, to construct the second category, to construct the functor from the first to the
second, to construct the functor from the second to the first and to prove that these two functors
are mutually inverse isomorphisms. This precisely described the structure of the paper - it has five
sections other than this introduction corresponding to the five tasks specified above.

While writing this paper we had two meta-theories or “foundations of mathematics” in mind. The
main meta-theory that the paper can be formalized in is the usual foundation based on the Zermelo-
Fraenkel formalism. The secondary meta-theory is UniMath, a univalent foundation based on a
small subset of the language of the proof assistant Coq, see [6],[8]. Since the UniMath is constructive
we do not use the axiom of excluded middle or the axiom of choice in the paper.

We use the diagrammatic order in writing compositions, i.e., for f : X → Y and g : Y → Z we
write f ◦ g for the composition of f and g.

We do not make precise the concept of a universe U that we use for some of the statements of the
paper. It would be certainly sufficient to assume that U is a Grothendieck universe. However, it
seems likely that sets U satisfying much weaker conditions can be used both for the statements and
for the proofs of our results.

2 The category of Lawvere theories

In this section start by defining the set Lw(T ) of Lawvere theory structures on a category T . Then
a Lawvere theory is defined as a pair (T, L) where T is a category and L ∈ Lw(T ). A morphism of
Lawvere theories is a functor T1 → T2 that is compatible with L1 and L2. Restricting ourselves to
Lawvere theories (T, L) where T is a category in a given universe U we obtain a category LW(U)
of Lawvere theories in U . At the end of the section we prove a lemma that is used later to simplify
the construction of Lawvere theories.

As usual, we let N denote the set of natural numbers. For m ∈ N let stn(m) = {i ∈ N | 0 ≤ i < m}
be the standard set with m elements.
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Let
Mor(F) = ∪n,m∈NFun(stn(n), stn(m))

where Fun(X,Y ) is the set of functions from X to Y . Since every function has a well defined domain
and codomain we can define a category F with the set of objects N and the set of morphisms Mor(F)
such that for each n and m the set

F(m,n) := {f ∈Mor(F) | dom(f) = m and codom(f) = n}

equals to Fun(stn(m), stn(n)) and composition, when restricted to these subsets, is the composition
of functions.

For m,n ∈ N let ιm,n1 : stn(m) → stn(m + n) and ιm,n2 : stn(n) → stn(m + n) be the injections of
the initial segment of length m and the concluding segment of length n.

Definition 2.1 A Lawvere theory structure on a category T is a functor L : F → T such that the
following conditions hold:

1. L is a bijection on the sets of objects,

2. L(0) is an initial object of T ,

3. for any m,n ∈ N the square L(0) //

��

L(n)

L(ιm,n2 )

��

L(m)
L(ιm,n1 )

// L(m+ n)

is a pushout square.

A Lawvere theory is a pair (T, L) where T is a category and L is a Lawvere theory structure on T .

Let us denote the set of Lawvere theory structures on T by Lw(T ).

Example 2.2 The identity functor on F satisfies the condition of Definition 2.1 making (F, IdF)
a Lawvere theory. Many more examples can be constructed using Construction 3.5. In particular,
see Example 5.11.

Problem 2.3 For a universe U , to construct a category LW(U) of Lawvere theories in U .

Construction 2.4 Following Lawvere [4, p.61] we define a morphism from a Lawvere theory T1 =
(T1, L1) to a Lawvere theory T2 = (T2, L2) as a functor G : T1 → T2 such that L1 ◦ G = L2. We
let HomLW(T1,T2) denote the subset in the set of functors from T1 to T2 that are morphisms of
the Lawvere theories.

Note that here one uses the equality rather than isomorphism of functors. The composition of
morphisms is defined as composition of functors. The identity morphism is the identity functor.
The associativity and the left and right unit axioms follow immediately from the corresponding
properties of the composition of functors.

We let Ob(LW(U)) denote the set of Lawvere theories in U and Mor(LW(U)) the set

Mor(LW(U)) =
∐

T1,T2∈Ob(LW(U))

HomLW(T1,T2)
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Together with the obvious domain, codomain, identity and composition functions the pair of sets
Ob(LW(U)) and Mor(LW(U)) forms a category that we denote LW(U) and call the category of
Lawvere theories in U .

Note that a morphism from T1 to T2 in this category is not a morphism of Lawvere theories but
an iterated pair ((T1,T2), G) where G is a morphism of Lawvere theories. However, there is an
obvious bijection

MorLW(U)(T1,T2)→ HomLW(T1,T2)

and by the common abuse of notation every time we have an expression which denotes an element
of one of these sets in a position where an element of the other is expected it is assumed to be
replaced by its image under this bijection.

The following lemma will be used below in Construction 5.9.

Lemma 2.5 Let T be a category and L : F→ T a functor such that the following conditions hold:

1. L(0) is an initial object of T ,

2. for any m ∈ N the square
L(0) //

��

L(1)

L(ιm,12 )
��

L(m)
L(ιm,11 )

// L(m+ 1)

(1)

is a pushout square.

