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Abstract

In this paper we continue, following the pioneering works by J. Cartmell and
T. Streicher, the study of the most important structures on C-systems, the structures
that correspond, in the case of the syntactic C-systems, to the (Π, λ, app, β, η)-system
of inference rules.

One such structure was introduced by J. Cartmell and later studied by T. Streicher
under the name of the products of families of types.

We introduce the notion of a (Π, λ)-structure and construct a bijection, for a given
C-system, between the set of (Π, λ)-structures and the set of Cartmell-Streicher struc-
tures. In the following paper we will show how to construct, and in some cases fully
classify, the (Π, λ)-structures on the C-systems that correspond to universe categories.

The first section of the paper provides careful proofs of many of the properties of
general C-systems.

Methods of the paper are fully constructive, that is, neither the axiom of excluded
middle nor the axiom of choice are used.
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1 Introduction

The concept of a C-system in its present form was introduced in [15]. The type of the
C-systems is constructively equivalent to the type of contextual categories defined by Cart-
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mell in [3] and [4] but the definition of a C-system is slightly different from the Cartmell’s
foundational definition.

In this paper we consider what might be the most important class of structures on C-systems
- the structures that correspond, for syntactic C-systems, to the operations of dependent
product, λ-abstraction and application that satisfy the β and η rules. The first such structure
was defined for general C-systems by John Cartmell in [3, pp. 3.37 and 3.41] as a part of
what he called a strong M.L. structure. It was later studied by Thomas Streicher in [9, p.71]
who called a C-system (contextual category) together with such a structure a “contextual
category with products of families of types”.

The goal of this paper is to define another structure on C-systems, which we call the (Π, λ)-
structure, and to establish a bijection between the set of Cartmell-Streicher structures and
(Π, λ)-structures. The (Π, λ)-structures will be studied in [14].

This paper, together with [14], forms a more detailed and systematic version of the earlier
preprint [13].

A note must be made about our use of the expressions “a structure” and “the structure”. In
the latter case, as for example in “the group structure”, we usually refer to a type of structure
on some objects. If we ignore the small variations in the definition, there is only one notion
of group structure and “the group structure” refers to this notion. On the other hand when
we say “a group structure on X” we mean a particular instance or an element of the set of
group structures. Thus we can talk about the Cartmell-Streicher structure and the (Π, λ)-
structure on C-systems and also about the bijection between the set of Cartmell-Streicher
structures and (Π, λ)-structures on a C-system.

We start the paper with Section 2 where we establish a number of general results about
C-systems. Some of these results are new. Some have been stated by Cartmell [3] and
Streicher [9], but without proper mathematical proofs. Among notable new facts we can
mention Lemma 2.22 that shows that the canonical direct product in a C-system is strictly
associative.

In Section 3 we construct on any C-system two families of presheaves - Obn and Õbn. These
presheaves play a major role in our approach to the C-system formulation of systems of op-
erations that correspond to systems of inference rules. The main result here is Construction
3.6 for Problem 3.1. It is likely that constructions for various other variants of this problem
involving morphisms between presheaves Ob∗ and Õb∗ can be given. The full generality of
this result should involve as the source fiber products of Ob∗ and Õb∗ relative to morphisms
satisfying certain properties and as the targetOb∗ or Õb∗. We limit ourselves to Construction
3.6 here because it is the only case that will be required later in the paper.

Up to Section 2 all our results are about objects and morphisms of a single C-systems or
about their behavior under homomorphisms of C-systems. Starting with Section 3 we begin
to consider presheaves on C-systems. There is a foundational issue related to the notion of
a presheaf that is rarely if ever addressed. We discuss it in some detail in Remarks 3.9 and
3.10.

In Section 4 we first recall the definition of the Cartmell-Streicher structure on a C-system.
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Then, in Definition 4.3, we give the main definition of the paper, the definition of a (Π, λ)-
structure. In the rest of this section we work on constructing a bijection between the sets of
Cartmell-Streicher structures and (Π, λ)-structures on a given C-system.

This bijection is the main result of the paper. Its construction uses most of the results of
Section 2 as well as results from the appendices.

A Cartmell-Streicher structure on CC can be seen as a pair (Π, Ap) where Π is a function
Ob≥2 → Ob satisfying conditions of Definition 4.1(1) and Ap is a function Ob≥2 → Mor
satisfying conditions of Definition 4.1(2) relative to Π.

A (Π, λ)-structure is a pair (Π, λ) where Π is a morphism of presheaves Ob2 → Ob1 and λ is

a morphism of presheaves Õb2 → Õb1 such that

Õb2
λ−−−→ Ob1

∂

y y∂
Õb1

Π−−−→ Ob1

(1.1)

is a pullback.

Substituting i = 2 and j = 1 in Construction 3.6 we obtain a bijection Φ from the set of
morphisms of presheaves of the form Π : Ob2 → Ob1 to the set of functions Π : Ob≥2 → Ob
satisfying the conditions of Definition 4.1(1).

Let AllλΠ
1 be the set of morphisms λ : Õb2 → Õb1 that make (4.2) a pullback, that is, which

form, together with Π, a (Π, λ)-structure.

Let AllApΠ1 be the set of functions Ap : Ob≥2 →Mor that satisfy the conditions of Definition
4.1(2) relative to Π, that is, which form, together with Π, a Cartmell-Streicher structure.

It remains to construct, for any morphism of presheaves Π : Ob2 → Ob1, a bijection of the
form AllλΠ

1 → AllAp
Φ(Π)
1 .

The bijection that we construct is the composition of three bijections

AllλΠ
1 → AllλΠ

2 → AllAp
Φ(Π)
2 → AllAp

Φ(Π)
1 (1.2)

In this sequence the set AllλΠ
2 is the set of double families (families with two parameters) of

bijections of the form
∂−1(B)→ ∂−1(ΠΓ(B))

parametrized by Γ ∈ Ob and B ∈ Ob2(Γ) that satisfy some naturality condition. The first
bijection in (1.2), defined in Construction 4.8, is a particular case of a bijection between the
set of morphisms of presheaves on C that complete a given diagram of presheaves of the form

F̃ G̃

a

y yb
F

P−−−→ G
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to a pullback square and the set of double families of bijections of the form

a−1
X (A)→ b−1

X (PX(A))

parametrized by X ∈ C and A ∈ F (X) that satisfy some naturality condition. The general
case is considered in Appendix B.

For B ∈ Ob≥2 let A = ft(B) and Γ = ft2(B). The set AllApΠ2 is defined in a very similar
way to the set AllApΠ1 with the main difference that while AllApΠ1 is the set of families
morphisms of the form

Π(B)×Γ A→ B

parametrized by B ∈ Ob≥2 and satisfying certain conditions, the set AllApΠ2 is the set of
families morphisms of the form

A×Γ Π(B)→ B

also parametrized by B ∈ Ob≥2 and satisfying a somewhat different set of conditions.

The bijection between the sets AllλΠ
2 and AllAp

Φ(Π)
2 is, in a sense, the main one of the three

bijections. It is defined by constructing two functions,

C1 : AllλΠ
2 → AllAp

Φ(Π)
2

in Construction 4.11 and
C2 : AllAp

Φ(Π)
2 → AllλΠ

2

in Construction 4.13 and proving in Lemmas 4.14 and 4.15 that these functions are mutually
inverse bijections.

The last of the three bijections, the bijection between AllApΠ2 and AllApΠ1 is defined in Con-
struction 4.17. It and its inverse are given by the composition with the exchange morphisms

exch(A,Π(B); Γ) : A×Γ Π(B)→ Π(B)×Γ A

and
exch(Π(B), A; Γ) : Π(B)×Γ A→ A×Γ Π(B)

that are defined and whose properties are proved in Section 2.

The (Π, λ)-structures correspond to the (Π, λ, app, β, η)-system of inference rules. In Remark
4.4 we outline the definitions of structures that correspond to the similar systems but without
the β- or η-rules. Such structures appear as natural variations of the (Π, λ)-structures.

Our main construction proceeds through two intermediate structures whose sets are denoted
by AllλΠ

2 and AllApΠ2 . This shows that there are other structures on C-systems that are
equivalent to the Cartmell-Streicher and (Π, λ)-structures.

Among such structures there is an important one that is obtained by reformulating for
C-systems the structure that is defined in [5, Def. 5] and that we may call the Clairambault-
Dybjer structure. The C-system version of this structure is closer to the (Π, λ)-structure
than to the Cartmell-Streicher structure and it should not be difficult to construct a bijection
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between Clairambault-Dybjer structures and (Π, λ)-structures. We leave this for a future
paper.

The methods of this paper are fully constructive. It is written in the formalization-ready
style, that is, in such a way that no long arguments are hidden even when they are required
only to substantiate an assertion that may feel obvious to readers who are closely associated
with a particular tradition of mathematical thought.

In regard to the actual formalization we, firstly, make our arguments accessible to the formal-
ization in the standard ZF - the Zermelo-Fraenkel theory. Secondly, we make them accessible
to the formalization in the UniMath language (see [12]). It is the latter that allows us to
claim that out methods are constructive. We do not consider the questions that arise in con-
nection with the accessibility of our arguments to the formalization in various intuitionistic
versions of the ZF ([6], [1]).

The main result of this paper is not a theorem but a construction and so are many of
the intermediate results. Because of the importance of constructions for this paper we use a
special pair of names Problem-Construction for the specification of the goal of a construction
and the description of a particular solution.

In the case of a Theorem-Proof pair one usually refers (by name or number) to the theorem
when using the proof of this theorem. This is acceptable in the case of theorems because
the future use of their proofs is such that only the fact that there is a proof but not the
particulars of the proof matter.

In the case of a Problem-Construction pair the content of the construction often matters in
the future use. Because of this we have to refer to the construction and not to the problem
and we assign in this paper numbers both to Problems and to Constructions.

In this paper we continue to use the diagrammatic order of writing composition of morphisms,
i.e., for f : X → Y and g : Y → Z the composition of f and g is denoted by f ◦ g.

For a functor Φ : C → C ′ we let Φ◦ denote the functor PreShv(C ′)→ PreShv(C) given by
pre-composition with a functor Φop : Cop → (C ′)op. On objects one has

Φ◦(F )(X) = F (Φ(X))

In the literature this functor is denoted both by Φ∗ and Φ∗ and we decided to use a new
unambiguous notation instead.

Acknowledgements are at the end of the paper.

2 General results on C-systems

Some of the lemmas and theorems proved in this section can also be found in [4] and in [9].
However, many new results are included and we chose to provide independent proofs for a
few known results for the convenience of the reference further in this paper and in the other
papers of this series.

Let us start by making some additions to the notations that were introduced in [15]. The new
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notations that we introduce are consistent with the notations introduced in [4, pp.239-240].

Definition 2.1 Let CC be a C-system. We will say that an object X is over an object Y
and write X ≥ Y if l(X) ≥ l(Y ) and Y = ftl(X)−l(Y )(X). We say that X is above Y and
write X > Y if X is over Y and l(X) > l(Y ).

Note that “is over” and “is above” are well-defined relations on Ob(CC) with “is over” being
reflexive and transitive and “is above” being transitive. In addition one has

if X > Γ then ft(X) ≥ Γ (2.1)

The following lemma provides an induction principle that in most proofs can be used instead
of induction by length and that is more convenient than such induction.

Lemma 2.2 Let Γ ∈ CC and let P be a subset in {X |X ≥ Γ} such that

1. Γ ∈ P ,

2. if X > Γ and ft(X) ∈ P then X ∈ P .

Then for all X ≥ Γ, X ∈ P .

Proof: Let X ≥ Γ and n = l(X) − l(Γ). Proceed by induction on n. For n = 0 we have
X = Γ and therefore X ∈ P by the first assumption. For the successor of n we have that
if l(X) − l(Γ) = n + 1 then X > Γ. Therefore, by (2.1) we have ft(X) ≥ Γ and since
l(ft(X)) − l(Γ) = n we have that ft(X) ∈ P by the inductive assumption. We conclude
that X ∈ P by the second assumption of the lemma.

Remark 2.3 There is also another induction principle that can be used everywhere this one
is used but also for purposes where this one fails.

Since the notation “ft” comes from the word “father” we will call the concept that we
want to introduce “child”. For X > Y in CC denote by ch(Y,X) and call ”the child
of Y in the direction of X”, the object ftl(X)−l(Y )−1(X). Then X ≥ ch(Y,X) > Y and
l(X)− l(ch(Y,X)) = (l(X)− l(Y ))− 1. There is a dual induction principle to the one that
we stated above that uses the pairs (X, ch(Y,X)) instead of (ft(X), Y ).

Let, more generally, chi(Y,X) = ftl(X)−l(Y )−i(X). The advantage of using ch(−,−) instead
of ft is that ch(Y,X) are defined even in the systems where X can be infinite over Y .

Here we have to make a reference to the syntactic C-systems of type theories where Ob(CC)
is the set of contexts of the type theory (modulo alpha equivalence and possibly further
equivalences). In formalization systems based on the univalent approach, for example in
UniMath, structures such as (∞, 1)-categories or A∞-types are, intuitively, represented by
infinite contexts. For example, the information about an (∞, 1)-category C is given by a
type Ob, the morphisms family Mor, the family of composition functions and the family of
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the identity morphisms followed by an infinite sequence of families of equalities representing
the higher associativity and identity axioms. For such an object C, we have finite contexts
chi(pt, C) but not ft(C).

In general, for every C-system CC there is a category ĈC whose objects are objects of CC
together with extra objects, the set of which we can denote by ĈC∞, which are infinite
sequences X1, . . . , Xn, . . . where Xi ∈ CC and Xi = ft(Xi+1). We can define morphisms

between objects of ĈC using the usual definition of morphisms between pro-objects.

Since their objects are connected with with structures that involve infinite sequences of
“coherence” conditions as well as with certain kinds of co-inductive types categories ĈC
deserve further study.

