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Abstract

This is the third paper in a series started in [9]. In it we construct a C-system
CC(C, p) starting from a category C together with a morphism p : Ũ → U , a choice of
pull-back squares based on p for all morphisms to U and a choice of a final object of
C. Such a quadruple is called a universe category. We then define universe category
functors and construct homomorphisms of C-systems CC(C, p) defined by universe
category functors.

In the last section we give, for any C-system CC, three different constructions of
pairs ((C, p), H) where (C, p) is a universe category and H : CC → CC(C, p) is an
isomorphism.

1 Introduction

The concept of a C-system in its present form was introduced in [9]. The type of the C-
systems is constructively equivalent to the type of contextual categories defined by Cartmell
in [4] and [3] but the definition of a C-system is slightly different from the Cartmell’s foun-
dational definition.

In [8] we constructed for any pair (R,LM) where R is a monad on Sets and LM a left R-
module with values in Sets a C-system CC(R,LM). In the particular case of pairs (R,LM)
corresponding to binding signatures (cf. [1], [5], [6, p.228]) the regular sub-quotients of
CC(R,LM) are the C-systems corresponding to dependent type theories of the Martin-Lof
genus.

In this paper we describe another construction that generates C-systems. This time the
input data is a quadruple that consists of a category C, a morphism p : Ũ → U in this
category, a choice of pull-back squares based on p for all morphisms to U and a choice of a
final object in C. Such a quadruple is called a universe category. For any universe category
we construct a C-system that we denote by CC(C, p).
We then define the notion of a universe category functor and construct homomorphisms of
C-systems of the form CC(C, p) corresponding to universe category functors. For universe
category functors satisfying certain conditions these homomorphisms are isomorphisms. In
particular, any equivalence F : C → C ′ together with an isomorphism F (p) ∼= p′ (in the cat-
egory of morphsims) defines a universe category functor whose associated homomorphism
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of C-systems is an isomorphism. This implies the C-systems that correspond to two differ-
ent choices of final objects and pull-backs for the same C and p are connected by a given
isomorphism which justifies our simplified notation CC(C, p).
To the best of our knowledge it is the only known construction of a C-system from a category
level data that transforms equivalences into isomorphisms. Because of this fact we find it
important to present both the construction of the C-system and the construction of the
homomorphisms defined by universe functors in detail.

Next we explore the question of how to construct, for a given C-system CC, a universe cate-
gory (C, p) together with an isomorphism CC → CC(C, p). It is clear from the functoriality
theorem of the previous section that if this problem has a solution then it has many solutions.
We construct three such solutions each having certain advantages and disadvantages.

The set of universe categories in a given Grothendieck universe has a structure of a 2-
category suggested by Definition 4.1. It seems likely that our main construction extends to
a construction of a functor from this 2-category to the 1-category of C-systems. We leave
the investigations of the properties of this 2-category and of this functor for the future.

To avoid the abuse of language inherent in the use of the Theorem-Proof style of pre-
senting mathematics when dealing with constructions we use the pair of names Problem-
Construction for the specification of the goal of a construction and the description of the
particular solution.

In the case of a Theorem-Proof pair one usually refers (by name or number) to the statement
when using both the statement and the proof. This is acceptable in the case of theorems
because the future use of their proofs is such that only the fact that there is a proof but not
the particulars of the proof matter.

In the case of a Problem-Construction pair the content of the construction often matters in
the future use. Because of this we often have to refer to the construction and not to the
problem and we assign in this paper numbers both to Problems and to the Constructions.

Following the approach used in [9] we write the composition of morphisms in categories in
the diagrammatic order, i.e., for f : X → Y and g : Y → Z their composition is written
as f ◦ g. This makes it much easier to translate between diagrams and equations involving
morphisms.

The methods of this paper are fully constructive and the style we write in is the “formalization
ready” style where the proofs are spelled out in detail even when the assertion may appear
obvious to the practitioners of a particular tradition in mathematics. This particular paper
is written with having in mind the possibility of formalization both in the Zermelo-Fraenkel
set theory (without the axiom of choice) and its constructive versions and in any type theory
including Church’s type theory or HOL.

Following the distinction that becomes essential in the univalent formalization (cf. [2]) we
use the word “category” in the contexts where the the corresponding object is used in a way
that is functorial for equivalences of categories and the word “precategory” otherwise.

The main construction of this paper was introduced in [7]. I am grateful to The Centre
for Quantum Mathematics and Computation (QMAC) and the Mathematical Institute of
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the University of Oxford for their hospitality during my work on the previous version of
the paper and to the Department of Computer Science and Engineering of the University of
Gothenburg and Chalmers University of Technology for its the hospitality during my work
on the present version.

2 Construction of CC(C, p).

Definition 2.1 Let C be a category. A universe structure on a morphism p : Ũ → U in C
is a mapping that assigns to any morphism f : X → U in C a pull-back square

(X; f)
Q(f)−−−→ Ũ

pX,f

y yp
X

f−−−→ U

A universe in C is a morphism p together with a universe structure on it.

In what follows we will write (X; f1, . . . , fn) for (. . . ((X; f1); f2) . . . ; fn).

Example 2.2 Let G be a group. Consider the category BG with one object pt whose
monoid of endomorphisms is G. Recall that any commutative square where all four arrows
are isomorphisms is a pull-back square. Let p : pt → pt be the unit object of G. Then a
universe structure on p can be defined by specifying, for every g : pt→ pt, of the horizontal
morphism Q(g) in the corresponding canonical square. There are no restrictions on the choice
of Q(g) since for any such choice one can take the vertical morphism to be Q(g)g−1 obtaining
a pull-back square. Therefore, the set of universe structures on p is GG. The automorphisms
of BG are given by Aut(G) (with two automorphisms being isomorphic as functors if they
differ by an inner automorphisms of G). Therefore, there are (GG)/Aut(G) isomorphism
classes of categories with universes with the underlying category BG and the underlying
universe morphism being Id : pt → pt. Note that in this case all auto-equivalences of the
category are automorphisms and so simply saying that we will consider universes up to an
equivalence of the underlying category does not change the answer. To have, as is suggested
by category-theoretic intuition, no more than one universe structure on a morphism one
needs to consider categories with universes up to equivalences of categories with universes
and then one has the obligation to prove that the constructions that are supposed to produce
objects such as C-systems map equivalences of categories with universes to isomorphisms.
In the case of the main construction of this paper it is achieved in Lemma 4.8.

For f : W → X and g : W → Ũ we will denote by f ∗ g the unique morphism such that

(f ∗ g) ◦ pX,F = f

(f ∗ g) ◦Q(F ) = g
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For X ′
f→ X

F→ U we let Q(f, F ) denote the morphism

(pX′,f◦F ◦ f) ∗Q(f ◦ F ) : (X ′; f ◦ F )→ (X;F )

such that in particular
Q(f, F ) ◦Q(F ) = Q(f ◦ F ) (1)

Lemma 2.3 The square

(X ′; f ◦ F )
Q(f,F )−−−−→ (X;F )

pX′,f◦F

y ypX,F
X ′

f−−−→ X

(2)

is a pull-back square.

Proof: Consider the diagram

(X ′; f ◦ F )
Q(f,F )−−−−→ (X;F )

Q(F )−−−→ Ũ

pX′,f◦F

y ypX,F yp
X ′

f−−−→ X
F−−−→ U

The composition of two squares of this diagram equals the square with the sides pX′,f◦F ,
f ◦ F , Q(f ◦ F ) and p, which is a pull-back square. The right hand side square in this
diagram is a pull-back square. This implies that the left hand side square is a pull-back
square.

Lemma 2.4 If f : X ′ → X is an isomorphism then Q(f, F ) is an isomorphism.

Proof: It follows from Lemma 2.3 by general properties of pull-back squares.

Lemma 2.5 For f ′ : X ′′ → X ′, f : X ′ → X and F : X → U one has

Q(f ′, f ◦ F ) ◦Q(f, F ) = Q(f ′ ◦ f, F )

Proof: Both sides of the equality are morphisms to (X;F ), therefore it is sufficient to verify
that

Q(f ′, f ◦ F ) ◦Q(f, F ) ◦Q(F ) = Q(f ′ ◦ f, F ) ◦Q(F )

and
Q(f ′, f ◦ F ) ◦Q(f, F ) ◦ pX,F = Q(f ′ ◦ f, F ) ◦ pX,F

For the first one we have

Q(f ′, f ◦ F ) ◦Q(f, F ) ◦Q(F ) = Q(f ′, f ◦ F ) ◦Q(f ◦ F ) = Q(f ′ ◦ f ◦ F )
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and
Q(f ′ ◦ f, F ) ◦Q(F ) = Q(f ′ ◦ f ◦ F )

and for the second one we have

Q(f ′, f ◦ F ) ◦Q(f, F ) ◦ pX,F = Q(f ′, f ◦ F ) ◦ pX′,f◦F ◦ f = pX′′,f ′◦f◦F ◦ f ′ ◦ f

and
Q(f ′ ◦ f, F ) ◦ pX,F = pX′′,f ′◦f◦F ◦ f ′ ◦ f.

Definition 2.6 A universe category is a triple (C, p, pt) where C is a category, p : Ũ → U
is a morphism in C with a universe structure on it and pt is a final object in C.