Then for any m,n ∈ N the square

L(0) //

��

L(n)

L(ιm,n2 )

��

L(m)
L(ιm,n1 )

// L(m+ n)

is a pushout square.

Proof: Let m,n ∈ N. Consider first the diagram

L(0) //

��

L(n)
L(ιm,n2 )

//

L(ιn,11 )
��

L(m+ n)

L(ιm+n,1
1 )

��

L(1)
L(ιn,12 )

// L(n+ 1)
L(ιm,n+1

2 )
// L(m+ n+ 1)

The first square is the reflection relative to the diagonal of a square of the form (1) and therefore
it is a pushout square.

We have ιn,12 ◦ ι
m,n+1
2 = ιm+n,1

2 . Therefore the large square is the reflection relative to the diagonal
of a square of the form (1) and therefore it is a pushout square.

The right hand side square is commutative.

By the general properties of pushout squares which are obtained from the similar properties of the
pullback squares by duality we conclude that the right hand side square is a pushout square.
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To prove the lemma proceed now by induction on n ∈ N.

For n = 0 the horizontal arrows are isomorphisms and since the square commutes it is a pushout
square.

For n = 1 it is a square of the form (1).

For the successor consider the diagram

L(0) //

��

L(n)
L(ιn,11 )

//

L(ιm,n2 )

��

L(n+ 1)

L(ιm,n+1
2 )

��

L(m)
L(ιm,n1 )

// L(m+ n)
L(ιm+n,1

1 )
// L(m+ n+ 1)

The first square is a pushout by the inductive assumption. The second square is pushout by the
first part of the proof. Therefore the ambient square is pushout. Since ιm,n1 ◦ ιm+n,1

1 = ιm,n+1
1 this

completes the proof of the lemma.

3 The category of `-bijective C-systems

In this section we first recall some facts about C-systems and give references to the papers where
they are described in full detail. Then we define the concept of an `-bijective C-system and provide
a construction of `-bijective C-systems from categories equipped with a simple additional data.
Later this construction, composed with the construction of a Lawvere theory from an `-bijective
C-system, is used to make precise an important intuitive approach to Lawvere theories. At the end
of the section we remind some facts about homomorphisms of C-systems, construct the category
CSys(U) of C-systems in a universe U and define its full subcategory CSysN(U) of `-bijective
C-systems CSys(U).

For the definition of a C-system see [1], [2] (where they are called contextual categories) as well
as [7]. A C-system structure on a category CC is a six-tuple cs = (`, pt, ft, p, q, s) where `, ft and p
are functions, pt an element of Ob(CC), q a partial function on pairs and s a partial function. To be
a C-system structure these objects must satisfy the conditions of [7, Definitions 2.1 and 2.3]. One
of the main structures of a C-system is that for any X such that `(X) > 0 and any f : Y → ft(X)
there is given an object f∗(X) and a morphism q(f,X) : f∗(X)→ X such that

ft(f∗(X)) = Y (2)

and the square

f∗(X)
q(f,X)

//

pf∗(X)

��

X

pX
��

Y
f
// ft(X)

(3)

is a pullback. Squares of this form will be called the canonical squares of a C-system.

Definition 3.1 An `-bijective C-system is a C-system such that the length function ` : Ob(CC)→
N is a bijection.

We let CsN(CC) denote the set of `-bijective C-system structures on a category CC.
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Remark 3.2 The element pt of a C-system structure is determined by ` since `−1(0) = {pt} for
any C-system structure.

Remark 3.3 For an `-bijective C-system structure cs = (`, pt, ft, p, q, s) the ft function is deter-
mined by the `-function, that is, for two such structures cs1, cs2 satisfying `1 = `2 one has ft1 = ft2.
Indeed, by the axioms of a C-system `(ft(X)) = `(X) −N 1 where n −N 1 = n − 1 if n > 0 and
0−N 1 = 0. Therefore, in an `-bijective C-system one has ft(X) = `−1(`(X)−N 1).

The following result shows that `-bijective C-systems are abundant.

Problem 3.4 Let C be a category with a final object pt, a distinguished object X and, for all Y ∈ C,
a choice of a pullback square of the form Y ×X //

��

X

��

Y // pt

. To construct an `-bijective C-system

CC(C, πX) and a functor int : CC(C, πX)→ C.

Construction 3.5 Note that the data specified in the problem is exactly a universe structure, in
the sense of [5, Def. 2.1] on the morphism πX : X → pt. Therefore (C, πX) is a universe category
and we can apply the construction [5, Constr. 2.12] to it to obtain a C-system CC(C, πX) and
a functor int : CC(C, πX) → C. Objects of this C-system of length n + 1 are pairs of the form
(A, τ : int(A) → pt) where A is an object of length n and τ a morphism in C. Since pt is a final
object a simple inductive argument shows that CC(C, πX) is an `-bijective C-system.