If X ≥ Y we will write p(X, Y ) for the composition of the p-morphisms going from X to Y
that was previously denoted pX,n where n = l(X) − l(Y ). It follows immediately from its
definition that

p(X,X) = IdX and p(X, Y ) = pX ◦ p(ft(X), Y ) for X > Y (2.2)

If X ≥ Y and Y ≥ Γ then one has

p(X,Γ) = p(X, Y ) ◦ p(Y,Γ) (2.3)

This is proved with Lemma 2.2 by fixing Γ and Y and setting P to be the set of X ≥ Y for
which (2.3) holds. The assumptions of the lemma follow from (2.2).

If X ≥ Γ and f : Γ′ → Γ is a morphism we will write f ∗(X) for what was previously denoted
f ∗(X,n) where n = l(X)− l(Γ) and

q(f,X) : f ∗(X)→ X

for what was previously denoted by q(f,X, n). It follows immediately from the definitions
that

f ∗(Γ) = Γ′ and f ∗(X) = q(f, ft(X))∗(X) for X > Γ (2.4)

and
q(f,Γ) = f and q(f,X) = q(q(f, ft(X)), X) for X > Γ (2.5)

The second half of (2.4) implies that for X > Γ one has

ft(f ∗(X)) = f ∗(ft(X)) (2.6)

Lemma 2.4 For any X and f as above f ∗(X) is an object over Γ′,

l(f ∗(X))− l(Γ′) = l(X)− l(Γ) (2.7)

and

f ∗(X)
q(f,X)−−−−→ X

p(f∗(X),Γ′)

y yp(X,Γ)

Γ′
f−−−→ Γ

(2.8)

is a pullback.
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Proof: Each of the three assertions is proved easily using Lemma 2.2. In the case of the third
assertion one has to apply the facts that the canonical squares of a C-system are pullbacks
and that the vertical composition of two pullbacks is a pullback.

A detailed definition of a homomorphism of C-systems is given in [10, Definition 3.1].

Lemma 2.5 Let H : CC ′ → CC be a homomorphism of C-systems. Then:

1. For X ≥ Γ in CC ′ one has H(X) ≥ H(Γ) and

H(p(X,Γ)) = p(H(X), H(Γ))

2. For X ≥ Γ and f : Γ′ → Γ in CC ′ one has

H(f ∗(X)) = H(f)∗(H(X))

H(q(f,X)) = q(H(f), H(X))

Proof: The proofs of all three assertions are through Lemma 2.2 using the fact that homo-
morphisms of C-systems take p-morphisms to p-morphisms, respect f ∗ on objects and take
q-morphisms to q-morphisms.

Lemma 2.6 For all Γ and all X ≥ Γ one has:

1. Id∗Γ(X) = X and q(IdΓ, X) = IdX ,

2. if f : Γ′ → Γ, g : Γ′′ → Γ′ are two morphisms then

(g ◦ f)∗(X) = g∗(f ∗(X))

and
q(g ◦ f,X) = q(g, f ∗(X)) ◦ q(f,X)

Proof: The proofs of all assertions are through Lemma 2.2 using the axioms of a C-system.

Lemma 2.7 If X ≥ Y ≥ Γ and f : Γ′ → Γ then one has

f ∗(X) = q(f, Y )∗(X) (2.9)

and
q(f,X) = q(q(f, Y ), X) (2.10)
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Proof: One proves both statements simultaneously through Lemma 2.2. One fixes Γ and Y
and sets P to be the set of X ≥ Y such that (2.9) and (2.10) hold for X. One has Y ∈ P
by the first halves of (2.4) and (2.5). If X > Y and ft(X) ∈ P then X > Γ and

f ∗(X) = q(f, ft(X))∗(X) = q(q(f, Y ), ft(X))∗(X) = q(f, Y )∗(X)

where the first and the third equalities are by the second half of (2.4) and the second equality
is by (2.10) for ft(X).

Similarly

q(f,X) = q(q(f, ft(X)), X) = q(q(q(f, Y ), ft(X)), X) = q(q(f, Y ), X)

where the first and the third equalities are by the second half of (2.5) and the second equality
is by (2.10) for ft(X).

This proves the second assumption of Lemma 2.2 and completes the proof of our lemma.

Remark 2.8 Equations (2.9) and (2.10) are the subject of [4, Lemma 14.1, p.240] and [3,
Lemma 1, p.2.14]. Some other constructions and lemmas of our text are used as given in
the following few paragraphs of [4]. A few more results are stated and proved in [3], which
is unfortunately not published at this time.

The first assertion of Lemma 2.4 together with (2.9) implies that if X ≥ Y ≥ Γ and
f : Γ′ → Γ then

f ∗(X) ≥ f ∗(Y ) (2.11)

Lemma 2.9 If X ≥ Y ≥ Γ and f : Γ′ → Γ then the square

f ∗(X)
q(f,X)−−−−→ X

p(f∗(X),f∗(Y ))

y yp(X,Y )

f ∗(Y )
q(f,Y )−−−→ Y

(2.12)

where the left vertical arrow is defined by (2.11), is a pullback.

Proof: By Lemma 2.7 we have f ∗(X) = q(f, Y )∗(X) and q(f,X) = q(q(f, Y ), X). There-
fore, our square coincides with the square of Lemma 2.4 and is a pullback according to this
lemma.

If X and Y are objects over Γ let

X ×Γ Y = p(X,Γ)∗(Y )

Lemma 2.4 shows that X ×Γ Y is the fiber product of X and Y over Γ with the projections
p(X × Y,X) and q(p(X,Γ), Y ).
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The same lemma shows that

l(X ×Γ Y ) = l(X) + l(Y )− l(Γ) (2.13)

The product X ×Γ Y is an object over X and therefore an object over Γ:

X ×Γ Y ≥ X ≥ Γ

Note that X ×Γ Y is not, in general, an object over Y .

We have two pullbacks

X ×Γ Y
q(p(X,Γ),Y )−−−−−−−→ Y

p(p(X,Γ)∗(Y ),X)

y yp(Y,Γ)

X
p(X,Γ)−−−−→ Γ

Y ×Γ X
q(p(Y,Γ),X)−−−−−−→ X

p(p(Y,Γ)∗(X),Y )

y yp(X,Γ)

Y
p(Y,Γ)−−−→ Γ

(2.14)

Applying Lemma 7.1 and the construction preceding it to these squares we obtain an
isomorphism

exch(X, Y ; Γ) : X ×Γ Y → Y ×Γ X (2.15)

with the inverse given by exch(Y,X; Γ), that is,

exch(X, Y ; Γ) ◦ exch(Y,X; Γ) = IdX×ΓY

exch(Y,X; Γ) ◦ exch(X, Y ; Γ) = IdY×ΓX

(2.16)

This isomorphism is uniquely determined by two equalities

exch(X, Y ; Γ) ◦ q(p(Y,Γ), X) = p(X ×Γ Y,X)

exch(X, Y ; Γ) ◦ p(Y ×Γ X, Y ) = q(p(X,Γ), Y )
(2.17)

The equalities (2.17) imply in particular that one has

exch(X,Γ; Γ) = IdX

exch(Γ, Y ; Γ) = IdY
(2.18)

Definition 2.10 Let CC be a C-system and Γ ∈ CC. A morphism a : X → Y in CC is
called a morphism over Γ if X and Y are objects over Γ and

a ◦ p(Y,Γ) = p(X,Γ)

Lemma 2.11 One has:

1. If X ≥ Γ then IdX is a morphism over Γ.

2. If f : X → Y and g : Y → Z are morphisms over Γ then f ◦ g : X → Z is a morphism
over Γ,
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3. if X, Y ≥ Γ then exch(X, Y ; Γ) is a morphism over Γ.

Proof: The first and the second assertions are verified by straightforward calculation. To
verify the third assertion we have

exch(X, Y ; Γ) ◦ p(Y ×Γ X,Γ) = exch(X, Y ; Γ) ◦ p(Y ×Γ X, Y ) ◦ p(Y,Γ) =

q(p(X,Γ), Y ) ◦ p(Y,Γ) = p(X ×Γ Y,X) ◦ p(X,Γ) = p(X ×Γ Y,Γ)

where the first equality is by (2.3), the second is by (2.17), the third by the commutativity
of the second square in (2.14) and the again fourth by (2.3).

Lemma 2.12 If a : X → Y is a morphism over Γ and Γ is an object over Γ′ then a is a
morphism over Γ′.

Proof: Straightforward using (2.3).

Lemma 2.13 If X, Y are objects over Γ, a : X → Y is a morphism over Γ and f : Γ′ → Γ
is a morphism then there exists a unique morphism

f ∗(a) : f ∗(X)→ f ∗(Y )

over Γ′ such that
f ∗(a) ◦ q(f, Y ) = q(f,X) ◦ a (2.19)

Proof: It follows from the fact the the square (2.8) is a pullback.

Lemma 2.14 Let H : CC ′ → CC be a homomorphism of C-systems. Then one has

1. if Γ ∈ CC ′ and a : X → Y is a morphism over Γ then H(a) is a morphism over H(Γ),

2. if f : Γ′ → Γ and a : X → Y is a morphism over Γ then

H(f ∗(a)) = H(f)∗(H(a))

where the right hand side is defined by the first part of the lemma.

Proof: The first assertion follows from Lemma 2.5(1) and the fact that (HOb, HMor) is a
functor.

To prove the second assertion one needs to verify that H(f ∗(a)) is a morphism over H(Γ′)
and that it satisfies the defining property (2.19) of H(f)∗(H(a)). The first fact follows from
the first part of the lemma, the second from Lemma 2.5(2) and the fact that (HOb, HMor) is
a functor.
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Lemma 2.15 Let X, Y ≥ Z ≥ Γ, a : X → Y a morphism over Z and f : Γ′ → Γ a
morphism. Then a is a morphism over Γ and one has

f ∗(a) = q(f, Z)∗(a)

Proof: We need to show that q(f, Z)∗(a) is a morphism over Γ′ and that the equality

q(f, Z)∗(a) ◦ q(f, Y ) = q(f,X) ◦ a

By construction, q(f, Z)∗(a) is a morphism over f ∗(Z). Since f ∗(Z) ≥ Γ′ it is a morphism
over Γ′ by Lemma 2.12.

Next we have

q(f, Z)∗(a) ◦ q(f, Y ) = q(f, Z)∗(a) ◦ q(q(f, Z), Y ) = q(q(f, Z), X) ◦ a = q(f,X) ◦ a

where the first equality is by (2.10), the second by the definition of q(f, Z)∗(a) and the third
is again by (2.10).

The lemma is proved.

Lemma 2.16 One has:

1. if X ≥ Γ then
f ∗(IdX) = Idf∗(X) (2.20)

where the left hand side is defined by Lemma 2.11.

2. if a : X → Y , b : Y → Z are morphisms over Γ then

f ∗(a ◦ b) = f ∗(a) ◦ f ∗(b) (2.21)

where the left hand side is defined by Lemma 2.11.

Proof: In each case we need to verify that the right hand side of the equality is a morphism
over Γ′, that it has the same domain and codomain as the left hand side and that it satisfies
the equality of the form (2.19) that characterizes the left hand side.

In the first case, that the right hand side is a morphism over Γ′ follows from Lemma 2.11
while the properties of the domain and codomain and the equality (2.19) are straightforward.

In the second case, that the right hand side is a morphism over Γ′ again follows from Lemma
2.11, the properties of the domain and codomain are again straightforward; finally for the
equality (2.19) we have

f ∗(a) ◦ f ∗(b) ◦ q(f, Z) = f ∗(a) ◦ q(f, Y ) ◦ b = q(f,X) ◦ a ◦ b
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Lemma 2.17 For X, Y ≥ Γ and f : Γ′ → Γ one has

f ∗(X ×Γ Y ) = f ∗(X)×Γ′ f
∗(Y ) (2.22)

and
f ∗(exch(X, Y ; Γ)) = exch(f ∗(X), f ∗(Y ); Γ′) (2.23)

where the left hand side is defined by Lemma 2.11 and the right hand side by Lemma 2.4.

Proof: For (2.22) we have

f ∗(X ×Γ Y ) = f ∗(p(X,Γ)∗(Y )) = q(f,X)∗(p(X,Γ)∗(Y )) = (q(f,X) ◦ p(X,Γ))∗(Y ) =

(p(f ∗(X),Γ′) ◦ f)∗(Y ) = p(f ∗(X),Γ′)∗(f ∗(Y )) = f ∗(X)×Γ′ f
∗(Y )

where the first equality is by definition of ×Γ, second equality is by (2.10), the third by
Lemma 2.6, the fourth by the commutativity of (2.8) the fifth by Lemma 2.6 and the sixth
by the definition of ×Γ′ .

To prove (2.23) we need to verify that the right hand side of the equality is a morphism over
Γ′, that it has the same domain and codomain as the left hand side and that it satisfies the
equality of the form (2.19) corresponding to the left hand side.

That the right hand side is a morphism over Γ′ follows from Lemma 2.11.

That domain of the left hand side equals the domain of the right hand side follows from
(2.22). The identical reasoning with X and Y exchanged proves that the codomains of the
left hand side and the right hand side coincide.

To complete the proof we need to show that

exch(f ∗(X), f ∗(Y ); Γ′) ◦ q(f, Y ×Γ X) = q(f,X ×Γ Y ) ◦ exch(X, Y ; Γ) (2.24)

Both sides of this equality have domain f ∗(X) ×Γ′ f
∗(Y ) and codomain Y ×Γ X. The

codomain is the fiber product with the projections p(Y ×ΓX, Y ) and q(p(Y,Γ), X). Therefore
it is sufficient to show that the compositions of the left and the right hand sides with these
morphisms coincide. We have

exch(f ∗(X), f ∗(Y ); Γ′) ◦ q(f, Y ×Γ X) ◦ p(Y ×Γ X, Y ) =

exch(f ∗(X), f ∗(Y ); Γ′) ◦ p(f ∗(Y ×Γ X), f ∗(Y )) ◦ q(f, Y ) =

exch(f ∗(X), f ∗(Y ); Γ′) ◦ p(f ∗(Y )×Γ′ f
∗(X), f ∗(Y )) ◦ q(f, Y ) =

q(p(f ∗(X),Γ′), f ∗(Y )) ◦ q(f, Y ) = q(p(f ∗(X),Γ′) ◦ f, Y )

where the first equality is by the commutativity of (2.12), the second by (2.22), the third by
(2.17), the fourth by Lemma 2.6.