We will often denote a universe category by a pair (C, p).
Let (C, p) be a universe category and X ∈ C. Define by induction on n pairs (Obn(C, p), intn)
where Obn = Obn(C, p) are sets and intn : Obn → Ob(C) are functions, as follows:

1. Ob0 = unit where unit is the distinguished set with only one point tt and int0 maps
this point to pt.

2. Obn+1 = qA∈ObnHomC(intn(A), U) and intn+1(A,F ) = (intn(A);F ).

In what follows we will write int instead of intn since n can usually be inferred.

Define for each n the function ftn+1 : Obn+1 → Obn by the formula ftn+1(A,F ) = A and
define ft0 as the identity function of Ob0.

For each B = (ft(B), F ) ∈ Obn+1 define pB : int(B) → int(ft(B)) as pint(ft(B)),F . For
B ∈ Ob0 define pB as Idint(B).

For each A ∈ Obm, B = (ft(B), F ) ∈ Obn+1 and f : int(A) → int(ft(B)) define f ∗(B) ∈
Obm+1 as

f ∗(B) = (A, f ◦ F ) (3)

and q(f,B) : int(f ∗(B))→ int(B) as

q(f,B) = Q(f, F ) (4)

Recall that the concept of a C0-system was defined in [9, Definition 2.1].

Problem 2.7 For each universe category (C, p, pt) to define a C0-system CC0(C, p).

Construction 2.8 We set

Ob(CC0(C, p)) = qn≥0Obn(C, p)

where Obn = Obn(C, p) are the sets introduced above. Let

intOb : Ob(CC0(C, p))→ C
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be the sum of the functions intn. Let

Mor(CC0(C, p)) = qΓ,Γ′∈Ob(CC0(C,p))HomC(intOb(Γ), intOb(Γ
′))

Define the function
intMor : Mor(CC0(C, p))→Mor(C)

by the formula
intMor(Γ, (Γ

′, a)) = a

We will often write simply int for intOb and intMor.

The identity morphisms and the composition of morphisms are defined as in C. The proofs
of the axioms of a category are straightforward.

The definition of the length function is obvious.

We define pt as the unique element (0, tt) of Ob(CC0(C, p)) of length zero.

The function ft : Ob(CC0)→ Ob(CC0) is defined as the sum of functions ftn defined above.

The p-morphisms p(n,A) are defined such that int(p(n,A)) = pA where pA where defined above.

Similarly one defines the morphisms q(f, (n+1, B)) such that int(q(f, (n+1, B))) = q(f,B).

Lemma 2.5 shows that the structure that we have defined satisfies the axioms of a C0-system
given in [9, Definition 2.1].

Let us also note the following formulas. For ∆ = (n+ 1, (B,F )) and Γ = (n,B) one has

p∆ = (∆, (Γ, pint(B),F )) (5)

For Γ′ = (m,A), Γ = (n,B) and f : Γ′ → Γ one has

f ∗(n+ 1, (B,F )) = (m+ 1, (A, int(f) ◦ F )) (6)

q(f, (n+ 1, (B,F ))) = (f ∗(∆), (∆, Q(int(f), F ))) (7)

Lemma 2.9 The functions intOb and intMor defined above form a fully faithful functor from
the category underlying the C0-system CC0(C, p) to C.

Proof: Easy from the construction.

Remark 2.10 The image of int on objects consists of those objects for which the unique
morphism to pt can be represented as a composition of morphisms of the form pX,F . Note
that int need not be an injection on the sets of objects. For example, if C is the one
point category with its unique structure of a universe category then Ob(CC(C, p)) will be
isomorphic to the set of natural numbers.
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Problem 2.11 For each universe category (C, p, pt) to define a C-system CC(C, p).

Construction 2.12 We will define CC(C, p) as an extension of CC0(C, p) using [9, Propo-
sition 2.4]. In particular Ob(CC) = Ob(CC0), Mor(CC) = Mor(CC0) and similarly for the
length function, ft, p-morphisms and q-morphisms.

The canonical squares of CC0(C, p) are of the form

f ∗(Γ)
q(f,Γ)−−−→ Γ

pf∗(Γ)

y ypΓ

Γ′
f−−−→ ft(Γ)

(8)

For Γ = (n + 1, (B,F )) where B ∈ Obn(C, p) and F : int(A) → U , Γ′ = (m,A) where
A ∈ Obm(C, p), and f = (Γ′, (Γ, a)) the image of this square under the functor int is of the
form

(int(A); a ◦ F )
Q(a,F )−−−−→ (int(B);F )

pint(A),a◦F

y pint(B),F

y
int(A)

F−−−→ int(B)

This is one of the squares of the form (2) and therefore by Lemma 2.3 it is a pull-back
square. Since int is fully faithful by Lemma 2.9, the squares (8) are pull-back squares in
the codomain of a fully faithful functor and therefore they are also pull-back squares in the
domain of this functor, i.e., in CC0(C, p). In view of [9, Proposition 2.4] this implies that
the C0-system CC0(C, p) has a unique structure of a C-system and we denote this C-system
by CC(C, p).

Remark 2.13 Recall that in [9] we suggested the notation Obn(CC) for the set of objects of
length n of a C-system CC. We will avoid using this notation here because the sets Obn(C, p)
are not equal to the subsets of elements of length n in CC(C, p). Indeed, the elements of
{Γ ∈ Ob(CC(C, p)) | l(Γ) = n} are not the elements of Obn(C, p) but pairs of the form (n,A)
where A ∈ Obn(C, p).

Example 2.14 An important example of a C-system of the form CC(C, p) is “the” C-system
Fam of families of sets considered in [3] and [4]. The definition of Fam in [4, p.238] as well
as the preceding it discussion in [4, p.232] is somewhat incomplete in that the notion of “a
set” and moreover the notion of “a family of sets” are taken as being uniquely determined
by some previous agreement that is never explicitly referred to.

To define Fam as a C-system of the form CC(C, p) let us choose two Grothendieck universes
U and U1 in our set theory such that U1 is an element of U . One then defines the category
Sets(U) of sets as the category whose set of objects is U and such that for X, Y ∈ U the set
of morphisms from X to Y in Sets(U) is the set of functions from X to Y in the ambient set
theory (which automatically is an element of U). This category will contain U1 as an object
and also, because of the closure conditions that U satisfies, it will contain as an object the
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set Ũ1 of pairs (X, x) where X ∈ U1 and x ∈ X. Since morphisms in Sets are the same as

functions in the ambient set theory we also get pU1 : Ũ1 → U1 that takes (X, x) to X. Using
the standard construction of pull-backs in sets we obtain a universe structure on p. Now we
can define:

Fam(U,U1) := CC(Sets(U), pU1)

The explicit definition given in [4] avoids the use of the second universe (universe U in our
notations) by constructing the same C-system “by hand”. In our approach we have to use
U but the resulting C-system does not depend on U . Indeed, if our set theory assumes two
Grothendieck universes U and U ′ such that both contain U1 as an element then one can show
that

CC(Sets(U), pU1) = CC(Sets(U ′), pU1) (9)

where the equality means in particular that the sets of objects of these two C-systems are
equal as sets. Because of this one can denote this C-system as Fam(U1).

3 On homomorphisms of C-systems

We will need below the concept of a homomorphism of C-systems. Homomorphisms of
C-systems were defined in [9, Remark 2.8]. Let us recall it here in a more detailed form.

Definition 3.1 Let CC1, CC2 be C-systems. A homomorphism F from CC1 to CC2 is a
pair of functions FOb : Ob(CC1)→ Ob(CC2), FMor : Mor(CC1)→Mor(CC2) such that:

1. F commutes with the length functions, i.e., for all X ∈ Ob(CC1) one has

l(FOb(X)) = l(X)

2. F commutes with the ft function, i.e., for all X ∈ Ob(CC1) one has

ft(FOb(X)) = FOb(ft(X))

3. F is a functor, i.e., one has:

(a) FMor and FOb commute with the domain and codomain functions,

(b) for all X ∈ Ob(CC1) one has

FMor(IdX) = IdFMor(X)

(c) for all f, g ∈Mor(CC1) of the form f : X → Y , g : Y → Z one has

FMor(f ◦ g) = FMor(f) ◦ FMor(g)

4. F takes canonical projections to canonical projections, i.e., for all X ∈ Ob(CC1) one
has

pFOb(X) = FMor(pX)
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5. F takes q-morphisms to q-morphisms, i.e., for all X, Y ∈ Ob(CC1) such that l(Y ) > 0
and all f : X → ft(Y ) one has

FMor(q(f, Y )) = q(FMor(f), FOb(Y ))

6. F takes s-morphisms to s-morphisms, i.e., for all X, Y ∈ Ob(CC1) such that l(Y ) > 0
and f : X → Y one has

sFMor(f) = FMor(sf )

In what follows we will write F for both FOb and FMor since the choice of which one is meant is
determined by the type of the argument. Note that the condition that F commutes with the
domain function together with the q-morphism condition implies that for all X, Y ∈ Ob(CC1)
such that l(Y ) > 0 and all f : X → ft(Y ) one has

F (f ∗(Y )) = F (f)∗(F (Y )) (10)

Lemma 3.2 Let F : CC1 → CC2 and G : CC2 → CC3 be homomorphisms of C-systems.
Then the compositions of functions FOb ◦ GOb and FMor ◦ GMor is a homomorphism of C-
systems.