Problem 3.6 Let U be a universe. To construct a category CSys(U) of C-systems in U .

Construction 3.7 A morphism of C-systems is a functor between the underlying categories that
is compatible with the corresponding C-system structures. In particular a morphism of C-systems
should commute with the length functions. For a detailed definition see [5, Definition 3.1]. We
let HomCS(CC1, CC2) denote the set of homomorphisms from the C-system CC1 to the C-system
CC2.

That the composition of functors that are homomorphisms is again a homomorphism is stated in [5,
Lemma 3.2]. That the identity functor is a homomorphism is very easy to prove. The associativity
and the left and right unit axioms for the composition of homomorphisms follow directly from the
similar properties of the composition of functors.

Repeating the approach that we used with Lawvere theories we obtain the category CSys(U) of
C-systems in U .

We let CSysN(U) denote the full subcategory in CSys(U) that consists of `-bijective C-systems.

4 A functor from Lawvere theories to `-bijective C-systems

The goal of this section is to construct, for a universe U , a functor LtoCU : LW(U)→ CSysN(U).
This is achieved in Construction 4.5. We start in Construction 4.2 by defining, for a category
T , a function LtoC from the set of Lawvere theory structures on T to the set of `-bijective C-
system structures on T op. Then in Lemma 4.3 we show that for a morphism of Lawvere theories

6



G : (T1, L1) → (T2, L2) the functor Gop is a homomorphism of the C-systems (T op1 , LtoC(L1)) →
(T op2 , LtoC(L2)). Note that this is a lemma and not a construction because being a homomorphism
of C-systems is a property of a functor and not a structure on it. Combining Construction 4.2 with
Lemma 4.3 get the desired functor LtoCU : LW(U) → CSysN(U). At the end of the section we
outline the comparison of our construction with another construction of a C-system from a Lawvere
theory based on Construction 3.5. This construction can also be used to pass from Lawvere theories
to C-systems, but its use will lead to an equivalence between categories LW(U) and CSysN(U)
instead of an isomorphism.

Problem 4.1 For a category T to construct a function

LtoC : Lw(T )→ CsN(T op)

from the Lawvere theory structures on T to the `-bijective C-system structures on T op.

Construction 4.2 Let CC = T op. We need to construct an `-bijective C-system structure on CC.
We set:

The length function ` = L−1.

The distinguished final object pt is L(0).

The map ft : Ob(CC)→ Ob(CC) maps pt to pt and any object X such that `(X) > 0 to L(`(X)−1).
Since the equality on N is decidable we can distinguish objects such that `(X) = 0 from objects
such that `(X) 6= 0 without the use of the excluded middle.

For pt the morphism ppt is the identity. For X such that `(X) > 0 the morphism pX : X → ft(X)

is L(ι
`(X)−1,1
1 ).

To define q(f,X) observe first that for any X such that `(X) > 0 we have a pullback square in CC
of the form

X
L(ι

`(X)−1,1
2 )

//

pX
��

L(1)

��

ft(X) // L(0)

(4)

Given f : Y → X we set
f∗(X) = L(`(Y ) + 1)

As required by (2) we have

ft(f∗(X)) = L(`(L(`(Y ) + 1))− 1) = L(`(Y )) = Y

Since (4) is a pullback square and L(0) is a final object there is a unique morphism q(f,X) :
f∗(X)→ X such that

q(f,X) ◦ pX = pf∗(X) ◦ f (5)

and
q(f,X) ◦ L(ι

`(X)−1,1
2 ) = L(ι

`(Y ),1
2 ) (6)

Let us check the conditions of [7, Definition 2.1] that will show that we obtained a C0-system. We
have `−1(0) = L(0) = {pt}. ForX such that `(X) > 0 we have `(ft(X)) = `(L(`(X)−1)) = `(X)−1.
We also have ft(pt) = pt. The object pt = L(0) is final.
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The square

f∗(X)
q(f,X)

//

pf∗(X)

��

X

pX
��

Y
f

// ft(X)

(7)

commutes by (5).

If f = Idft(X) then Y = ft(X), `(Y ) = `(X)−1 and therefore f∗(X) = X. Therefore q(f,X)◦pX =

pX and q(f,X) ◦ L(ι
`(X)−1,1
2 ) = L(ι

`(X)−1,1
2 ) which proves that q(f,X) = IdX .