Next we have

q(f,X ×Γ Y ) ◦ exch(X, Y ; Γ) ◦ p(Y ×Γ X, Y ) = q(f,X ×Γ Y ) ◦ q(p(X,Γ), Y ) =
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q(f, p(X,Γ)∗(Y )) ◦ q(p(X,Γ), Y ) = q(q(f,X), p(X,Γ)∗(Y )) ◦ q(p(X,Γ), Y ) =

q(q(f,X) ◦ p(X,Γ), Y )

where the first equality is by (2.17), the second by the definition of ×Γ, the third by (2.10)
and the fourth by Lemma 2.6. We conclude that (2.24) holds by the commutativity of (2.8).

Lemma 2.18 Let Γ′, X, Y be objects over Γ and a : X → Y a morphism over Γ. Then one
has

p(Γ′,Γ)∗(a) ◦ exch(Γ′, Y ; Γ) = exch(Γ′, X; Γ) ◦ q(a, p(Y,Γ)∗(Γ′)) (2.25)

and
exch(X,Γ′; Γ) ◦ p(Γ′,Γ)∗(a) = q(a, p(Y,Γ)∗(Γ′)) ◦ exch(Y,Γ′; Γ) (2.26)

Proof: Let us prove (2.25). The domain of both sides of (2.25) is p(Γ′,Γ)∗(X) and the
codomain is p(Y,Γ)∗(Γ′). By Lemma 2.4 the codomain is a pullback with projections
p(p(Y,Γ)∗(Γ′), Y ) and q(p(Y,Γ),Γ′). Therefore it is sufficient to show that the compositions
of the left and right hand sides with each of the projections are equal.

For the compositions with the first projection we have

p(Γ′,Γ)∗(a) ◦ exch(Γ′, Y ; Γ) ◦ p(p(Y,Γ)∗(Γ′), Y ) =

p(Γ,Γ′)∗(a) ◦ q(p(Γ′,Γ), Y ) = q(p(Γ′,Γ), X) ◦ a
where the first equality is by (2.17) and the second one is by (2.19). Also we have

exch(Γ′, X; Γ) ◦ q(a, p(Y,Γ)∗(Γ′) ◦ p(p(Y,Γ)∗(Γ′), Y ) =

exch(Γ′, X; Γ) ◦ p(p(X,Γ)∗(Γ′), X) ◦ a = q(p(Γ′,Γ), X) ◦ a
where the first equality is by the commutativity of squares of the form (2.8) and the second
one by (2.17).

For the compositions with the second projections we have in the first case

p(Γ′,Γ)∗(a) ◦ exch(Γ′, Y ; Γ) ◦ q(p(Y,Γ),Γ′) =

p(Γ′,Γ)∗(a) ◦ p(p(Γ′,Γ)∗(Y ),Γ′) = p(p(Γ,Γ′)∗(X),Γ′)

where the first equality is by (2.17) and the second is by the fact that p(Γ′,Γ)∗(a) is a
morphism over Γ′. In the second case we have

exch(Γ′, X; Γ) ◦ q(a, p(Y,Γ)∗(Γ′) ◦ q(p(Y,Γ),Γ′) = exch(Γ′, X; Γ) ◦ q(a ◦ p(Y,Γ),Γ′) =

exch(Γ′, X; Γ) ◦ q(p(X,Γ),Γ′) = p(p(Γ′,Γ)∗(X),Γ′)

where the first equality is by Lemma 2.6(2), the second one is by the fact that a is a morphism
over Γ and the third one is by (2.17).

The second equality (2.26) follows by taking the composition of (2.25) with exch(X,Γ′; Γ)
on the left and on the right and using (2.16).

The lemma is proved.
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Lemma 2.19 Let a : X → Y be a morphism over Γ. Then one has:

1. Id∗Γ(a) = a,

2. if f : Γ′ → Γ, g : Γ′′ → Γ′ are two morphisms then

(g ◦ f)∗(a) = g∗(f ∗(a))

Proof:

1. It is sufficient to show that

a ◦ q(IdΓ, Y ) = q(IdΓ, X) ◦ a

which is straightforward in view of Lemma 2.6(1).

2. It is sufficient to show that

g∗(f ∗(a)) ◦ q(g ◦ f, Y ) = q(g ◦ f,X) ◦ a

We have:

g∗(f ∗(a)) ◦ q(g ◦ f, Y ) = g∗(f ∗(a)) ◦ q(g, f ∗(X)) ◦ q(f,X) =

q(g, f ∗(Y )) ◦ f ∗(a) ◦ q(f,X) = q(g, f ∗(Y )) ◦ q(f, Y ) ◦ a = q(g ◦ f, Y ) ◦ a
where the first and the fourth equalities follow from Lemma 2.6(2) and the second and
the third from (2.19).

Lemma 2.20 (cf. [3, Lemma, p.2.17]) Let X, Y be objects over Γ, Z an object over Y
and a : X → Y a morphism over Γ. Let further f : Γ′ → Γ be a morphism. Then one has:

1. p(Z, Y ) is a morphism over Γ and one has

f ∗(p(Z, Y )) = p(f ∗(Z), f ∗(Y )) (2.27)

2. a∗(Z) is an object over Γ and one has

f ∗(a∗(Z)) = (f ∗(a))∗(f ∗(Z)) (2.28)

3. q(a, Z) is a morphism over Γ and one has

f ∗(q(a, Z)) = q(f ∗(a), f ∗(Z)) (2.29)

Remark 2.21 The assertions of the lemma can be expressed by the informal equation

f ∗


a∗(Z)

q(a,Z)−−−→ Zy yp(Z,Y )

X
a−−−→ Y

 =

(f ∗(a))∗(f ∗(Z))
q(f∗(a),f∗(Z))−−−−−−−−→ f ∗(Z)y yp(f∗(Z),f∗(Y ))

f ∗(X)
f∗(a)−−−→ f ∗(Y )
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Proof:

1. That p(Z, Y ) is a morphism over Γ follows from (2.3). By definition, f ∗(p(Z, Y )) is
the unique morphism over Γ′ satisfying the equation

f ∗(p(Z, Y )) ◦ q(f, Y ) = q(f, Z) ◦ p(Z, Y ) (2.30)

By Lemma 2.4, objects f ∗(Y ) and f ∗(Z) are over Γ′ and by (2.11) we have f ∗(Z) ≥
f ∗(Y ). Therefore p(f ∗(Z), f ∗(Y )) is defined and by the previous statement it is a
morphism over Γ′. Next we have

p(f ∗(Z), f ∗(Y )) ◦ q(f, Y ) = p(q(f, Y )∗(Z), f ∗(Y )) ◦ q(f, Y ) =

q(q(f, Y ), Z) ◦ p(Z, Y ) = q(f, Z) ◦ p(Z, Y )

Where the first equality is by (2.9), the second is by the commutativity of (2.8) for
Γ′ = f ∗(Y ) and Γ = Y and the third is by (2.10).

We conclude that p(f ∗(Z), f ∗(Y )) also satisfies (2.30) and therefore (2.27) holds.

2. By Lemma 2.4, a∗(Z) is an object over X and since X is an object over Γ, a∗(Z) is an
object over Γ. For the proof of (2.28) we have

f ∗(a∗(Z)) = q(f,X)∗(a∗(Z)) = (q(f,X) ◦ a)∗(Z) = (f ∗(a) ◦ q(f, Y ))∗(Z) =

(f ∗(a))∗(q(f, Y )∗(Z)) = (f ∗(a))∗(f ∗(Z))

where the first equality is by (2.9), the second is by Lemma 2.19(2), the third is by
(2.19), the fourth is by Lemma 2.19(2) and the fifth is by (2.9).

3. Let us show first that q(a, Z) is a morphism over Γ. We have

q(a, Z) ◦ p(Z,Γ) = q(a, Z) ◦ p(Z, Y ) ◦ p(Y,Γ) = p(a∗(Z), X) ◦ a ◦ p(Y,Γ) =

p(a∗(Z), X) ◦ p(X,Γ) = p(a∗(Z),Γ)

where the first equality is by (2.3), the second by the commutativity of the square
(2.8), the third is by the assumption that a is a morphism over Γ and the fourth is by
(2.3).

By (2.28) the morphisms on the left and the right hand side of (2.29) have the same
domain. The codomain of the morphisms on both sides of (2.29) is f ∗(Z). By (2.9) we
have f ∗(Z) = q(f, Y )∗(Z) and by Lemma 2.4 q(f, Y )∗(Z) is a pullback with projections

p(q(f, Y )∗(Z), f ∗(Y )) = p(f ∗(Z), f ∗(Y ))

and
q(q(f, Y ), Z) = q(f, Z)

where the equalities are by (2.9) and (2.10).
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It is, therefore sufficient to verify that the compositions of the right and the left hand
sides of (2.29) with each of the projections coincide. We have

f ∗(q(a, Z)) ◦ p(f ∗(Z), f ∗(Y )) = f ∗(q(a, Z)) ◦ f ∗(p(Z, Y )) =

f ∗(q(a, Z) ◦ p(Z, Y ))

where the first equality is by (2.27) and the second by (2.21). Next we have

q(f ∗(a), f ∗(Z)) ◦ p(f ∗(Z), f ∗(Y )) = p((f ∗(a))∗(f ∗(Z)), f ∗(X)) ◦ f ∗(a) =

p(f ∗(a∗(Z)), f ∗(X)) ◦ f ∗(a) = f ∗(p(a∗(Z), X)) ◦ f ∗(a) = f ∗(p(a∗(Z), X) ◦ a) =

f ∗(q(a, Z) ◦ p(Z, Y ))

where the first equality is by the commutativity of square (2.8), the second is by (2.28),
the third is by (2.27), the fourth is by (2.21) and the fifth is again by the commutativity
of square (2.8). This shows that the compositions with the first projection coincide.

For the compositions with the second projection we have:

f ∗(q(a, Z)) ◦ q(f, Z) = q(f, a∗(Z)) ◦ q(a, Z) = q(q(f,X), a∗(Z)) ◦ q(a, Z) =

q(q(f,X) ◦ a, Z)

where the first equality is by (2.19), the second by (2.10) and the third by Lemma
2.6(2). Next we have

q(f ∗(a), f ∗(Z)) ◦ q(f, Z) = q(f ∗(a), f ∗(Z)) ◦ q(q(f, Y ), Z) = q(f ∗(a) ◦ q(f, Y ), Z) =

q(q(f,X) ◦ a, Z)

where the first equality is by (2.10), the second by Lemma 2.6(2) and the third one is
by (2.19). This shows that the composition with the second projections coincide and
completes the proof of (2.29).

Lemma 2.20 can be used to show that the fiber product X ×Γ Y is strictly associative.

Lemma 2.22 For any X, Y, Z over Γ one has

X ×Γ (Y ×Γ Z) = (X ×Γ Y )×Γ Z

Proof: We have
X ×Γ (Y ×Γ Z) =

p(X,Γ)∗(p(Y,Γ)∗(Z)) = (p(X,Γ)∗(p(Y,Γ)))∗(p(X,Γ)∗(Z)) =

p(p(X,Γ)∗(Y ), p(X,Γ)∗(Γ))∗(p(X,Γ)∗(Z)) = p(X ×Γ Y,X)∗(p(X,Γ)∗(Z)) =

(p(X ×Γ Y,X) ◦ p(X,Γ))∗(Z) = p(X ×Γ Y,Γ)∗(Z) =

(X ×Γ Y )×Γ Z
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where the first equality is by definition, the second equality is by (2.28), the third is by
(2.27), the fourth is by definitions, the fifth is by Lemma 2.6(2), the sixth is by (2.3) and
the seventh is by definition. The lemma is proved.

For completeness let us also show that Γ is a strict two sided unit of ×Γ.

Lemma 2.23 For any X ≥ Γ one has

X ×Γ Γ = X Γ×Γ X = X

Proof: We have
X ×Γ Γ = p(X,Γ)∗(Γ) = X

by (2.4) and
Γ×Γ X = p(Γ,Γ)∗(X) = Id∗Γ(X) = X

by Lemma 2.6(1).

In the case when Z = pt we obtain a binary direct product on CC that is strictly associative.
Following the usual convention we write X × Y instead of X ×pt Y .

If X ≥ Y ≥ Γ then p(X, Y ) is a morphism over Γ by Lemma 2.20(1). Therefore if ft(X) ≥ Γ
then pX = p(X, ft(X)) is a morphism over Γ. In particular, if X > Γ then pX is a morphism
over Γ and by Lemma 2.20(1) and (2.6) we have that for f : Γ′ → Γ,

f ∗(pX) = pf∗(X) (2.31)

For a morphism p : X → Y in a category let sec(p) be the set of sections of p, that is,

sec(p) = {s : Y → X | s ◦ p = IdX}

Lemma 2.24 Let X, Y,Γ ∈ CC then one has:

1. if p : X → Y is a morphism over Γ and s ∈ sec(p) then s is a morphism over Γ and
for f : Γ′ → Γ one has

f ∗(s) ∈ sec(f ∗(p))

2. if X ≥ Y and s ∈ sec(p(X, Y )) then s is a morphism over Γ if and only if Y ≥ Γ and
in this case for f : Γ′ → Γ one has

f ∗(s) ∈ sec(p(f ∗(X), f ∗(Y )))
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Proof: If p : X → Y is a morphism over Γ then X and Y are objects over Γ. Since
s : Y → X we conclude that domain and codomain of s are objects over Γ. Next we have

s ◦ p(X,Γ) = s ◦ p ◦ p(Y,Γ) = IdY ◦ p(Y,Γ) = p(Y,Γ)

which shows that s is a morphism over Γ. For f : Γ′ → Γ we have f ∗(s) : f ∗(Y ) → f ∗(X)
and, by Lemma 2.16, we have f ∗(s) ◦ f ∗(p) = f ∗(s ◦ p) = f ∗(IdY ) = Idf∗(Y ).