Proof: The proof is relatively straightforward but long and we leave it for the formal
version(s) of the paper.

Remark 3.3 Since homomorphisms of C-systems are pairs of functions between sets sat-
isfying certain conditions and the composition is given by composition of these functions,
the associativity and unitality of this composition follows easily from the associativity and
unitality of the composition of functions between sets. Therefore, if we restrict our atten-
tion to the C-systems whose sets Ob and Mor are elements of a chosen set (“universe”)
U that contains natural numbers and is closed under the power-set operation, then such
C-systems, their homomorphisms, compositions of these homomorphisms and the identity
homomorphisms form a category of C-systems in U .

Lemma 3.4 Let CC1, CC2, Fob and FMor be as above. Assume further that these data
satisfies all of the conditions of the definition except, possibly, the s-morphisms condition.
Then it satisfies the s-morphisms condition and forms a homomorphism of C-systems.

Proof: Let f : X → Y be as in the s-morphism condition. We need to show that F (sf ) =
sF (f). Observe first that the right hand side is well defined since l(F (Y )) = l(Y ) > 0.
We have F (sf ) : F (X) → F ((f ◦ pY )∗(Y )) and sF (f) : F (X) → (F (f) ◦ pF (Y ))

∗(F (Y )).
One proves that codomains of both morphisms are equal using that F is a functor, the
p-morphisms condition and (10).
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Since the canonical squares of CC2 are pull-back squares the object (F (f) ◦ pF (Y ))
∗(F (Y ))

is a fiber product with the projections q(F (f) ◦ pF (Y ), F (Y )) and pF (f)∗(F (Y ). Therefore it is
sufficient to check that one has

F (sf ) ◦ q(F (f) ◦ pF (Y ), F (Y )) = sF (f) ◦ q(F (f) ◦ pF (Y ), F (Y )) (11)

and
F (sf ) ◦ pF (f)∗(F (Y ) = sF (f) ◦ pF (f)∗(F (Y ) (12)

We have

F (sf ) ◦ q(F (f) ◦ pF (Y ), F (Y )) = F (sf ) ◦ q(F (f) ◦ F (pY ), F (Y )) =

F (sf ) ◦ q(F (f ◦ pY ), F (Y )) = F (sf ) ◦ F (q(f ◦ pY , Y )) = F (sf ◦ q(f ◦ pY , Y )) = F (f)

where the first equality holds by condition (4) of Definition 3.1, the second and the fourth
equalities by condition (3), the third equality by condition (5) and the fifth equality by axiom
[9, Definition 2.3(3)] of the operation s for CC1.

On the other hand
sF (f) ◦ q(F (f) ◦ pF (Y ), F (Y )) = F (f)

directly by the axiom [9, Definition 2.3(3)] of the operation s for CC2. This proves (11).

For the equation (12) we have

F (sf ) ◦ pF (f)∗(F (Y ) = F (sf ) ◦ pF (f∗(Y )) = F (sf ) ◦ F (pf∗(Y )) = F (sf ◦ pf∗(Y )) =

F (IdX) = IdF (X)

where the first equation holds by (10), the second one by condition (4), the third one by
condition (3), the fourth one by the axiom [9, Definition 2.3(2)] of the operation s for CC1

and the fifth one by condition (3).

On the other hand
sF (f) ◦ pF (f)∗(F (Y ) = IdF (X)

directly by the axiom [9, Definition 2.3(2)] of the operation s for CC2. This completes the
proof of Lemma 3.4.

Remark 3.5 As defined in [9], a C-system without operation s is called a C0-system. The
pairs FOb, FMor that satisfy all of the conditions of Definition 3.1 other than, possibly, the s-
morphism condition are homomorphisms of C0-systems. Therefore, if one defines a categories
of C-systems and C0-systems based on a particular universe of sets as outlined in Remark
3.3 then Lemma 3.4 implies that the forgetting functor from the category of C-systems in U
to C0-systems in U is a full embedding.
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4 Functoriality of CC(C, p)

Definition 4.1 Let (C, p, pt) and (C ′, p′, pt′) be universe categories. A functor of universe

categories from (C, p, pt) to (C ′, p′, pt′) is a triple (Φ, φ, φ̃) where Φ : C → C ′ is a functor and

φ : Φ(U)→ U ′, φ̃ : Φ(Ũ)→ Ũ ′ are morphisms such that:

1. Φ takes the canonical pull-back squares based on p to pull-back squares,

2. Φ takes pt to a final object of C ′,

3. the square

Φ(Ũ)
φ̃−−−→ Ũ ′

Φ(p)

y yp′
Φ(U)

φ−−−→ U ′

is a pull-back square.

Let
(Φ, φ, φ̃) : (C, p, pt)→ (C ′, p′, pt′)

be a functor of universes categories. Let Obn = Obn(C, p) and Ob′n = Obn(C ′, p′). Let int
and int′ be the corresponding functions to C and C ′.
Denote by ψ the isomorphism ψ : pt′ → Φ(pt). Define, by induction on n, pairs (Hn, ψn)
where Hn : Obn → Ob′n and ψn is a family of isomorphisms of the form

ψn(A) : int′(Hn(A))→ Φ(int(A))

given for all A ∈ Obn. We set:

1. for n = 0, H0 is the unique map from a one point set to a one point set and ψ0(A) = ψ,

2. for the successor of n we set

Hn+1(A,F ) = (Hn(A), ψn(A) ◦ Φ(F ) ◦ φ) (13)

and define

ψn+1(A,F ) : (int(Hn(A));ψn(A) ◦ Φ(F ) ◦ φ)→ Φ(int(A,F ))

as the unique morphism such that the left hand side square of the diagram

int′(Hn+1(A,F ))
ψn+1(A,F )−−−−−−→ Φ(int(A,F ))

Φ(Q(F ))−−−−→ Φ(Ũ)
φ̃−−−→ Ũ ′

pHn+1(A,F )

y yΦ(p(A,F ))

yΦ(p)

yp′
int′(Hn(A))

ψn(A)−−−→ Φ(int(A))
Φ(F )−−−→ Φ(U)

φ−−−→ U ′

(14)
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commutes, i.e.,
ψ(A,F ) ◦ Φ(p(A,F )) = pH(A,F ) ◦ ψ(A) (15)

and
ψn+1(A,F ) ◦ Φ(Q(F )) ◦ φ̃ = Q(ψn(A) ◦ Φ(F ) ◦ φ) (16)

Note that the existence and uniqueness of ψn+1(A,F ) follows from the fact that the right
hand side squares of (14) are pull-back squares as a corollary of the definition of a universe
category functor and the fact that the canonical square for the morphism ψn(A) ◦ Φ(F ) ◦ φ
commutes.

Moreover since the outer square of (14) is a pull-back square, the left-most square commutes
and the two right hand side squares are pull-back squares we conclude that the left hand
side square is a pull-back square. In combination with the inductive assumption that ψn(A)
is an isomorphism this implies that ψn+1(A,F ) is an isomorphism.

In what follows we will write ψ(A) instead of ψn(A) since n can often be inferred.

Lemma 4.2 The functions H commute with the functions ft, i.e., for A ∈ Obn one has

ft(H(A)) = H(ft(A))

Proof: Immediate from the construction.

Let A ∈ Obm, A′ ∈ Obm′ and a : int(A)→ int(A′). Define a morphism

H(a) : int′(H(A))→ int′(H(A′))

as
H(a) = ψ(A) ◦ Φ(a) ◦ ψ(A′)−1 (17)

Lemma 4.3 For Φ as above one has:

1. for A ∈ Obn one has H(Idint(A)) = Idint(H(A)),

2. for a′ : int(A′′)→ int(A′) and a : int(A′)→ int(A) one has H(a′ ◦ a) = H(a′) ◦H(a).

Proof: Immediate from the construction.

Lemma 4.4 For A ∈ Obn one has H(pA) = pH(A).

Proof: If n = 0 the statement is obvious. For (A,F ) ∈ Obn+1 we have

H(p(A,F )) = ψ(A,F ) ◦ Φ(p(A,F )) ◦ ψ(A)−1

Therefore we need to show that

ψ(A,F ) ◦ Φ(p(A,F )) = pH(A,F ) ◦ ψ(A)

which is (15).
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Lemma 4.5 Let A ∈ Obm, B = (ft(B), F ) ∈ Obn+1 and a : int(A) → int(ft(B)) is a
morphism. Then one has

H(a∗(B)) = H(a)∗(H(B)) (18)

and
H(q(a,B)) = q(H(a), H(B)) (19)

Proof: We have

H(a∗(ft(B), F )) = H(A, a ◦ F ) = (H(A), ψ(A) ◦ Φ(a ◦ F ) ◦ φ)

and
H(a)∗(H(ft(B), F )) = H(a)∗(H(ft(B)), ψ(ft(B)) ◦ Φ(F ) ◦ φ) =

(H(A), H(a) ◦ ψ(ft(B)) ◦ Φ(F ) ◦ φ)

Therefore we need to check that

ψ(A) ◦ Φ(a) = H(a) ◦ ψ(ft(B))

which follows from the definition of H(a).