Given g : Z → Y we have to verify that q(g ◦ f,X) = q(g, f∗(X)) ◦ q(f,X). We have

(g ◦ f)∗(X) = L(`(Z) + 1) = g∗(f∗(X)) (8)

Taking into account that (4) is a pullback square, it remains to verify two equalities

q(g ◦ f,X) ◦ pX = q(g, f∗(X)) ◦ q(f,X) ◦ pX (9)

and
q(g ◦ f,X) ◦ L(ι

`(X)−1,1
2 ) = q(g, f∗(X)) ◦ q(f,X) ◦ L(ι

`(X)−1,1
2 ) (10)

For (9) we have

q(g ◦ f,X) ◦ pX = p(g◦f)∗(X) ◦ g ◦ f = pg∗(f∗(X)) ◦ g ◦ f =

q(g, f∗(X)) ◦ pf∗(X) ◦ f = q(g, f∗(X)) ◦ q(f,X) ◦ pX
where the first equality is by the commutativity of the squares (7), the second one by (8) and the
third and the fourth ones again by (7). For (10) we have

q(g ◦ f,X)◦L(ι
`(X)−1,1
2 ) = L(ι

`(Z),1
2 ) = q(g, f∗(X))◦L(ι

`(Y ),1
2 ) = q(g, f∗(X))◦q(f,X)◦L(ι

`(X)−1,1
2 )

Where the first equality is by (10), the second also by (10) since l(Y ) = l(f∗(X))− 1 and the third
is by (10) as well.

According to [7, Proposition 2.4] it remains to show that the squares (7) are pullback squares.

Consider the diagram

f∗(X)
q(f,X)

//

pf∗(X)

��

X
L(ι

l(X)−1,1
2 )

//

pX
��

L(1)

��

Y
f

// ft(X) // L(0)

where both the right hand side square and the outside square are of the form (4) and in particular
are pullback squares and the left hand side square has been shown to be commutative. Therefore,
the left hand side square is a pullback square. We conclude, by [7, Proposition 2.4], that there
exists a unique s such that (`, pt, ft, p, q, s) is a C-system structure.

Lemma 4.3 Let G : (T1, L1)→ (T2, L2) be a morphism of Lawvere theories. Then the functor Gop

is a homomorphism of C-systems (T op1 , LtoC(L1))→ (T op2 , LtoC(L2)).
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Proof: For convenience we will write H instead of Gop. In view of [5, Lemma 3.4] it is sufficient
to verify that H is compatible with the length function, distinguished final object, ft function,
p-morphisms and q-morphisms.

`-function. The fact that `1 = H ◦ `2 is equivalent to the fact that L1 ◦G = L2.

pt object. The fact that H(L1(0)) = L2(0) follows from the same property of G.

ft function. The fact that H(ft(X)) = ft(H(X)) again follows from the same property of G.

p-morphisms. The fact that H(pX) = pH(X) follows from the fact that L1 ◦ G = L2 on objects

and on morphisms of the form ιn,11 .

q-morphisms It remains to verify that for X such that `(X) > 0 and f : Y → ft(X) one has

H(q(f,X)) = q(H(f), H(X))

where the right hand side is defined because H is compatible with ` and ft. The morphism

q(H(f), H(X)) : H(f)∗(H(X))→ H(X)

as a q-morphism of the C-system structure LtoC(L2) is defined by equalities of the form (5)
and (6) that for (T2, L2) take the form

q(H(f), H(X)) ◦ pH(X) = pH(f)∗(H(X)) ◦H(f)

and
q(H(f), H(X)) ◦ L2(ι

`2(H(X))−1,1
2 ) = L2(ι

`2(H(Y )),1
2 )

Therefore we need to verify the same equalities for the morphism H(q(f,X)). For the first
equality we have

H(q(f,X))◦pH(X) = H(q(f,X))◦H(pX) = H(q(f,X)◦pX) = H(pf∗(X)◦f) = pH(f∗(X))◦H(f)

where the first equality follows from the case of p-morphisms, the second from the composition
axiom of H, the third from the commutativity of the canonical squares (3) and the fourth by
the composition axiom of H and the case of p-morphisms.

It remains to show that H(f∗(X)) = H(f)∗(H(X)). It follows from the fact that f∗(X) =
L1(`1(X) + 1) and H(f)∗(H(X)) = L2(`2(H(X)) + 1).

For the second equality we have

H(q(f,X))◦L2(ι
`2(H(X))−1,1
2 ) = H(q(f,X))◦H(L1(ι

`1(X)−1,1
2 )) = H(q(f,X)◦L1(ι

`1(X)−1,1
2 )) =

H(L1(ι
`1(Y ),1
2 )) = L2(ι

`2(H(Y )),1
2 )

where the first equality follows from the fact that `2(H(X)) = `1 by the compatibility of
H with the `-functions and that L2(f) = H(L1(f)), the second equality follows from the
composition axiom for H, the third from (6) and the fourth from the same argument as the
first.

The lemma is now proved.
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Problem 4.4 To construct, for any universe U , a functor LtoCU : LW(U)→ CSysN(U).

Construction 4.5 We set LtoCOb to be the function that takes a Lawvere theory to the opposite
category of its underlying category with the C-system structure defined by Construction 4.2. We
set LtoCMor to be the function that takes a functor G that is a morphism of Lawvere theories to
Gop. It is well defined by Lemma 4.3. That the functions (LtoCOb, LtoCMor) form a functor, i.e.,
commute with the identity morphisms and compositions is straightforward.