To prove the second assertion note that if Y ≥ Γ then by the transitivity of ≥ we have X ≥ Γ.
Therefore, p(X, Y ) is a morphism over Γ by Lemma 2.20(1) and s is a morphism over Γ by the
first part of our lemma. In addition, by the first part of the lemma f ∗(s) ∈ sec(f ∗(p(X, Y )))
and f ∗(p(X, Y )) = p(f ∗(X), f ∗(Y )) by (2.27).

On the other hand, if s is a morphism over Γ then Y is an object over Γ as the domain of s.
This completes the proof of the lemma.

Let us recall the notion of a C0-system from [15, Definition 2.1]. It consists of structure
on two sets of morphisms Ob and Mor comprising the length, ft, domain, codomain and
identity functions together with operations of composition, p-morphisms and q-morphisms.
These are required to satisfy all of the Cartmell’s axioms except the condition that the
canonical squares are pullbacks.

A C-system is defined as a C0-system together with the s-morphisms operation that is a
function a 7→ sa from the subset of morphisms a : X → Y such that l(Y ) > 0 to all
morphisms and that satisfies the following conditions where ft(a) = a ◦ pY :

s ∈ sec(p(ft(a))∗(Y )) (2.32)

sa ◦ q(ft(a), Y ) = a (2.33)

and if b : ft(Y )→ ft(Z), l(Z) > 0 and Y = b∗(Z) then

sa = sa◦q(b,Z) (2.34)

(see [15, Definition 2.3]). We show in [15, Proposition 2.4] that the canonical squares in a
C-system are pullbacks and that if the canonical squares in a C0-system are pullbacks then
there exists on it a unique s-morphisms operation satisfying the required conditions.

Remark 2.25 The construction of sa was also known to Cartmell, see [3, p. 2.19], who
denoted these morphisms by ‘a‘ and proved many interesting facts about them. However,
his collection of results has very little intersection with the results that we use.

Lemma 2.26 Let a : X → Y be a morphism over Γ and Y > Γ. Then for f : Γ′ → Γ one
has:

1. ft(a) is a morphism over Γ and one has

f ∗(ft(a)) = ft(f ∗(a)) (2.35)
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2. sa is a morphism over Γ and one has

f ∗(sa) = sf∗(a) (2.36)

Proof: Since Y > Γ the morphism pY is a morphism over Γ and ft(a) is a morphism over
Γ as the composition of two morphisms over Γ.

Next we have

f ∗(ft(a)) = f ∗(a ◦ pY ) = f ∗(a) ◦ f ∗(pY ) = f ∗(a) ◦ pf∗(Y ) = ft(f ∗(a))

where the second equality is by (2.21) and the third equality is by (2.31). This proves (2.35).

We have
p(ft(a)∗(Y ) = p(ft(a)∗(Y ), X)

Therefore, the morphism sa is a morphism over Γ by (2.32), Lemma 2.24(2) and our assump-
tion that X ≥ Γ.

It remains to prove (2.36). The domains of two sides of (2.36) coincide. The codomain of the
left hand side is f ∗(ft(a)∗(Y )) and the codomain of the right hand side is ft(f ∗(a))∗(f ∗(Y )).
We have

f ∗(ft(a)∗(Y )) = (f ∗(ft(a)))∗(f ∗(Y )) = ft(f ∗(a))∗(f ∗(Y )) (2.37)

where the first equality is by (2.28) and the second one by (2.35). Therefore the codomains
of the two sides of (2.36) coincide.

Since the canonical squares in a C-system are pullbacks, ft(f ∗(a))∗(f ∗(Y )) is a pullback with
projections pft(f∗(a))∗(f∗(Y )) and q(ft(f ∗(a)), f ∗(Y )). Therefore it is sufficient to verify that
the compositions of the two sides of (2.36) with these projections coincide.

We have

f ∗(sa) ◦ pft(f∗(a))∗(f∗(Y )) = f ∗(sa) ◦ pf∗(ft(a)∗(Y )) = f ∗(sa) ◦ f ∗(pft(a)∗(Y )) =

f ∗(sa ◦ pft(a)∗(Y )) = f ∗(IdX) = Idf∗(X) = sf∗(a) ◦ pft(f∗(a))∗(f∗(Y ))

where the first equality is by (2.37), the second equality is by (2.31), the third equality is
by (2.21), the fourth equality is by (2.32), the fifth equality is by (2.20) and the sixth is by
(2.32).

Next we have

f ∗(sa) ◦ q(ft(f ∗(a)), f ∗(Y )) = f ∗(sa) ◦ q(f ∗(ft(a)), f ∗(Y )) = f ∗(sa) ◦ f ∗(q(ft(a), Y )) =

f ∗(sa ◦ q(ft(a), Y )) = f ∗(a) = sf∗(a) ◦ q(ft(f ∗(a)), f ∗(Y ))

where the first equality is by (2.35), the second equality is by (2.29), the third by (2.21), the
fourth by (2.33) and the fifth again by (2.33).

This completes the proof of the lemma.
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3 Presheaves Obn and Õbn

Given a C-system CC and an object Γ of CC we let

Obn(Γ) = {X ∈ CC | l(X) = l(Γ) + n, ftn(X) = Γ} (3.1)

In particular, for any n and X ∈ Obn(Γ) we have X ≥ Γ. Therefore, for f : Γ′ → Γ the
object f ∗(X) is defined and by (2.7) we have f ∗(X) ∈ Obn(Γ). By Lemma 2.6, the functions
f ∗ : Obn(Γ) → Obn(Γ′) satisfy the axioms of a presheaf (see Remark 3.9). We keep the
notation Obn for this presheaf and may write Obn(f) for the function f ∗ on Obn.

We also let

Õbn(Γ) = {o ∈Mor(CC) | codom(o) ∈ Obn(Γ), o ∈ sec(pcodom(o)), codom(o) > Γ} (3.2)

The last condition is automatically satisfied if n > 0 and implies that Õb0(Γ) = ∅.

For o : X → Y in Õbn(Γ) we have dom(o) = ft(codom(o)), and codom(o) > Γ. Therefore
dom(o) ≥ Γ by (2.1) and o is a morphism over Γ by Lemma 2.24.

By the previous conclusion and Lemma 2.13, for any f : Γ′ → Γ there is a unique morphism
f ∗(o) of the form f ∗(X)→ f ∗(Y ) over Γ′ such that f ∗(o) ◦ q(f, Y ) = q(f,X) ◦ o.
By (2.7) we have codom(f ∗(o)) ∈ Obn(Γ′). By (2.27) we have pcodom(f∗(o)) = f ∗(pcodom(o))
and therefore by Lemma 2.16 we have f ∗(o) ∈ sec(pcodom(f∗(o))). Finally since n > 0 we have
codom(f ∗(o)) > Γ.

We conclude that for o ∈ Õbn(Γ) and f : Γ′ → Γ the morphism f ∗(o) is defined and belongs

to Õbn(Γ′). By Lemma 2.19 the functions f ∗ on Õbn satisfy the axioms of a presheaf, that

is, a contravariant functor from CC to Sets. We keep the notation Õbn for this presheaf and
may write Õbn(f) for the function f ∗ on Õbn.

For o ∈ Õbn(Γ) we let ∂(o) denote codom(o). It is immediate from the definitions that this
defines morphisms of presheaves

∂ : Õbn → Obn

Problem 3.1 Let i, j ∈ N, i > 0. To construct a bijection between the following two sets:

1. The set of functions F : Ob≥i → Ob such that

(a) for any X ∈ Ob≥i one has ftj(F (X)) = fti(X),

(b) for any X ∈ Ob≥i and f : Γ′ → fti(X) one has f ∗(F (X)) = F (f ∗(X)).

2. The set of morphisms of presheaves Obi → Obj on CC.

Remark 3.2 For i = 0 there may be functions F that do not correspond to morphisms
of presheaves Ob0 → Obj. Consider for example the one point C-system Pt such that
Ob(Pt) = {pt}. Then for any j there is a unique function Ob≥0 → Ob satisfying conditions
(a) and (b). On the other hand, Ob0 is the one point presheaf while Obj for j > 0 is the
empty presheaf and the set of morphisms Ob0 → Obj is empty. However the result may
remain valid if the condition that F (X) ∈ Ob≥j is added.
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We start with an intermediate construction and a lemma.

Problem 3.3 Let X ∈ Ob≥1. For any Y and i ∈ N to construct an object X ′ such that
X ′ ≥ Y and l(X ′) = l(Y ) + i.

Construction 3.4 Let X1 = ftl(X)−1(X). Then l(X1) = 1. For any Z, define Zn induc-
tively by the rule Z0 = pt, Z1 = Z and Zn+1 = Zn × Z. By (2.13) we have

l(Zn+1) = l(Zn) + l(Z)

This implies that l(Zn) = nl(Z). In particular, l(X i
1) = i. Then l(Y ×X i

1) = l(Y ) + i and
Y ×X i

1 ≥ Y .

Lemma 3.5 Let j ∈ N and let F : Ob≥i → Ob be a function satisfying the conditions (a),(b)
of Problem 3.1 relative to j. Then for any X ∈ Ob≥i one has

l(F (X)) = l(fti(X)) + j

Proof: The issue that we have to address is that in the case l(X) = i we have l(fti(X)) =
l(ftj(F (X))) = 0 which only tells us that l(F (X)) ≤ j. We will show that this can not
occur for functions satisfying the second condition of the problem.

Let X ∈ Ob≥i. Since i > 0 we have l(X) > 0 and by Construction 3.4 we obtain an object
X ′ such that X ′ ≥ fti(X) and l(X ′) = i > 0. Let p = p(X ′, fti(X)). Then

l(F (X))− l(fti(X)) = l(p∗(F (X)))− l(X ′) = l(F (p∗(X)))− l(X ′) (3.3)

where the first equation is by (2.7) and the second by our condition on F . We also have

ftj(F (p∗(X))) = fti(p∗(X)) = X ′

and since l(X ′) > 0 this implies that

l(ftj(F (p∗(X)))) = l(F (p∗(X)))− j

Therefore, l(F (p∗(X))) = l(X ′) + j and from (3.3) we get that

l(F (X)) = l(fti(X)) + j

The lemma is proved.

Construction 3.6 Let us provide a construction for Problem 3.1.

Let Fn be the set of functions satisfying conditions (a),(b) and Mr the set of morphisms of
presheaves Obi → Obj.
An element of Mr is, by definition, a family of functions ψΓ : Obi(Γ)→ Obj(Γ) parametrized
by Γ ∈ Ob that satisfy the condition that for any f : Γ′ → Γ and X ∈ Obi(Γ) one has

f ∗(ψΓ(X)) = ψΓ′(f
∗(X)) (3.4)
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Given an element ψ∗ = (ψΓ)Γ∈Ob in Mr define a function Φ(ψ∗) : Ob≥i → Ob by the formula

Φ(ψ∗)(X) = ψfti(X)(X)

The right hand side is defined because the assumption that l(X) ≥ i implies that X ∈
Obi(fti(X)). We have

ftj(Φ(ψ∗)(X)) = ftj(ψfti(X)(X)) = fti(X)

because ψΓ : Obi(Γ)→ Obj(Γ). For a morphism f : Γ′ → fti(X) we have

f ∗(Φ(ψ∗)(X)) = f ∗(ψfti(X)(X)) = ψΓ(f ∗(X))

by (3.4). Therefore Φ(ψ∗) ∈ Fn and we have constructed a function Φ : Mr → Fn.

Let F ∈ Fn. Define a family of functions Ψ(F )Γ : Obi(Γ)→ Obj(Γ) parametrized by Γ ∈ Ob
by the formula

Ψ(F )Γ(X) = F (X)

To show that this formula defines a function to Obj(Γ) we need to show that F (X) ≥ Γ
and l(F (X)) = l(Γ) + j. For X ∈ Obi(Γ) we have Γ = fti(X) and therefore Γ = ftj(F (X))
since F ∈ Fn. This shows that F (X) ≥ Γ. The equality l(F (X)) = l(Γ) + j follows from
Γ = fti(X) and the equality of Lemma 3.5.

Let f : Γ′ → Γ. Then

f ∗(Ψ(F )Γ(X)) = f ∗(F (X)) = F (f ∗(X)) = Ψ(F )Γ′(f
∗(X))

where the second equality follows from Γ = fti(X) and the fact that F satisfies condition (b).
This shows that the family Ψ(F )∗ is a morphism of presheaves and that we have constructed
a function Ψ : Fn→Mr.

For ψ∗ ∈Mr, Γ ∈ Ob and X ∈ Obi(Γ) we have

Ψ(Φ(ψ∗))Γ(X) = Φ(ψ∗)(X) = ψfti(X)(X) = ψΓ(X)

because Γ = fti(X) for X ∈ Obi(Γ). This shows that Φ ◦Ψ = IdMr.

For F ∈ Fn and X ∈ Ob≥i we have

Φ(Ψ(F ))(X) = Ψ(F )fti(X)(X) = F (X)

This shows that Ψ ◦ Φ = IdFn and completes the construction.

Let us make a few remarks concerning presheaves Obi and Õbi and homomorphisms of
C-systems.

Lemma 3.7 Let H : CC → CC ′ be a homomorphism of C-systems. Then for Γ ∈ CC one
has:

1. for T ∈ Obn(Γ) one has H(T ) ∈ Obn(H(Γ)),
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2. for o ∈ Õbn(Γ) one has H(o) ∈ Õbn(H(Γ)).

Proof: The first assertion follows immediately from the fact that HOb commutes with l-
functions and the ft-function.

The second assertion follows from the fact that HOb commutes with the l-functions and
the ft-functions, from the fact that (HOb, HMor) is a functor and from the fact that HMor

commutes with the p-functions.

