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Abstract

This is the third paper in a series started in [7]. In it we construct a C-system
CC(C, p) starting from a category C together with a morphism p : Ũ → U , a choice of
pull-back squares based on p for all morphisms to U and a choice of a final object of
C. Such a quadruple is called a universe category. We then define universe category
functors and construct homomorphisms of C-systems CC(C, p) defined by universe
category functors. As a corollary of this construction and its properties we show that
the C-systems corresponding to different choices of pull-backs and final objects are
constructively isomorphic.

1 Introduction

The concept of a C-system in its present form was introduced in [7]. The type of the C-
systems is constructively equivalent to the type of contextual categories defined by Cartmell
in [3] and [2] but the definition of a C-system is slightly different from the Cartmell’s foun-
dational definition.

In [6] we constructed for any pair (R,LM) where R is a monad on Sets and LM a left R-
module with values in Sets a C-system CC(R,LM). In the particular case of pairs (R,LM)
corresponding to signatures as in [4, p.228] or to nominal signatures the regular sub-quotients
of CC(R,LM) are the C-systems corresponding to dependent type theories of the Martin-Lof
genus.

In this paper we describe another construction that generates C-systems. This time the
input data is a quadruple that consists of a category C, a morphism p : Ũ → U in this
category, a choice of pull-back squares based on p for all morphisms to U and a choice of a
final object in C. Such a quadruple is called a universe category. For any universe category
we construct a C-system that we denote by CC(C, p).
We then define the notion of a universe category functor and construct homomorphisms of
C-systems of the form CC(C, p) corresponding to universe category functors. For universe
category functors satisfying certain conditions these homomorphisms are isomorphisms. In
particular, any equivalence F : C → C ′ together with an isomorphism F (p) ∼= p′ (in the
category of morphsims) defines a universe category functor whose associated homomorphism
of C-systems is an isomorphism.
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To the best of our knowledge it is the only known construction of a C-system from a category
level data that transforms equivalences into isomorphisms. Because of this fact we find it
important to present both the construction of the C-system and the construction of the
homomorphisms defined by universe functors in detail.

To avoid the abuse of language inherent in the use of the Theorem-Proof style of pre-
senting mathematics when dealing with constructions we use the pair of names Problem-
Construction for the specification of the goal of a construction and the description of the
particular solution.

In the case of a Theorem-Proof pair one usually refers (by name or number) to the statement
when using both the statement and the proof. This is acceptable in the case of theorems
because the future use of their proofs is such that only the fact that there is a proof but not
the particulars of the proof matter.

In the case of a Problem-Construction pair the content of the construction often matters in
the future use. Because of this we often have to refer to the construction and not to the
problem and we assign in this paper numbers both to Problems and to the Constructions.

Following the approach used in [7] we write the composition of morphisms in categories in
the diagrammatic order, i.e., for f : X → Y and g : Y → Z their composition is written
as f ◦ g. This makes it much easier to translate between diagrams and equations involving
morphisms.

The methods of this paper are fully constructive.

We use the word “category” to refer to that which in the univalent formalization may be
replaced by the concept of a precategory (see [1]). However, due to the invariance of our
constructions under equivalences all of them should factor through the Rezk completion. This
invariance also makes the use of the word “category” consistent with the practice suggested
in the introduction to [7].

This paper is based almost entirely on the material of [5]. I am grateful to The Centre for
Quantum Mathematics and Computation (QMAC) and the Mathematical Institute of the
University of Oxford for their hospitality during my work on the previous version of the
paper and to the Department of Computer Science and Engineering of the University of
Gothenburg and Chalmers University of Technology for its the hospitality during my work
on the present version.

2 Construction of CC(C, p).

Definition 2.1 Let C be a category. A universe structure on a morphism p : Ũ → U in C
is a mapping that assigns to any morphism f : X → U in C a pull-back square

(X; f)
Q(f)−−−→ Ũ

pX,f

y yp
X

f−−−→ U
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A universe in C is a morphism p together with a universe structure on it.