To prove (19) it is sufficient, since ψ(B) is an isomorphism, to show that

H(q(a,B)) ◦ ψ(B) = q(H(a), H(B)) ◦ ψ(B)

In view of (18) both sides are morphisms from int(H(a∗(B))) to

Φ(int(B)) = Φ((int(ft(B));F ))

Since the two right squares of (14) for (ft(B), F ) are pull-back, Φ((int(ft(B));F )) is a fiber

product with projections Φ(Q(F )) ◦ φ̃ and Φ(pB). Therefore it is sufficient to check two
equalities

H(q(a,B)) ◦ ψ(B) ◦ Φ(Q(F )) ◦ φ̃ = q(H(a), H(B)) ◦ ψ(B) ◦ Φ(Q(F )) ◦ φ̃ (20)

and
H(q(a,B)) ◦ ψ(B) ◦ Φ(pB) = q(H(a), H(B)) ◦ ψ(B) ◦ Φ(pB) (21)

Note first that

H(q(a,B)) ◦ ψ(B) = ψ(a∗(B)) ◦ Φ(q(a, (ft(B), F ))) = ψ(A, a ◦ F ) ◦ Φ(Q(a, F )) (22)

where the first equality is by (17) and the second by (4), and

q(H(a), H(B)) ◦ ψ(B) = q(H(a), (H(ft(B)), ψ(ft(B)) ◦ Φ(F ) ◦ φ)) ◦ ψ(B) =

Q(H(a), ψ(ft(B)) ◦ Φ(F ) ◦ φ) ◦ ψ(ft(B), F ) (23)

where is first equality is by (13) and the second by (4).
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For (20) we have

H(q(a,B)) ◦ ψ(B) ◦ Φ(Q(F )) ◦ φ̃ = ψ(A, a ◦ F ) ◦ Φ(Q(a, F )) ◦ Φ(Q(F )) ◦ φ̃ =

ψ(A, a ◦ F ) ◦ Φ(Q(a ◦ F )) ◦ φ̃ = Q(ψ(A) ◦ Φ(a ◦ F ) ◦ φ)

where the first equality is by (22), second equality is by (1) and the third one by (16), and

q(H(a), H(B)) ◦ ψ(B) ◦ Φ(Q(F )) ◦ φ̃ =

Q(H(a), ψ(ft(B)) ◦ Φ(F ) ◦ φ) ◦ ψ(ft(B), F ) ◦ Φ(Q(F )) ◦ φ̃ =

Q(H(a), ψ(ft(B)) ◦ Φ(F ) ◦ φ) ◦Q(ψ(ft(B)) ◦ Φ(F ) ◦ φ) =

Q(H(a) ◦ ψ(ft(B)) ◦ Φ(F ) ◦ φ) =

Q(ψ(A) ◦ Φ(a) ◦ ψ(ft(B))−1 ◦ ψ(ft(B)) ◦ Φ(F ) ◦ φ) = Q(ψ(A) ◦ Φ(a ◦ F ) ◦ φ)

where the first equality is by (23), the second equality is by (16), the third one by (1), and
the fourth one by (17). For (20) we have:

H(q(a,B))◦ψ(B)◦Φ(pB) = ψ(A, a◦F )◦Φ(Q(a, F ))◦Φ(pB) = ψ(a∗(B))◦Φ(Q(a, F )◦pB) =

ψ(a∗(B)) ◦ Φ(q(a,B) ◦ pB) = ψ(a∗(B)) ◦ Φ(pa∗(B)) ◦ Φ(a)

where the first equality is by (22), the second by (3) and the assumption that Φ is a functor,
the third one by (4) and the fourth one by the commutativity of the canonical squares and
the assumption that Φ is a functor.

For the other side we have:

q(H(a), H(B)) ◦ ψ(B) ◦ Φ(pB) = q(H(a), H(B)) ◦ pH(B) ◦ ψ(ft(B)) =

pH(a∗(B)) ◦H(a) ◦ ψ(ft(B)) = pH(a∗(B)) ◦ ψ(A) ◦ Φ(a) = ψ(a∗(B)) ◦ Φ(pa∗(B)) ◦ Φ(a)

Where the first equality is by (15), the second by the commutativity of the canonical squares,
the third by (17) and the fourth again by (15). This completes the proof of Lemma 4.5.

Problem 4.6 Let
(Φ, φ, φ̃) : (C, p, pt)→ (C ′, p′, pt′)

be a functor of universes categories. To define a homomorphism H = H(Φ, φ, φ̃) from
CC(C, p) to CC(C ′, p′).

Construction 4.7 We define HOb as the sum of functions Hn constructed above and for

(Γ, (Γ′, a)) ∈Mor(CC(C, p))

we set
HMor(Γ, (Γ

′, a)) = (HOb(Γ), (HOb(Γ
′), H(a)))

where H(a) was constructed above.
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The fact that HOb commutes with the length functions is immediate from the construction.
The fact that it commutes with the ft functions follows from Lemma 4.2, the fact that
HOb and HMor form a functor follows from Lemma 4.3. The fact that HMor satisfies the
p-condition follows from Lemma 4.4. The fact that HMor satisfies the q-condition follows
from Lemma 4.5.

Applying Lemma 3.4 we conclude that H = (HOb, HMor) is a homomorphism of C-systems.

Lemma 4.8 Let (Φ, φ, φ̃) be as in Problem 4.6 and let H be the corresponding solution of
Construction 4.7. Then one has:

1. If Φ is a faithful functor and φ is a monomorphism then H is an injection of C-systems.

2. If Φ is a fully faithful functor and φ is an isomorphism then H is an isomorphism.

Proof: Both statements in relation to objects have straightforward proofs by induction on
the length. In relation to morphisms the statements follow from the ones about the objects
and the fact that int is fully faithful.

Lemma 4.8 can be further specialized into the following example.

Example 4.9 Let C be a category and p : Ũ → U a morphism in C. Let now (pX,F , Q(F ))
and (p′X,F , Q

′(F )) be two universe structures on p and pt and pt′ be two final objects in
C. These data gives us two universe categories. Let us denote them by UC and UC ′. The
identity functor Φ = IdC on C together with the identity morphisms φ = IdU and φ̃ = IdŨ
define a universe category functor Φ : UC → UC ′. The corresponding homomorphism of
C-systems HΦ : CC(UC)→ CC(UC ′) is an isomorphism with the inverse isomorphism given
by the same triple considered as a universe functor from UC to UC ′. This example shows
that, up to a “canonical” isomorphism, the C-system defined by a universe category depends
only on the category C and the morphism p.

Problem 4.10 Let (C, p) be a universe category. Let CC be a C-system. Given the following
collection of data:

1. A functor I : CC → C from the underlying category of CC to C,

2. For each Γ ∈ CC a function

uΓ : Ob1(Γ)→ HomC(I(Γ), U)

3. For each Γ ∈ CC, ∆ ∈ Ob1(Γ) an isomorphism

γ∆ : (I(Γ);u(∆))→ I(∆)

such that
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1. the morphism πI(pt) : I(pt)→ pt is an isomorphism

2. for each f : Γ′ → Γ and ∆ ∈ Ob1(Γ) one has uΓ′(f
∗(∆)) = I(f) ◦ uΓ(∆),

3. for each f : Γ′ → Γ and ∆ ∈ Ob1(Γ) one has pI(Γ),u(∆) = γ∆ ◦ I(p∆),

4. for each f : Γ′ → Γ and ∆ ∈ Ob1(Γ) one has γf∗(∆) ◦ I(q(f,∆)) = Q(I(f), u(∆)) ◦ γ∆

to construct a C-system homomorphism

H(I, u, γ) : CC → CC(C, p)

In what follows we will often write u instead of uΓ.

Construction 4.11 First we construct by induction on n pairs (Hn, ψn) where

Hn : Obn(CC)→ Obn(C, p)

is a function and ψn is a family of isomorphisms of the form

ψn(Γ) : int(H(Γ))→ I(Γ)

given for all Γ ∈ Obn(CC) as follows (we will sometimes write ψ instead of ψn and H instead
of Hn):

1. For n = 0 we set
H(pt) = pt

ψ(pt) = (πI(pt))
−1 : pt→ I(pt)

2. For the successor of n, Γ such that Hn(Γ) = B and ∆ ∈ Ob1(Γ) we set

Hn+1(∆) = (B,ψ(Gamma) ◦ u(∆)) (24)

and
ψ(∆) = Q(ψ(Γ), u(∆)) ◦ γ∆ (25)

The fact that ψ(∆) is an isomorphism follows from the inductive assumption, the
assumption that γ∆ is an isomorphism and Lemma 2.4.

The functions Hn define a function

HOb : Ob(CC)→ Ob(CC(C, p))

where HOb(Γ) = (l(Γ), Hl(Γ)) that commutes with the length functions and functions ft.

For f : Γ′ → Γ define

HMor(f) = (HOb(Γ
′), (HOb(Γ), ψ(Γ′) ◦ I(f) ◦ ψ(Γ)−1))
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This gives us a function

HMor : Mor(CC)→Mor(CC(C, p))

Note that we can also define HMor(f) as the unique morphism such that

int(HMor(f)) = ψ(Γ′) ◦ I(f) ◦ ψ(Γ)−1 (26)

Without using any more assumptions on I, γ and u one verifies easily that the pair H =
(HOb, HMor) is a functor from the underlying category of CC to the underlying category of
CC(C, p).
In view of Lemma 3.4 it remains to verify thatH satisfies the p-morphism and the q-morphism
conditions of Definition 3.1.