Lemma 3.8 Let H : CC → CC ′ be a homomorphism of C-systems. Then for f : Γ′ → Γ
one has

1. for T ∈ Obn(Γ) one has H(f ∗(T )) = H(f)∗(H(T )),

2. for o ∈ Õbn(Γ) one has H(f ∗(o)) = H(f)∗(H(o)),

where the right hand side of the equalities are defined by Lemma 3.7.

Proof: The first assertion follows from Lemma 2.5(2). The second from Lemma 2.14.

Lemma 3.8(1) shows that the family of functions

HObi,Γ : Obi(Γ)→ Obi(H(Γ))

given byHObi,Γ(T ) = H(T ) and defined in view of Lemma 3.7(1) is a morphism of presheaves

HObi : Obi → H◦(Obi) (3.5)

Lemma 3.8(2) shows that the family of functions

HÕbi,Γ : Õbi(Γ)→ Õbi(H(Γ))

given by HÕbi,Γ(o) = H(o) and defined in view of Lemma 3.7(2) is a morphism of presheaves

HÕbi : Obi → H◦(Õbi) (3.6)

At the conclusion of this section let us raise the issue that one encounters when trying to
formalize the reasoning about presheaves both in the Zermelo-Fraenkel theory (ZF) and in
the univalent type-theoretic formalization systems such as UniMath.

If a presheaf is defined as a contravariant functor to the category of sets then in reasoning
about presheaves this category of sets must be specified, that is, the set U = Ob(Sets) must
be chosen. This creates an extra parameter in the theory and one must quantify over this
parameter formulating all statements that mention presheaves as starting with “for all U
such that ... one has ...” and then separately proving that such an U exists. In some cases
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one must also include statements about the independence of the obtained result from U ,
that is, statements that start with “for all U1, U2 such that ... one has ...”. Clearly, this
would make the text very hard to read.

Remark 3.9 below may be considered as outlining the beginnings of a small theory that
may be used to make the reasoning about presheaves without specifying U fully precise with
respect to the ZF.

Remark 3.10 addresses the same issue for the univalent style type-theoretic formalization
systems on the example of the UniMath. The theory that is needed in this case is different.

This in itself may be a reason to consider these theories as lying outside of mathematics
proper and in the interfaces between mathematics and formal foundations of mathematics.

Since in this paper we concentrate on the mathematical part of the theory we will continue to
talk about presheaves as is customary today without paying attention to the issues discussed
in these comments.

Remark 3.9 The arguments in this remark are specific to the Zermelo-Fraenkel theory.
Very different arguments related to the same basic issue in the UniMath formalization are
discussed in the next remark.

In set theory, any set U defines a category of sets Sets(U) whose set of objects is U and
morphisms X → Y are functions from X to Y , that is,

Mor(Sets(U)) = ∪X,Y ∈UFun(X, Y )

The required functions of domain, codomain etc. are defined because of our choice of the
definition of what a function is, which we take to be the one given in [2, p.81], where a
function f is a triple (G,X, Y ) where X = dom(f), Y = codom(f) and G ⊂ X × Y is the
graph of f .

For most sets U the category Sets(U) will not have the properties usually expected from
“the” category of sets. In order for Sets(U) to have limits and colimits etc. the set U should
be closed under a number of constructions, i.e., to be a “universe”. In order for our results
concerning contravariant functors to Sets(U) to hold one can choose U whose existence can
be proved in the ZF. In many papers one requires U to be a Grothendieck universe (see [7, I,
Appendice par N. Bourbaki]), however existence of a Grothendieck universe is a very strong
axiom that is not provable in the ZF.

Instead of working with U as a parameter one can define the notion of a presheaf of sets
differently in a way that does not require a choice of any particular category of sets.

Let us introduce the following terminology. As we said above a function is a triple (G,X, Y )
where G is a functional graph such that pr1(G) = X and pr2(G) ⊂ Y (see loc.cit.). Define a
family (of sets) parametrized by X as a pair (G,X) where G is a functional graph such that
pr1(G) = X.

Any family can be extended to a function by choosing Y = pr2(G). However, choosing Y to
be any set that contains pr2(G) will work as well which shows that a family can be extended
to a function in many ways.
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Given a family A = (G,X) and x ∈ X there exists a unique y such that (x, y) ∈ G. We will
write both Ax and A(x) for this y. Given two families A and F parametrized by X we say
that F is a family of elements of Ax if for all x ∈ X one has F (x) ⊂ Ax.

We can now define a presheaf of sets on C as a pair (FOb, FMor) where:

1. FOb is a family of sets parametrized by Ob(C),

2. FMor is a family of functions of the form

FMor(f) : FOb(codom(f))→ FOb(dom(f))

parametrized by Mor(C),

and such that the usual axioms of a presheaf hold. We will call the objects just defined
“presheaves” while the contravariant functors to Sets(U), the U -presheaves.

It is easy to define the notion of a morphism of presheaves, of the identity morphism and of
composition of morphisms.

The usual axioms of a category are satisfied for these definitions, but presheaves so defined do
not form a set and therefore there is no “category of presheaves”. Instead what is available
to us is a collection of notions - objects, morphisms, compositions etc. with the same logical
structure as the one we have for elements of the sets with the corresponding names associated
with a category. We will call such a collection a “meta-category”. Until a precise meaning
at the level of the formal first order logic is provided for the idea of the logical structure
used above “meta-category” can not be considered a precise concept, but it can be used as
a convenient verbal tool.

That presheaves do not form a category is a disadvantage of this definition. On the other
hand a strong advantage of it is that it does not require an additional parameter U .

As is usual, when no confusion is possible we will omit the indexes Ob and Mor at F both
for presheaves and for U -presheaves.

If F is a presheaf and U is a set such that for all X ∈ Ob(C) one has FOb(X) ∈ U then
there is a unique U -presheaf FU such that for all X ∈ Ob(C) one has FU(X) = F (X). If
FOb(X) ∈ U and GOb(X) ∈ U for all X then

Mor(F,G) = MorPreShv(C,U)(FU , GU)

where PreShv(C, U) is the category of U -presheaves.

If FOb = (G,Ob(C)) then taking U = pr2(G) we can define FU as above. This proves that
for any presheaf there exists U and a U -presheaf FU corresponding to F . The same can be
shown, using the union axiom, for any family of presheaves parametrized by a set, that is,
for any such family there exists a single U such that all members of the family have the
corresponding U -presheaves.

In this paper we will be interested in two properties of diagrams of presheaves and their
morphisms - when such a diagram is commutative and when, if this diagram is a square, it
is a pullback.
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Since presheaves do not form a category the latter requires a definition. Fortunately, the
powerful tool of unbounded quantification is available to us in the ZF and using it we can
directly transport the categorical definition of what a pullback is to the meta-category of
presheaves.

A criterion that only requires bounded quantification for when a commutative square of
presheaves is a pullback is given in Lemma 6.4.

In addition one can show that a square S of presheaves that has the corresponding square
SU of U -presheaves for a set U that contains the sets MorC(X, Y ) for all X, Y ∈ Ob(C) is a
pullback if and only if SU is a pullback in PreShv(C, U).

Remark 3.10 In UniMath the choice of universes is a necessity early on in the theory. Type
theory does not provide any means for unbounded quantification. Therefore, to quantify over
C-systems as it is required in theorems that start with “for any C-system” one has to quantify
over some type of sets of which the sets of objects and morphisms of these C-systems are
elements. To construct such a type of sets one has first to choose a universe U of types.

To define the category of sets of which this type of sets is the type of objects requires choosing
a second universe of types U ′ and an element u of U ′ such that U = El(u) where El is the
constructor that associates to an element of a universe the corresponding type. Therefore,
to define presheaves of sets in the UniMath as functors to a category of sets one has to work
with two universes. One can, alternatively, define the type of presheaves directly, using U
only as a type without having a need for an element u of a universe such that U = El(u).
Such direct definition is somewhat analogous to the definition that we provide in the ZF
but uses the inherent mechanisms of working with families that exist in all dependent type
theories instead of our set-theoretic definition of a family given above.

4 Products of families of types and (Π, λ)-structures

The “products of families of types” structure on a C-system is defined in [3, pp.3.37 and
3.41] and studied further in [9, p.71]. We will call it here the Cartmell-Streicher structure.

Let us recall its definition. We write Ob for Ob(CC), Õb for the set

Õb = {o ∈Mor(CC) | o ∈ sec(pcodom(o)), codom(o) > pt}

and ∂ : Õb→ Ob for the function ∂(o) = codom(o).

The notation Ob≥2 below refers to the set of B ∈ Ob such that l(B) ≥ 2. Everywhere below,
for B ∈ Ob≥2 we let A = ft(B) and Γ = ft2(B).

Definition 4.1 A Cartmell-Streicher structure on a C-system CC is a collection of data of
the form

1. a function Π : Ob≥2 → Ob such that for any B ∈ Ob≥2 one has

(a) ft(Π(B)) = Γ,
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(b) for any f : Γ′ → Γ one has f ∗(Π(B)) = Π(f ∗(B)),

2. for any B ∈ Ob≥2 a morphism ApB : A×Γ Π(B)→ B 3 such that

(a) ApB is a morphism over A,

(b) for any f : Γ′ → Γ one has f ∗(ApB) = Apf∗(B),

(c) the function λinvB : ∂−1(Π(B))→ ∂−1(B) given by

λinvB(s) = p∗A(s) ◦ ApB

is a bijection.

The objects appearing in this definition can be seen in the following diagram

B
ApB←−−− A×Γ Π(B) −−−→ Π(B)

p(B,A)

y p∗A(s)↑
y s↑

yp(Π(B),Γ)

A A
pA−−−→ Γ

(4.1)

The proper formulation of Definition 4.1 requires a preliminary lemma, as we have done
with Lemma 4.6 before the definition of sets AllApΠ

2 . Here we provide this lemma after the
definition.

Lemma 4.2 Let Π : Ob≥2 → Ob be a function as in Definition 4.1(1), B ∈ Ob≥2 and
ApB : A×Γ Π(B)→ B a morphism. Assume that ApB is a morphism over A, then one has:

1. ApB is a morphism over Γ,

2. For s ∈ ∂−1(Π(B)) the morphism λinvB(s) = p∗A(s) ◦ ApB is defined and belongs to
∂−1(B).

Proof: The first assertion follows from Lemma 2.12.

To show that λinvB(s) is defined we need to check that p∗A(s) is defined, i.e., that s is a
morphism over Γ and that codom(p∗A(s)) = dom(ApB). We have

dom(s) = ft(∂(s)) = ft(Π(B)) = Γ

and therefore s is a morphism over Γ by Lemma 2.24(1) and

codom(p∗A(s)) = p∗A(codom(s)) = A×Γ Π(B) = dom(ApB)

To prove that λinvB(s) belongs to ∂−1(B) we need to show that λinvB(s) ∈ Õb(CC) and
codom(λinvB(s)) = B. The second statement is obvious. To prove the first one we need to
show that λinvB(s) ◦ p(B,A) = IdA. We have

λinvB(s) ◦ p(B,A) = p∗A(s) ◦ ApB ◦ p(B,A) =

3In [9, Definition 1.13, p.71] these morphisms are denoted evalB .
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p∗A(s) ◦ p(A×Γ Π(B), A) = IdA

where the second equality follows from the assumption that ApB is a morphism over B and
the third equality follows from Lemma 2.24(2) for f = pA.

The lemma is proved.

Definition 4.3 Let CC be a C-system. A pre-(Π, λ)-structure on CC is a pair of morphisms
(natural transformations) of presheaves

Π : Ob2 → Ob1

λ : Õb2 → Õb1

such that the square

Õb2
λ−−−→ Õb1

∂

y y∂
Ob2

Π−−−→ Ob1

(4.2)

commutes.

A pre-(Π, λ)-structure is called a (Π, λ)-structure if the square (4.2) is a pullback.

Remark 4.4 The category of presheaves of sets can be given the structure of a category
with fiber products (see [14, Appendix] for the precise definition and for the notations used
below) using the standard structure of a category with fiber products on the category of sets.

Then any pre-(Π, λ)-structure on CC defines a morphism

(∂ × λ)Π,∂ : Õb2 → (Ob2,Π)×Ob1 (Õb1, ∂) (4.3)

which is an isomorphism if and only if this pre-(Π, λ)-structure is a (Π, λ)-structure.

Therefore, there is a bijection between (Π, λ)-structures and (Π, λ, app)-structures where Π
and λ form a pre-(Π, λ)-structure and app is a morphism that is both a right and a left
inverse to (4.3).

One also obtains interesting structures by specifying in addition to Π and λ a morphism app
over Ob2 that is only a left or only a right inverse to (4.3).

The (Π, λ)-structures are connected to the (Π, λ, app, β, η)-system of inference rules.

The (Π, λ, app)-structures where app is a right inverse to (4.3), that is, a morphism in the
opposite direction such that

app ◦ (∂ × λ)Π,∂ = Id(Ob2,Π)×Ob1
(Õb1,∂)

correspond to the (Π, λ, app, η)-system of inference rules.

The (Π, λ, app)-structures where app is a left inverse to (4.3), that is, a morphism in the
opposite direction such that

(∂ × λ)Π,∂ ◦ app = IdÕb2
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correspond to the (Π, λ, app, β)-systems of inference rules.

Precise formulations and proofs of these correspondences require an algebraic theory of in-
ference rules that lies outside the scope of the present paper.

Syntactically, even a pre-(Π, λ)-structure may have different forms. For example, given the
Π-operations defined by the scheme

Γ, x : ABB type

Γ B Π(A, x.B) type

we can have λ-operations defined by either of the two schemes

Γ, x : AB o : B

Γ B λ(A, x.o) : Π(A, x.B)
or

Γ, x : AB o : B

Γ B λ(x.o) : Π(A, x.B)

In both cases we obtain a pre-(Π, λ)-structure. The choice of the syntactic form for λ may
affect whether the resulting operation is in an appropriate sense free, but not whether it
forms a part of a pre-(Π, λ)-structure.

Operation app that directly corresponds to a morphism in the direction opposite to (4.3)
can have the syntactic form

Γ, x : ABB type
Γ B f : Π(A, x.B)

Γ, x : AB app(f, x) : B
(4.4)

or the form with app(A, x.B, f, x) or any of the two intermediate forms.