Remark 4.6 Let (T, L) be a Lawvere theory. Consider T op. The morphism p : L(1) → L(0),
pullback squares (4) and the final object L(0) make T op into a universe category (T op, p) (see [5]).
It is easy to prove that the C-system of Construction 4.2 is isomorphic to the C-system CC(T op, p)
of this universe category. However this isomorphism is not an equality since the set of objects of
the category CC(T op, p) is not equal to the set of objects of T op. Indeed, an object of CC(T op, p)
is a sequence of the form

(pt;πL(0), . . . , πL(n))

where πL(i) is the unique morphism L(i)→ L(0).

5 A functor from `-bijective C-systems to Lawvere theories

This is probably the most technical section of the paper. Our first goal is to construct, for a
category CC, of a function CtoL from the set of `-bijective C-system structures on CtoL to the
set of Lawvere theory structures on CCop. This is achieved in Construction 5.9. Since a Lawvere
theory structure on CCop is a functor L : F→ CCop that maps the standard coproduct squares to
coproduct squares what we need to construct is such a functor. While we do not use this terminology
in the proof, the main idea is to show that in an `-bijective C-system one has `−1(n) = (`−1(1))n.
This is completed with the proof of Lemma 5.7. The construction of a functor from F that maps the
standard coproduct squares to coproduct squares that we provide can be considerably generalized
since all that is required for it is a sequence of objects Xn, which in our case is the sequence `−1(n),
a sequence of pushout squares of the form X0

//

��

Xn

��

X1
// Xn+1

, which in our case is the sequence of

pullback squares (11) in the opposite category, and the condition that X0 is an initial object. Of
course, in general such a functor will not be a bijection on objects and therefore not a Lawvere
theory structure.

After the function CtoL is constructed we need, for a given universe U , to extend it to a func-
tor CtoLU : LW(U) → CSysN(U). We choose to define this functor on morphisms such that,
modulo the usual abuse of notation, for a C-system homomorphism G : CC1 → CC2 we have
CtoLU (G) = Gop. This construction requires Gop to commute with the functors L1, L2. It is shown
in Lemma 5.13.

The definition of the functor CtoLU is completed in Construction 5.15.

Problem 5.1 For a category CC to construct a function

CtoL : CsN(CC)→ Lw(CCop)

10



To perform a construction we will need a number of lemmas and intermediate constructions. Let
us fix a category CC and a `-bijective C-system structure cs = (`, pt, ft, p, q, s) on CC. We will
often write CC both for the category and for the C-system (CC, cs).

We need to construct a Lawvere theory CtoL(CC, cs). A Lawvere theory is a pair (T, L) satisfying
certain conditions. Since out construction should be inverse to the construction of the previous
section, we known that T = CCop. We also know that L(n) = `−1(n). What remains is to construct
L on morphisms and to prove all the necessary conditions.

Problem 5.2 For n ∈ N and i = 0, . . . ,m− 1 to construct a morphism πmi : `−1(m) → `−1(1) in
CC.

The morphisms πmi make `−1(m) into the n-fold product of `−1(1) with itself. However, we do not
provide an exact definition of an “n-fold product” and do not prove or use this fact below.

Construction 5.3 By induction on m ∈ N.

For m = 0 there are no morphisms to construct.

For m = 1 we set π10 = Id`−1(1).

For the successor consider the canonical pullback square:

`−1(m+ 1)
q(π,`−1(1))

//

p`−1(m+1)

��

`−1(1)

p`−1(1)

��

`−1(m)
π // `−1(0)

(11)

where we use π to denote the unique morphisms from objects of CC to the final object `−1(0).
We set

πm+1
i =

{
p`−1(m+1) ◦ πmi for i < m

q(π, `−1(1)) for i = m

The construction to the following problem will provide us with L on morphisms.

Problem 5.4 For any m,n ∈ N and a function f : stn(m) → stn(n) to construct a morphism
Lf : `−1(n)→ `−1(m) in CC.

Construction 5.5 By induction on m ∈ N.

For m = 0 we set Lf = π.

For m = 1 we set Lf = πnf(0).

For the successor consider f : stn(m+ 1)→ stn(n) and the square (11). We define Lf as the unique
morphism such that:

Lf ◦ p`−1(m+1) = L
ιm,11 ◦f (12)

and
Lf ◦ q(π, `−1(1)) = L

ιm,12 ◦f (13)

where, let us recall,
ιm,11 : stn(m)→ stn(m+ 1)

ιm,12 : stn(1)→ stn(m+ 1)

are the inclusion of the initial segment and the morphism corresponding to the last element.
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Lemma 5.6 Let m,n ∈ N and f : stn(m)→ stn(n). Then for any i = 0, . . . ,m− 1 one has

Lf ◦ πmi = πnf(i)

Proof: By induction on m ∈ N.

For m = 0 there is nothing to prove.