For the p-condition we need to verify that H(pΓ) = pH(Γ) for all Γ. Since both sides have
the same domain and codomain and int is bijective on morphisms with the a given domain
and codomain it is sufficient to verify that

int(H(pΓ)) = int(pH(Γ))

We proceed by induction on n = l(Γ):

1. for n = 0
int(H(Idpt)) = int(Idpt) = int(ppt) = int(pH(pt))

2. for the successor of n let ∆ ∈ Obn+1(CC) and Γ = ft(∆). Then ∆ ∈ Ob1(Γ) and

int(H(p∆)) = ψ(∆) ◦ I(p∆) ◦ ψ(Γ)−1 = Q(ψ(Γ), u(∆)) ◦ γ∆ ◦ I(p∆) ◦ ψ(Γ)−1 =

Q(ψ(Γ), u(∆)) ◦ pI(Γ),u(∆) ◦ ψ(Γ)−1

where the first equality is by (26), the second one by (25) and the third one by condition
(3) of the problem. On the other hand we have

int(pH(∆)) = int(p(n+1,(Hn(Γ),ψ(Γ)◦u(∆)))) = pint(H(Γ)),ψ(Γ)◦u(∆)

where the first equality is by (24) and the second by (5). Composing with ψ(Γ) we get

int(H(p∆)) ◦ ψ(Γ) = Q(ψ(Γ), u(∆)) ◦ pI(Γ),u(∆)

int(pH(∆)) ◦ ψ(Γ) = pint(H(Γ)),ψ(Γ)◦u(∆) ◦ ψ(Γ)

and these expressions are equal by commutativity of the squares (2).

To prove the q-condition let us verify first that for f : Γ′ → Γ and ∆ ∈ Ob1(Γ) one has

H(f ∗(∆)) = H(f)∗(H(∆)) (27)

Let H(Γ′) = (m,A) and H(Γ) = (n,B). Then

H(f ∗(∆)) = (m+ 1, (A,ψ(Γ′) ◦ u(f ∗(∆))))
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by (24) and

H(f)∗(H(∆)) = H(f)∗(n+ 1, (B,ψ(Γ) ◦ u(∆))) = (m+ 1, (A, int(H(f)) ◦ ψ(Γ) ◦ u(∆)))

where the first equality holds by (24) and the second by (6). Next one has

ψ(Γ′) ◦ u(f ∗(∆)) = ψ(Γ′) ◦ I(f) ◦ u(∆)

by condition (2) of the problem and

int(H(f)) ◦ ψ(Γ) ◦ u(∆) = ψ(Γ′) ◦ I(f) ◦ ψ(Γ)−1 ◦ ψ(Γ) ◦ u(∆) = ψ(Γ′) ◦ I(f) ◦ u(∆)

by (26).

The equality (27) implies that the morphisms H(q(f,∆)) and q(H(f), H(∆)) have the same
domain and codomain. Therefore to prove that they are equal it is sufficient to prove that
they become equal after application of int. We further compose both sides with ψ(∆). Then
we have

int(H(q(f,∆)))◦ψ(∆) = ψ(f ∗(∆))◦I(q(f,∆)) = Q(ψ(Γ′), I(f)◦u(∆))◦γf∗(∆)◦I(q(f,∆)) =

Q(ψ(Γ′), I(f) ◦ u(∆)) ◦Q(I(f), u(∆)) ◦ γ∆ = Q(ψ(Γ′) ◦ I(f), u(∆)) ◦ γ∆

where the first equality is by (26), the second by (25), the third by condition (4) of the
problem and the fourth by Lemma 2.5. On the other hand

int(q(H(f), H(∆))) ◦ ψ(∆) = int(q(H(f), (n+ 1, (B,ψ(Γ) ◦ u(∆))))) ◦ ψ(∆) =

Q(int(H(f)), ψ(Γ) ◦ u(∆)) ◦ ψ(∆) = Q(int(H(f)), ψ(Γ) ◦ u(∆)) ◦Q(ψ(Γ′), u(∆)) ◦ γ∆ =

Q(int(H(f)) ◦ ψ(Γ), u(∆)) ◦ γ∆ = Q(ψ(Γ′) ◦ I(f), u(∆)) ◦ γ∆

where the first equality is by (24), the second by (7), the third by (25), the fourth by Lemma
2.5 and the fifth by (26). This completes Construction 4.11.

Remark 4.12 Homomorphisms H(Φ, φ, φ̃) can be obtained as particular cases of homomor-
phisms H(I, u, γ). More precisely, we can state without a proof that

H(Φ, φ, φ̃) = H(I, u, γ)

where:

1. I(Γ) = Φ(int(Γ)) and I(f) = Φ(int(f)),

2. for Γ = (n,B) and ∆ = (n+ 1, (B,F )),

uΓ(∆) = Φ(F ) ◦ φ

3. for Γ = (n,B) and ∆ = (n + 1, (B,F )), γ∆ is the “natural” isomorphism from
(Φ(int(B)); Φ(F ) ◦ φ) to Φ(int(B);F ). More precisely

γ∆ = ((pΦ(int(B)),Φ(F )◦φ) ∗ (Q(Φ(F ) ◦ φ̃)))−1
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Lemma 4.13 Let I, u and γ be as in Problem 4.10 and let H be the corresponding homo-
morphism of Construction 4.11. Then one has:

1. If I is a faithful functor and uΓ are injective then H is an injection of C-systems.

2. If I is a fully faithful functor and uΓ are bijective then H is an isomorphism of C-
systems.

Proof: Both statements in relation to objects have straightforward proofs by induction on
the length. In relation to morphisms the statements follow from the ones about the objects,
the fact that int is fully faithful and formula (26).

5 Every C-system is isomorphic to a C-system of the form CC(C, p)

Problem 5.1 Let CC be a C-system. Construct a universe category (C, p) and an isomor-
phism CC ∼= CC(C, p).

We will provide three different constructions for this problem - Constructions 5.2, 5.6 and
5.7 with the two latter constructions using the first one.

It is customary in the modern mathematics to use “the” category of sets Sets. In fact, every
set X in the Zermelo-Fraenkel theory defines a category S(X) where:

Ob(S(X)) = X

Mor(S(X)) = qx1,x2∈XFun(x1, x2)

where Fun(x1, x2) is the set of functions from x1 to x2. This definition makes sense since
elements of Zermelo-Fraenkel sets are themselves Zermelo-Fraenkel sets.

Taking X to be sets satisfying particular conditions, e.g. Grothendieck universes, one obtains
categories that can be equipped with various familiar structures such as fiber products,
internal Hom-objects etc. When one says consider “the” category of sets one presumably
means the category S(GU) for a chosen Grothendieck universe GU .

The first construction that we provide assumes that we are working in set theory with a
chosen Grothendieck universe (or in type theory with a chosen type theoretic universe) that
contains the sets of objects and morphisms of our C-system. In the case of a type theory
we will actually need two universes in order to have a type of which the first universe is an
object.

In what follows we use the notations

Õb(CC) = {s ∈Mor(CC) | s : ft(X)→ X, l(X) > 0, s ◦ pX = IdX}

and ∂ : Õb(CC) → Ob(CC), ∂(s) = codom(s) that were introduced in [9]. We may some-
times abbreviate Ob(CC) to CC.
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We will write Õb1(Γ) for the subset of Õb that consists of s such that ft(∂(s)) = Γ. For

f : Γ′ → Γ we have the function s 7→ f ∗(s, 1) (see [9]) that maps s to the element of Õb1(Γ)
that is the pull-back of the section s relative to f . We will denote this function by f ∗. It is
easy to verify from the definitions that

(IdΓ)∗(s) = s (28)

and for g : Γ′′ → Γ′, f : Γ′ → Γ and s ∈ Õb1(Γ) one has

g∗(f ∗(s)) = (g ◦ f)∗(s). (29)

i.e., that the maps f ∗ define on the family of sets Õb1 the structure of a presheaf. We
continue using the notation Õb1 for this presheaf.

Construction 5.2 Denote by PreShv(CC) the category of presheaves on the precategory
underlying CC, i.e., the category of contravariant functors from the precategory underlying
CC to Sets.

Let Ob1 be the presheaf that takes an object Γ ∈ CC to the set Ob1(Γ) and a morphism
f : Γ′ → Γ to the map ∆ 7→ f ∗(∆). It is a functor due to the composition and unity axioms
for f ∗.

Let Õb1 be the presheaf that takes Γ to Õb1(Γ) described above.

Let further ∂ : Õb1 → Ob1 be the morphism that takes s to ∂(s). It is well defined as a
morphisms of families of sets and forms a morphism of presheaves since ∂(f ∗(s)) = f ∗(∂(s)).

The morphism ∂ carries a universe structure that is defined by the standard pull-back squares
in the category of presheaves.

We are going to construct a homomorphism CC → CC(PreShv(CC), ∂) using Construction
4.11 and to show that it is an isomorphism using Lemma 4.13.

We set Y o to be the Yoneda embedding.