To give a precise meaning to these comments about the syntactic forms one needs a theory
of syntactic C-systems. The basics of such a theory can be found in [11].

A homomorphism of C-systems with (pre-)(Π, λ)-structures is defined in [14].

In this section we construct a solution for the following problem.

Problem 4.5 Let CC be a C-system. To construct a bijection between the set of Cartmell-
Streicher structures and the set of (Π, λ)-structures on CC.

Later in the paper we will show how to construct and, sometimes, fully classify, (Π, λ)-
structures on C-systems of the form CC(C, p).
Constructing bijections is often very “expensive” in the sense of the time and effort required.
This fact will be well illustrated by the construction of this section.

A structure of Cartmell-Streicher on CC can be seen as a pair (Π, Ap) where Π is a function
Ob≥2 → Ob satisfying certain conditions and Ap is a function Ob≥2 → Mor satisfying
another set of conditions that depend on Π.

A (Π, λ)-structure is a pair (Π, λ) where Π is a morphism of presheaves Ob2 → Ob1 and λ is

a morphism of presheaves Õb2 → Õb1 satisfying certain conditions that depend on Π.
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Substituting i = 2 and j = 1 in Construction (3.6) we obtain a bijection Φ from the set
of morphisms of presheaves on CC of the form Π : Ob2 → Ob1 to the set of functions
Π : Ob≥2 → Ob satisfying the conditions of Definition 4.1(1).

Let AllλΠ
1 be the set of morphisms λ : Õb2 → Õb1 that make the square (4.2) a pullback.

Let AllApΠ1 be the set of functions Ap : Ob≥2 →Mor that satisfy the conditions of Definition
4.1 relative to Π.

It remains to construct, for any morphism of presheaves Π : Ob2 → Ob1, a bijection of the
form AllλΠ

1 → AllAp
Φ(Π)
1 .

Our bijection will be the composition of three bijections

AllλΠ
1 → AllλΠ

2 → AllAp
Φ(Π)
2 → AllAp

Φ(Π)
1 (4.5)

To define the set AllAp
Φ(Π)
2 we need a lemma.

Lemma 4.6 Let Π be a function Ob≥2 → Ob satisfying the conditions of Definition 4.1(1).
Let B ∈ Ob≥2 and let ApB : Π(B)×Γ A→ B be a morphism such that

ApB ◦ pB = q(pΠ(B), A) (4.6)

then one has:

1. ApB is a morphism over Γ,

2. for any s ∈ ∂−1(Π(B)) the morphism

λinvB(s) = q(s,Π(B)×Γ A) ◦ ApB (4.7)

is defined and belongs to ∂−1(B).

Proof: The first assertion is proved by the equalities

ApB ◦ pB = ApB ◦ pB ◦ pA = q(pΠ(B), A) ◦ pA =

pΠ(B)×ΓA ◦ pΠ(B) = p(Π(B)×Γ A,Γ)

where the second equality follows from (4.6) and the third one from the commutativity of
the right hand side canonical square in the diagram:

A
q(s,Π(B)×ΓA)−−−−−−−−→ Π(B)×Γ A

q(pΠ(B),A)
−−−−−−→ A

pA

y pΠ(B)×ΓA

y ypA
Γ

s−−−→ Π(B)
pΠ(B)−−−→ Γ

For λinvB(s) to be defined we need to have

codom(pΠ(B)) = Γ

31



codom(s) = ft(Π(B)×Γ A)

codom(q(s,Π(B)×Γ A)) = Π(B)×Γ A

The first equality follows from Definition 4.1(1a), the second equality follows from the equal-
ity ft(f ∗(X)) = codom(f), which is one of the axioms of a C0-system, and the assumption
that s ∈ ∂−1(Π(B)). The third equality follows directly from the form of the morphisms
q(f,X).

To prove that λinvB(s) belongs to ∂−1(B) we need to show that λinvB(s) ∈ Õb(CC) and
that codom(λinvB(s)) = B. The second equality is obvious. To prove the first fact we need
to show that

λinvB(s) ◦ pB = IdA

We have:

λinvB(s) ◦ pB = q(s,Π(B)×Γ A) ◦ ApB ◦ pB = q(s,Π(B)×Γ A) ◦ q(pΠ(B), A) = IdA

where the second equality is by (4.6) and the third one is by the composition property of
the q(−,−) morphisms and the fact that s ◦ pΠ(B) = IdΓ. The lemma is proved.

Let us now defined the sets AllλΠ
2 and AllApΠ2 :

1. Let Π : Ob2 → Ob1 be a morphism of presheaves. Then the set AllλΠ
2 is the set of

double families of bijections of the form

λΓ,B : ∂−1(B)→ ∂−1(ΠΓ(B)) (4.8)

parametrized by Γ ∈ Ob and B ∈ Ob2(Γ) such that for any f : Γ′ → Γ and any
B ∈ Ob2(Γ) the square

∂−1(B)
λΓ,B−−−→ ∂−1(ΠΓ(B))

f∗B

y yf∗B
∂−1(f ∗(B))

λΓ′,f∗(B)−−−−−→ ∂−1(ΠΓ′(f
∗(B))) = ∂−1(f ∗(ΠΓ(B)))

(4.9)

commutes.

2. Let Π : Ob≥2 → Ob be a function satisfying the conditions of Definition 4.1(1). Then
the set AllApΠ2 is the set of families of morphisms of the form

ApB : Π(B)×Γ A→ B

parametrized by B ∈ Ob≥2 such that:

(a) for any B, (4.6) holds,

(b) for any B and any morphism f : Γ′ → Γ one has f ∗(ApB) = Apf∗(B), where
f ∗(ApB) is defined by Lemma 4.6(1).
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(c) for any B, the function

λinvB : ∂−1(Π(B))→ ∂−1(B)

defined by (4.7) is a bijection.

Let us construct now the bijections of the sequence (4.5).

Problem 4.7 For a given morphism of presheaves Π : Ob2 → Ob1 to construct a bijection
AllλΠ

1 → AllλΠ
2 .

Construction 4.8 We define our bijection as the particular case of the bijection (ΨN
D,0,Φ

N
D,0)

of Lemma 6.5 corresponding to the diagram of the form (6.1) where a = ∂, b = ∂ and P = Π.

For a morphism of presheaves Π : Ob2 → Ob1, the function Φ(Π) : Ob≥2 → Ob is of the form

Φ(Π)(B) = ΠΓ(B)

Problem 4.9 Let CC be a C-system and let Π : Ob2 → Ob1 be a morphism of presheaves.
To construct a bijection between the sets AllλΠ

2 and AllAp
Φ(Π)
2 .

We will construct the solution in four steps - first a function from AllλΠ
2 to AllAp

Φ(Π)
2 , then

a function in the opposite direction and then two lemmas proving that the first function is
a left and a right inverse to the second.

Let us denote the function Φ(Π) by Π.

Problem 4.10 Let Π : Ob2 → Ob1 be a morphism of presheaves. To construct a function

AllλΠ
2 → AllApΠ2

Construction 4.11 For each B ∈ Ob≥2 we need to construct a morphism of the form

ApB : Π(B)×Γ A→ B

Since Π commutes with pullbacks, that is, Definition 4.1(1b) holds, we have

Π(Π(B)×Γ B) = Π(B)×Γ Π(B)

and therefore δ = sIdΠ(B)
, which is the diagonal, gives us an element in ∂−1(Π(Π(B)×ΓB)).

Applying to it the inverse of λΠ(B),Π(B)×ΓB we get an element

apB = (λΠ(B),Π(B)×ΓB)−1(δ) (4.10)
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in ∂−1(Π(B)×Γ B):

B
q(s,pΠ(B)×ΓB)
−−−−−−−−→ Π(B)×Γ B

q(pΠ(B),B)
−−−−−−→ B

s∗(apB) ↑
y apB ↑

y y
A

q(s,pΠ(B)×ΓA)
−−−−−−−−→ Π(B)×Γ A

q(pΠ(B),A)
−−−−−−→ Ay y y

Γ
s−−−→ Π(B)

pΠ(B)−−−→ Γ

Define:
ApB = apB ◦ q(pΠ(B), B)

Condition (4.6) holds because

ApB ◦ pB = apB ◦ q(pΠ(B), B) ◦ pB = apB ◦ pΠ(B)×ΓB ◦ q(pΠ(B), A) =

IdpΠ(B)×ΓB
◦ q(pΠ(B), A) = q(pΠ(B), A)

Let us prove that morphisms ApB satisfy the conditions of stability under base change and
of the bijectivity of the corresponding functions λinv∗.

Let f : Γ′ → Γ be a morphism. Let us show first that f ∗(apB) = apf∗(B). Omitting indexes
of λ for clarity, we have where ,

f ∗(apB) = f ∗(λ−1(δ)) = λ−1(f ∗(δ)) = λ−1(sf∗(IdΠ(B))) =

λ−1(sIdf∗(Π(B))
) = λ−1(sIdΠ(f∗(B))

) = apf∗(B)

(4.11)

where the second equality follows from the commutativity of (4.9), the third from (2.36),
the fourth from (2.20) and the fifth from Definition 4.1(1b).

Now we have:

f ∗(ApB) = f ∗(apB ◦ q(pΠ(B), B)) = f ∗(apB) ◦ f ∗(q(pΠ(B), B)) = apf∗(B) ◦ f ∗(q(pΠ(B), B)) =

apf∗(B) ◦ q(f ∗(pΠ(B)), f
∗(B)) = apf∗(B) ◦ q(pf∗(Π(B)), f

∗(B)) =

apf∗(B) ◦ q(pΠ(f∗(B)), f
∗(B)) = Apf∗(B)

where the second equality follows from (2.21), the third equality from (4.11), the fourth
equality from (2.29), the fifth equality from (2.31) and the sixth from Definition 4.1(1b).

It remains to show that the functions λinvB : ∂−1(Π(B))→ ∂−1(B) defined as:

s 7→ q(s,Π(B)×Γ A) ◦ ApB

are bijective. It is sufficient to show that the function λinvB is inverse to the function λΓ,B

from at least one side as any inverse to a bijection is a bijection.
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We will show that
λinvB ◦ λΓ,B = Id∂−1(B) (4.12)

For simplicity of notation we omit the index Γ of λ. We proceed in two steps. First, for
s ∈ ∂−1(Π(B)), let

λinv′B(s) = s∗(apB) = q(s,Π(B)×Γ A)∗(apB)

where the second equality is by (2.10). Let us show that λinv′B = λinvB. Indeed:

q(s,Π(B)×Γ A)∗(apB) = q(s,Π(B)×Γ A)∗(apB) ◦ q(s,Π(B)×Γ B) ◦ q(pΠ(B), B) =

q(s,Π(B)×Γ A) ◦ ap ◦ q(pΠ(B), B) = q(s,Π(B)×Γ A) ◦ ApB
(4.13)

where the first equality follows from Lemma 2.6(2) and the assumption that s◦πΠ(B) = IdΓ

and the second equality from (2.19).

Now we have:

λB(λinv′B(s)) = λB(s∗(ap)) = s∗(λΠ(B)×ΓB(ap)) = s∗(sIdΠ(B)
) = ss◦IdΠ(B)

= ss = s

where the second equality follows from the commutativity of (4.9) since s∗(Π(B)×ΓB) = B,
the third from (4.10), the fourth from the formula sf◦g = f ∗(sg) and the sixth from the
formula s = ss◦q(ft(s), X) (see [15, Def. 2.3]) since ft(s) = Id. This completes Construction
4.11.

Problem 4.12 Let Π : Ob2 → Ob1 be a morphism of presheaves. To construct a function

AllApΠ2 → AllλΠ
2

Construction 4.13 For Γ ∈ Ob and B ∈ Ob2(Γ) we set:

λΓ,B = (λinvB)−1 (4.14)

where on the right hand side B is considered as an element of Ob≥2 such that ft2(B) = Γ,
and

λinvB : ∂−1(Π(B))→ ∂−1(B)

is the bijection given by the formula (4.7).

To show that the bijections that we obtain in this way commute with pullbacks, in the
sense that the squares (4.9) commute, it is sufficient to show that for Γ and B as above and
f : Γ′ → Γ one has

λinvB ◦ f ∗ = f ∗ ◦ λinvf∗(B)

Let s ∈ ∂−1(Π(B)), then we have

f ∗(λinvB(s)) = f ∗(q(s,Π(B)×Γ A) ◦ ApB) = f ∗(q(s,Π(B)×Γ A)) ◦ f ∗(ApB) =

q(f ∗(s), f ∗(Π(B)×Γ A)) ◦ Apf∗(B) = q(f ∗(s), (f ∗(pΠ(B)))
∗(f ∗(A))) ◦ Apf∗(B) =
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q(f ∗(s), f ∗(Π(B))×Γ′ (ft(f
∗(B)))◦Apf∗(B) = q(f ∗(s),Π(f ∗(B))×Γ′ (ft(f

∗(B)))◦Apf∗(B) =

λinvf∗(B)(f
∗(s))

where the second equality is by (2.21), the third equality is by (2.29) and the second property
of Ap∗, the fourth equality is by (2.28), the fifth is by (2.31) and (2.6) and finally the sixth is
by the fact that the condition (1b) of Definition 4.1 holds for Π. This completes Construction
4.13.

Let us denote the function of Construction 4.11 by C1 and the function of Construction 4.13
by C2.

Lemma 4.14 For λ∗,∗ ∈ AllλΠ
2 one has C2(C1(λ∗,∗)∗)∗,∗ = λ∗,∗.

Proof: This is almost a tautology, but we will provide a detailed argument for it. We need
to show that for any Γ ∈ Ob and B ∈ Ob2(Γ) we have

C2(C1(λ∗,∗))Γ,B = λΓ,B

By (4.14) we have
C2(C1(λ∗,∗))Γ,B = (λinvB)−1

where λinv∗ is defined by (4.7) with Ap∗ = C1(λ∗,∗)∗, that is, it is the same family of
functions as appear in (4.12) and therefore we know that

C2(C1(λ∗,∗))Γ,B = λΓ,B

because λΓ,B is a bijection and a bijection has only one left inverse.