In what follows we will write (X; f1, . . . , fn) for (. . . ((X; f1); f2) . . . ; fn).

Example 2.2 Let G be a group. Consider the category BG with one object pt whose
monoid of endomorphisms is G. Recall that any commutative square where all four arrows
are isomorphisms is a pull-back square. Let p : pt → pt be the unit object of G. Then a
universe structure on p can be defined by specifying, for every g : pt→ pt, of the horizontal
morphism Q(g) in the corresponding canonical square. There are no restrictions on the choice
of Q(g) since for any such choice one can take the vertical morphism to be Q(g)g−1 obtaining
a pull-back square. Therefore, the set of universe structures on p is GG. The automorphisms
of BG are given by Aut(G) (with two automorphisms being isomorphic as functors if they
differ by an inner automorphisms of G). Therefore, there are (GG)/Aut(G) isomorphism
classes of categories with universes with the underlying category BG and the underlying
universe morphism being Id : pt → pt. Note that in this case all auto-equivalences of the
category are automorphisms and so simply saying that we will consider universes up to an
equivalence of the underlying category does not change the answer. To have, as is suggested
by category-theoretic intuition, no more than one universe structure on a morphism one
needs to consider categories with universes up to equivalences of categories with universes
and then one has the obligation to prove that the constructions that are supposed to produce
objects such as C-systems map equivalences of categories with universes to isomorphisms. In
the case of the main construction of this paper it is achieved in Lemma 3.4 and with respect
to universe category functors of a somewhat wider class than the class of universe category
equivalences.

Definition 2.3 A universe category is a triple (C, p, pt) where C is a category, p : Ũ → U
is a morphism in C with a universe structure on it and pt is a final object in C.

Problem 2.4 For each universe category (C, p, pt) to define a C-system CC = CC(C, p).

Construction 2.5 The set of objects of CC is the set of sequences of the form (F1, . . . , Fn)
where F1 ∈ Hom(pt, U) and Fi+1 ∈ Hom((pt;F1, . . . , Fi), U). Morphisms from (G1, . . . , Gn)
to (F1, . . . , Fm) are given by

HomCC((G1, . . . , Gn), (F1, . . . , Fm)) = HomC((pt;G1, . . . , Gn), (pt;F1, . . . , Fm))

and units and compositions are defined as units and compositions in C such that the mapping
(F1, . . . , Fn) → (pt;F1, . . . , Fn) is a full embedding of the underlying category of CC to C.
The image of this embedding consists of objects X for which the canonical morphism X → pt
is a composition of morphisms which are (canonical) pull-backs of p. We will denote this
embedding by int.

This construction can be described more formally as follows. One defines, by induction on
n, pairs (Obn, intn : Obn → C) where Obn is a set and intn is a function from Obn to objects
of C. One starts with Ob0 = Hom(pt, pt) and int0 mapping Ob0 to pt. Then

Obn+1 = qΓ∈ObnHom(intn(Γ), U)
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and
intn+1(Γ, F ) = (intn(Γ);F )

The morphisms in CC(C, p) are defined by

HomCC(C,p)(Γ,Γ
′) := HomC(int(Γ), int(Γ′))

The final object of CC is the empty sequence (). The map ft sends (F1, . . . , Fn) to
(F1, . . . , Fn−1). The canonical morphism p(F1,...,Fn) is the projection

p((pt;F1,...,Fn−1),Fn) : ((pt;F1, . . . , Fn−1);Fn)→ (pt;F1, . . . , Fn−1)

For an object (F1, . . . , Fm+1) and a morphism f : (G1, . . . , Gn)→ (F1, . . . , Fm) the canonical
pull-back square in CC is of the form

(G1, . . . , Gn, f ◦ Fm+1)
q(f)−−−→ (F1, . . . , Fm+1)

pG

y ypF
(G1, . . . , Gn)

f−−−→ (F1, . . . , Fm)

(1)

where pF = p(F1,...,Fm+1), pG = p(G1,...,Gn,f◦Fm+1) and q(f) is the unique morphism such that
q(f) ◦ pF = pG ◦ f and int(q(f)) ◦ Q(Fm+1) = f ◦ Q(Fm+1). The unity and composition
axioms for the canonical squares follow immediately from the unity and associativity axioms
for compositions of morphisms in C.