We set
vΓ : Ob1(Γ)→ HomPreShv(Y o(Γ), Ob1)

to be the standard bijections between sections of the presheaf Ob1 on an object Γ and
morphisms from the corresponding representable presheaf Y o(Γ) to Ob1 in the category of
presheaves. It follows easily from the definitions that for f : Γ′ → Γ and ∆ ∈ Ob1(Γ) one
has

vΓ′(f
∗(∆)) = Y o(f) ◦ vΓ(∆) (30)

We also set
ṽΓ : Õb1(Γ)→ HomPreShv(Y o(Γ), Õb1)

to be the bijections of the same form for Õb1. Again, it follows easily from the definitions
that for f : Γ′ → Γ and s ∈ Õb1(Γ) one has

ṽΓ′(f
∗(s)) = Y o(f) ◦ ṽΓ(s) (31)
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To construct γ we first need to prove a lemma. Recall that for ∆ ∈ CC such that l(∆) > 0
we let δ(∆) : ∆→ p∗∆(∆) denote the section of pp∗∆(∆) given by the diagonal. We have

δ(∆) ∈ Õb1(∆)

Lemma 5.3 Let Γ ∈ Ob(CC) and ∆ ∈ Ob1(Γ). Then the square

Y o(∆)
ṽ(δ(∆))−−−−→ Õb1

Y o(p∆)

y y∂
Y o(Γ)

v(∆)−−−→ Ob1

(32)

is a pull-back square.

Proof: We have to show that for any Γ′ ∈ CC the function

Hom(Γ′,∆)→ Hom(Γ′,Γ)×Ob1(Γ′) Õb1(Γ′) (33)

defined by the square (32) is a bijection. Unfolding the definitions we see that this function
sends g : Γ′ → ∆ to the pair (g ◦ p∆, g

∗(δ(∆))) and that the fiber product is relative to the

function from Hom(Γ′,Γ) to Ob1(Γ′) that sends f to f ∗(∆) and the function from Õb1(Γ′)
to Ob1(Γ′) that sends s to ∂(s).

Note that g∗(δ(∆)) = sg where s is the s-operation of C-systems (see [9, Definition 2.3]) and
g ◦ p∆ is the morphism that we denoted in [9] by ft(g).

Let f1, f2 : Γ′ → ∆ be two morphisms such that their images under (33) coincide i.e. such
that ft(f1) = ft(f2) and sf1 = sf2 . This implies that f1 = f2 in view of [9, Definition 2.3(3)].
Therefore the function (33) is injective.

Let f : Γ′ → Γ be a morphism and s ∈ Õb1(Γ′) a section such that ∂(s) = f ∗(∆). Then the
composition s ◦ q(f,∆) is a morphism f ′ : Γ′ → ∆ such that f ′ ◦ p∆ = f . We also have

sf ′ = ss◦q(f,∆) = ss = s

which proves that (32) is surjective. This completes the proof of Lemma 5.3.

Let Γ ∈ Ob(CC) and ∆ ∈ Ob1(Γ). By construction, (Y o(Γ); v(∆)) is the standard fiber
product of the morphisms v(∆) and ∂ in the category of presheaves. On the other hand
Y o(∆) is a fiber product of the same two morphisms by Lemma 5.3. Therefore there exists
a unique isomorphism

γ∆ : (Y o(Γ); v(∆))→ Y o(∆)

such that
γ∆ ◦ ṽ(δ(∆)) = Q(v(∆)) (34)
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and
γ∆ ◦ Y o(p∆) = pY o(Γ),v(∆) (35)

It remains to verify the four conditions of Problem 4.10 since the conditions of Lemma 4.13(2)
are obviously satisfied.

We have that Y o(pt)→ pt is an isomorphism.

The second condition is (30).

The third condition is (35).

It remains to verify the fourth condition. Let f : Γ′ → Γ and ∆ ∈ Ob1(Γ). We need to show
that

γf∗(∆) ◦ Y o(q(f,∆)) = Q(Y o(f), v(∆)) ◦ γ∆ (36)

Two of the morphisms that are involved in the condition can be seen on the diagram

(Y o(Γ′); v(f ∗(∆)))
γf∗(∆)−−−→ Y o(f ∗(∆))

Y o(q(f,∆))−−−−−−→ Y o(∆)
ṽ(δ(∆))−−−−→ Õb1

pY o(Γ′),v(f∗(∆))

y Y o(pf∗(∆))

y yY o(p∆)

yp
Y o(Γ′) Y o(Γ′)

Y o(f)−−−→ Y o(Γ)
v(∆)−−−→ Ob1

By Lemma 5.3, Y o(∆) is a fiber product with the projections Y o(p∆) and ṽ(δ(∆)). Therefore
it is sufficient to verify that the compositions of the two sides of (36) with the projections
are equal, i.e., we have to prove two equalities:

γf∗(∆) ◦ Y o(q(f,∆)) ◦ Y o(p∆) = Q(Y o(f), v(∆)) ◦ γ∆ ◦ Y o(p∆) (37)

and
γf∗(∆) ◦ Y o(q(f,∆)) ◦ ṽ(δ(∆)) = Q(Y o(f), v(∆)) ◦ γ∆ ◦ ṽ(δ(∆)) (38)

For the (37) we have

γf∗(∆) ◦ Y o(q(f,∆)) ◦ Y o(p∆) = γf∗(∆) ◦ Y o(pf∗(∆)) ◦ Y o(f) =

pY o(Γ′),v(f∗(∆)) ◦ Y o(f) = pY o(Γ′),Y o(f)◦v(∆) ◦ Y o(f)

where the first equality is by the commutativity of the canonical squares in CC and the fact
that Y o is a functor, the second by (34) and the third one by (30). On the other hand

Q(Y o(f), v(∆)) ◦ γ∆ ◦ Y o(p∆) = Q(Y o(f), v(∆)) ◦ pY o(Γ),v(∆) = pY o(Γ′),Y o(f)◦v(∆) ◦ Y o(f)

where the first equality is by (34) and the second by the commutativity of the squares (2).

For (38) we have

γf∗(∆) ◦ Y o(q(f,∆)) ◦ ṽ(δ(∆)) = γf∗(∆) ◦ ṽ(q(f,∆)∗(δ(∆))) =

γf∗(∆) ◦ ṽ(δ(f ∗(∆))) = Q(v(f ∗(∆)))
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where the first equality is by (31), the second follows from a simple computation in CC and
the third one is by (34). On the other hand one has

Q(Y o(f), v(∆)) ◦ γ∆ ◦ ṽ(δ(∆)) = Q(Y o(f), v(∆)) ◦Q(v(∆)) = Q(Y o(f) ◦ v(∆)) = Q(f ∗(∆))

where the first equality is by (34), the second one by Lemma 2.5 and the third one by (30).

This completes Construction 5.2.

The second construction that we provide for Problem 5.1 is as follows. For a set M let
Rpn(M) be the set of subsets of (. . . (M ×M)× . . .)×M where M occurs in the expression
n+ 1 times. Let Rp(M) be the category with

Ob(Rp(M)) = qn≥0Rpn(M)

Mor(Rp(M)) = q(m,X),(n,Y )Fun(X, Y )

where Fun(X, Y ) is the set of functions from X to Y and the identity morphisms and
compositions of morphisms are given in the obvious way.

If our theory has a universe then the category Sets is defined and there is a functor FF :
Rp(M) → Sets that sends (n,X) to X and acts on morphisms in the obvious way. This
functor is fully faithful. (Note that it is not an inclusion of categories since, for example,
the empty subset is an element of each of Rpn(M) so that there are objects (n, ∅) for all n
which are all mapped by FF to the one empty set of Sets).

Let CC be a C-system. Consider C = Funct(CCop, Rp(Mor(CC))). Define a universe

(p : Õ → O, p ,Q(−)) in C as follows.

For Γ ∈ CC let
Ob′1(Γ) = {f ∈Mor(CC)| f = Idcodom(f))

and let ιΓ : Ob′1(Γ) → Ob1(Γ) be the bijection defined by the codomain function codom.
These bijections together with the structure of a presheaf on the family of sets Ob1(Γ) define
a structure of a presheaf on the family of sets Ob′1(Γ). Let

O(Γ) = (0, Ob′1(Γ)) ∈ Rp(Mor(CC))

The structure of a presheaf of sets on Ob′1 defines a structure of an element of C on O.

Next let
Õ(Γ) = (0, Õb1(Γ)) ∈ Rp(Mor(C))

The structure of a presheaf on Õb1 provide Õ with a structure of an object of C. The
morphism of presheaves ∂ defines in an obvious way a morphism p : Õ → O in C. Let us
construct a structure of a universe on p.

Let X ∈ C and F : X → O. For Γ ∈ CC let X(Γ) = (n,X0(Γ)) where X0(Γ) is an element
of Rpn(Mor(CC)). Then

(X;F )0(Γ) = {(x0, s) ∈ X0(Γ)× Õb1(Γ) |F (x0) = Idcodom(s)} ∈ Rpn+1(Mor(CC))
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is an element of Rpn+1(Mor(CC)) and (X;F )(Γ) = (n + 1, (X;F )0(Γ)) is an element of
Rp(Mor(CC)).

It is easy to equip the family (X;F )(Γ) of elements of Rp(Mor(CC)) with a structure of an

object of C and equally easy to define morphisms pX,F : (X;F )→ X andQ(F ) : (X;F )→ Õ.