Lemma 4.15 For Ap∗ ∈ AllApΠ2 one has C1(C2(Ap∗)∗,∗)∗ = Ap∗.

Proof: Let Ap∗ ∈ AllApΠ2 . Then λ∗,∗ = C2(Ap∗)∗,∗ is the double family of functions of the
form

λΓ,B : ∂−1(B)→ ∂−1(Π(B))

parametrized by Γ ∈ Ob and B ∈ Ob2(Γ) defined by the formula

λΓ,B = (λinvB)−1

where on the right hand side B is considered as an element of Ob≥2, and for s ∈ ∂−1(Π(B))
one has

λinvB(s) = q(s,Π(B)×Γ A) ◦ ApB
As before, let δ = sIdΠ(B)

Next we have

C1(λ∗,∗)B = apB ◦ q(pΠ(B), B) = (λΠ(B),Π(B)×ΓB)−1(δ) ◦ q(pΠ(B), B) =

λinvΠ(B)×ΓB(δ) ◦ q(pΠ(B), B) =
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q(δ, (Π(Π(B)×Γ B))×Γ (ft(Π(B)×Γ B))) ◦ ApΠ(B)×ΓB ◦ q(pΠ(B), B)

Using that Π(Π(B)×Γ B) = Π(B)×Γ Π(B) and ft(Π(B)×Γ B) = Π(B)×Γ A we obtain,
as our goal, the equality:

q(δ, (Π(B)×Γ Π(B))×Γ (Π(B)×Γ A)) ◦ ApΠ(B)×ΓB ◦ q(pΠ(B), B) = ApB (4.15)

For any f : Γ′ → Γ we have:

Apf∗(B) ◦ q(f,B) = f ∗(ApB) ◦ q(f,B) = q(f,Π(B)×Γ A) ◦ ApB

where the first equality is by stability of Ap under pullbacks (condition (b) in the definition
of the set AllApΠ2 ) and the second by (2.19). Applying it to (4.15) and f = pΠ(B) we get:

q(δ, (Π(B)×Γ Π(B))×Γ (Π(B)×Γ A)) ◦ q(pΠ(B),Π(B)×Γ A) ◦ ApB = ApB (4.16)

Next we have

(Π(B)×Γ Π(B))×Γ (Π(B)×Γ A) = (pΠ(B)×ΓΠ(B) ◦ pΠ(B))
∗(A) =

(q(pΠ(B),Π(B)) ◦ pΠ(B))
∗(A) = q(pΠ(B),Π(B))∗(Π(B)×Γ A)

where the first equality is by Lemma 2.6(2), the second by the commutativity of the canonical
squares in C-systems or by the commutativity clause of Lemma 2.4 and the third is again
by Lemma 2.6(2).

That each of these equalities is applicable can be seen from the lower square of the following
commutative diagram:

Π(B)×Γ A −−−→ Π(B)×Γ (Π(B)×Γ A)
q(pΠ(B),Π(B)×ΓA)
−−−−−−−−−−−→ Π(B)×Γ Ay y y

Π(B)
δ−−−→ Π(B)×Γ Π(B)

q(pΠ(B),Π(B))
−−−−−−−−→ Π(B)

pΠ(B)×ΓΠ(B)

y ypΠ(B)

Π(B)
pΠ(B)−−−→ Γ

We can now rewrite (4.16) as

q(δ, q(pΠ(B),Π(B))∗(Π(B)×Γ A)) ◦ q(pΠ(B),Π(B)×Γ A) ◦ ApB = ApB (4.17)

Computing the composition of the first two morphisms we get

q(δ, q(pΠ(B),Π(B))∗(Π(B)×Γ A)) ◦ q(pΠ(B),Π(B)×Γ A) =

q(δ, q(pΠ(B),Π(B))∗(Π(B)×Γ A)) ◦ q(q(pΠ(B),Π(B)),Π(B)×Γ A) =

q(δ ◦ q(pΠ(B),Π(B)),Π(B)×Γ A) = q(IdΠ(B),Π(B)×Γ A) =

= IdΠ(B)×ΓA

(4.18)
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where the first equality is by (2.10), the second equality by Lemma 2.6(2) for f = δ
and g = q(pΠ(B),Π(B)) and the fourth equality by Lemma 2.6(1). The third equality
follows from the formula sf ◦ q(ft(f), codom(f)) = f (see [15, Definition 2.3(3)]) since
ft(IdΠ(B)) = IdΠ(B) ◦ pΠ(B) = pΠ(B).

Finally, (4.18) implies (4.17), which completes the proof of the lemma and with it our
construction for Problem 4.9.

To construct a solution for the Problem 4.5 it remains to construct a solution to the following
problem.

Problem 4.16 Let Π be a function Ob≥2 → Ob satisfying the conditions (1a), (1b) of
Definition 4.1. To construct a bijection between the set AllApΠ2 and the set AllApΠ1 .

Construction 4.17 Recall that

1. AllApΠ1 is the set of families of morphisms of the form

ApB : A×Γ Π(B)→ B

parametrized by B ∈ Ob≥2 such that the following conditions hold:

(a) for any B, ApB is a morphism over A,

(b) for any f : Γ′ → Γ one has f ∗(ApB) = Apf∗(B), where f ∗(ApB) is defined in view
of Lemma 4.2(1),

(c) let λinvB : ∂−1(Π(B))→ ∂−1(B) be the function defined by the formula

λinvB(s) = p∗A(s) ◦ ApB

in view of Lemma 4.2(2), then for any B, λinvB is a bijection.

2. AllApΠ2 is the set of families of morphisms of the form

ApB : Π(B)×Γ A→ B

parametrized by B ∈ Ob≥2 such that the following conditions hold:

(a) for any B one has ApB ◦ pB = q(pΠ(B), A), i.e., (4.6) holds,

(b) for any morphism f : Γ′ → Γ one has f ∗(ApB) = Apf∗(B), where f ∗(ApB) is
defined in view of Lemma 4.6(1),

(c) let λinvB : ∂−1(Π(B))→ ∂−1(B) be the function defined by the formula

λinvB(s) = q(s,Π(B)×Γ A) ◦ ApB

in view of Lemma 4.6(2), then for any B, λinvB is a bijection.
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Let X be the set of (all) families of morphisms of the form

A×Γ Π(B)→ B

parametrized by B ∈ Ob≥2 and Y the set of (all) families of morphisms of the form

Π(B)×Γ A→ B

also parametrized by B ∈ Ob≥2.

Let Φ : X → Y be the function that maps Ap2
∗ ∈ X to the family Φ(Ap2

∗)∗ where for
B ∈ Ob≥2 one has

Φ(Ap2
∗)B = exch(A,Π(B); Γ) ◦ Ap2

B

and Ψ : Y → X the function that maps Ap1
∗ ∈ Y to the family Ψ(Ap1

∗)∗ where for B ∈ Ob≥2

one has
Ψ(Ap1

∗)B = exch(Π(B), A; Γ) ◦ Ap1
B

Because of (2.16) we have Φ ◦ Ψ = IdX and Ψ ◦ Φ = IdY , that is, Φ and Ψ are mutually
inverse bijections between X and Y .

We have AllApΠ2 ⊂ X and AllApΠ1 ⊂ Y . It remains to show that

Φ(AllApΠ2 ) ⊂ AllApΠ1 (4.19)

Ψ(AllApΠ1 ) ⊂ AllApΠ2 (4.20)

Then Lemma 5.1 implies that the functions

Φ0 : AllApΠ2 → AllApΠ1

Ψ0 : AllApΠ1 → AllApΠ2

defined by Φ and Ψ are mutually inverse bijections.

Let us prove (4.19). Let Ap2
∗ ∈ AllApΠ2 . Let us denote the family Φ(Ap2

∗)∗ by Ap1
∗. For

B ∈ Ob≥2 we have
Ap1

B ◦ pB = exch(A,Π(B); Γ) ◦ Ap2
B ◦ pB =

exch(A,Π(B); Γ) ◦ q(pΠ(B), A) = p(A×Γ Π(B)), A)

where the third equality is by (2.17). We conclude that Ap1
B is a morphism over A.

Let f : Γ′ → Γ be a morphism. Then one has

f ∗(Ap1
B) = f ∗(exch(A,Π(B); Γ) ◦ Ap2

B) =

f ∗(exch(A,Π(B); Γ)) ◦ f ∗(Ap2
B) = exch(f ∗(A), f ∗(Π(B)); Γ′) ◦ Ap2

f∗(B) =

exch(f ∗(A), f ∗(Π(B)); ft2(f ∗(B))) ◦ Ap2
f∗(B) =

exch(ft(f ∗(B)),Π(f ∗(B))); ft2(f ∗(B))) ◦ Ap2
f∗(B) = Ap1

f∗(B)
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where the second equality is by Lemma 2.11(3), the fact that Ap2
B is a morphism over

Γ and Lemma 2.16(2), the third equality is by Lemma 2.16(3) and the assumption that
f ∗(Ap2

B) = Ap2
f∗(B), the fourth equality is by Lemma 2.4, including (2.7), and the fifth

equality is by (2.6) and the assumption that f ∗(Π(B)) = Π(f ∗(B)). We conclude that the
second property of Ap1

B holds.

Let λinv1
B be the function ∂−1(Π(B)) → ∂−1(B) defined, because of the two properties of

Ap1
B that we have proved, by the formula

λinv1
B(s) = p∗A(s) ◦ Ap1

B

and λinv2
B the function ∂−1(Π(B))→ ∂−1(B) defined by the formula

λinv2
B(s) = q(s,Π(B)×Γ A) ◦ Ap2

B

We know that this latter function is a bijection.

We need to show that λinv1
B is a bijection. We have

λinv1
B(s) = p∗A(s) ◦ Ap1

B = p∗A(s) ◦ exch(A,Π(B); Γ) ◦ Ap2
B =

exch(A,Γ; Γ) ◦ q(s,Π(B)×Γ A) ◦ Ap2
B =

exch(A,Γ; Γ) ◦ λinv2
B(s) = λinv2

B(s)

where the third equality is by (2.25) and the fifth equality is by (2.18).

Therefore λinv1
B = λinv2

B and also is a bijection. We conclude that the third property of
Ap1

B holds.

This completes the proof of (4.19).

Let us prove (4.20). Let Ap1
∗ ∈ AllApΠ1 . Let us denote the family Ψ(Ap1

∗)∗ by Ap2
∗. For

B ∈ Ob≥2 we have
Ap2

B ◦ pB = exch(Π(B), A; Γ) ◦ Ap1
B ◦ pB =

exch(Π(B), A; Γ) ◦ p(A×Γ Π(B)), A) = q(pΠ(B), A)

where the third equality is by (2.17). We conclude that the first property of Ap2
B holds.

Let f : Γ′ → Γ be a morphism. Then one has

f ∗(Ap2
B) = f ∗(exch(Π(B), A; Γ) ◦ Ap1

B) =

f ∗(exch(Π(B), A; Γ)) ◦ f ∗(Ap1
B) = exch(f ∗(Π(B)), f ∗(A); Γ′) ◦ Ap1

f∗(B) =

exch(f ∗(Π(B)), f ∗(A); ft2(f ∗(B))) ◦ Ap1
f∗(B) =

exch(Π(f ∗(B))), ft(f ∗(B)); ft2(f ∗(B))) ◦ Ap1
f∗(B) = Ap2

f∗(B)

where the second equality is by Lemma 2.11(3), the fact that Ap1
B is a morphism over

Γ and Lemma 2.16(2), the third equality is by Lemma 2.16(3) and the assumption that
f ∗(Ap1

B) = Ap1
f∗(B), the fourth equality is by Lemma 2.4, including (2.7), and the fifth

40



equality is by (2.6) and the assumption that f ∗(Π(B)) = Π(f ∗(B)). We conclude that the
second property of Ap2

B holds.

Let λinv2
B be the function ∂−1(Π(B)) → ∂−1(B) defined, because of the two properties of

Ap2
B that we have proved, by the formula

λinv2
B(s) = q(s,Π(B)×Γ A) ◦ Ap2

B

and λinv1
B the function ∂−1(Π(B))→ ∂−1(B) defined by the formula

λinv1
B(s) = p∗A(s) ◦ Ap1

B

We know that this latter function is a bijection.

We need to show that λinv2
B is a bijection. We have

λinv2
B(s) = q(s,Π(B)×Γ A) ◦ Ap2

B = q(s,Π(B)×Γ A) ◦ exch(Π(B), A; Γ) ◦ Ap1
B =

exch(Γ, A; Γ) ◦ p∗A(s) ◦ Ap1
B =

exch(A,Γ; Γ) ◦ λinv1
B(s) = λinv1

B(s)

where the third equality is by (2.26) and the fifth equality is by (2.18).

Therefore λinv2
B = λinv1

B and also is a bijection. We conclude that the third property of
Ap2

B holds.

This completes the proof of (4.20) and with it Construction 4.17.

This completes our construction for Problem 4.5.

41



5 Appendix A. Functions and families - the case of sets

We start with two preliminary lemmas.

Lemma 5.1 Let Φ : X → Y be a bijection of sets with the inverse bijection Ψ. Let X0, Y0

be subsets in X and Y respectively. Assume that

Φ(X0) ⊂ Y0

Ψ(Y0) ⊂ X0

Then the functions
Φ0 : X0 → Y0

Ψ0 : Y0 → X0

defined by Φ and Ψ are mutually inverse bijections.

Proof: We have
Φ0(Ψ0(y)) = Φ(Ψ(y)) = y

and similarly for Ψ0(Φ0(x)).

Lemma 5.2 Let Φ : X → Y be a bijection of sets. Let X0, Y0 be subsets in X and Y
respectively. Assume that

Φ(X0) ⊂ Y0 (5.1)

Then the following two conditions are equivalent:

1. the function
Φ0 : X0 → Y0

defined by the inclusion (5.1), is a bijection.