For m = 1 we need to prove that Lf ◦ πn0 = πnf(0). By construction, πn0 = Id`−1(1) and Lf = πnf(0)
which implies the goal.

For the successor consider f : stn(m+ 1)→ stn(n) and the square (11) for m+ 1.

If i = m then πm+1
i = q(π, `−1(1)) and by the construction of Lf we have Lf ◦q(π, `−1(1)) = πnf(m).

If i < m then πm+1
i = p`−1(m+1) ◦ πmi . Therefore

Lf ◦ πm+1
i = Lf ◦ p`−1(m+1) ◦ πmi = L

ιm,11 ◦f ◦ π
m
i

and by the inductive assumption

L
ιm,11 ◦f ◦ π

m
i = πn

f(ιm,11 )
= πnf(i)

The lemma is now proved.

Lemma 5.7 Let m,n ∈ N and let f, g : `−1(n) → `−1(m) be two morphisms such that for all
i = 0, . . . ,m− 1 one has

f ◦ πmi = g ◦ πmi
Then f = g.

Proof: By induction on m ∈ N.

For m = 0 , `−1(m) is a final object and f = g.

For m = 1, π10 = Id`−1(1) and f = f ◦ Id = g ◦ Id = g.

For the successor the square (11) for m+ 1. Since the square is a pullback square it is sufficient to
show that

f ◦ p`−1(m+1) = g ◦ p`−1(m+1)

and
f ◦ q(π, `−1(1)) = g ◦ q(π, `−1(1))

The second equality follows from the fact that q(π, `−1(1)) = πm+1
m .

The first equality follows by the inductive assumption since for i = 0, . . . ,m− 1 we have

(f ◦ p`−1(m+1)) ◦ πmi = f ◦ πm+1
i

and
(g ◦ p`−1(m+1)) ◦ πmi = g ◦ πm+1

i

The lemma is now proved.

Lemma 5.8 1. For any m ∈ N one has LIdstn(m)
= Id`−1(m),

12



2. For k,m, n ∈ N and f : stn(k)→ stn(m), g : stn(m)→ stn(n) one has

Lf◦g = Lg ◦ Lf

Proof:

1. By Lemma 5.6 we have LIdstn(m)
◦ πmi = πmi for all i ∈ stn(m). Therefore, by Lemma 5.7 we

have LIdstn(m)
= Id`−1(m).

2. By Lemma 5.6 we have, for all i ∈ stn(k), Lf◦g ◦ πki = πng(f(i)) and

Lg ◦ Lf ◦ πki = Lg ◦ πmf(i) = πng(f(i))

Therefore, by Lemma 5.7 we have Lf◦g = Lg ◦ Lf .

The lemma is now proved.

We can now provide a construction for Problem 5.1.

Construction 5.9 We need to construct a Lawvere theory structure on CCop, i.e., a functor
L : F→ CCop satisfying the conditions of Definition 2.1. We define the object part of L as `−1. We
define the morphism part of L as LMor(f) = Lf using the identification of the sets of morphisms
of CC and CCop. Lemma 5.8 shows that L is a covariant functor to CCop.

We now verify the conditions of Definition 2.1. Condition 2.1(1) is obvious. Condition 2.1(2) is
obvious as well (it follows from the axioms of a C-system). To prove Condition 2.1(3) we first
apply Lemma 2.5. It remains to prove that squares of the form (1) are pushout squares in CCop

or, equivalently, that squares of the form

`−1(m+ 1)
L
ι
m,1
2 //

L
ι
m,1
1
��

`−1(1)

��

`−1(m) // `−1(0)

(14)

in CC are pullback squares. We will do it by showing that the square (14) equals to the square
of the form (3) for the pair X = `−1(1) and f = π`−1(m). The right hand side vertical morphism,
π`−1(1), is a unique morphism from `−1(1) to `−1(0) and since ft(`−1(1)) = `−1(0) it equals p`−1(1).
The same argument shows that the lower horizontal morphism is π`−1(m).

It remains to show that
L
ι1,m1

= p`−1(m+1) (15)

and
L
ιm,12

= q(π`−1(m), `
−1(1)) (16)

These equalities follow from the equalities (12) and (13) for f = Id`−1(m+1) because of Lemma 5.8(1).
The construction is completed.

Remark 5.10 Construction 3.5 composed with Construction 5.9 can be used to construct Lawvere
theories. Indeed, this composition defines a Lawvere theory every time that we are given a category
C, a final object pt in C, and object X in C and for any Y ∈ C, a binary product diagram for Y and
X.
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Example 5.11 Let U be a universe and Gr be the category of groups in U . The standard con-
struction of the free product G1 ∗G2 defines a binary coproduct structure on Gr. The standard one
point set stn(1) with its unique group structure is an initial object in Gr. Let Z be the additive
group of integers. Applying to these data considered in Grop Construction 3.5 composed with
Construction 5.9 we obtain a Lawvere theory where MorT (L(1), L(n)) = HomGr(Z,Z∗n). This
Lawvere theory is called the Lawvere theory of groups. Similarly one obtains Lawvere theories
corresponding to other classes of the algebraic hierarchy.