We have also a functor I : CC → C that extends the family of sets

X 7→ (Y 7→ (0,Mor(X, Y )))

The image of the final object of CC under this functor is a final object in C which completes
the description of a universe category structure on C.

Lemma 5.4 For any F : X → O the square

(X;F )
Q(F )−−−→ Õ

pX,F

y yp
X

F−−−→ O

(39)

is a pull-back square in C.

Proof: One can either give a direct proof which would not require an extra universe or one
can argue that the functor FF defines a functor Φ : C → PreShv(CC) which is fully faithful
and which maps squares (39) to standard pull-back squares in the category of presheaves of
sets.

Problem 5.5 To construct an isomorphism H : CC → CC(C, p) where (C, p) is the universe
category constructed above.

There are two constructions for this problem. One we don’t describe here because giving
its detailed description would take a lot of space and add little understanding. It is a direct
construction based on Construction 4.11 and Lemma 4.13 that parallels Construction 5.2.
This direct construction would not use any extra universes and, in combination with the
construction of (C, p) based on the direct proof of Lemma 5.4 would provide a construction
for Problem 5.1 that does not require any additional universes.

The construction that we give below uses Construction 5.2 and therefore requires an extra
universe.

Construction 5.6 Let Φ : C → PreShv(CC) be the functor defined by FF . Since FF is
fully faithful so is Φ. We have, by definition

Φ(O) = Ob′1

Φ(Õ) = Õb1
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The bijections ιΓ give us an isomorphism of presheaves

ι : Φ(O) = Ob′1 → Ob1

which commute with Φ(p) and ∂ and together with Φ form a universe category functor
(Φ, ι, IdÕb1). This universe category functor satisfies the conditions of Lemma 4.8(2) and
therefore the homomorphism H(Φ, ι, IdÕb1) is an isomorphism. Composing the isomorphism
of Construction 5.2 the inverse to this isomorphism we obtain a solution to Problem 5.5.

The direct construction of the universe category (C, p) does not increase the universe level but
it uses the operation of taking the set of subsets that in type theory requires the propositional
resizing rule in order to be defined inside a given universe. Here is an outline of a third
construction that gives an even “tighter” universe category (C, p) with an isomorphism CC →
CC(C, p).

Construction 5.7 Define by induction on n pairs (Cn,Φn) where Cn is a set and Φn : Cn →
PreShc(CC) is a function as follows:

1. for n = 0 we set C0 = {pt, U, Ũ} and

Φ0(pt) = pt

Φ0(U) = Ob1

Φ0(Ũ) = Õb1

where pt on the right hand side of the first equality is the final object of PreShv(CC),

2. for the successor of n we set

Cn+1 = qX∈CnHomPreShv(CC)(Φn(X), Ob1)

and
Φn+1(X,F ) = (Φn(X);F )

where (X;F ) is defined using standard fiber products in PreShv(CC).

We then define
Ob(C) = qn≥0Cn

Mor(C) = q(m,X),(n,Y )∈Ob(C)HomPreShv(CC)(Φm(X),Φn(Y ))

The composition and the identity morphisms are defined in such a way as to make the pair
of maps

ΦOb = qnΦn

ΦMor = q(m,X),(n,Y )∈Ob(C)i(Φm(X),Φn(Y ))

where i(F,G) is the inclusion of HomPreShv(CC)(F,G) into Mor(PreShv(CC)), into a func-
tor. This functor, which we denote by Φ, is then fully faithful.
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One proves easily that pt is a final object of C. One defines the universe morphism in C as
the morphism p : Ũ → U that is mapped by Φ to ∂. Given (m,X) ∈ Ob(C) and a morphism
F : (m,X) → U one defines ((m,X);F ) as (m + 1, (X,Φ(F ))). This object is a vertex of
the square

((m,X);F )
Q(F )−−−→ Ũ

p(m,X),F

y yp
(m,X)

F−−−→ U

(40)

that is defined by the condition that it is mapped by Φ to the square

(Φm(X); Φ(F ))
Q(Φ(F ))−−−−→ Õb1

pΦm(X),Φ(F )

y yp
Φm(X)

Φ(F )−−−→ Õb1

(41)

Since Φ is fully faithful and the square (41) is a pull-back square, the square (40) is a pull-
back square. This provides us with a universe structure on p and completes the construction
of the universe category (C, p).
The functor Φ together with two identity morphisms forms a universe category functor
Φ = (Φ, IdOb1 , IdÕb1) that satisfies the conditions of Lemma 4.13(2). Therefore Φ defines an
isomorphism

CC(C, p)→ CC(PreShv(CC), ∂)

composing the isomorphism of Construction 5.2 with the inverse to this isomorphism we
obtain a solution to Problem 5.1. This completes Construction 5.7.

Remark 5.8 The category C of Construction 5.7 has all of the structures of a C-system and
these structures satisfy all of the required properties except for the property that l−1(0) =
{pt}. We would like to call such objects “generalized C-systems”. They seem to appear also
in other examples and may play an important role in the future.

6 A universe category defined by a precategory

The following problem was inspired by a question from an anonymous referee of [9]. Here we
have to use the word precategory as in the definition of a C-system since the construction
for this problem is not invariant under equivalences. Let us recall the following definition
that also introduces the notations to be used below.

Definition 6.1 A category with fiber products is a category together with, for all pairs of
morphisms of the form f : X → Z, g : Y → Z, fiber squares

(X, f)×Z (Y, g)
pr

(X,f),(Y,g)
2−−−−−−→ Y

pr
(X,f),(Y,g)
1

y yg
X

f−−−→ Z
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We will often abbreviate these main notations in various ways. The morphism pr2◦g = pr1◦f
from (X, f)× (Y, g) to Z is denoted by f � g.

Problem 6.2 Let C be a precategory with a final object pt and fiber products. To construct
a C-system CC and an equivalence of categories J∗ : CC → C, J∗ : C → CC.

Remark 6.3 Note that if we required an isomorphism CC → C then the problem would
have no solution since, for example, there is no C-system whose set of objects is the set with
two elements. Indeed, one of these elements, let us denote it by X, will have to have length
n > 0. Then l(p∗X(X)) = l(X)+1. Therefore p∗X(X) 6= X and p∗X(X) 6= pt which contradicts
the assumption that CC has only two objects.

We start with a general construction that does not require C to have fiber products or a
final object. The parts of it that do not concern C-systems must have certainly be known
for a long time but we do not know where it was originally introduced.

For a precategory C let UC be the presheaf such that

UC(X) = {(f, g) where f : X → Y and g : Z → Y }

and for a : X ′ → X,
UC(a)(f, g) = (a ◦ f, g)

One proves easily that this presheaf data defines a presheaf.

Let ŨC be the presheaf such that

ŨC(X) = {(f ′, g) where f ′ : X → Z and g : Z → Y }

and for a : X ′ → X,
ŨC(a)(f ′, g) = (a ◦ f ′, g)

Again one proves easily that ŨC this presheaf data defines a presheaf.

Let pC : ŨC → UC be the morphism given by

(pC)X(f ′, g) = (f ′ ◦ g, g)

One proves easily that this family of maps of sets is a morphism of presheaves.

As in Construction 5.2 let Y o be the Yoneda embedding and let

vX : UC(X)→ HomPreShv(Y o(X), UC)

ṽX : ŨC(X)→ HomPreShv(Y o(X), ŨC)

be the standard bijections which we will often write as v and ṽ.
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Lemma 6.4 For (f, g) ∈ UC(X), (f ′, g′) ∈ ŨC(X ′) and u : X ′ → X the square

Y o(X ′)
ṽ(f ′,g′)−−−−→ ŨC

Y o(u)

y ypC
Y o(X)

v(f,g)−−−→ UC

(42)

commutes if and only if g′ = g and the square

X ′
f ′−−−→ Z

u

y yg
X

f−−−→ Y

(43)

commutes. The square (42) is a pull-back square if and only if g = g′ and the square (43)
is a pull-back square.

Proof: The assertion about commutativity is obvious. The proof of the assertion about
being a pull-back square is as follows. The square (6.4) is a pull-back square if and only of
for all X ′′ the corresponding square of sections on X ′′ is a pull-back square of sets. This
square of sections is of the form

Hom(X ′′, X ′)
r1−−−→ {(f ′0 : X ′′ → Z0, g0 : Z0 → Y0)}

s1

y yr2
Hom(X ′′, X)

s2−−−→ {(f0 : X ′′ → Y0, g0 : Z0 → Y0)}

(44)

where r1(a′) = (a′ ◦ f ′, g′), r2(f ′0, g
′
0) = (f ′0 ◦ g′0, g′0), s1(a) = a ◦ u, s2(a) = (a ◦ f, g).

To check that (44) is a pull-back square it is sufficient to check that for every a ∈ Hom(X ′′, X)
the map s−1

1 (a)→ r−1
2 (s2(a)) defined by r1 is a bijection. We have

s−1
1 (a) = {a′ : X ′′ → X ′ | a′ ◦ u = a}

and
r−1

2 (s2(a)) = {(v : X ′′ → Z, g) | v ◦ g = a ◦ f} (45)

and the map defined by r1 maps a′ to (a′ ◦ v, g).