2. for any x ∈ X such that Φ(x) ∈ Y0 one has x ∈ X0.

Proof: To show that the first condition implies the second let Ψ0 be the bijection inverse to
Φ0 and let x ∈ X be such that Φ(x) ∈ Y0. Since Ψ0(Φ(x)) ∈ X0 it is sufficient to prove that
Ψ0(Φ(x)) = x. We have

Φ(Ψ0(Φ(x))) = Φ0(Ψ0(Φ(x))) = Φ(x)

Since Φ is, in particular, injective we conclude that Ψ0(Φ(x)) = x.

To prove that the second condition implies the first one, let Ψ be an inverse to Φ and let
y ∈ Y0. Then Φ(Ψ(y)) = y ∈ Y0 and therefore Ψ(y) ∈ X0 by our assumption. We conclude
that Ψ(Y0) ⊂ X0 and applying Lemma 5.1 conclude that Φ0 is a bijection.
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Consider a diagram D of sets and functions of the form

X̃ Ỹ

a

y yb
X

f−−−→ Y

(5.2)

Let FamD be the set of families of functions of the form

f̃A : a−1(A)→ b−1(f(A)) (5.3)

parametrized by A ∈ X.

We will write such a family as (f̃A)A∈X with A in this expression being a bound variable or,

when an abbreviated notation is called for, f̃∗. The same convention will be applied to other
families.

Let FunD be the set of functions f̃ : X̃ → Ỹ such that the square

X̃
f̃−−−→ Ỹ

a

y yb
X

f−−−→ Y

(5.4)

commutes.

Let ΦD : FamD → FunD be the function given by the formula

ΦD((f̃A)A∈X)(x) = f̃a(x)(x) (5.5)

and ΨD : FunD → FamD the function given by the formula

ΨD(f̃)A(x) = f̃(x) (5.6)

Lemma 5.3 The functions ΦD and ΨD are mutually inverse bijections.

Proof: Let f̃∗ ∈ FamD, A ∈ X and x ∈ a−1(A), then one has

ΨD(ΦD(f̃∗))A(x) = ΦD(f̃∗)(x) = f̃a(x)(x)

For x ∈ a−1(A) we have a(x) = A and therefore

ΦD ◦ΨD = IdFamD

Next, let f̃ ∈ FunD and x ∈ X̃. Then one has

ΦD(ΨD(f̃))(x) = (ΨD(f̃))a(x)(x) = f̃(x)
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and therefore
ΨD ◦ ΦD = IdFunD

This completes the proof of the lemma.

Let FamD,0 be the subset of FamD that consists of families of bijections.

Let FunD,0 be the subset of FunD that consists of functions f̃ such that the square (5.4) is
a pullback.

Lemma 5.4 One has
ΦD(FamD,0) ⊂ FunD,0 (a)

ΨD(FunD,0) ⊂ FamD,0 (b)
(5.7)

and the corresponding functions

ΦD,0 : FamD,0 → FunD,0

ΨD,0 : FunD,0 → FamD,0

are mutually inverse bijections.

Proof: Let us show that ΦD(FamD,0) ⊂ FunD,0.

Let (X, f)×Y (Ỹ , b) be the standard fiber product of f and b, that is, the subset in X × Ỹ
that consists of pairs (A, y) such that f(A) = b(y). Let pr1 : (X, f) ×Y (Ỹ , b) → X and

pr2 : (X, f)×Y (Ỹ , b)→ Ỹ be the corresponding projections.

Let f̃ ∈ FunD and f̃∗ = ΨD(f̃). Let g = a ×Y f̃ be the canonical function X̃ → (X, f) ×Y
(Ỹ , b). For A ∈ X let gA : a−1(A)→ pr−1

1 (A) be the function given by gA(x) = g(x) and let
pr2,A : pr−1

1 (A)→ b−1(A) be the similar function defined by pr2.

One verifies easily that all functions pr2,A are bijections.

Since f̃ = g ◦ pr2, for any A ∈ X we have f̃A = gA ◦ pr2,A. Therefore, f̃A is a bijection if and

only if gA is a bijection. In particular, if all functions f̃A are bijections then all functions gA
are bijections. This implies that g is a bijection. Let (D, f̃) be the square obtained from D

by adding f̃ . Then g defines an isomorphism from (D, f̃) to the canonical pullback based
on f and b and therefore it is itself a pullback. This proves (5.7(a)).

Let us assume now that that (D, f̃) is a pullback. Then, by the uniqueness of pullbacks, we
know that g is a bijection. Then all functions gA are bijections and therefore all functions
f̃A are bijections. This proves (5.7(b)).

The fact that ΦD,0 and ΨD,0 are mutually inverse bijections follows now from (5.7), Lemma
5.1 and Lemma 5.3.

Lemma 5.5 Let D be of the form (5.2). Then one has:
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1. Let f̃∗ be a family of functions of the form (5.3). Then the square of sets of the form

(5.4) with f̃ = ΦD(f̃∗) is a pullback if and only if all functions f̃A are bijections.

2. Let f̃ be a function such that the square (5.4) is commutative. Then all functions

ΨD(f̃)A are bijections if and only if the square (5.4) is a pullback.

Proof: Both assertions follow from Lemma 5.4 and Lemma 5.2.

6 Appendix B. Functions and families - the case of presheaves of
sets

Let C be a category. Consider a diagram D of presheaves of sets on C of the form

F̃ G̃

a

y yb
F

P−−−→ G

(6.1)

For X ∈ C let D(X) be the corresponding diagram of sets

F̃ (X) G̃(X)

aX

y ybX
F (X)

PX−−−→ G(X)

(6.2)

Let FamD be the set of double families of functions of the form

P̃X,A : a−1
X (A)→ b−1

X (PX(A)) (6.3)

parametrized by X ∈ C and A ∈ F (X).

Let FunD be the set of families of functions of the form

P̃X : F̃ (X)→ G̃(X) (6.4)

such that the squares

F̃ (X)
P̃X−−−→ G̃(X)

aX

y ybX
F (X)

PX−−−→ G(X)

(6.5)

commute.

Applying our construction of ΦD and ΨD to the diagrams D(X) we get two functions

ΦD : FamD → FunD

ΨD : FunD → FamD
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Lemma 6.1 The functions ΦD and ΨD are mutually inverse bijections.

Proof: The functions on sets of families defined by families of mutually inverse bijections
are mutually inverse bijections.

For any f : Y → X, the squares

F̃ (X)
F̃ (f)−−−→ F̃ (Y )

aX

y yaY
F (X)

F (f)−−−→ F (Y )

G̃(X)
G̃(f)−−−→ G̃(Y )

bX

y ybY
G(X)

G(f)−−−→ G(Y )

(6.6)

commute. Therefore, for every A ∈ F (X) our construction Ψ gives us a function

F̃ (f)A : a−1
X (A)→ a−1

Y (F (f)(A))

and a function
G̃(f)PX(A) : b−1

X (PX(A))→ b−1
Y (G(f)(PX(A)))

Let FamN
D be the subset in FamD of double families that are “natural in X”, i.e., such that

for all f : Y → X and A ∈ F (X) the squares

a−1
X (A)

P̃X,A−−−→ b−1
X (PX(A))

F̃ (f)A

y yG̃(f)PX (A)

a−1
Y (F (f)(A))

P̃Y,F (f)(A)−−−−−−→ b−1
Y (PY (F (f)(A))) = b−1

Y (G(f)(PX(A)))

(6.7)

where the equality reflects the fact that P is a morphism of presheaves, commute.

Let FunND be the subset in FunD that consists of families P̃X that are natural transformations
(morphisms of presheaves), i.e., such that for all f : Y → X the squares

F̃ (X)
P̃X−−−→ G̃(X)

F̃ (f)

y yG̃(f)

F̃ (Y )
P̃Y−−−→ G̃(Y )

(6.8)

commute.

Note that FunND is exactly the set of morphisms of presheaves P̃ such that the square

F̃
P̃−−−→ G̃

a

y yb
F

P−−−→ G

(6.9)

commutes.
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Lemma 6.2 One has
ΦD(FamN

D ) ⊂ FunND (6.10)

ΨD(FunND ) ⊂ FamN
D (6.11)

and the corresponding functions

ΦN
D : FamN

D → FunND

ΨN
D : FunND → FamN

D

are mutually inverse bijections.

Proof: The second statement follows from the first one by Lemma 5.1.

Let us prove (6.10). Let P̃∗,∗ ∈ FamN
D . Let f : Y → X be a morphism. We know that the

squares (6.7) commute for all A ∈ F (X). We need to show that the square (6.8) commutes,

i.e., that for any B ∈ F̃ (X) we have

G̃(f)(P̃X(B)) = P̃Y (F̃ (f)(B))

where P̃∗ = ΦD(P̃∗,∗).

We have

G̃(f)(P̃X(B)) = G̃(f)(P̃X,aX(B)(B)) = G̃(f)bX(P̃X,aX (B)(B))(P̃X,aX(B)(B)) =

G̃(f)PX(aX(B))(P̃X,aX(B)(B)) = P̃Y,F (f)(aX(B))(F̃ (f)aX(B)(B)) =

= P̃Y,aY (F̃ (f)(B))(F̃ (f)aX(B)(B)) = P̃Y,aY (F̃ (f)(B))(F̃ (f)(B)) = P̃Y (F̃ (f)(B))

where the fourth equality is by commutativity of (6.7) and the rest of the equalities are by
definitions.

Let us prove (6.11). Let P̃∗ ∈ FunND . Let f : Y → X be a morphism. Let A ∈ F (X). We
know that the square (6.8) commutes. We need to show that the square (6.7) commutes,
i.e., that for any B ∈ a−1

X (A) we have

G̃(f)PX(A)(P̃X,A(B)) = P̃Y,F (f)(A)(F̃ (f)A(B))

We have

G̃(f)PX(A)(P̃X,A(B)) = G̃(f)PX(A)(P̃X(B)) = G̃(f)(P̃X(B)) = P̃Y (F̃ (f)(B)) =

P̃Y (F̃ (f)A(B)) = P̃Y,F (f)(A)(F̃ (f)A(B))

where the third equality holds by the commutativity of (6.8) and the rest of the equalities
by definitions.

The lemma is proved.
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Lemma 6.3 Let D be a diagram of morphisms of presheaves of the form (6.1). Then one
has:

1. Let P̃∗,∗ be a double family of functions of the form (6.3). Then the family ΦD(P̃∗,∗)∗ is
a morphism of presheaves if and only if for all f : Y → X and A ∈ F (X) the squares
(6.7) commute.

2. Let P̃∗ be a family of functions of the form (6.4) such that the squares (6.8) commute.

Then P̃∗ is a morphism of presheaves if and only if for all f : Y → X and A ∈ F (X)

the squares (6.7) with P̃∗,∗ = ΨD(P̃∗)∗,∗ commute.

Proof: Both assertions follow from Lemma 6.2 and Lemma 5.2.

Let FamN
D,0 be the subset of FamN

D that consists of those double families where all functions

P̃X,A are bijections and FunND,0 be the subset of FunND that consists of those morphisms of

presheaves P̃ that make (6.9) a pullback. We will need the following result.

Lemma 6.4 A commutative square S of morphisms of presheaves on a category C is a
pullback in the category of presheaves if and only if for each X ∈ C the square S(X) is a
pullback in the category of sets.

Proof: This fact is well known, for a proof see [8, Theorem 7.5.2, p.52].

Lemma 6.5 One has
ΦN
D (FamN

D,0) ⊂ FunND,0

ΨN
D (FunND,0) ⊂ FamN

D,0

and the corresponding functions

ΦN
D,0 : FamN

D,0 → FunND,0

ΨN
D,0 : FunND,0 → FamN

D,0

are mutually inverse bijections.

Proof: The second statement follows from the first one by Lemma 5.1.

The first statement follows from Lemma 5.4 and Lemma 6.4.

Lemma 6.6 Let D′ be a commutative square of morphisms of presheaves of the form (6.9)
and D be a diagram of morphisms of presheaves of the form (6.1) obtained from D′ by

removing P̃ . Then D′ is a pullback if and only if for all X ∈ C and A ∈ F (X) the function

ΨD(P̃ )X,A : a−1
X (A)→ b−1

X (PX(A))

is a bijection.

Proof: The ”only if” part follows from the second inclusion of Lemma 6.5. The ”if” part
follows from the fact that ΨN

D is bijective by Lemma 6.2 and Lemma 5.2.
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7 Appendix C. Exchange isomorphisms

Let f : X → Z, g : Y → Z be two morphisms and let

pb(f, g)
prf,gX−−−→ X

prf,gY

y yf
Y

g−−−→ Z

pb(g, f)
prg,fY−−−→ Y

prg,fX

y yg
X

f−−−→ Z

be pullbacks. Since the first square commutes we have

prf,gX ◦ f = prf,gY ◦ g

and therefore since the second square is a pullback there exists a unique morphism

exch1 : pb(f, g)→ pb(g, f)

such that
exch1 ◦ prg,fX = prf,gX

exch1 ◦ prg,fY = prf,gY

Applying the same reasoning with the roles of two squares exchanged we obtain a unique
morphism

exch2 : pb(g, f)→ pb(f, g)

such that
exch2 ◦ prf,gY = prg,fY

exch2 ◦ prf,gX = prg,fX

Lemma 7.1 In the notations introduced above one has

exch1 ◦ exch2 = Idpb(f,g) (7.1)

exch2 ◦ exch1 = Idpb(g,f)

In particular, both exch1 and exch2 are isomorphisms.

Proof: It is sufficient to prove (7.1). The proof of the second equality is exactly symmetrical
to the proof of the first.

The domain and codomain of both sides of (7.1) is pb(f, g). We know that pb(f, g) is a pull-
back with projections prf,gX and prf,gY . Therefore it is sufficient to show that the compositions
of the left and right hand sides of (7.1) with these projections coincide.

We have
exch1 ◦ exch2 ◦ prf,gX = exch1 ◦ prg,fX = prf,gX = Idpb(f,g) ◦ prf,gX

and similarly for the second projection. The lemma is proved.
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