Next we will show that our function on objects extends to a functor from the category of `-bijective
C-systems to the category of Lawvere theories. First we need the following lemma.

Lemma 5.12 Let H : CC1 → CC2 be a homomorphism of `-bijective C-systems. Then for any
n ∈ N and i = 0, . . . , n− 1 one has

H(πni ) = πni (17)

Proof: Note that since we have `2(H(X)) = `1(X) both sides of (17) are morphisms from `−12 (n)
to `−12 (1).

The proof is by induction on n ∈ N.

For n = 0 there are no equations to prove.

For n = 1 we have π10 = Id`−1(1) and the statement of the lemma follows from the identity axiom
of the definition of a functor.

For the successor we have two cases. For i < n we have

H(πn+1
i ) = H(p`−1(n+1) ◦ πni ) = H(p`−1(n+1)) ◦H(πni ) = p`−1(n+1) ◦ πni = πn+1

i

where the third equality uses the inductive assumption. For i = n we have

H(πn+1
n ) = H(q(π, `−1(1))) = q(π, `−1(1)) = πn+1

n

The lemma is now proved.

Lemma 5.13 Let H : (CC1, cs1)→ (CC2, cs2) be a homomorphism of C-systems. Then the func-
tor Hop : CCop1 → CCop2 is a morphism of Lawvere theories (CCop1 , CtoL(cs1))→ (CCop2 , CtoL(cs2)).

Proof: Let CtoL(cs1) = L1 and CtoL(cs2) = L2. We need to show that L1◦Hop = L2. The equality
between the object components of these functors follows from the fact that a homomorphism of C-
systems is compatible with the length functions. For the morphism component it is more convenient
to consider the equivalent equation

L′1 ◦H = L′2

where L′i : Fop → CCi. Then we have to show that for any f : stn(m)→ stn(n) one has H(L1,f ) =
L2,f . Both sides of this equality are morphisms `−12 (n)→ `−12 (m). By Lemma 5.7 it is sufficient to
show that H(L1,f ) ◦ πni = L2,f ◦ πni for all i = 0, . . . , n− 1. We have

H(L1,f ) ◦ πni = H(L1,f ) ◦H(πni ) = H(L1,f ◦ πni ) = H(πnf(i)) = πnf(i)

where we used Lemma 5.6 and twice Lemma 5.12. On the other hand

L2,f ◦ πni = πnf(i)

again by Lemma 5.6. This completes the proof of Lemma 5.13.
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Problem 5.14 For any universe U to construct a functor CtoLU : CSysN(U)→ LW(U).

Construction 5.15 The object component of CtoLU takes a C-system (CC, cs) to the Lawvere
theory (CCop, CtoL(cs)) where CtoL(cs) is defined by Construction 5.9.

The morphism component takes a homomorphism G : (CC1, cs1) → (CC2, cs2) to Gop. It is well
defined by Lemma 5.13.

The identity and composition axioms are straightforward from the corresponding properties of
functor composition and its compatibility with the function G 7→ Gop.

6 The isomorphism theorem

This is the final section of the paper. It contains the proof of a single theorem stating that,
for any universe U , the functors LtoCU and CtoLU constructed previously are mutually inverse
isomorphisms, that is, that

LtoCU ◦ CtoLU = IdLW(U)

CtoLU ◦ LtoCU = IdCSys(U)

The part that requires work is that they are mutually inverse functions between the sets of objects.
After this fact is established the fact that they are mutually inverse on morphisms follows easily
from their constructions. In the proof of the theorem we first prove both equalities for functions
on objects and then conclude that they hold for functions on morphisms as well.

Theorem 6.1 For any universe U , LtoCU and CtoLU are mutually inverse isomorphisms between
the categories of Lawvere theories and `-bijective C-systems in U .

Proof: Let us show first that the object components of the functors LtoCU and CtoLU are mutually
inverse bijections of sets.

To show that (LtoCU ◦ CtoLU )Ob is identity we need to show that for all categories T in U the
composition LtoC ◦CtoL of the function of Construction 4.2 with the function of Construction 5.9
is identity on Lw(T ).

Let L : F→ T be a Lawvere theory structure on T and let

L′ = (LtoC ◦ CtoL)(L) = CtoL(LtoC(L))

We have to prove that L′(n) = L(n) for n ∈ N and L′(f) = L(f) for f : stn(m) → stn(n). Let
(`, pt, ft, p, q, s) be the components of LtoC(L).

On objects we have
L′(n) = `−1(n) = (L−1)−1(n) = L(n)

Let f : stn(m) → stn(n) be a morphism in F. By Construction 5.9 we have L′(f) = Lf using
identification of morphisms of CC and CCop. To avoid confusion we will denote this identification
by (−)op below. Note that Lf is defined using LtoC(L).