3 Functoriality of CC(C, p).

Definition 3.1 Let (C, p, pt) and (C ′, p′, pt′) be universe categories. A functor of universe

categories from (C, p, pt) to (C ′, p′, pt′) is a triple (Φ, φ, φ̃) where Φ : C → C ′ is a functor and

φ : Φ(U)→ U ′, φ̃ : Φ(Ũ)→ Ũ ′ are morphisms such that:

1. Φ takes the canonical pull-back squares based on p to pull-back squares,

2. Φ takes pt to a final object of C ′,

3. the square

Φ(Ũ)
φ̃−−−→ Ũ ′

Φ(p)

y yp′
Φ(U)

φ−−−→ U ′

is a pull-back square.

Problem 3.2 Let
(Φ, φ, φ̃) : (C, p, pt)→ (C ′, p′, pt′)

be a functor of universes categories. To define a homomorphism H = H(Φ, φ, φ̃) from
CC(C, p) to CC(C ′, p′).
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Construction 3.3 Denote by ψ the isomorphism ψ : pt′ → Φ(pt). We define by induction
on n objects H(F1, . . . , Fn) ∈ CC(C ′, p′) and isomorphisms

ψ(F1,...,Fn) : int′(H(F1, . . . , Fn))→ Φ(int(F1, . . . Fn))

where int and int′ are the canonical functors CC(C, p)→ C and CC(C ′, p′)→ C ′ respectively.

For n = 0 we set H(()) = () and ψ() = ψ. For n > 0 let

(F ′1, . . . , F
′
n−1) = H(F1, . . . , Fn−1)

and let Fn : int(F1, . . . , Fn−1)→ U . Define F ′n as the composition

int′(F ′1, . . . , F
′
n−1)

ψ(F1,...,Fn−1)

−→ Φ(int(F1, . . . , Fn−1))
Φ(Fn)→ Φ(U)

φ→ U ′ (2)

and let H(F1, . . . , Fn) = (F ′1, . . . , F
′
n−1, F

′
n). Then

int′(H(F1, . . . , Fn)) = (int′(H(F1, . . . , Fn)), F ′n)

To define
ψ(F1,...,Fn) : int′(H(F1, . . . , Fn))→ Φ(int(F1, . . . , Fn))

observe that by our conditions on φ, φ̃ and Φ the squares of the diagram

Φ(int(F1, . . . , Fn))
Φ(Q(Fn))−−−−−→ Φ(Ũ) −−−→ Ũ ′y y y

Φ(int(F1, . . . , Fn−1))
Φ(Fn)−−−→ Φ(U)

φ−−−→ U ′

are pull-back. Therefore there is a unique morphism ψ(F1,...,Fn) such that the diagram

int′(H(F1, . . . , Fn))
ψ(F1,...,Fn)−−−−−−→ Φ(int(F1, . . . , Fn))

Φ(Q(Fn))◦φ̃−−−−−−→ Ũ ′y y y
int′(H(F1, . . . , Fn−1))

ψ(F1,...,Fn−1)

−−−−−−−→ Φ(int(F1, . . . , Fn−1))
Φ(Fn)◦φ−−−−→ U ′

(3)

commutes and

ψ(F1,...,Fn) ◦ Φ(Q(Fn)) ◦ φ̃ = Q(ψ(F1,...,Fn−1) ◦ Φ(Fn) ◦ φ) (4)

and this morphism is an isomorphism.