Applying the same reasoning to the condition that the square is (43) is pull-back we see that
it is equivalent to the condition that for all X ′′ and all a : X ′′ → X the map from the set

(− ◦ u)−1(a) = {a′ : X ′′ → X ′ | a′ ◦ u = a}

to the set
(− ◦ g)−1(a ◦ f) = {v : X ′′ → Z | v ◦ g = a ◦ f} (46)

given by a′ 7→ a′ ◦ f ′, is a bijection. Since g in (45) the sets on the right hand sides
of (45) and (46) are in the obvious bijection that is compatible with the functions from
{a′ : X ′′ → X ′ | a′ ◦ u = a} and therefore these two conditions are equivalent.
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Applying our main construction to (PreShv(CC), pC) we obtain, for any precategory C, a
C-system CC(C) = CC(PreShv(CC), pC).

Problem 6.5 Let C be a precategory with a final object pt. To construct a function J∗1 :
Ob(C)→ Ob1(PreShv(C), pC) and a family of isomorphisms jX : Y o(X)→ int(J∗(X)).

Construction 6.6 Let X ∈ Ob(C). The pull-back square

X
IdX−−−→ X

πX

y yπX
pt

Idpt−−−→ pt

defines by Lemma 6.4 a pull-back square

Y o(X)
ṽ(IdX ,πX)−−−−−−→ ŨC

Y o(πX)

y ypC
Y o(pt)

v(Idpt,πX)−−−−−−→ UC

(47)

Let ψ : pt→ Y o(pt) be the unique isomorphism. Set

J∗(X) = (pt, ψ ◦ v(Idpt, πX))

Then
πY o(X) ◦ ψ = Y o(πX)

and therefore πY o(X) ∗ ṽ(IdX , πX) is a well defined morphism from Y o(X) to J∗(X). It is
easy to prove now that since (47) is a pull-back square this morphism is an isomorphism.

Remark 6.7 For C with a final object pt, the set Ob1(PreShv(CC), pC) is in a constructive
bijection with the set of pairs (f : pt → Y, g : Z → Y ) which is given, in the notation of
Construction 6.6, by the map (f, g) 7→ ψ ◦ v(f, g). After composition with this bijection the
function J∗ takes X to (Id : pt→ pt, πX : X → pt). The function (f, g) 7→ dom(g) defines a
one-sided inverse to J∗1 so that J∗1 is always a split monomorphism.

Problem 6.8 Suppose that C is a category with a final object pt and fiber products. To con-
struct a function J∗ : Ob(CC(C))→ Ob(C) and for every Γ ∈ Ob(CC(C)) an isomorphism
σΓ : Y o(J∗(Γ))→ int(Γ).

Construction 6.9 We first construct by induction on n, pairs (Jn, σn) where

Jn : Obn(PreShv, pC)→ Ob(C)

and σn is a family of isomorphisms

σn(A) : Y o(Jn(A))→ intn(A)

given for all A ∈ Obn(PreShv, pC) as follows (we write J instead of Jn and σ instead of σn):
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1. For n = 0 we set J(A) = pt and σ(A) : Y o(pt)→ pt is the unique isomorphism,

2. For the successor of n we proceed as follows. Let (B,F ) ∈ Obn+1 where B ∈ Obn and
F : int(B)→ UC . Then

v−1(σB ◦ F ) ∈ UC(J(B))

is of the form
v−1(σB ◦ F ) = (f : J(B)→ Z, g : Y → Z)

Let
J(B,F ) = (J(B), f)×Z (Y, g)

To define σ(B,F ) consider the diagram

Y o(J(B,F ))
ι−−−→ (Y o(J(B)), σ(B) ◦ F )

Q(σ(B),F )−−−−−−→ (int(B);F )
Q(F )−−−→ ŨC

Y o(pr1)

y pY o(J(B)),σ(B)◦F

y pint(B),F

y ypC
Y o(J(B)) Y o(J(B))

σ(B)−−−→ int(B)
F−−−→ UC

where ι is the morphism Y o(pr1) ∗ ṽ(pr2, g). This morphism is defined because

Y o(pr1) ◦ σ(B) ◦ F = Y o(pr1) ◦ v(f, g) = (pr1 ◦ f, g)

and
ṽ(pr2, g) ◦ pC = (pr2 ◦ g, g)

and pr1 ◦ f = pr2 ◦ g. By Lemma 6.4 the square

Y o(J(B,F ))
ṽ(pr2,g)−−−−→ ŨC

Y o(pr1)

y ypC
Y o(J(B))

v(f,g)−−−→ UC

is a pull-back square which implies that ι is an isomorphism. We define

σ(B,F ) = ι ◦Q(σB, F )

The morphism Q(σ(B), F ) is an isomorphism by Lemma 2.4 and therefore σ(B,F ) is
an isomorphism.

We now define J∗ as the sum over n ∈ N of Jn. This completes Construction 6.9.

Remark 6.10 Using the bijection of Remark 6.7 we can look at the function from pairs
(f : pt→ Z, g : Z → Y ) to Ob(C) corresponding to J1. This function is given by

(f, g) 7→ (pt, f)×Z (Y, g)

When we compose it with J∗ and consider J∗(J
∗(X)) we obtain (pt, Idpt)×p t(X, πX). De-

pending on the choice of the fiber product this element of Ob(C) may be equal to X or not
but in any case there is a natural in X isomorphism X → J∗(J

∗(X)).
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We can now provide the following construction for Problem 6.2.

Construction 6.11 Let J∗ : Ob(C) → Ob(CC(C)) be the composition of the function J∗1
of Construction 6.6 with the inclusion of Ob1(PreShv, pC) into Ob(CC(PreShv, pC)). We
can extend it to a functor data setting:

J∗Mor(f : X → Y ) = int−1
J∗(X),J∗(Y )(j

−1
X ◦ Y o(f) ◦ jY )

where intΓ,Γ′ is the bijection

HomCC(C)(Γ,Γ
′)→ Hom(int(Γ), int(Γ′))

defined by the functor int. It is easy to prove from definitions that it is a functor and, using
the fact that both Y o and int are fully faithful, that J∗ is fully faithful.

Similarly we can extend J∗ of Construction 6.9 to a functor data setting

(J∗)Mor(f : Γ′ → Γ) = Y o−1
J∗(Γ′),J∗(Γ)(σΓ′ ◦ int(f) ◦ σ−1

Γ )

where Y oX,Y is the bijection

HomC(X, Y )→ HomPreShv(Y o(X), Y o(Y ))

defined by the Yoneda embedding. Again it is easy to prove from definitions that this functor
data is a functor and using the fact that both int and Y o are fully faithful that J∗ is fully
faithful.

After J∗ and J∗ have been extended to morphisms it makes sense to ask whether the families
of isomorphisms jX and σΓ are natural in X and Γ respectively and one verifies easily that
they indeed are.

Let X ∈ Ob(C) then we have an isomorphism

Y o(J∗(J
∗(X)))

σJ∗(X)−−−−→ int(J∗(X))
j−1
X−−−→ Y o(X)

which is natural in X and applying to it Y o−1
J∗(J∗(X)),X we get an isomorphism

J∗(J
∗(X))→ X

which is again natural in X, i.e., we obtained a functor isomorphism J∗ ◦ J∗ → Id.

Similarly, starting with,

int(Γ)
σ−1

Γ−−−→ Y o(J∗(Γ))
jJ∗(Γ)−−−→ int(J∗(J∗(Γ)))

one obtains a functor isomorphism Id→ J∗ ◦ J∗. This completes the Construction 6.11.

Remark 6.12 It might be possible to provide a construction for Problem 6.2 that does not
increase the universe level.
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Remark 6.13 The C-system CC(C) does not require a choice of a final of object or fiber
products in C and in particular does not depend on such a choice.

The functor J∗ : C → CC(C) requires a choice of a final object for its construction and
depends on this choice. Let B be the bijection

Ob1(PreShv(CC), pC)→ {(f : pt1 → Z, g : Y → Z)}

of Remark 6.7 defined by the choice of a final object pt1. Let J∗1,1 and J∗1,2 be the functions
Ob(C)→ Ob1(PreShv, pC) of Construction 6.5 defined by the choice of the final object pt1
and a final object pt2 respectively. Then one has

B(J∗1,1(X)) = (Id : pt1 → pt1, πX,1 : X → pt1)

and
B(J∗1,2(X)) = (a : pt1 → pt2, πX,2 : X → pt2)

where a : pt1 → pt2 is the unique morphism. This shows that J∗1,1 6= J∗1,2 if pt1 6= pt2 and in
particular that J∗ depends on the choice of the final object.

The fact that J∗ depends on the choice of fiber products is seen from the formula for
J∗(J

∗(X)) given in Remark 6.10.

Conjecture Let C be a category, CC be a C-system and M : CC → C a functor such
that M(ptCC) is a final object of C and M maps distinguished squares of CC to pull-back

squares of C. Then there exists a universe pM : ŨM → UM in PreShv(C) and a C-system
homomorphism M ′ : CC → CC(PreShv(C), pM) such that the square

CC
M−−−→ CyM ′ y

CC(PreShv(C), pM)
int−−−→ PreShv(C)

where the right hand side vertical arrow is the Yoneda embedding, commutes up to a functor
isomorphism.
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