Since L and L′ coincide on objects both morphisms L(f) and L′(f) are of the form L(m)→ L(n).

The proof of their equality is by induction on m ∈ N.

If m = 0 then L(0) = L′(0) is an initial object and any two morphisms with it as the domain and
equal codomains are equal.
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If m = 1 we have, by Constructions 5.9 and 5.5, Lf = πnf(0). Therefore, we need to show that

L(f) = (πnf(0))
op

We prove this equality by induction on n ∈ N.

If n = 0 then no f : stn(1)→ stn(n) exists.

If n = 1 then, by Construction 5.3, we have πnf(0) = πn0 = Id`−1(1) and since L is a functor and

f = Id1 we have L(f) = IdL(1) = (Id`−1(1))
op.

For the successor we have f : stn(1) → stn(n + 1). Consider diagram (11). We have that πn+1
f(0) is

given by:

πn+1
f(0) =

{
p`−1(n+1) ◦ πnf(0) for f(0) < n

q(π`−1(n), `
−1(1)) for f(0) = n

Assume that f(0) < n. By Construction 4.2 we have p`−1(n+1) = L(ιn,11 )op. By the inductive
assumption we have πnf(0) = L(g)op where g : stn(1)→ stn(n) is such that g(0) = f(0). Therefore,

πn+1
f(0) = L(ιn,11 )op ◦ L(g)op = L(g ◦ ιn,11 )op = L(f)op

where the second equality is by the composition axiom from L.

For f(0) = n we have πn+1
f(0) = q(π`−1(n), `

−1(1)) = L(ιn,12 ) = L(f) where the second equality follows

from (6) since ι0,12 = Id1.

We have to consider now the case of the successor of m.

The morphism Lf for f : stn(m+ 1)→ stn(n) is defined in (12) and (13) as the unique morphism
such that

Lf ◦ p`−1(m+1) = L
ιm,11 ◦f (18)

and
Lf ◦ q(π`−1(m), `

−1(1)) = L
ιm,12 ◦f (19)

By the inductive assumption we have

L
ιm,11 ◦f = L(ιm,11 ◦ f)

L
ιm,12 ◦f = L(ιm,12 ◦ f)

It remains to prove that
L(f) ◦ p`−1(m+1) = L(ιm,11 ◦ f) (20)

and
L(f) ◦ q(π`−1(m), `

−1(1)) = L(ιm,12 ◦ f) (21)

By (15) and (16) we have
p`−1(m+1) = L

ιm,11
= L(ιm,11 )

q(π`−1(m), `
−1(1)) = L

ιm,12
= L(ιm,12 )

Where the second equality in each line is by the inductive assumption on m. This proves equalities
(20) and (21) and completes the proof of the fact that L′ = L and, therefore, LtoC◦CtoL = IdLw(T )
for any category T .

16



To prove that (CtoLU ◦LtoCU )Ob is the identity we need to show that for any category CC in U the
composition CtoL ◦LtoC of the function of Construction 5.9 with the function of Construction 4.2
is identity on CsN(CC).

Let cs = (`, pt, ft, p, q, s) be an `-bijective C-system structure on CC. Let CtoL(cs) = L and let
LtoC(L) = (`′, pt′, ft′, p′, q′, s′).

Then `′ = (LOb)
−1 = (`−1)−1 = `. Therefore, pt = pt′ and ft = ft′ by Remarks 3.2 and 3.3.

For X such that `(X) > 0 we have by Construction 4.2 that p′X = L(ι
`(X)−1,1
1 ). Together with (15)

we obtain
p′X = L(ι

`(X)−1,1
1 ) = p`−1(`(X))

since the C-system is `-bijective we have X = `−1(`(X)) and therefore p′ = p.

The morphism q′ is defined in Construction 4.2 as the unique morphism such that (5) and (6) hold.
In our notation these equations take the form:

q′(f,X) ◦ p′X = p′f∗(X) ◦ f (22)

and
q′(f,X) ◦ L(ι

`(X)′−1,1
2 ) = L(ι

`(Y )′,1
2 ) (23)

We need to check that the same equations with q′ replaced by q hold. For the first one it follows
immediately from the fact that p′ = p.

To prove the second one consider equation (16) for m = `(X)′ − 1 = `(X) − 1. Applying this
equation to (23) with q′ replaced by q we get

q(f,X) ◦ q(πft(X), `
−1(1)) = q(πY , `

−1(1))

which a particular case of the composition axiom for q (see [7, Definition 2.1(7)]).

This proves that CtoLU and LtoCU are mutually inverse bijections on the sets of objects of our
categories.

The fact that they give mutually inverse functions on morphisms between each pair of objects is
straightforward. Indeed

CtoLU,Mor(G) = Gop

and
LtoCU,Mor(G) = Gop

as functors and since the mappings from morphisms of Lawvere theories and homomorphisms of
C-systems to functors between the corresponding categories are injective we see that CtoLU,Mor

and LtoCU,Mor are mutually inverse bijections.
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