To define H on morphisms we use the fact that morphisms ψ(F1,...,Fn) are isomorphisms and
for f : (F1, . . . , Fn)→ (G1, . . . , Gm) we set

H(f) = ψ(F1,...,Fn) ◦ Φ(f) ◦ ψ−1
(G1,...,Gm) (5)

The fact that this construction gives a functor i.e. satisfies the unity and composition
axioms is straightforward.
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It remains to verify that it respects the rest of the operations of the C-system. It is clear
that it respects the length function and the ft maps. The fact that it takes the canonical
projections to canonical projections is equivalent to the commutativity of the left hand side
square in (3).

Consider a canonical square of the form (1). Its image is a square of the form

(G′1, . . . , G
′
n, G

′
n+1)

H(q(f))−−−−→ (F ′1, . . . , F
′
m+1)

H(pG)

y yH(pF )

(G′1, . . . , G
′
n)

H(f)−−−→ (F ′1, . . . , F
′
m)

(6)

We already know that the vertical arrows are canonical projections. Therefore, in order to
prove that (6) is a canonical square in CC(C ′, p′) we have to show that G′n+1 = int(H(f)) ◦
F ′m+1 and

int(H(q(f))) ◦Q(F ′m+1) = Q(int(H(f)) ◦ F ′m+1) (7)

By (2) we have
G′n+1 = ψ(G1,...,Gn) ◦ Φ(Fm+1f) ◦ φ

F ′m+1 = ψ(F1,...,Fm) ◦ Φ(Fm+1) ◦ φ

and by (5)
int(H(f)) = ψ(G1,...,Gn) ◦ Φ(f) ◦ ψ−1

(F1,...,Fm)

int(H(q(f))) = ψ(G1,...,Gn,Fm+1f) ◦ Φ(q(f)) ◦ ψ−1
(F1,...,Fm+1)

Therefore the relation G′n+1 = int(H(f)) ◦ F ′m+1 follows immediately and the relation (7)
follows by application of (4).

Lemma 3.4 Let (Φ, φ, φ̃) be as in Problem 3.2 and let H be the corresponding solution of

Construction 3.3. Then if Φ is a full embedding and φ and φ̃ are isomorphisms then H is
an isomorphism of C-systems.

Proof: Straightforward.

Lemma 3.4 implies in particular that considered up to a canonical isomorphism CC(C, p)
depends only on the equivalence class of the pair (C, p) i.e. that our construction maps the
type of pairs (C, p) to the type of C-systems.

Let us describe now a construction which shows that any C-system is isomorphic to a C-
system of the form CC(C, p).

Problem 3.5 Let CC be a C-system. Construct a universe category (C, p) and an isomor-
phism CC ∼= CC(C, p).
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Construction 3.6 Denote by PreShv(CC) the category of contravariant functors from the
category underlying CC to Sets.

Let Ty be the functor which takes an object Γ ∈ CC to the set

Ty(Γ) = {Γ′ ∈ CC | ft(Γ′) = Γ}

and a morphism f : ∆ → Γ to the map Γ′ 7→ f ∗Γ′. It is a functor due to the composition
and unity axioms for f ∗. Let Tm be the functor which takes an object Γ to the set

Tm(Γ) = {s ∈ C̃C | ft ∂(s) = Γ}

and a morphism f : ∆ → Γ to the map s 7→ f ∗(s) where f ∗(s) (or f ∗(s, 1) in the notation
of [7]) is the pull-back of the section s along f . Let further p : Tm→ Ty be the morphism
which takes s to ∂(s). It is well defined as a morphisms of families of sets and forms a
morphism of presheaves since ∂(f ∗(s)) = f ∗(∂(s)).

Let us construct an isomorphism CC ∼= CC(PreShv(CC), p).

In what follows we identify objects of CC with the corresponding representable presheaves
and, for a presheaf F and an object Γ, we identify morphisms Γ→ F in PreShv(CC) with
F (Γ). Recall that for X ∈ CC such that l(X) > 0 we let δ(X) : X → p∗X(X) denote the
section of pp∗X(X) given by the diagonal.

Lemma 3.7 Let Γ′ ∈ Ob(CC) and let Γ = ft(Γ′). Then the square

Γ′
δ(Γ′)−−−→ Tm

pΓ′

y yp
Γ

Γ′−−−→ Ty

(8)

is a pull-back square.

Proof: We have to show that for any ∆ ∈ CC the obvious map

Hom(∆,Γ′)→ Hom(∆,Γ)×Ty(∆) Tm(∆)

is a bijection. Let f1, f2 : ∆ → Γ′ be two morphisms such that their images under (8)
coincide i.e. such that f1 ◦ pΓ′ = f2 ◦ pΓ′ and f ∗1 (δ(Γ′)) = f ∗2 (δ(Γ)′). These two conditions
are equivalent to saying, in the notation of [7], that ft(f1) = ft(f2) and sf1 = sf2 . This
implies that f1 = f2. Let f : ∆ → Γ be a morphism and s ∈ Tm(∆) a section such that
ft(∂(s)) = f ∗(Γ′). Then the composition s ◦ q(f,Γ′) is a morphism f ′ : ∆ → Γ′ such that
f ′ ◦ pΓ′ = f . We also have

(f ′)∗(δ(Γ′)) = s∗(q(f,Γ′)∗(δ(Γ′))) = s

which proves that (8) is surjective.

To construct the required isomorphism we now choose a universe structure on p such that
the pull-back squares associated with morphisms from representable objects are squares (8).
The isomorphism is now obvious.
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Example 3.8 We can use Construction 2.5 to produce a C-system from a pre-category C
with a final object pt and fiber products. This example was inspired by a question from an
anonymous referee of [7]. Here we have to use the word “pre-category” since this construction,
unlike all other constructions of this paper, is not invariant under equivalences.

Given a pre-category C with a final object and fiber products consider the category of
presheaves of sets on C. Let U be the presheaf that takes X to the set of all pairs of
morphisms (f, g) such that f : X → Y and g : Z → Y . The functoriality is defined

by compositing f . Similarly let Ũ be the presheaf that takes X to the set of all pairs of
morphisms (f ′, g) such that f ′ : X → Z, g : Z → Y and functoriality is again through

composition of f ′. There is a morphism p : Ũ → U that takes (f ′, g) to (f ′ ◦ g, g). A square

X ′
(f ′,g′)−−−→ Ũ

u

y yp
X

(f,g)−−−→ U

commutes if g′ = g and u ◦ f = f ′ ◦ g′. It is a pull-back square if the square

X ′
f ′−−−→ Z

u

y yg
X

f−−−→ Y

is a pull-back square. In particular, if C has pull-backs then the C-system CC(PreShv(C), p)
is well defined.

Note that this construction is not invariant under equivalences in C. If C is replaced by an
equivalent but not an isomorphic category the morphism p will be replaced by a morphism
that is not isomorphic to it.

On the other hand the change in the choice of pull-backs without a change in C will lead to
the change of the C-system by a constructively isomorphic one,

Definition 3.9 Let CC be a C-system. A universe model of CC is a pair of a universe
category (C, p) and a C-system homomorphism CC → CC(C, p).

Conjecture Let C be a category, CC be a C-system and M : CC → C a functor such
that M(ptCC) is a final object of C and M maps distinguished squares of CC to pull-back

squares of C. Then there exists a universe pM : ŨM → UM in PreShv(C) and a C-system
homomorphism M ′ : CC → CC(PreShv(C), pM) such that the square

CC
M−−−→ CyM ′ y

CC(PreShv(C), pM)
int−−−→ PreShv(C)

where the right hand side vertical arrow is the Yoneda embedding, commutes up to a functor
isomorphism.
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